1
|
Oji A, Choubani L, Miura H, Hiratani I. Structure and dynamics of nuclear A/B compartments and subcompartments. Curr Opin Cell Biol 2024; 90:102406. [PMID: 39083950 DOI: 10.1016/j.ceb.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Mammalian chromosomes form a hierarchical structure within the cell nucleus, from chromatin loops, megabase (Mb)-sized topologically associating domains (TADs) to larger-scale A/B compartments. The molecular basis of the structures of loops and TADs has been actively studied. However, the A and B compartments, which correspond to early-replicating euchromatin and late-replicating heterochromatin, respectively, are still relatively unexplored. In this review, we focus on the A/B compartments, discuss their close relationship to DNA replication timing (RT), and introduce recent findings on the features of subcompartments revealed by detailed classification of the A/B compartments. In doing so, we speculate on the structure, potential function, and developmental dynamics of A/B compartments and subcompartments in mammalian cells.
Collapse
Affiliation(s)
- Asami Oji
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Linda Choubani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan.
| |
Collapse
|
2
|
Takahashi S, Kyogoku H, Hayakawa T, Miura H, Oji A, Kondo Y, Takebayashi SI, Kitajima TS, Hiratani I. Embryonic genome instability upon DNA replication timing program emergence. Nature 2024; 633:686-694. [PMID: 39198647 PMCID: PMC11410655 DOI: 10.1038/s41586-024-07841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.
Collapse
Affiliation(s)
- Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hirohisa Kyogoku
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Takuya Hayakawa
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Asami Oji
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yoshiko Kondo
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
3
|
Li H, Playter C, Das P, McCord RP. Chromosome compartmentalization: causes, changes, consequences, and conundrums. Trends Cell Biol 2024; 34:707-727. [PMID: 38395734 PMCID: PMC11339242 DOI: 10.1016/j.tcb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
The spatial segregation of the genome into compartments is a major feature of 3D genome organization. New data on mammalian chromosome organization across different conditions reveal important information about how and why these compartments form and change. A combination of epigenetic state, nuclear body tethering, physical forces, gene expression, and replication timing (RT) can all influence the establishment and alteration of chromosome compartments. We review the causes and implications of genomic regions undergoing a 'compartment switch' that changes their physical associations and spatial location in the nucleus. About 20-30% of genomic regions change compartment during cell differentiation or cancer progression, whereas alterations in response to a stimulus within a cell type are usually much more limited. However, even a change in 1-2% of genomic bins may have biologically relevant implications. Finally, we review the effects of compartment changes on gene regulation, DNA damage repair, replication, and the physical state of the cell.
Collapse
Affiliation(s)
- Heng Li
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Christopher Playter
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Priyojit Das
- University of Tennessee-Oak Ridge National Laboratory (UT-ORNL) Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Rachel Patton McCord
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
4
|
Garate X, Gómez-García PA, Merino MF, Angles MC, Zhu C, Castells-García A, Ed-Daoui I, Martin L, Ochiai H, Neguembor MV, Cosma MP. The relationship between nanoscale genome organization and gene expression in mouse embryonic stem cells during pluripotency transition. Nucleic Acids Res 2024; 52:8146-8164. [PMID: 38850157 DOI: 10.1093/nar/gkae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
During early development, gene expression is tightly regulated. However, how genome organization controls gene expression during the transition from naïve embryonic stem cells to epiblast stem cells is still poorly understood. Using single-molecule microscopy approaches to reach nanoscale resolution, we show that genome remodeling affects gene transcription during pluripotency transition. Specifically, after exit from the naïve pluripotency state, chromatin becomes less compacted, and the OCT4 transcription factor has lower mobility and is more bound to its cognate sites. In epiblast cells, the active transcription hallmark, H3K9ac, decreases within the Oct4 locus, correlating with reduced accessibility of OCT4 and, in turn, with reduced expression of Oct4 nascent RNAs. Despite the high variability in the distances between active pluripotency genes, distances between Nodal and Oct4 decrease during epiblast specification. In particular, highly expressed Oct4 alleles are closer to nuclear speckles during all stages of the pluripotency transition, while only a distinct group of highly expressed Nodal alleles are in close proximity to Oct4 when associated with a nuclear speckle in epiblast cells. Overall, our results provide new insights into the role of the spatiotemporal genome remodeling during mouse pluripotency transition and its correlation with the expression of key pluripotency genes.
