1
|
Chaudhry A, Chen Z, Gallavotti A. Hormonal influence on maize inflorescence development and reproduction. PLANT REPRODUCTION 2024; 37:393-407. [PMID: 39367960 PMCID: PMC11511735 DOI: 10.1007/s00497-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE Different plant hormones contribute to maize reproductive success. Maize is a major crop species and significantly contributes directly and indirectly to human calorie uptake. Its success can be mainly attributed to its unisexual inflorescences, the tassel and the ear, whose formation is regulated by complex genetic and hormonal networks, and is influenced by environmental cues such as temperature, and nutrient and water availability. Traditional genetic analysis of classic developmental mutants, together with new molecular approaches, have shed light on many crucial aspects of maize reproductive development including the influence that phytohormones exert on key developmental steps leading to successful reproduction and seed yield. Here we will review both historical and recent findings concerning the main roles that phytohormones play in maize reproductive development, from the commitment to reproductive development to sexual reproduction.
Collapse
Affiliation(s)
- Amina Chaudhry
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Liang S, Zhou S, Yi Z, Tian Y, Qin M, Wang J, Hu Y, Liang D, Zhang S, Ma X, Li Y, Luan W. Characterization and fine mapping of Double-grain ( Dgs) mutant in sorghum [ Sorghum bicolor (L.) Moench]. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:73. [PMID: 39450072 PMCID: PMC11496449 DOI: 10.1007/s11032-024-01511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The sorghum inflorescence is consisted of sessile (SS) and pedicellate spikelets (PS). Commonly, only SS could produce seeds and each spikelet produces one single seed. Here, we identified a sorghum mutant, named Double-grain (Dgs), which can produce twin seeds in each pair of glumes. We characterized the developmental process of inflorescence in Dgs and Jinliang 5 (Jin5, a single-seeded variety) using scanning electron microscope (SEM). The results showed that at the stamen and pistil differentiation stage, Dgs could develop two sets of stamens and carpels in one sessile floret, which resulted in twin-seeded phenotype in Dgs. Two F2 mapping populations derived from the cross between Jin5 and Dgs, and BTx622B and Dgs, were constructed, respectively. The genetic analysis showed that Dgs trait was controlled by a single dominant gene. Through bulk segregation analysis with whole-genome sequencing (BSA-seq) and linkage analysis, Dgs locus was delimited into a region of around 210-kb on chromosome 6, between the markers SSR24 and SSR47, which contained 32 putative genes. Further analysis indicated that Sobic.006G249000 or Sobic.006G249100 may be responsible for the twin-seeded phenotype. This result will be useful for map-based cloning of the Dgs gene and for marker-assisted breeding for increased grain number per panicle in sorghum. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01511-7.
Collapse
Affiliation(s)
- Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Shichen Zhou
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Zhiben Yi
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051 China
| | - Yanbao Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Mao Qin
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen, 518055 P. R. China
| | - Jiahan Wang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Youchuan Hu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Dan Liang
- Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, 300192 China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| |
Collapse
|
3
|
Li P, Quan H, He W, Wu L, Chen Z, Yong B, Liu X, He C. Rice BARENTSZ genes are required to maintain floral developmental stability against temperature fluctuations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:637-657. [PMID: 39215633 DOI: 10.1111/tpj.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BARENTSZ (BTZ), a core component of the exon junction complex, regulates diverse developmental processes in animals. However, its evolutionary and developmental roles in plants remain elusive. Here, we revealed that three groups of paralogous BTZ genes existed in Poaceae, and Group 2 underwent loss-of-function mutations during evolution. They showed surprisingly low (~33%) sequence identities, implying functional divergence. Two genes retained in rice, OsBTZ1 and OsBTZ3, were edited; however, the resultant osbtz1 and osbtz3 mutants showed similar floral morphological and functional defects at a low frequency. When growing under low-temperature conditions, developmental abnormalities became pronounced, and new floral variations were induced. In particular, stamen and carpel functionality was impaired in these rice btz mutants. The double-gene mutant osbtz1/3 shared these floral defects with an increased frequency, which was further induced under low-temperature conditions. OsBTZs interacted with OsMADS7 and OsMADS8, and the floral expressions of the OsTGA10 and MADS-box genes were correlatively altered in these osbtz mutants and responded to low-temperature treatment. These novel findings demonstrate that two highly diverged OsBTZs are required to maintain floral developmental stability under low-temperature conditions, and play an integral role in male and female fertility, thus providing new insights into the indispensable roles of BTZ genes in plant development and adaptive evolution.
Collapse
Affiliation(s)
- Peigang Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Quan
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenchao He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanfeng Wu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Yong
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Rusnak B, Clark FK, Vadde BVL, Roeder AHK. What Is a Plant Cell Type in the Age of Single-Cell Biology? It's Complicated. Annu Rev Cell Dev Biol 2024; 40:301-328. [PMID: 38724025 DOI: 10.1146/annurev-cellbio-111323-102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
One of the fundamental questions in developmental biology is how a cell is specified to differentiate as a specialized cell type. Traditionally, plant cell types were defined based on their function, location, morphology, and lineage. Currently, in the age of single-cell biology, researchers typically attempt to assign plant cells to cell types by clustering them based on their transcriptomes. However, because cells are dynamic entities that progress through the cell cycle and respond to signals, the transcriptome also reflects the state of the cell at a particular moment in time, raising questions about how to define a cell type. We suggest that these complexities and dynamics of cell states are of interest and further consider the roles signaling, stochasticity, cell cycle, and mechanical forces play in plant cell fate specification. Once established, cell identity must also be maintained. With the wealth of single-cell data coming out, the field is poised to elucidate both the complexity and dynamics of cell states.
Collapse
Affiliation(s)
- Byron Rusnak
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Frances K Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Batthula Vijaya Lakshmi Vadde
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA;
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| |
Collapse
|
5
|
Demesa-Arevalo E, Narasimhan M, Simon R. Intercellular Communication in Shoot Meristems. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:319-344. [PMID: 38424066 DOI: 10.1146/annurev-arplant-070523-035342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The shoot meristem of land plants maintains the capacity for organ generation throughout its lifespan due to a group of undifferentiated stem cells. Most meristems are shaped like a dome with a precise spatial arrangement of functional domains, and, within and between these domains, cells interact through a network of interconnected signaling pathways. Intercellular communication in meristems is mediated by mobile transcription factors, small RNAs, hormones, and secreted peptides that are perceived by membrane-localized receptors. In recent years, we have gained deeper insight into the underlying molecular processes of the shoot meristem, and we discuss here how plants integrate internal and external inputs to control shoot meristem activities.
Collapse
Affiliation(s)
- Edgar Demesa-Arevalo
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| | - Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| |
Collapse
|
6
|
Seo MG, Lim Y, Hendelman A, Robitaille G, Beak HK, Hong WJ, Park SJ, Lippman ZB, Park YJ, Kwon CT. Evolutionary conservation of receptor compensation for stem cell homeostasis in Solanaceae plants. HORTICULTURE RESEARCH 2024; 11:uhae126. [PMID: 38919555 PMCID: PMC11197305 DOI: 10.1093/hr/uhae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/21/2024] [Indexed: 06/27/2024]
Abstract
Stem cell homeostasis is pivotal for continuous and programmed formation of organs in plants. The precise control of meristem proliferation is mediated by the evolutionarily conserved signaling that encompasses complex interactions among multiple peptide ligands and their receptor-like kinases. Here, we identified compensation mechanisms involving the CLAVATA1 (CLV1) receptor and its paralogs, BARELY ANY MERISTEMs (BAMs), for stem cell proliferation in two Solanaceae species, tomato and groundcherry. Genetic analyses of higher-order mutants deficient in multiple receptor genes, generated via CRISPR-Cas9 genome editing, reveal that tomato SlBAM1 and SlBAM2 compensate for slclv1 mutations. Unlike the compensatory responses between orthologous receptors observed in Arabidopsis, tomato slclv1 mutations do not trigger transcriptional upregulation of four SlBAM genes. The compensation mechanisms within receptors are also conserved in groundcherry, and critical amino acid residues of the receptors associated with the physical interaction with peptide ligands are highly conserved in Solanaceae plants. Our findings demonstrate that the evolutionary conservation of both compensation mechanisms and critical coding sequences between receptor-like kinases provides a strong buffering capacity during stem cell homeostasis in tomato and groundcherry.