Collapse
Affiliation(s)
- Ximena Garate
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Pablo Aurelio Gómez-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Manuel Fernández Merino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marta Cadevall Angles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chenggan Zhu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Alvaro Castells-García
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
| | - Ilyas Ed-Daoui
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Hiroshi Ochiai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
5
|
Halliwell JA, Martin-Gonzalez J, Hashim A, Dahl JA, Hoffmann ER, Lerdrup M. Sex-specific DNA-replication in the early mammalian embryo. Nat Commun 2024; 15:6323. [PMID: 39060312 PMCID: PMC11282264 DOI: 10.1038/s41467-024-50727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The timing of DNA replication in mammals is crucial for minimizing errors and influenced by genome usage and chromatin states. Replication timing in the newly formed mammalian embryo remains poorly understood. Here, we have investigated replication timing in mouse zygotes and 2-cell embryos, revealing that zygotes lack a conventional replication timing program, which then emerges in 2-cell embryos. This program differs from embryonic stem cells and generally correlates with transcription and genome compartmentalization of both parental genomes. However, consistent and systematic differences existed between the replication timing of the two parental genomes, including considerably later replication of maternal pericentromeric regions compared to paternal counterparts. Moreover, maternal chromatin modified by Polycomb Repressive Complexes in the oocyte, undergoes early replication, despite belonging to the typically late-replicating B-compartment of the genome. This atypical and asynchronous replication of the two parental genomes may advance our understanding of replication stress in early human embryos and trigger strategies to reduce errors and aneuploidies.
Collapse
Affiliation(s)
- Jason Alexander Halliwell
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adnan Hashim
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo, Oslo, Norway
| | - John Arne Dahl
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo, Oslo, Norway
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mads Lerdrup
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Centre for Embryology and Healthy Development, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Martitz A, Schulz EG. Spatial orchestration of the genome: topological reorganisation during X-chromosome inactivation. Curr Opin Genet Dev 2024; 86:102198. [PMID: 38663040 DOI: 10.1016/j.gde.2024.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024]
Abstract
Genomes are organised through hierarchical structures, ranging from local kilobase-scale cis-regulatory contacts to large chromosome territories. Most notably, (sub)-compartments partition chromosomes according to transcriptional activity, while topologically associating domains (TADs) define cis-regulatory landscapes. The inactive X chromosome in mammals has provided unique insights into the regulation and function of the three-dimensional (3D) genome. Concurrent with silencing of the majority of genes and major alterations of its chromatin state, the X chromosome undergoes profound spatial rearrangements at multiple scales. These include the emergence of megadomains, alterations of the compartment structure and loss of the majority of TADs. Moreover, the Xist locus, which orchestrates X-chromosome inactivation, has provided key insights into regulation and function of regulatory domains. This review provides an overview of recent insights into the control of these structural rearrangements and contextualises them within a broader understanding of 3D genome organisation.
Collapse
Affiliation(s)
- Alexandra Martitz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
7
|
Li N, Jin K, Liu B, Yang M, Shi P, Heng D, Wang J, Liu L. Single-cell 3D genome structure reveals distinct human pluripotent states. Genome Biol 2024; 25:122. [PMID: 38741214 PMCID: PMC11089717 DOI: 10.1186/s13059-024-03268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.
Collapse
Affiliation(s)
- Niannian Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Weifang People's Hospital, Shandong, 261041, China
| | - Kairang Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Bin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Weifang People's Hospital, Shandong, 261041, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Mingzhu Yang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - PanPan Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dai Heng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
8
|
Tomikawa J. Potential roles of inter-chromosomal interactions in cell fate determination. Front Cell Dev Biol 2024; 12:1397807. [PMID: 38774644 PMCID: PMC11106443 DOI: 10.3389/fcell.2024.1397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Mammalian genomic DNA is packed in a small nucleus, and its folding and organization in the nucleus are critical for gene regulation and cell fate determination. In interphase, chromosomes are compartmentalized into certain nuclear spaces and territories that are considered incompatible with each other. The regulation of gene expression is influenced by the epigenetic characteristics of topologically associated domains and A/B compartments within chromosomes (intrachromosomal). Previously, interactions among chromosomes detected via chromosome conformation capture-based methods were considered noise or artificial errors. However, recent studies based on newly developed ligation-independent methods have shown that inter-chromosomal interactions play important roles in gene regulation. This review summarizes the recent understanding of spatial genomic organization in mammalian interphase nuclei and discusses the potential mechanisms that determine cell identity. In addition, this review highlights the potential role of inter-chromosomal interactions in early mouse development.
Collapse
Affiliation(s)
- Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
9
|
Pradhan SK, Lozoya T, Prorok P, Yuan Y, Lehmkuhl A, Zhang P, Cardoso MC. Developmental Changes in Genome Replication Progression in Pluripotent versus Differentiated Human Cells. Genes (Basel) 2024; 15:305. [PMID: 38540366 PMCID: PMC10969796 DOI: 10.3390/genes15030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
DNA replication is a fundamental process ensuring the maintenance of the genome each time cells divide. This is particularly relevant early in development when cells divide profusely, later giving rise to entire organs. Here, we analyze and compare the genome replication progression in human embryonic stem cells, induced pluripotent stem cells, and differentiated cells. Using single-cell microscopic approaches, we map the spatio-temporal genome replication as a function of chromatin marks/compaction level. Furthermore, we mapped the replication timing of subchromosomal tandem repeat regions and interspersed repeat sequence elements. Albeit the majority of these genomic repeats did not change their replication timing from pluripotent to differentiated cells, we found developmental changes in the replication timing of rDNA repeats. Comparing single-cell super-resolution microscopic data with data from genome-wide sequencing approaches showed comparable numbers of replicons and large overlap in origins numbers and genomic location among developmental states with a generally higher origin variability in pluripotent cells. Using ratiometric analysis of incorporated nucleotides normalized per replisome in single cells, we uncovered differences in fork speed throughout the S phase in pluripotent cells but not in somatic cells. Altogether, our data define similarities and differences on the replication program and characteristics in human cells at different developmental states.