Collapse
Affiliation(s)
- Myeong-Gyun Seo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yoonseo Lim
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gina Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Hong Kwan Beak
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon Ju Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
7
|
Zhang N, Dong X, Jain R, Ruan D, de Araujo Junior AT, Li Y, Lipzen A, Martin J, Barry K, Ronald PC. XA21-mediated resistance to Xanthomonas oryzae pv. oryzae is dose dependent. PeerJ 2024; 12:e17323. [PMID: 38726377 PMCID: PMC11080989 DOI: 10.7717/peerj.17323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Xiaoou Dong
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, China
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, USA
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, USA
| | | | - Yan Li
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joel Martin
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, USA
| |
Collapse
|
8
|
Nan L, Li Y, Ma C, Meng X, Han Y, Li H, Huang M, Qin Y, Ren X. Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2024; 15:476. [PMID: 38674410 PMCID: PMC11050393 DOI: 10.3390/genes15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.
Collapse
Affiliation(s)
- Lizhang Nan
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Cui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Xiaowei Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Mingjing Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yingying Qin
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Xuemei Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
9
|
Wen Y, Yang Y, Liu J, Han H. CLV3-CLV1 signaling governs flower primordia outgrowth across environmental temperatures. TRENDS IN PLANT SCIENCE 2024; 29:400-402. [PMID: 38102046 DOI: 10.1016/j.tplants.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The initiation and outgrowth of floral primordia are critical for flower formation and reproductive success; however, the underlying mechanisms are still unclear. Two reports (Jones et al.; John et al.) shed light on how CLV3-CLV1 signaling promoted flower primordia formation and outgrowth by regulating auxin biosynthesis under distinct environmental temperatures.
Collapse
Affiliation(s)
- Yufang Wen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianping Liu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China.
| |
Collapse
|
10
|
Xu X, Passalacqua M, Rice B, Demesa-Arevalo E, Kojima M, Takebayashi Y, Harris B, Sakakibara H, Gallavotti A, Gillis J, Jackson D. Large-scale single-cell profiling of stem cells uncovers redundant regulators of shoot development and yield trait variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583414. [PMID: 38496543 PMCID: PMC10942292 DOI: 10.1101/2024.03.04.583414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Stem cells in plant shoots are a rare population of cells that produce leaves, fruits and seeds, vital sources for food and bioethanol. Uncovering regulators expressed in these stem cells will inform crop engineering to boost productivity. Single-cell analysis is a powerful tool for identifying regulators expressed in specific groups of cells. However, accessing plant shoot stem cells is challenging. Recent single-cell analyses of plant shoots have not captured these cells, and failed to detect stem cell regulators like CLAVATA3 and WUSCHEL . In this study, we finely dissected stem cell-enriched shoot tissues from both maize and arabidopsis for single-cell RNA-seq profiling. We optimized protocols to efficiently recover thousands of CLAVATA3 and WUSCHEL expressed cells. A cross-species comparison identified conserved stem cell regulators between maize and arabidopsis. We also performed single-cell RNA-seq on maize stem cell overproliferation mutants to find additional candidate regulators. Expression of candidate stem cell genes was validated using spatial transcriptomics, and we functionally confirmed roles in shoot development. These candidates include a family of ribosome-associated RNA-binding proteins, and two families of sugar kinase genes related to hypoxia signaling and cytokinin hormone homeostasis. These large-scale single-cell profiling of stem cells provide a resource for mining stem cell regulators, which show significant association with yield traits. Overall, our discoveries advance the understanding of shoot development and open avenues for manipulating diverse crops to enhance food and energy security.
Collapse
|
11
|
Bashyal S, Gautam CK, Müller LM. CLAVATA signaling in plant-environment interactions. PLANT PHYSIOLOGY 2024; 194:1336-1357. [PMID: 37930810 PMCID: PMC10904329 DOI: 10.1093/plphys/kiad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Plants must rapidly and dynamically adapt to changes in their environment. Upon sensing environmental signals, plants convert them into cellular signals, which elicit physiological or developmental changes that allow them to respond to various abiotic and biotic cues. Because plants can be simultaneously exposed to multiple environmental cues, signal integration between plant cells, tissues, and organs is necessary to induce specific responses. Recently, CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides and their cognate CLAVATA-type receptors received increased attention for their roles in plant-environment interactions. CLE peptides are mobile signaling molecules, many of which are induced by a variety of biotic and abiotic stimuli. Secreted CLE peptides are perceived by receptor complexes on the surface of their target cells, which often include the leucine-rich repeat receptor-like kinase CLAVATA1. Receptor activation then results in cell-type and/or environment-specific responses. This review summarizes our current understanding of the diverse roles of environment-regulated CLE peptides in modulating plant responses to environmental cues. We highlight how CLE signals regulate plant physiology by fine-tuning plant-microbe interactions, nutrient homeostasis, and carbon allocation. Finally, we describe the role of CLAVATA receptors in the perception of environment-induced CLE signals and discuss how diverse CLE-CLAVATA signaling modules may integrate environmental signals with plant physiology and development.
Collapse
Affiliation(s)
- Sagar Bashyal
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
12
|
Wulf K, Sun J, Wang C, Ho-Plagaro T, Kwon CT, Velandia K, Correa-Lozano A, Tamayo-Navarrete MI, Reid JB, García Garrido JM, Foo E. The Role of CLE Peptides in the Suppression of Mycorrhizal Colonization of Tomato. PLANT & CELL PHYSIOLOGY 2024; 65:107-119. [PMID: 37874980 PMCID: PMC10799714 DOI: 10.1093/pcp/pcad124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Symbioses with beneficial microbes are widespread in plants, but these relationships must balance the energy invested by the plants with the nutrients acquired. Symbiosis with arbuscular mycorrhizal (AM) fungi occurs throughout land plants, but our understanding of the genes and signals that regulate colonization levels is limited, especially in non-legumes. Here, we demonstrate that in tomato, two CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides, SlCLE10 and SlCLE11, act to suppress AM colonization of roots. Mutant studies and overexpression via hairy transformation indicate that SlCLE11 acts locally in the root to limit AM colonization. Indeed, SlCLE11 expression is strongly induced in AM-colonized roots, but SlCLE11 is not required for phosphate suppression of AM colonization. SlCLE11 requires the FIN gene that encodes an enzyme required for CLE peptide arabinosylation to suppress mycorrhizal colonization. However, SlCLE11 suppression of AM does not require two CLE receptors with roles in regulating AM colonization, SlFAB (CLAVATA1 ortholog) or SlCLV2. Indeed, multiple parallel pathways appear to suppress mycorrhizal colonization in tomato, as double mutant studies indicate that SlCLV2 and FIN have an additive influence on mycorrhizal colonization. SlCLE10 appears to play a more minor or redundant role, as cle10 mutants did not influence intraradical AM colonization. However, the fact that cle10 mutants had an elevated number of hyphopodia and that ectopic overexpression of SlCLE10 did suppress mycorrhizal colonization suggests that SlCLE10 may also play a role in suppressing AM colonization. Our findings show that CLE peptides regulate AM colonization in tomato and at least SlCLE11 likely requires arabinosylation for activity.