Collapse
Affiliation(s)
- Sunil Kumar Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Teresa Lozoya
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Yue Yuan
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China;
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Peng Zhang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China;
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| |
Collapse
|
10
|
Tam PLF, Cheung MF, Chan LY, Leung D. Cell-type differential targeting of SETDB1 prevents aberrant CTCF binding, chromatin looping, and cis-regulatory interactions. Nat Commun 2024; 15:15. [PMID: 38167730 PMCID: PMC10762014 DOI: 10.1038/s41467-023-44578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
SETDB1 is an essential histone methyltransferase that deposits histone H3 lysine 9 trimethylation (H3K9me3) to transcriptionally repress genes and repetitive elements. The function of differential H3K9me3 enrichment between cell-types remains unclear. Here, we demonstrate mutual exclusivity of H3K9me3 and CTCF across mouse tissues from different developmental timepoints. We analyze SETDB1 depleted cells and discover that H3K9me3 prevents aberrant CTCF binding independently of DNA methylation and H3K9me2. Such sites are enriched with SINE B2 retrotransposons. Moreover, analysis of higher-order genome architecture reveals that large chromatin structures including topologically associated domains and subnuclear compartments, remain intact in SETDB1 depleted cells. However, chromatin loops and local 3D interactions are disrupted, leading to transcriptional changes by modifying pre-existing chromatin landscapes. Specific genes with altered expression show differential interactions with dysregulated cis-regulatory elements. Collectively, we find that cell-type specific targets of SETDB1 maintain cellular identities by modulating CTCF binding, which shape nuclear architecture and transcriptomic networks.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ming Fung Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Lu Yan Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
| |
Collapse
|
11
|
Nakatani T, Schauer T, Altamirano-Pacheco L, Klein KN, Ettinger A, Pal M, Gilbert DM, Torres-Padilla ME. Emergence of replication timing during early mammalian development. Nature 2024; 625:401-409. [PMID: 38123678 PMCID: PMC10781638 DOI: 10.1038/s41586-023-06872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
DNA replication enables genetic inheritance across the kingdoms of life. Replication occurs with a defined temporal order known as the replication timing (RT) programme, leading to organization of the genome into early- or late-replicating regions. RT is cell-type specific, is tightly linked to the three-dimensional nuclear organization of the genome1,2 and is considered an epigenetic fingerprint3. In spite of its importance in maintaining the epigenome4, the developmental regulation of RT in mammals in vivo has not been explored. Here, using single-cell Repli-seq5, we generated genome-wide RT maps of mouse embryos from the zygote to the blastocyst stage. Our data show that RT is initially not well defined but becomes defined progressively from the 4-cell stage, coinciding with strengthening of the A and B compartments. We show that transcription contributes to the precision of the RT programme and that the difference in RT between the A and B compartments depends on RNA polymerase II at zygotic genome activation. Our data indicate that the establishment of nuclear organization precedes the acquisition of defined RT features and primes the partitioning of the genome into early- and late-replicating domains. Our work sheds light on the establishment of the epigenome at the beginning of mammalian development and reveals the organizing principles of genome organization.
Collapse
Affiliation(s)
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | | | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Mrinmoy Pal
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, Munich, Germany.
| |
Collapse
|
12
|
Gökbuget D, Boileau RM, Lenshoek K, Blelloch R. MLL3/MLL4 enzymatic activity shapes DNA replication timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.569680. [PMID: 38106216 PMCID: PMC10723431 DOI: 10.1101/2023.12.07.569680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mammalian genomes are replicated in a precise order during S phase, which is cell-type-specific1-3 and correlates with local transcriptional activity2,4-8, chromatin modifications9 and chromatin architecture1,10,11,12. However, the causal relationships between these features and the key regulators of DNA replication timing (RT) are largely unknown. Here, machine learning was applied to quantify chromatin features, including epigenetic marks, histone variants and chromatin architectural factors, best predicting local RT under steady-state and RT changes during early embryonic stem (ES) cell differentiation. About one-third of genome exhibited RT changes during the differentiation. Combined, chromatin features predicted steady-state RT and RT changes with high accuracy. Of these features, histone H3 lysine 4 monomethylation (H3K4me1) catalyzed by MLL3/4 (also known as KMT2C/D) emerged as a top predictor. Loss of Mll3/4 (but not Mll3 alone) or their enzymatic activity resulted in erasure of genome-wide RT dynamics during ES cell differentiation. Sites that normally gain H3K4me1 in a MLL3/4-dependent fashion during the transition failed to transition towards earlier RT, often with transcriptional activation unaffected. Further analysis revealed a requirement for MLL3/4 in promoting DNA replication initiation zones through MCM2 recruitment, providing a direct link for its role in regulating RT. Our results uncover MLL3/4-dependent H3K4me1 as a functional regulator of RT and highlight a causal relationship between the epigenome and RT that is largely uncoupled from transcription. These findings uncover a previously unknown role for MLL3/4-dependent chromatin functions which is likely relevant to the numerous diseases associated with MLL3/4 mutations.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ryan M. Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Present address: Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Chen N, Buonomo SCB. Three-dimensional nuclear organisation and the DNA replication timing program. Curr Opin Struct Biol 2023; 83:102704. [PMID: 37741142 DOI: 10.1016/j.sbi.2023.102704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
In eukaryotic cells, genome duplication is temporally organised according to a program referred to as the replication-timing (RT) program. The RT of individual genomic domains strikingly parallels the three-dimensional architecture of their chromatin contacts and subnuclear distribution. However, it is unclear whether this correspondence is coincidental or whether it indicates a causal and regulatory relationship. In either case, the nature of the molecular mechanisms ensuring this spatio-temporal coordination is still unknown. Here, we review recent evidence that begins to uncover the existence of a shared molecular machinery at the core of the spatio-temporal co-regulation of DNA replication and genome architecture. Finally, we discuss the outstanding, key question of the biological role of their coordination.
Collapse
Affiliation(s)
- Naiming Chen
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Sara C B Buonomo
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
14
|
Poonperm R, Ichihara S, Miura H, Tanigawa A, Nagao K, Obuse C, Sado T, Hiratani I. Replication dynamics identifies the folding principles of the inactive X chromosome. Nat Struct Mol Biol 2023; 30:1224-1237. [PMID: 37563439 PMCID: PMC10442229 DOI: 10.1038/s41594-023-01052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
Chromosome-wide late replication is an enigmatic hallmark of the inactive X chromosome (Xi). How it is established and what it represents remains obscure. By single-cell DNA replication sequencing, here we show that the entire Xi is reorganized to replicate rapidly and uniformly in late S-phase during X-chromosome inactivation (XCI), reflecting its relatively uniform structure revealed by 4C-seq. Despite this uniformity, only a subset of the Xi became earlier replicating in SmcHD1-mutant cells. In the mutant, these domains protruded out of the Xi core, contacted each other and became transcriptionally reactivated. 4C-seq suggested that they constituted the outermost layer of the Xi even before XCI and were rich in escape genes. We propose that this default positioning forms the basis for their inherent heterochromatin instability in cells lacking the Xi-binding protein SmcHD1 or exhibiting XCI escape. These observations underscore the importance of 3D genome organization for heterochromatin stability and gene regulation.
Collapse
Affiliation(s)
- Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Saya Ichihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Shizuoka, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Akie Tanigawa
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
15
|
Fukuda K, Shimi T, Shimura C, Ono T, Suzuki T, Onoue K, Okayama S, Miura H, Hiratani I, Ikeda K, Okada Y, Dohmae N, Yonemura S, Inoue A, Kimura H, Shinkai Y. Epigenetic plasticity safeguards heterochromatin configuration in mammals. Nucleic Acids Res 2023; 51:6190-6207. [PMID: 37178005 PMCID: PMC10325917 DOI: 10.1093/nar/gkad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes critical for cell type-specific gene expression and genome stability. In the mammalian nucleus, heterochromatin segregates from transcriptionally active genomic regions and exists in large, condensed, and inactive nuclear compartments. However, the mechanisms underlying the spatial organization of heterochromatin need to be better understood. Histone H3 lysine 9 trimethylation (H3K9me3) and lysine 27 trimethylation (H3K27me3) are two major epigenetic modifications that enrich constitutive and facultative heterochromatin, respectively. Mammals have at least five H3K9 methyltransferases (SUV39H1, SUV39H2, SETDB1, G9a and GLP) and two H3K27 methyltransferases (EZH1 and EZH2). In this study, we addressed the role of H3K9 and H3K27 methylation in heterochromatin organization using a combination of mutant cells for five H3K9 methyltransferases and an EZH1/2 dual inhibitor, DS3201. We showed that H3K27me3, which is normally segregated from H3K9me3, was redistributed to regions targeted by H3K9me3 after the loss of H3K9 methylation and that the loss of both H3K9 and H3K27 methylation resulted in impaired condensation and spatial organization of heterochromatin. Our data demonstrate that the H3K27me3 pathway safeguards heterochromatin organization after the loss of H3K9 methylation in mammalian cells.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
- School of Biosciences, The University of Melbourne, Royal Parade, 3010 Parkville, Australia
| | - Takeshi Shimi
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
| | - Takao Ono
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Satoko Okayama
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Kazuho Ikeda
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo113-0033, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka565-0874, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima770-8503, Japan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama230-0045, Japan
- Tokyo Metropolitan University, Hachioji192-0397, Japan
| | - Hiroshi Kimura
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8501, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
| |
Collapse
|
16
|
Vouzas AE, Gilbert DM. Replication timing and transcriptional control: beyond cause and effect - part IV. Curr Opin Genet Dev 2023; 79:102031. [PMID: 36905782 PMCID: PMC10035587 DOI: 10.1016/j.gde.2023.102031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 03/11/2023]
Abstract
Decades of work on the spatiotemporal organization of mammalian DNA replication timing (RT) continues to unveil novel correlations with aspects of transcription and chromatin organization but, until recently, mechanisms regulating RT and the biological significance of the RT program had been indistinct. We now know that the RT program is both influenced by and necessary to maintain chromatin structure, forming an epigenetic positive feedback loop. Moreover, the discovery of specific cis-acting elements regulating mammalian RT at both the domain and the whole-chromosome level has revealed multiple cell-type-specific and developmentally regulated mechanisms of RT control. We review recent evidence for diverse mechanisms employed by different cell types to regulate their RT programs and the biological significance of RT regulation during development.