Collapse
Affiliation(s)
- Kate Wulf
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Jiacan Sun
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Chenglei Wang
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
- Enza Zaden Australia, 218 Eumungerie Road, Narromine, NSW 2821, Australia
| | - Tania Ho-Plagaro
- Department of Soil Microbiology and Symbiotic Systems, Zaidín Experimental Station (EEZ), CSIC, C. Prof. Albareda, 1, Granada 18008, Spain
| | - Choon-Tak Kwon
- Department of Smart Farm Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Yongin 17104, Republic of Korea
- Graduate School of Green-Bio Science, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Yongin 17104, Republic of Korea
| | - Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Alejandro Correa-Lozano
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - María Isabel Tamayo-Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Zaidín Experimental Station (EEZ), CSIC, C. Prof. Albareda, 1, Granada 18008, Spain
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Jose Manuel García Garrido
- Department of Soil Microbiology and Symbiotic Systems, Zaidín Experimental Station (EEZ), CSIC, C. Prof. Albareda, 1, Granada 18008, Spain
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|
13
|
Thomas J, Frugoli J. Mutation of BAM2 rescues the sunn hypernodulation phenotype in Medicago truncatula, suggesting that a signaling pathway like CLV1/BAM in Arabidopsis affects nodule number. FRONTIERS IN PLANT SCIENCE 2024; 14:1334190. [PMID: 38273950 PMCID: PMC10808729 DOI: 10.3389/fpls.2023.1334190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root by long-distance signaling to and from the shoot and root. Central to AON signaling in the shoots of Medicago truncatula is SUNN, a leucine-rich repeat receptor-like kinase with high sequence similarity with CLAVATA1 (CLV1), part of a class of receptors in Arabidopsis involved in regulating stem cell populations in the root and shoot. This class of receptors in Arabidopsis includes the BARELY ANY MERISTEM family, which, like CLV1, binds to CLE peptides and interacts with CLV1 to regulate meristem development. M. truncatula contains five members of the BAM family, but only MtBAM1 and MtBAM2 are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individual MtBAMs, and several double BAM mutant combinations all displayed wild-type nodule number phenotypes. However, Mtbam2 suppressed the sunn-5 hypernodulation phenotype and partially rescued the short root length phenotype of sunn-5 when present in a sunn-5 background. Grafting determined that bam2 suppresses supernodulation from the roots, regardless of the SUNN status of the root. Overexpression of MtBAM2 in wild-type plants increases nodule numbers, while overexpression of MtBAM2 in some sunn mutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutant rdn1-2 or crn. Relative expression measurements of the nodule transcription factor MtWOX5 downstream of the putative bam2 sunn-5 complex revealed disruption of meristem signaling; while both bam2 and bam2 sunn-5 influence MtWOX5 expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis in M. truncatula.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
14
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
15
|
Pečenková T, Potocký M. Small secreted proteins and exocytosis regulators: do they go along? PLANT SIGNALING & BEHAVIOR 2023; 18:2163340. [PMID: 36774640 PMCID: PMC9930824 DOI: 10.1080/15592324.2022.2163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Small secreted proteins play an important role in plant development, as well as in reactions to changes in the environment. In Arabidopsis thaliana, they are predominantly members of highly expanded families, such as the pathogenesis-related (PR) 1-like protein family, whose most studied member PR1 is involved in plant defense responses by a so far unknown mechanism, or Clavata3/Endosperm Surrounding Region (CLE) protein family, whose members' functions in the development are well described. Our survey of the existing literature for the two families showed a lack of details on their localization, trafficking, and exocytosis. Therefore, in order to uncover the modes of their secretion, we tested the hypothesis that a direct link between the secreted cargoes and the secretion regulators such as Rab GTPases, SNAREs, and exocyst subunits could be established using in silico co-expression and clustering approaches. We employed several independent techniques to uncover that only weak co-expression links could be found for limited numbers of secreted cargoes and regulators. We propose that there might be particular spatio-temporal requirements for PR1 and CLE proteins to be synthesized and secreted, and efforts to experimentally cover these discrepancies should be invested along with functional studies.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Potocký
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Gallagher JP, Man J, Chiaramida A, Rozza IK, Patterson EL, Powell MM, Schrager-Lavelle A, Multani DS, Meeley RB, Bartlett ME. GRASSY TILLERS1 ( GT1) and SIX-ROWED SPIKE1 ( VRS1) homologs share conserved roles in growth repression. Proc Natl Acad Sci U S A 2023; 120:e2311961120. [PMID: 38096411 PMCID: PMC10742383 DOI: 10.1073/pnas.2311961120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genes GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles of GT1 and VRS1 homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize, gt1; vrs1-like1 (vrl1) mutants have derepressed growth of floral organs. In addition, gt1; vrl1 mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium, Bdgt1; Bdvrl1 mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles for GT1 and VRS1 homologs in growth suppression over ca. 59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maize GT1 can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despite ca. 160 My of evolution separating the grasses and arabidopsis. Thus, GT1 and VRS1 maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.
Collapse
Affiliation(s)
- Joseph P. Gallagher
- Biology Department, University of Massachusetts, Amherst, MA01003
- Forage Seed and Cereal Research Unit, US Department of Agriculture, Agricultural Research Service, Corvallis, OR97331
| | - Jarrett Man
- Biology Department, University of Massachusetts, Amherst, MA01003
| | | | | | | | - Morgan M. Powell
- Biology Department, University of Massachusetts, Amherst, MA01003
| | | | - Dilbag S. Multani
- Corteva Agriscience, Johnston, IA50131
- Napigen, Inc., Wilmington, DE19803
| | | | | |
Collapse
|
17
|
Kileeg Z, Haldar A, Khan H, Qamar A, Mott GA. Differential expansion and retention patterns of LRR-RLK genes across plant evolution. PLANT DIRECT 2023; 7:e556. [PMID: 38145254 PMCID: PMC10739070 DOI: 10.1002/pld3.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
To maximize overall fitness, plants must accurately respond to a host of growth, developmental, and environmental signals throughout their life. Many of these internal and external signals are perceived by the leucine-rich repeat receptor-like kinases, which play roles in regulating growth, development, and immunity. This largest family of receptor kinases in plants can be divided into subfamilies based on the conservation of the kinase domain, which demonstrates that shared evolutionary history often indicates shared molecular function. Here we investigate the evolutionary history of this family across the evolution of 112 plant species. We identify lineage-specific expansions of the malectin-domain containing subfamily LRR subfamily I primarily in the Brassicales and bryophytes. Most other plant lineages instead show a large expansion in LRR subfamily XII, which in Arabidopsis is known to contain key receptors in pathogen perception. This striking asymmetric expansion may reveal a dichotomy in the evolutionary history and adaptation strategies employed by plants. A greater understanding of the evolutionary pressures and adaptation strategies acting on members of this receptor family offers a way to improve functional predictions for orphan receptors and simplify the identification of novel stress-related receptors.
Collapse
Affiliation(s)
- Zachary Kileeg
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Aparna Haldar
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Hasna Khan
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Arooj Qamar
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
| | - G. Adam Mott
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoCanada
| |
Collapse
|
18
|
Vande Zande P, Siddiq MA, Hodgins-Davis A, Kim L, Wittkopp PJ. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae. PLoS Genet 2023; 19:e1011078. [PMID: 38091349 PMCID: PMC10752532 DOI: 10.1371/journal.pgen.1011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralog TDH2. TDH2 is upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. TDH1, a second and more distantly related paralog of TDH3, has diverged in its regulation and is upregulated by another mechanism. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mohammad A. Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa Kim
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
19
|
Iohannes SD, Jackson D. Tackling redundancy: genetic mechanisms underlying paralog compensation in plants. THE NEW PHYTOLOGIST 2023; 240:1381-1389. [PMID: 37724752 DOI: 10.1111/nph.19267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed 'a geneticist's nightmare': It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies - the next frontier in plant functional studies.
Collapse
Affiliation(s)
- Sessen Daniel Iohannes
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| |
Collapse
|
20
|
Ferigolo LF, Vicente MH, Correa JPO, Barrera-Rojas CH, Silva EM, Silva GFF, Carvalho A, Peres LEP, Ambrosano GB, Margarido GRA, Sablowski R, Nogueira FTS. Gibberellin and miRNA156-targeted SlSBP genes synergistically regulate tomato floral meristem determinacy and ovary patterning. Development 2023; 150:dev201961. [PMID: 37823342 DOI: 10.1242/dev.201961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
Many developmental processes associated with fruit development occur at the floral meristem (FM). Age-regulated microRNA156 (miR156) and gibberellins (GAs) interact to control flowering time, but their interplay in subsequent stages of reproductive development is poorly understood. Here, in tomato (Solanum lycopersicum), we show that GA and miR156-targeted SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL or SBP) genes interact in the tomato FM and ovary patterning. High GA responses or overexpression of miR156 (156OE), which leads to low expression levels of miR156-silenced SBP genes, resulted in enlarged FMs, ovary indeterminacy and fruits with increased locule number. Conversely, low GA responses reduced indeterminacy and locule number, and overexpression of a S. lycopersicum (Sl)SBP15 allele that is miR156 resistant (rSBP15) reduced FM size and locule number. GA responses were partially required for the defects observed in 156OE and rSBP15 fruits. Transcriptome analysis and genetic interactions revealed shared and divergent functions of miR156-targeted SlSBP genes, PROCERA/DELLA and the classical WUSCHEL/CLAVATA pathway, which has been previously associated with meristem size and determinacy. Our findings reveal that the miR156/SlSBP/GA regulatory module is deployed differently depending on developmental stage and create novel opportunities to fine-tune aspects of fruit development that have been important for tomato domestication.
Collapse
Affiliation(s)
- Leticia F Ferigolo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Mateus H Vicente
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Carlos H Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Airton Carvalho
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), 13418-900 Piracicaba, São Paulo, Brazil
| | - Guilherme B Ambrosano
- Department of Genetics, University of São Paulo Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Gabriel R A Margarido
- Department of Genetics, University of São Paulo Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| |
Collapse
|
21
|
Aguirre L, Hendelman A, Hutton SF, McCandlish DM, Lippman ZB. Idiosyncratic and dose-dependent epistasis drives variation in tomato fruit size. Science 2023; 382:315-320. [PMID: 37856609 PMCID: PMC10602613 DOI: 10.1126/science.adi5222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Epistasis between genes is traditionally studied with mutations that eliminate protein activity, but most natural genetic variation is in cis-regulatory DNA and influences gene expression and function quantitatively. In this study, we used natural and engineered cis-regulatory alleles in a plant stem-cell circuit to systematically evaluate epistatic relationships controlling tomato fruit size. Combining a promoter allelic series with two other loci, we collected over 30,000 phenotypic data points from 46 genotypes to quantify how allele strength transforms epistasis. We revealed a saturating dose-dependent relationship but also allele-specific idiosyncratic interactions, including between alleles driving a step change in fruit size during domestication. Our approach and findings expose an underexplored dimension of epistasis, in which cis-regulatory allelic diversity within gene regulatory networks elicits nonlinear, unpredictable interactions that shape phenotypes.