Collapse
Affiliation(s)
- Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| |
Collapse
|
17
|
Hayakawa T, Yamamoto A, Yoneda T, Hori S, Okochi N, Kagotani K, Okumura K, Takebayashi SI. Reorganization of the DNA replication landscape during adipogenesis is closely linked with adipogenic gene expression. J Cell Sci 2023; 136:286708. [PMID: 36546833 DOI: 10.1242/jcs.260778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The temporal order of DNA replication along the chromosomes is thought to reflect the transcriptional competence of the genome. During differentiation of mouse 3T3-L1 cells into adipocytes, cells undergo one or two rounds of cell division called mitotic clonal expansion (MCE). MCE is an essential step for adipogenesis; however, little is known about the regulation of DNA replication during this period. Here, we performed genome-wide mapping of replication timing (RT) in mouse 3T3-L1 cells before and during MCE, and identified a number of chromosomal regions shifting toward either earlier or later replication through two rounds of replication. These RT changes were confirmed in individual cells by single-cell DNA-replication sequencing. Coordinate changes between a shift toward earlier replication and transcriptional activation of adipogenesis-associated genes were observed. RT changes occurred before the full expression of these genes, indicating that RT reorganization might contribute to the mature adipocyte phenotype. To support this, cells undergoing two rounds of DNA replication during MCE had a higher potential to differentiate into lipid droplet-accumulating adipocytes, compared with cells undergoing a single round of DNA replication and non-replicating cells.
Collapse
Affiliation(s)
- Takuya Hayakawa
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan.,Tsuji Health & Beauty Science Laboratory, Mie University, Tsu, Mie 514-8507, Japan.,Tsuji Oil Mills Co., Ltd., Matsusaka, Mie 515-2314, Japan
| | - Asahi Yamamoto
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Taiki Yoneda
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Sakino Hori
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Nanami Okochi
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Kazuhiro Kagotani
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu, Mie 514-8507, Japan.,Tsuji Oil Mills Co., Ltd., Matsusaka, Mie 515-2314, Japan
| | - Katsuzumi Okumura
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan.,Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka, Mie 510-0293, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
18
|
Rivera-Mulia JC, Trevilla-Garcia C, Martinez-Cifuentes S. Optimized Repli-seq: improved DNA replication timing analysis by next-generation sequencing. Chromosome Res 2022; 30:401-414. [PMID: 35781769 PMCID: PMC10124313 DOI: 10.1007/s10577-022-09703-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
The human genome is divided into functional units that replicate at specific times during S-phase. This temporal program is known as replication timing (RT) and is coordinated with the spatial organization of the genome and transcriptional activity. RT is also cell type-specific, dynamically regulated during development, and alterations in RT are observed in multiple diseases. Thus, the precise measure of RT is critical to understand the role of RT in gene function regulation. Distinct methods for assaying the RT program exist; however, conventional methods require thousands of cells as input, prohibiting its applicability to samples with limited cell numbers such as those from disease patients or from early developing embryos. Although single-cell RT analyses have been developed, these methods are low throughput, require generation of numerous libraries, increased sequencing costs, and produce low resolution data. Here, we developed an improved method to measure RT genome-wide that enables high-resolution analysis of low input samples. This method incorporates direct cell sorting into lysis buffer, as well as DNA fragmentation and library preparation in a single tube, resulting in higher yields, increased quality, and reproducibility with decreased costs. We also performed a systematic data processing analysis to provide standardized parameters for RT measurement. This optimized method facilitates RT analysis and will enable its application to a broad range of studies investigating the role of RT in gene expression, nuclear architecture, and disease.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Claudia Trevilla-Garcia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Santiago Martinez-Cifuentes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
19
|
Chu X, Wang J. Insights into the cell fate decision-making processes from chromosome structural reorganizations. BIOPHYSICS REVIEWS 2022; 3:041402. [PMID: 38505520 PMCID: PMC10914134 DOI: 10.1063/5.0107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
The cell fate decision-making process, which provides the capability of a cell transition to a new cell type, involves the reorganizations of 3D genome structures. Currently, the high temporal resolution picture of how the chromosome structural rearrangements occur and further influence the gene activities during the cell-state transition is still challenging to acquire. Here, we study the chromosome structural reorganizations during the cell-state transitions among the pluripotent embryonic stem cell, the terminally differentiated normal cell, and the cancer cell using a nonequilibrium landscape-switching model implemented in the molecular dynamics simulation. We quantify the chromosome (de)compaction pathways during the cell-state transitions and find that the two pathways having the same destinations can merge prior to reaching the final states. The chromosomes at the merging states have similar structural geometries but can differ in long-range compartment segregation and spatial distribution of the chromosomal loci and genes, leading to cell-type-specific transition mechanisms. We identify the irreversible pathways of chromosome structural rearrangements during the forward and reverse transitions connecting the same pair of cell states, underscoring the critical roles of nonequilibrium dynamics in the cell-state transitions. Our results contribute to the understanding of the cell fate decision-making processes from the chromosome structural perspective.