Collapse
Affiliation(s)
- Lyndsey Aguirre
- Cold Spring Harbor Laboratory, School of Biological Sciences, Cold Spring Harbor, NY, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | | | - Zachary B. Lippman
- Cold Spring Harbor Laboratory, School of Biological Sciences, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
22
|
Chen YH, Lu J, Yang X, Huang LC, Zhang CQ, Liu QQ, Li QF. Gene editing of non-coding regulatory DNA and its application in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6158-6175. [PMID: 37549968 DOI: 10.1093/jxb/erad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has provided precise and efficient strategies to edit target genes and generate transgene-free crops. Significant progress has been made in the editing of protein-coding genes; however, studies on the editing of non-coding DNA with regulatory roles lags far behind. Non-coding regulatory DNAs, including those which can be transcribed into long non-coding RNAs (lncRNAs), and miRNAs, together with cis-regulatory elements (CREs), play crucial roles in regulating plant growth and development. Therefore, the combination of CRISPR/Cas technology and non-coding regulatory DNA has great potential to generate novel alleles that affect various agronomic traits of crops, thus providing valuable genetic resources for crop breeding. Herein, we review recent advances in the roles of non-coding regulatory DNA, attempts to edit non-coding regulatory DNA for crop improvement, and potential application of novel editing tools in modulating non-coding regulatory DNA. Finally, the existing problems, possible solutions, and future applications of gene editing of non-coding regulatory DNA in modern crop breeding practice are also discussed.
Collapse
Affiliation(s)
- Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xia Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
23
|
Man J, Harrington TA, Lally K, Bartlett ME. Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins. Mol Biol Evol 2023; 40:msad220. [PMID: 37787619 PMCID: PMC10588794 DOI: 10.1093/molbev/msad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.
Collapse
Affiliation(s)
- Jarrett Man
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - T A Harrington
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Kyra Lally
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Madelaine E Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| |
Collapse
|
24
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Selby R, Jones DS. Complex peptide hormone signaling in plant stem cells. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102442. [PMID: 37672866 DOI: 10.1016/j.pbi.2023.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Peptide hormones influence diverse aspects of plant development through highly coordinated cell-cell signaling pathways. Many peptide hormone families play key roles in stem cell maintenance across land plants. In this review, we focus on recent work in two conserved peptide hormone families, CLAVATA3/EMBRYO-SURROUNDING REGION (CLEs) and ROOT MERISTEM GROWTH FACTOR (RGFs), and their roles in regulating plant stem cells. We discuss recent work establishing downstream crosstalk between peptide hormones and other conserved signaling mechanisms in meristem maintenance as well as highlight advances in peptide hormone gene identification that provide important context for CLE/RGF family evolution across diverse plant lineages. CLE and RGF gene families have greatly expanded in angiosperms, contributing to the complex genetic regulation of stem cell homeostasis observed in model systems over the last 30 years. Peptide hormone duplications have resulted in genetic compensation mechanisms that ensure robust development through the function of paralogous genes. Broad conservation of genetic compensation across angiosperms highlights the importance of these mechanisms in developmental signaling and understanding their regulation could inform broader understanding of morphological diversity and evolutionary innovation.
Collapse
Affiliation(s)
- Reid Selby
- Department of Biological Sciences, Auburn University, 36849, Auburn, AL, USA
| | - Daniel S Jones
- Department of Biological Sciences, Auburn University, 36849, Auburn, AL, USA.
| |
Collapse
|
26
|
Zu Q, Deng X, Qu Y, Chen X, Cai Y, Wang C, Li Y, Chen Q, Zheng K, Liu X, Chen Q. Genetic Channelization Mechanism of Four Chalcone Isomerase Homologous Genes for Synergistic Resistance to Fusarium wilt in Gossypium barbadense L. Int J Mol Sci 2023; 24:14775. [PMID: 37834230 PMCID: PMC10572676 DOI: 10.3390/ijms241914775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Duplication events occur very frequently during plant evolution. The genes in the duplicated pathway or network can evolve new functions through neofunctionalization and subfunctionalization. Flavonoids are secondary metabolites involved in plant development and defense. Our previous transcriptomic analysis of F6 recombinant inbred lines (RILs) and the parent lines after Fusarium oxysporum f. sp. vasinfectum (Fov) infection showed that CHI genes have important functions in cotton. However, there are few reports on the possible neofunctionalization differences of CHI family paralogous genes involved in Fusarium wilt resistance in cotton. In this study, the resistance to Fusarium wilt, expression of metabolic pathway-related genes, metabolite content, endogenous hormone content, reactive oxygen species (ROS) content and subcellular localization of four paralogous CHI family genes in cotton were investigated. The results show that the four paralogous CHI family genes may play a synergistic role in Fusarium wilt resistance. These results revealed a genetic channelization mechanism that can regulate the metabolic flux homeostasis of flavonoids under the mediation of endogenous salicylic acid (SA) and methyl jasmonate (MeJA) via the four paralogous CHI genes, thereby achieving disease resistance. Our study provides a theoretical basis for studying the evolutionary patterns of homologous plant genes and using homologous genes for molecular breeding.
Collapse
Affiliation(s)
- Qianli Zu
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xunji Chen
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), No. 403, Nanchang Road, Urumqi 830052, China;
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Caoyue Wang
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Ying Li
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Qin Chen
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| | - Xiaodong Liu
- College of Life Science, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Q.Z.); (X.D.); (Y.Q.); (Y.C.); (C.W.); (Y.L.); (Q.C.); (K.Z.)
| |
Collapse
|
27
|
Wang Y, Jiao Y. Cell signaling in the shoot apical meristem. PLANT PHYSIOLOGY 2023; 193:70-82. [PMID: 37224874 DOI: 10.1093/plphys/kiad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Distinct from animals, plants maintain organogenesis from specialized tissues termed meristems throughout life. In the shoot apex, the shoot apical meristem (SAM) produces all aerial organs, such as leaves, from its periphery. For this, the SAM needs to precisely balance stem cell renewal and differentiation, which is achieved through dynamic zonation of the SAM, and cell signaling within functional domains is key for SAM functions. The WUSCHEL-CLAVATA feedback loop plays a key role in SAM homeostasis, and recent studies have uncovered new components, expanding our understanding of the spatial expression and signaling mechanism. Advances in polar auxin transport and signaling have contributed to knowledge of the multifaceted roles of auxin in the SAM and organogenesis. Finally, single-cell techniques have expanded our understanding of the cellular functions within the shoot apex at single-cell resolution. In this review, we summarize the most up-to-date understanding of cell signaling in the SAM and focus on the multiple levels of regulation of SAM formation and maintenance.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
28
|
Tang Q, Wang X, Jin X, Peng J, Zhang H, Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3119. [PMID: 37687368 PMCID: PMC10489799 DOI: 10.3390/plants12173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Collapse
Affiliation(s)
- Qiaoling Tang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soi-Borne Diseases, Baoding University, Baoding 071000, China;
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haiwen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Youhua Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
29
|
Xiang H, Meng S, Ye Y, Han L, He Y, Cui Y, Tan C, Ma J, Qi M, Li T. A molecular framework for lc controlled locule development of the floral meristem in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1249760. [PMID: 37680356 PMCID: PMC10482247 DOI: 10.3389/fpls.2023.1249760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Malformed tomato fruit with multiple locules is a common physiological disorder that significantly affects the quality of tomatoes. Research has shown that the occurrence of malformed fruit in tomatoes is closely linked to the number of locules, and two key QTLs, lc and fas, are involved in controlling this trait. It has been observed that lc has a relatively weaker effect on increasing locule number, which is associated with two SNPs in the CArG repressor element downstream of the SlWUS. However, the precise molecular mechanism underlying lc is not yet fully understood. In this study, we investigated the role of lc in tomato locule development. We found that the number of floral organs and fruit locules significantly increased in tomato lc knockout mutants. Additionally, these mutants showed higher expression levels of the SlWUS during carpel formation. Through cDNA library construction and yeast one-hybrid screening, we identified the MADS-box transcription factor SlSEP3, which was found to bind to lc. Furthermore, we observed an increase in floral organs and fruit locules similar to the lc CR plant on SlSEP3 silencing plants. However, it should be noted that the lc site is located after the 3' untranslated region (UTR) of SlWUS in the tomato genome. As a result, SlSEP3 may not be able to exert regulatory functions on the promoter of the gene like other transcription factors. In the yeast two-hybrid assay, we found that several histone deacetylases (SlHDA1, SlHDA3, SlHDA4, SlHDA5, SlHDA6, SlHDA7, and SlHDA8) can interact with SlSEP3. This indicated that SlSEP3 can recruit these proteins to repress nucleosome relaxation, thereby inhibiting SlWUS transcription and affecting the number of locules in tomato fruit. Therefore, our findings reveal a new mechanism for lc playing a significant role in the genetic pathway regulating tomato locule development.