Collapse
Affiliation(s)
- Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
20
|
Chakraborty A, Wang JG, Ay F. dcHiC detects differential compartments across multiple Hi-C datasets. Nat Commun 2022; 13:6827. [PMID: 36369226 PMCID: PMC9652325 DOI: 10.1038/s41467-022-34626-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
The compartmental organization of mammalian genomes and its changes play important roles in distinct biological processes. Here, we introduce dcHiC, which utilizes a multivariate distance measure to identify significant changes in compartmentalization among multiple contact maps. Evaluating dcHiC on four collections of bulk and single-cell contact maps from in vitro mouse neural differentiation (n = 3), mouse hematopoiesis (n = 10), human LCLs (n = 20) and post-natal mouse brain development (n = 3 stages), we show its effectiveness and sensitivity in detecting biologically relevant changes, including those orthogonally validated. dcHiC reported regions with dynamically regulated genes associated with cell identity, along with correlated changes in chromatin states, subcompartments, replication timing and lamin association. With its efficient implementation, dcHiC enables high-resolution compartment analysis as well as standalone browser visualization, differential interaction identification and time-series clustering. dcHiC is an essential addition to the Hi-C analysis toolbox for the ever-growing number of bulk and single-cell contact maps. Available at: https://github.com/ay-lab/dcHiC .
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Jeffrey G Wang
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- The Bishop's School, La Jolla, CA, 92037, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
Lohia R, Fox N, Gillis J. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships. Genome Biol 2022; 23:238. [PMID: 36352464 PMCID: PMC9647974 DOI: 10.1186/s13059-022-02790-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin contacts are essential for gene-expression regulation; however, obtaining a high-resolution genome-wide chromatin contact map is still prohibitively expensive owing to large genome sizes and the quadratic scale of pairwise data. Chromosome conformation capture (3C)-based methods such as Hi-C have been extensively used to obtain chromatin contacts. However, since the sparsity of these maps increases with an increase in genomic distance between contacts, long-range or trans-chromatin contacts are especially challenging to sample. RESULTS Here, we create a high-density reference genome-wide chromatin contact map using a meta-analytic approach. We integrate 3600 human, 6700 mouse, and 500 fly Hi-C experiments to create species-specific meta-Hi-C chromatin contact maps with 304 billion, 193 billion, and 19 billion contacts in respective species. We validate that meta-Hi-C contact maps are uniquely powered to capture functional chromatin contacts in both cis and trans. We find that while individual dataset Hi-C networks are largely unable to predict any long-range coexpression (median 0.54 AUC), meta-Hi-C networks perform comparably in both cis and trans (0.65 AUC vs 0.64 AUC). Similarly, for long-range expression quantitative trait loci (eQTL), meta-Hi-C contacts outperform all individual Hi-C experiments, providing an improvement over the conventionally used linear genomic distance-based association. Assessing between species, we find patterns of chromatin contact conservation in both cis and trans and strong associations with coexpression even in species for which Hi-C data is lacking. CONCLUSIONS We have generated an integrated chromatin interaction network which complements a large number of methodological and analytic approaches focused on improved specificity or interpretation. This high-depth "super-experiment" is surprisingly powerful in capturing long-range functional relationships of chromatin interactions, which are now able to predict coexpression, eQTLs, and cross-species relationships. The meta-Hi-C networks are available at https://labshare.cshl.edu/shares/gillislab/resource/HiC/ .
Collapse
Affiliation(s)
- Ruchi Lohia
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Nathan Fox
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Tomikawa J, Miyamoto K. Structural alteration of the nucleus for the reprogramming of gene expression. FEBS J 2022; 289:7221-7233. [PMID: 33891358 DOI: 10.1111/febs.15894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023]
Abstract
The regulation of gene expression is a critical process for establishing and maintaining cellular identity. Gene expression is controlled through a chromatin-based mechanism in the nucleus of eukaryotic cells. Recent studies suggest that chromatin accessibility and the higher-order structure of chromatin affect transcriptional outcome. This is especially evident when cells change their fate during development and nuclear reprogramming. Furthermore, non-chromosomal contents of the cell nucleus, namely nucleoskeleton proteins, can also affect chromatin and nuclear structures, resulting in transcriptional alterations. Here, we review our current mechanistic understanding about how chromatin and nuclear structures impact transcription in the course of embryonic development, cellular differentiation and nuclear reprogramming, and also discuss unresolved questions that remain to be addressed in the field.