Collapse
Affiliation(s)
- Hengzuo Xiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural, Affairs P. R. China, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Provincial Co-construction Surrounds Bohai Gulf Region, Shenyang, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural, Affairs P. R. China, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Provincial Co-construction Surrounds Bohai Gulf Region, Shenyang, China
| | - Yunzhu Ye
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural, Affairs P. R. China, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Provincial Co-construction Surrounds Bohai Gulf Region, Shenyang, China
| | - Leilei Han
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural, Affairs P. R. China, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Provincial Co-construction Surrounds Bohai Gulf Region, Shenyang, China
| | - Yi He
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Yiqing Cui
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural, Affairs P. R. China, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Provincial Co-construction Surrounds Bohai Gulf Region, Shenyang, China
| | - Jian Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural, Affairs P. R. China, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Provincial Co-construction Surrounds Bohai Gulf Region, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural, Affairs P. R. China, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Provincial Co-construction Surrounds Bohai Gulf Region, Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural, Affairs P. R. China, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Provincial Co-construction Surrounds Bohai Gulf Region, Shenyang, China
| |
Collapse
|
30
|
Shi L, Su J, Cho MJ, Song H, Dong X, Liang Y, Zhang Z. Promoter editing for the genetic improvement of crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4349-4366. [PMID: 37204916 DOI: 10.1093/jxb/erad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Gene expression plays a fundamental role in the regulation of agronomically important traits in crop plants. The genetic manipulation of plant promoters through genome editing has emerged as an effective strategy to create favorable traits in crops by altering the expression pattern of the pertinent genes. Promoter editing can be applied in a directed manner, where nucleotide sequences associated with favorable traits are precisely generated. Alternatively, promoter editing can also be exploited as a random mutagenic approach to generate novel genetic variations within a designated promoter, from which elite alleles are selected based on their phenotypic effects. Pioneering studies have demonstrated the potential of promoter editing in engineering agronomically important traits as well as in mining novel promoter alleles valuable for plant breeding. In this review, we provide an update on the application of promoter editing in crops for increased yield, enhanced tolerance to biotic and abiotic stresses, and improved quality. We also discuss several remaining technical bottlenecks and how this strategy may be better employed for the genetic improvement of crops in the future.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Hao Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
31
|
John A, Smith ES, Jones DS, Soyars CL, Nimchuk ZL. A network of CLAVATA receptors buffers auxin-dependent meristem maintenance. NATURE PLANTS 2023; 9:1306-1317. [PMID: 37550370 PMCID: PMC11070199 DOI: 10.1038/s41477-023-01485-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2023] [Indexed: 08/09/2023]
Abstract
Plant body plans are elaborated in response to both environmental and endogenous cues. How these inputs intersect to promote growth and development remains poorly understood. During reproductive development, central zone stem cell proliferation in inflorescence meristems is negatively regulated by the CLAVATA3 (CLV3) peptide signalling pathway. In contrast, floral primordia formation on meristem flanks requires the hormone auxin. Here we show that CLV3 signalling is also necessary for auxin-dependent floral primordia generation and that this function is partially masked by both inflorescence fasciation and heat-induced auxin biosynthesis. Stem cell regulation by CLAVATA signalling is separable from primordia formation but is also sensitized to temperature and auxin levels. In addition, we uncover a novel role for the CLV3 receptor CLAVATA1 in auxin-dependent meristem maintenance in cooler environments. As such, CLV3 signalling buffers multiple auxin-dependent shoot processes across divergent thermal environments, with opposing effects on cell proliferation in different meristem regions.
Collapse
Affiliation(s)
- Amala John
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth Sarkel Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel S Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Cara L Soyars
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thermo Fisher Scientific, Raleigh, NC, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
McGarry RC, Kaur H, Lin YT, Puc GL, Eshed Williams L, van der Knaap E, Ayre BG. Altered expression of SELF-PRUNING disrupts homeostasis and facilitates signal delivery to meristems. PLANT PHYSIOLOGY 2023; 192:1517-1531. [PMID: 36852887 PMCID: PMC10231363 DOI: 10.1093/plphys/kiad126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Meristem maintenance, achieved through the highly conserved CLAVATA-WUSCHEL (CLV-WUS) regulatory circuit, is fundamental in balancing stem cell proliferation with cellular differentiation. Disruptions to meristem homeostasis can alter meristem size, leading to enlarged organs. Cotton (Gossypium spp.), the world's most important fiber crop, shows inherent variation in fruit size, presenting opportunities to explore the networks regulating meristem homeostasis and to impact fruit size and crop value. We identified and characterized the cotton orthologs of genes functioning in the CLV-WUS circuit. Using virus-based gene manipulation in cotton, we altered the expression of each gene to perturb meristem regulation and increase fruit size. Targeted alteration of individual components of the CLV-WUS circuit modestly fasciated flowers and fruits. Unexpectedly, controlled expression of meristem regulator SELF-PRUNING (SP) increased the impacts of altered CLV-WUS expression on flower and fruit fasciation. Meristem transcriptomics showed SP and genes of the CLV-WUS circuit are expressed independently from each other, suggesting these gene products are not acting in the same path. Virus-induced silencing of GhSP facilitated the delivery of other signals to the meristem to alter organ specification. SP has a role in cotton meristem homeostasis, and changes in GhSP expression increased access of virus-derived signals to the meristem.
Collapse
Affiliation(s)
- Róisín C McGarry
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Harmanpreet Kaur
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Yen-Tung Lin
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Guadalupe Lopez Puc
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Vegetal, subsede Sureste, 97302 Mérida, México
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Brian G Ayre
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
33
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
34
|
Yasmeen E, Wang J, Riaz M, Zhang L, Zuo K. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. PLANT COMMUNICATIONS 2023:100558. [PMID: 36760129 PMCID: PMC10363483 DOI: 10.1016/j.xplc.2023.100558] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the development of high-throughput biology techniques and artificial intelligence, it has become increasingly feasible to design and construct artificial biological parts, modules, circuits, and even whole systems. To overcome the limitations of native promoters in controlling gene expression, artificial promoter design aims to synthesize short, inducible, and conditionally controlled promoters to coordinate the expression of multiple genes in diverse plant metabolic and signaling pathways. Synthetic promoters are versatile and can drive gene expression accurately with smart responses; they show potential for enhancing desirable traits in crops, thereby improving crop yield, nutritional quality, and food security. This review first illustrates the importance of synthetic promoters, then introduces promoter architecture and thoroughly summarizes advances in synthetic promoter construction. Restrictions to the development of synthetic promoters and future applications of such promoters in synthetic plant biology and crop improvement are also discussed.
Collapse
Affiliation(s)
- Erum Yasmeen
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lida Zhang
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Sun Y, Xiao W, Wang QN, Wang J, Kong XD, Ma WH, Liu SX, Ren P, Xu LN, Zhang YJ. Multiple variation patterns of terpene synthases in 26 maize genomes. BMC Genomics 2023; 24:46. [PMID: 36707768 PMCID: PMC9881264 DOI: 10.1186/s12864-023-09137-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Terpenoids are important compounds associated with the pest and herbivore resistance mechanisms of plants; consequently, it is essential to identify and explore terpene synthase (TPS) genes in maize. In the present study, we identified 31 TPS genes based on a pan-genome of 26 high-quality maize genomes containing 20 core genes (present in all 26 lines), seven dispensable genes (present in 2 to 23 lines), three near-core genes (present in 24 to 25 lines), and one private gene (present in only 1 line). Evaluation of ka/ks values of TPS in 26 varieties revealed that TPS25 was subjected to positive selection in some varieties. Six ZmTPS had ka/ks values less than 1, indicating that they were subjected to purifying selection. In 26 genomes, significant differences were observed in ZmTPS25 expression between genes affected by structural variation (SV) and those not affected by SV. In some varieties, SV altered the conserved structural domains resulting in a considerable number of atypical genes. The analysis of RNA-seq data of maize Ostrinia furnacalis feeding revealed 10 differentially expressed ZmTPS, 9 of which were core genes. However, many atypical genes for these responsive genes were identified in several genomes. These findings provide a novel resource for functional studies of ZmTPS.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wenqing Xiao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Qing-Nan Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiang-Dong Kong
- Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wen-Hui Ma
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Si-Xian Liu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Ping Ren
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Li-Na Xu
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
36
|
Wang H, Tang X, Liu Y. SlCK2α as a novel substrate for CRL4 E3 ligase regulates fruit size through maintenance of cell division homeostasis in tomato. PLANTA 2023; 257:38. [PMID: 36645501 DOI: 10.1007/s00425-023-04070-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
This study unravels a novel regulatory module (CRL4-CK2α-CDK2) involving fruit size control by mediating cell division homeostasis (SlCK2α and SlCDK2) in tomato. Fruit size is one of the crucial agronomical traits for crop production. UV-damaged DNA binding protein 1 (DDB1), a core component of Cullin4-RING E3 ubiquitin ligase complex (CRL4), has been identified as a negative regulator of fruit size in tomato (Solanum lycopersicum). However, the underlying molecular mechanism remains largely unclear. Here, we report the identification and characterization of a SlDDB1-interacting protein putatively involving fruit size control through regulating cell proliferation in tomato. It is a tomato homolog SlCK2α, the catalytic subunit of the casein kinase 2 (CK2), identified by yeast two-hybrid (Y2H) assays. The interaction between SlDDB1 and SlCK2α was demonstrated by bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). RNA interference (RNAi) and CRISPR/Cas9-based mutant analyses showed that lack of SlCK2α resulted in reduction of fruit size with reduced cell number, suggesting it is a positive regulator on fruit size by promoting cell proliferation. We also showed SlDDB1 is required to ubiquitinate SlCK2α and negatively regulate its stability through 26S proteasome-mediated degradation. Furthermore, we found that a tomato homolog of cell division protein kinase 2 (SlCDK2) could interact with and specifically be phosphorylated by SlCK2α, resulting in an increase of SlCDK2 protein stability. CRISPR/Cas9-based genetic evidence showed that SlCDK2 is also a positive regulator of fruit size by influencing cell division in tomato. Taken together, our findings, thus, unravel a novel regulatory module CRL4-CK2α-CDK2 in finely modulating cell division homeostasis and the consequences on fruit size.
Collapse
Affiliation(s)
- Hongtao Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
37
|
Zande PV, Wittkopp PJ. Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523977. [PMID: 36711763 PMCID: PMC9882118 DOI: 10.1101/2023.01.13.523977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene's activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog's expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of the Saccharomyces cerevisiae gene TDH3 by its paralogs TDH1 and TDH2. TDH1 and TDH2 are upregulated in a dose-dependent manner in response to reductions in TDH3 by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar to TDH2, suggesting that the active compensation by TDH3 paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Current address: Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Han L, Zhong W, Qian J, Jin M, Tian P, Zhu W, Zhang H, Sun Y, Feng JW, Liu X, Chen G, Farid B, Li R, Xiong Z, Tian Z, Li J, Luo Z, Du D, Chen S, Jin Q, Li J, Li Z, Liang Y, Jin X, Peng Y, Zheng C, Ye X, Yin Y, Chen H, Li W, Chen LL, Li Q, Yan J, Yang F, Li L. A multi-omics integrative network map of maize. Nat Genet 2023; 55:144-153. [PMID: 36581701 DOI: 10.1038/s41588-022-01262-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
Networks are powerful tools to uncover functional roles of genes in phenotypic variation at a system-wide scale. Here, we constructed a maize network map that contains the genomic, transcriptomic, translatomic and proteomic networks across maize development. This map comprises over 2.8 million edges in more than 1,400 functional subnetworks, demonstrating an extensive network divergence of duplicated genes. We applied this map to identify factors regulating flowering time and identified 2,651 genes enriched in eight subnetworks. We validated the functions of 20 genes, including 18 with previously unknown connections to flowering time in maize. Furthermore, we uncovered a flowering pathway involving histone modification. The multi-omics integrative network map illustrates the principles of how molecular networks connect different types of genes and potential pathways to map a genome-wide functional landscape in maize, which should be applicable in a wide range of species.
Collapse
Affiliation(s)
- Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Peng Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Hongwei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Babar Farid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ruonan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zimo Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Tian
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Dengxiang Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jiaxin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Yan Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xinnan Ye
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hong Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Weifu Li
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
39
|
Minow MAA, Coneva V, Lesy V, Misyura M, Colasanti J. Plant gene silencing signals move from the phloem to influence gene expression in shoot apical meristems. BMC PLANT BIOLOGY 2022; 22:606. [PMID: 36550422 PMCID: PMC9783409 DOI: 10.1186/s12870-022-03998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Small RNAs (sRNA) are potent regulators of gene expression that can diffuse short distances between cells and move long distances through plant vasculature. However, the degree to which sRNA silencing signals can move from the phloem to the shoot apical meristem (SAM) remains unclear. RESULTS Two independent transgenic approaches were used to examine whether phloem sRNA silencing can reach different domains of the SAM and silence SAM-expressed genes. First, the phloem companion-cell specific SUCROSE-PROTON SYMPORTER2 (SUC2) promoter was used to drive expression of an inverted repeat to target the FD gene, an exclusively SAM-localized floral regulator. Second, the SUC2 promoter was used to express an artificial microRNA (aMiR) designed to target a synthetic CLAVATA3 (CLV3) transgene in SAM stem cells. Both phloem silencing signals phenocopied the loss of function of their targets and altered target gene expression suggesting that a phloem-to-SAM silencing communication axis exists, connecting distal regions of the plant to SAM stem cells. CONCLUSIONS Demonstration of phloem-to-SAM silencing reveals a regulatory link between somatic sRNA expressed in distal regions of the plant and the growing shoot. Since the SAM stem cells ultimately produce the gametes, we discuss the intriguing possibility that phloem-to-SAM sRNA trafficking could allow transient somatic sRNA expression to manifest stable, transgenerational epigenetic changes.
Collapse
Affiliation(s)
- Mark A. A. Minow
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Viktoriya Coneva
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Victoria Lesy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Max Misyura
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East Guelph, Ontario, Canada
| |
Collapse
|
40
|
Zuo Y, Wang Z, Ren X, Pei Y, Aioub AAA, Hu Z. A Genetic Compensation Phenomenon and Global Gene Expression Changes in Sex-miR-2766-3p Knockout Strain of Spodoptera exigua Hübner (Lepidoptera: Noctuidae). INSECTS 2022; 13:1075. [PMID: 36421978 PMCID: PMC9695525 DOI: 10.3390/insects13111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
MicroRNAs (miRNAs) drive the post-transcriptional repression of target mRNAs and play important roles in a variety of biological processes. miR-2766-3p is conserved and abundant in Lepidopteran species and may be involved in a variety of biological activities. In this study, Sex-miR-2766-3p was predicted to potentially bind to the 3' untranslated region (UTR) of cap 'n' collar isoform C (CncC) in Spodoptera exigua, and Sex-miR-2766-3p was confirmed to regulate the expression of SeCncC through screening with a luciferase reporter system. Although CRISPR/Cas9 has been extensively utilized to examine insect gene function, studies of miRNA function are still relatively uncommon. Thus, we employed CRISPR/Cas9 to knock out Sex-miR-2766-3p from S. exigua. However, the expression of SeCncC was not significantly altered in the knockout strain (2766-KO) compared with that of the WHS strain. This result suggested that a miRNA knockout might lack phenotypes because of genetic robustness. Additionally, we used transcriptome analysis to examine how the global gene expression patterns of the Sex-miR-2766-3p knockout strain varied. RNA-seq data revealed 1746 upregulated and 2183 downregulated differentially expressed genes (DEGs) in the 2766-KO strain, which might be the result of Sex-miR-2766-3p loss or DNA lesions as the trigger for transcriptional adaptation. GO function classification and KEGG pathway analyses showed that these DEGs were enriched for terms related to binding, catalytic activity, metabolic process, and signal transduction. Our findings demonstrated that S. exigua could compensate for the missing Sex-miR-2766-3p by maintaining the expression of SeCncC by other pathways.