Collapse
Affiliation(s)
- Junko Tomikawa
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
23
|
Yu W, Zhong Q, Wen Z, Zhang W, Huang Y. Genome architecture plasticity underlies DNA replication timing dynamics in cell differentiation. Front Genet 2022; 13:961612. [PMID: 36118849 PMCID: PMC9478753 DOI: 10.3389/fgene.2022.961612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
During the S-phase of eukaryotic cell cycle, DNA is replicated in a dedicatedly regulated temporal order, with regions containing active and inactive genes replicated early and late, respectively. Recent advances in sequencing technology allow us to explore the connection between replication timing (RT), histone modifications, and three-dimensional (3D) chromatin structure in diverse cell types. To characterize the dynamics during cell differentiation, corresponding sequencing data for human embryonic stem cells and four differentiated cell types were collected. By comparing RT and its extent of conservation before and after germ layer specification, the human genome was partitioned into distinct categories. Each category is then subject to comparisons on genomic, epigenetic, and chromatin 3D structural features. As expected, while constitutive early and late replication regions showed active and inactive features, respectively, dynamic regions with switched RT showed intermediate features. Surprisingly, although early-to-late replication and late-to-early replication regions showed similar histone modification patterns in hESCs, their structural preferences were opposite. Specifically, in hESCs, early-to-late replication regions tended to appear in the B compartment and large topologically associated domains, while late-to-early replication regions showed the opposite. Our results uncover the coordinated regulation of RT and 3D genome structure that underlies the loss of pluripotency and lineage commitment and indicate the importance and potential roles of genome architecture in biological processes.
Collapse
Affiliation(s)
- Wenjun Yu
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wenjun Yu,
| | - Quan Zhong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zi Wen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Weihan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yanrong Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation. Proc Natl Acad Sci U S A 2022; 119:e2207009119. [PMID: 35969760 PMCID: PMC9407307 DOI: 10.1073/pnas.2207009119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.
Collapse
|
25
|
Chu X, Wang J. Quantifying Chromosome Structural Reorganizations during Differentiation, Reprogramming, and Transdifferentiation. PHYSICAL REVIEW LETTERS 2022; 129:068102. [PMID: 36018639 DOI: 10.1103/physrevlett.129.068102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
We developed a nonequilibrium model to study chromosome structural reorganizations within a simplified cell developmental system. From the chromosome structural perspective, we predicted that the neural progenitor cell is on the neural developmental path and very close to the transdifferentiation path from the fibroblast to the neuron cell. We identified an early bifurcation of stem cell differentiation processes and the cell-of-origin-specific reprogramming pathways. Our theoretical results are in good agreement with available experimental evidence, promoting future applications of our approach.
Collapse
Affiliation(s)
- Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
26
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
27
|
Generation of dynamic three-dimensional genome structure through phase separation of chromatin. Proc Natl Acad Sci U S A 2022; 119:e2109838119. [PMID: 35617433 PMCID: PMC9295772 DOI: 10.1073/pnas.2109838119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance DNA functions in living cells are crucially affected by the three-dimensional genome structure and dynamics. We analyze the whole genome of human cells by developing a polymer model of interphase nuclei. The model reveals the essential importance of the unfolding process of chromosomes from the condensed mitotic state for describing the interphase nuclei; through the unfolding process, heterogeneous repulsive interactions among chromatin chains induce phase separation of chromatin, which quantitatively explains the experimentally observed various genomic data. We can use this model structure as a platform to analyze the relationship among genome structure, dynamics, and functions.
Collapse
|
28
|
Komoto T, Fujii M, Awazu A. Epigenetic-structural changes in X chromosomes promote Xic pairing during early differentiation of mouse embryonic stem cells. Biophys Physicobiol 2022; 19:1-14. [PMID: 35797402 PMCID: PMC9174021 DOI: 10.2142/biophysico.bppb-v19.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 12/01/2022] Open
Abstract
X chromosome inactivation center (Xic) pairing occurs during the differentiation of embryonic stem (ES) cells from female mouse embryos, and is related to X chromosome inactivation, the circadian clock, intra-nucleus architecture, and metabolism. However, the mechanisms underlying the identification and approach of X chromosome pairs in the crowded nucleus are unclear. To elucidate the driving force of Xic pairing, we developed a coarse-grained molecular dynamics model of intranuclear chromosomes in ES cells and in cells 2 days after the onset of differentiation (2-day cells) by considering intrachromosomal epigenetic-structural feature-dependent mechanics. The analysis of the experimental data showed that X-chromosomes exhibit the rearrangement of their distributions of open/closed chromatin regions on their surfaces during cell differentiation. By simulating models where the excluded volume effects of closed chromatin regions are stronger than those of open chromatin regions, such rearrangement of open/closed chromatin regions on X-chromosome surfaces promoted the mutual approach of the Xic pair. These findings suggested that local intrachromosomal epigenetic features may contribute to the regulation of cell species-dependent differences in intranuclear architecture.