Collapse
Affiliation(s)
- Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
| | - Zeyu Wang
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
| | - Xuan Ren
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
| | - Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
| | - Ahmed A. A. Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling 712100, China
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biologyfor Arid Areas, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
41
|
Carbonnel S, Falquet L, Hazak O. Deeper genomic insights into tomato CLE genes repertoire identify new active peptides. BMC Genomics 2022; 23:756. [PMID: 36396987 PMCID: PMC9670457 DOI: 10.1186/s12864-022-08980-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
In eukaryotes, cell-to-cell communication relies on the activity of small signaling peptides. In plant genomes, many hundreds of genes encode for such short peptide signals. However, only few of them are functionally characterized and due to the small gene size and high sequence variability, the comprehensive identification of such peptide-encoded genes is challenging. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) gene family encodes for short peptides that have a role in plant meristem maintenance, vascular patterning and responses to environment. The full repertoire of CLE genes and the role of CLE signaling in tomato (Solanum lycopersicum)- one of the most important crop plants- has not yet been fully studied.
Results
By using a combined approach, we performed a genome-wide identification of CLE genes using the current tomato genome version SL 4.0. We identified 52 SlCLE genes, including 37 new non annotated before. By analyzing publicly available RNAseq datasets we could confirm the expression of 28 new SlCLE genes. We found that SlCLEs are often expressed in a tissue-, organ- or condition-specific manner. Our analysis shows an interesting gene diversification within the SlCLE family that seems to be a result of gene duplication events. Finally, we could show a biological activity of selected SlCLE peptides in the root growth arrest that was SlCLV2-dependent.
Conclusions
Our improved combined approach revealed 37 new SlCLE genes. These findings are crucial for better understanding of the CLE signaling in tomato. Our phylogenetic analysis pinpoints the closest homologs of Arabidopsis CLE genes in tomato genome and can give a hint about the function of newly identified SlCLEs. The strategy described here can be used to identify more precisely additional short genes in plant genomes. Finally, our work suggests that the mechanism of root-active CLE peptide perception is conserved between Arabidopsis and tomato. In conclusion, our work paves the way to further research on the CLE-dependent circuits modulating tomato development and physiological responses.
Collapse
|
42
|
Cheng L, Li R, Wang X, Ge S, Wang S, Liu X, He J, Jiang CZ, Qi M, Xu T, Li T. A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. THE PLANT CELL 2022; 34:4388-4408. [PMID: 35972422 PMCID: PMC9614458 DOI: 10.1093/plcell/koac254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 06/12/2023]
Abstract
Premature abscission of flowers and fruits triggered by low light stress can severely reduce crop yields. However, the underlying molecular mechanism of this organ abscission is not fully understood. Here, we show that a gene (SlCLV3) encoding CLAVATA3 (CLV3), a peptide hormone that regulates stem cell fate in meristems, is highly expressed in the pedicel abscission zone (AZ) in response to low light in tomato (Solanum lycopersicum). SlCLV3 knockdown and knockout lines exhibit delayed low light-induced flower drop. The receptor kinases SlCLV1 and BARELY ANY MERISTEM1 function in the SlCLV3 peptide-induced low light response in the AZ to decrease expression of the transcription factor gene WUSCHEL (SlWUS). DNA affinity purification sequencing identified the transcription factor genes KNOX-LIKE HOMEDOMAIN PROTEIN1 (SlKD1) and FRUITFULL2 (SlFUL2) as SlWUS target genes. Our data reveal that low light reduces SlWUS expression, resulting in higher SlKD1 and SlFUL2 expression in the AZ, thereby perturbing the auxin response gradient and causing increased ethylene production, eventually leading to the initiation of abscission. These results demonstrate that the SlCLV3-SlWUS signaling pathway plays a central role in low light-induced abscission by affecting auxin and ethylene homeostasis.
Collapse
Affiliation(s)
- Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Jing He
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, Albany, California 95616, USA
- Department of Plant Sciences, University of California, Los Angeles, California 95616, USA
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| |
Collapse
|
43
|
Cheng F, Song M, Zhang M, Cheng C, Chen J, Lou Q. A SNP mutation in the CsCLAVATA1 leads to pleiotropic variation in plant architecture and fruit morphogenesis in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111397. [PMID: 35902027 DOI: 10.1016/j.plantsci.2022.111397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant architectures is predominantly determined by branching pattern, internode elongation, phyllotaxis, shoot determinacy and reproductive organs. Domestication or improvement of this critical agronomic trait played an important role in the breakthrough of crop yield. Here, we identified a mutant with fasciated plant architecture, named fas, from an ethyl methanesulfonate (EMS) induced mutant population in cucumber. The mutant exhibited abnormal phyllotaxy, flattened main stem, increased number of floral organs, and significantly shorter and thicker fruits. However, the molecular mechanism conferring this pleiotropic effect remains unknown. Using a map-based cloning strategy, we isolated the gene CsaV3_3G045960, encoding a leucine-rich repeat receptor-like kinase, a putative direct homolog of the Arabidopsis CLAVATA1 protein referred to as CsCLV1. Endogenous hormone assays showed that IAA and GA3 levels in fas stems and ovaries were significantly reduced. Conformably, RNA-seq analysis showed that CsCLV1 regulates cucumber stem and ovary development by coordinating hormones and transcription factors. Our results contribute to the understanding of the function of CsCLV1 throughout the growth cycle, provide new evidence that the CLV signaling system is functionally conserved in Cucurbitaceae.
Collapse
Affiliation(s)
- Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
44
|
Narasimhan M, Simon R. Spatial range, temporal span, and promiscuity of CLE-RLK signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:906087. [PMID: 36092449 PMCID: PMC9459042 DOI: 10.3389/fpls.2022.906087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling through receptor-like kinases (RLKs) regulates developmental transitions and responses to biotic and abiotic inputs by communicating the physiological state of cells and tissues. CLE peptides have varying signaling ranges, which can be defined as the distance between the source, i.e., the cells or tissue that secrete the peptide, and their destination, i.e., cells or tissue where the RLKs that bind the peptide and/or respond are expressed. Case-by-case analysis substantiates that CLE signaling is predominantly autocrine or paracrine, and rarely endocrine. Furthermore, upon CLE reception, the ensuing signaling responses extend from cellular to tissue, organ and whole organism level as the downstream signal gets amplified. CLE-RLK-mediated effects on tissue proliferation and differentiation, or on subsequent primordia and organ development have been widely studied. However, studying how CLE-RLK regulates different stages of proliferation and differentiation at cellular level can offer additional insights into these processes. Notably, CLE-RLK signaling also mediates diverse non-developmental effects, which are less often observed; however, this could be due to biased experimental approaches. In general, CLEs and RLKs, owing to the sequence or structural similarity, are prone to promiscuous interactions at least under experimental conditions in which they are studied. Importantly, there are regulatory mechanisms that suppress CLE-RLK cross-talk in vivo, thereby eliminating the pressure for co-evolving binding specificity. Alternatively, promiscuity in signaling may also offer evolutionary advantages and enable different CLEs to work in combination to activate or switch off different RLK signaling pathways.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
45
|
Transcriptome Analysis to Identify Genes Related to Flowering Reversion in Tomato. Int J Mol Sci 2022; 23:ijms23168992. [PMID: 36012256 PMCID: PMC9409316 DOI: 10.3390/ijms23168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Flowering reversion is a common phenomenon in plant development in which differentiated floral organs switch from reproductive growth to vegetative growth and ultimately form abnormal floral organs or vegetative organs. This greatly reduces tomato yield and quality. Research on this phenomenon has recently increased, but there is a lack of research at the molecular and gene expression levels. Here, transcriptomic analyses of the inflorescence meristem were performed in two kinds of materials at different developmental stages, and a total of 3223 differentially expressed genes (DEGs) were screened according to the different developmental stages and trajectories of the two materials. The analysis of database annotations showed that these DEGs were closely related to starch and sucrose metabolism, DNA replication and modification, plant hormone synthesis and signal transduction. It was further speculated that tomato flowering reversion may be related to various biological processes, such as cell signal transduction, energy metabolism and protein post-transcriptional regulation. Combined with the results of previous studies, our work showed that the gene expression levels of CLE9, FA, PUCHI, UF, CLV3, LOB30, SFT, S-WOX9 and SVP were significantly different in the two materials. Endogenous hormone analysis and exogenous hormone treatment revealed a variety of plant hormones involved in flowering reversion in tomato. Thus, tomato flowering reversion was studied comprehensively by transcriptome analysis for the first time, providing new insights for the study of flower development regulation in tomato and other plants.
Collapse
|
46
|
Lee Y, Park R, Miller SM, Li Y. Genetic compensation of triacylglycerol biosynthesis in the green microalga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1069-1080. [PMID: 35727866 PMCID: PMC9545326 DOI: 10.1111/tpj.15874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 06/14/2023]
Abstract
Genetic compensation has been proposed to explain phenotypic differences between gene knockouts and knockdowns in several metazoan and plant model systems. With the rapid development of reverse genetic tools such as CRISPR/Cas9 and RNAi in microalgae, it is increasingly important to assess whether genetic compensation affects the phenotype of engineered algal mutants. While exploring triacylglycerol (TAG) biosynthesis pathways in the model alga Chlamydomonas reinhardtii, it was discovered that knockout of certain genes catalyzing rate-limiting steps of TAG biosynthesis, type-2 diacylglycerol acyltransferase genes (DGTTs), triggered genetic compensation under abiotic stress conditions. Genetic compensation of a DGTT1 null mutation by a related PDAT gene was observed regardless of the strain background or mutagenesis approach, for example, CRISPR/Cas 9 or insertional mutagenesis. However, no compensation was found in the PDAT knockout mutant. The effect of PDAT knockout was evaluated in a Δvtc1 mutant, in which PDAT was upregulated under stress, resulting in a 90% increase in TAG content. Knockout of PDAT in the Δvtc1 background induced a 12.8-fold upregulation of DGTT1 and a 272.3% increase in TAG content in Δvtc1/pdat1 cells, while remaining viable. These data suggest that genetic compensation contributes to the genetic robustness of microalgal TAG biosynthetic pathways, maintaining lipid and redox homeostasis in the knockout mutants under abiotic stress. This work demonstrates examples of genetic compensation in microalgae, implies the physiological relevance of genetic compensation in TAG biosynthesis under stress, and provides guidance for future genetic engineering and mutant characterization efforts.
Collapse
Affiliation(s)
- Yi‐Ying Lee
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMD21202USA
| | - Rudolph Park
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMD21250USA
| | - Stephen M. Miller
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMD21250USA
| | - Yantao Li
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMD21202USA
- Department of Marine BiotechnologyUniversity of Maryland, Baltimore CountyBaltimoreMD21202USA
| |
Collapse
|
47
|
Yang Y, Zhao T, Xu X, Jiang J, Li J. Transcriptome Analysis to Explore the Cause of the Formation of Different Inflorescences in Tomato. Int J Mol Sci 2022; 23:ijms23158216. [PMID: 35897806 PMCID: PMC9368726 DOI: 10.3390/ijms23158216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
The number of inflorescence branches is an important agronomic character of tomato. The meristem differentiation and development pattern of tomato inflorescence is complex and its regulation mechanism is very different from those of other model plants. Therefore, in order to explore the cause of tomato inflorescence branching, transcriptome analysis was conducted on two kinds of tomato inflorescences (single racemes and compound inflorescences). According to the transcriptome data analysis, there were many DEGs of tomato inflorescences at early, middle, and late stages. Then, GO and KEGG enrichments of DEGs were performed. DEGs are mainly enriched in metabolic pathways, biohormone signaling, and cell cycle pathways. According to previous studies, DEGs were mainly enriched in metabolic pathways, and FALSIFLORA (FA) and ANANTHA (AN) genes were the most notable of 41 DEGs related to inflorescence branching. This study not only provides a theoretical basis for understanding inflorescence branching, but also provides a new idea for the follow-up study of inflorescence.
Collapse
|
48
|
Han B, Tai Y, Li S, Shi J, Wu X, Kakeshpour T, Weng J, Cheng X, Park S, Wu Q. Redefining the N-Terminal Regulatory Region of the Ca 2+/H + Antiporter CAX1 in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:938839. [PMID: 35898213 PMCID: PMC9310016 DOI: 10.3389/fpls.2022.938839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Calcium (Ca2+) is an essential plant nutrient, and Ca2+/H+ exchangers (CAXs) regulate Ca2+ partitioning between subcellular compartments. AtCAX1 activity is inhibited by its N-terminal regulatory region (NRR), which was initially defined as the sequence between the first two methionines. However, the accuracy of this NRR definition and the NRR regulatory mechanism remain unclear. Here, using tomato SlCAX1 as a model, we redefined the NRR of CAXs and demonstrated that our new definition is also applicable to Arabidopsis AtCAX1 and AtCAX3. The N-terminal-truncated SlCAX1 (SlCAX1Δ39) but not the full-length SlCAX1 was active in yeast, similar to Arabidopsis AtCAX1. Characterization of slcax1 mutants generated by CRISPR-Cas9 confirmed the calcium transport ability of SlCAX1. Sequence alignment between SlCAX1, AtCAX1, AtCAX3, and the Bacillus subtilis Ca2+/H+ antiporter protein YfkE revealed that SlCAX1 does not have the 2nd methionine and YfkE does not have any amino acid residues in front of the first transmembrane domain. Truncating the amino acid residues up to the first transmembrane of SlCAX1 (SlCAX1Δ66) further increased its activity. The same truncation had a similar effect on Arabidopsis AtCAX1 and AtCAX3. Expression of full-length SlCAX1 and SlCAX1Δ66 in tomato plants confirmed the results. Our results suggest that SlCAX1 is critical for Ca2+ homeostasis and all the amino acid residues in front of the first transmembrane domain inhibit the activity of CAXs. Our redefinition of the NRR will facilitate fine-tuning of Ca2+ partitioning to reduce the incidence of Ca2+-related physiological disorders in crops.
Collapse
Affiliation(s)
- Beibei Han
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Tai
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuping Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Junmei Shi
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xueqing Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tayebeh Kakeshpour
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, United States
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianguo Cheng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, United States
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
An Y, Chen L, Li YX, Li C, Shi Y, Zhang D, Li Y, Wang T. Fine mapping qKRN5.04 provides a functional gene negatively regulating maize kernel row number. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1997-2007. [PMID: 35385977 DOI: 10.1007/s00122-022-04089-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Zm00001d016075 was identified by fine mapping qKRN5.04. The function of Zm00001d016075, negatively modulating maize (Zea Mays L.) kernel row number (KRN), was verified by CRISPR-Cas9. InDel308 located in the promoter of Zm00001d016075 has potential for use as a molecular marker to identify KRN in maize breeding. Kernel row number (KRN), controlled by multiple quantitative trait loci (QTLs), is one of the most important traits that relate to maize production and domestication. Here, fine mapping was conducted to study a major QTL, qKRN5.04, to a 65-kb genomic region using a progeny test strategy in an advanced backcross population, in which Nong531 (N531) and the inbred line of Silunuo (SLN) were employed as the recurrent and the donor parent, respectively. Within this region, there was only one gene (Zm00001d016075) based on the B73 reference genome. Furthermore, we performed regional association mapping using a panel of 236 diverse inbred lines and observed that all significant SNPs were located within Zm00001d016075. The expression of Zm00001d016075 was significantly higher in N531 and qKRN5.04N531 than qKRN5.04SLN, resulting from the different promoter activity of Zm00001d016075. Sequence analysis revealed that InDel308, located in the promoter of Zm00001d016075, was related to the KRN variation in different maize inbred lines. Using the CRISPR-Cas9 strategy, we determined Zm00001d016075 played a role in negatively regulating KRN and had a moderate effect on 10-kernel width, 100-kernel weight, kernels per ear, and grain yield per ear. These results provide critical insights on the genetic basis and quantitative variation for KRN.
Collapse
Affiliation(s)
- Yixin An
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
50
|
Pei Y, Deng Y, Zhang H, Zhang Z, Liu J, Chen Z, Cai D, Li K, Du Y, Zang J, Xin P, Chu J, Chen Y, Zhao L, Liu J, Chen H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. THE PLANT CELL 2022; 34:2222-2241. [PMID: 35294020 PMCID: PMC9134072 DOI: 10.1093/plcell/koac093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/12/2022] [Indexed: 05/12/2023]
Abstract
Ear length (EL) is a key trait that contributes greatly to grain yield in maize (Zea mays). While numerous quantitative trait loci for EL have been identified, few causal genes have been studied in detail. Here we report the characterization of ear apical degeneration1 (ead1) exhibiting strikingly shorter ears and the map-based cloning of the casual gene EAD1. EAD1 is preferentially expressed in the xylem of immature ears and encodes an aluminum-activated malate transporter localizing to the plasma membrane. We show that EAD1 is a malate efflux transporter and loss of EAD1 leads to lower malate contents in the apical part of developing inflorescences. Exogenous injections of malate rescued the shortened ears of ead1. These results demonstrate that EAD1 plays essential roles in regulating maize ear development by delivering malate through xylem vessels to the apical part of the immature ear. Overexpression of EAD1 led to greater EL and kernel number per row and the EAD1 genotype showed a positive association with EL in two different genetic segregating populations. Our work elucidates the critical role of EAD1 in malate-mediated female inflorescence development and provides a promising genetic resource for enhancing maize grain yield.
Collapse
Affiliation(s)
| | | | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhibin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Darun Cai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yimo Du
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhang Chen
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- Author for correspondence: (H.C.); (J.L.)
| | | |
Collapse
|