Collapse
Affiliation(s)
- Tetsushi Komoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
29
|
Gnan S, Josephides JM, Wu X, Spagnuolo M, Saulebekova D, Bohec M, Dumont M, Baudrin LG, Fachinetti D, Baulande S, Chen CL. Kronos scRT: a uniform framework for single-cell replication timing analysis. Nat Commun 2022; 13:2329. [PMID: 35484127 PMCID: PMC9050662 DOI: 10.1038/s41467-022-30043-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Mammalian genomes are replicated in a cell type-specific order and in coordination with transcription and chromatin organization. Currently, single-cell replication studies require individual processing of sorted cells, yielding a limited number (<100) of cells. Here, we develop Kronos scRT, a software for single-cell Replication Timing (scRT) analysis. Kronos scRT does not require a specific platform or cell sorting, which allows investigating large datasets obtained from asynchronous cells. By applying our tool to published data as well as droplet-based single-cell whole-genome sequencing data generated in this study, we exploit scRT from thousands of cells for different mouse and human cell lines. Our results demonstrate that although genomic regions are frequently replicated around their population average RT, replication can occur stochastically throughout S phase. Altogether, Kronos scRT allows fast and comprehensive investigations of the RT programme at the single-cell resolution for both homogeneous and heterogeneous cell populations. A scalable approach to explore DNA replication in single cells reveals that although aneuploidy does not have a major impact on the pattern of replication, different cell types and sub-populations display distinguished replication paths.
Collapse
Affiliation(s)
- Stefano Gnan
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Joseph M Josephides
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Xia Wu
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Manuela Spagnuolo
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Dalila Saulebekova
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Mylène Bohec
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS UMR144, Cell Biology and Cancer, 75005, Paris, France
| | - Laura G Baudrin
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS UMR144, Cell Biology and Cancer, 75005, Paris, France
| | - Sylvain Baulande
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France.
| |
Collapse
|
30
|
Chu X, Wang J. Dynamics and Pathways of Chromosome Structural Organizations during Cell Transdifferentiation. JACS AU 2022; 2:116-127. [PMID: 35098228 PMCID: PMC8791059 DOI: 10.1021/jacsau.1c00416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Direct conversion of one differentiated cell type into another is defined as cell transdifferentiation. In avoidance of forming pluripotency, cell transdifferentiation can reduce the potential risk of tumorigenicity, thus offering significant advantages over cell reprogramming in clinical applications. Until now, the mechanism of cell transdifferentiation is still largely unknown. It has been well recognized that cell transdifferentiation is determined by the underlying gene expression regulation, which relies on the accurate adaptation of the chromosome structure. To dissect the transdifferentiation at the molecular level, we develop a nonequilibrium landscape-switching model to investigate the chromosome structural dynamics during the state transitions between the human fibroblast and neuron cells. We uncover the high irreversibility of the transdifferentiation at the local chromosome structural ranges, where the topologically associating domains form. In contrast, the pathways in the two opposite directions of the transdifferentiation projected onto the chromosome compartment profiles are highly overlapped, indicating that the reversibility vanishes at the long-range chromosome structures. By calculating the contact strengths in the chromosome at the states along the paths, we observe strengthening contacts in compartment A concomitant with weakening contacts in compartment B at the early stages of the transdifferentiation. This further leads to adapting contacts toward the ones at the embryonic stem cell. In light of the intimate structure-function relationship at the chromosomal level, we suggest an increase of "stemness" during the transdifferentiation. In addition, we find that the neuron progenitor cell (NPC), a cell developmental state, is located on the transdifferentiation pathways projected onto the long-range chromosome contacts. The findings are consistent with the previous single-cell RNA sequencing experiment, where the NPC-like cell states were observed during the direct conversion of the fibroblast to neuron cells. Thus, we offer a promising microscopic and physical approach to study the cell transdifferentiation mechanism from the chromosome structural perspective.
Collapse
Affiliation(s)
- Xiakun Chu
- Department
of Chemistry, State University of New York
at Stony Brook, Stony
Brook, New York 11794, United States
| | - Jin Wang
- Department
of Chemistry, State University of New York
at Stony Brook, Stony
Brook, New York 11794, United States
- Department
of Physics and Astronomy, State University
of New York at Stony Brook, Stony
Brook, New York 11794, United States
| |
Collapse
|
31
|
Miura H, Hiratani I. Cell cycle dynamics and developmental dynamics of the 3D genome: toward linking the two timescales. Curr Opin Genet Dev 2022; 73:101898. [PMID: 35026526 DOI: 10.1016/j.gde.2021.101898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 11/03/2022]
Abstract
In the mammalian cell nucleus, chromosomes are folded differently in interphase and mitosis. Interphase chromosomes are relatively decondensed and display at least two unique layers of higher-order organization: topologically associating domains (TADs) and cell-type-specific A/B compartments, which correlate well with early/late DNA replication timing (RT). In mitosis, these structures rapidly disappear but are gradually reconstructed during G1 phase, coincident with the establishment of the RT program. However, these structures also change dynamically during cell differentiation and reprogramming, and yet we are surprisingly ignorant about the relationship between their cell cycle dynamics and developmental dynamics. In this review, we summarize the recent findings on this topic, discuss how these two processes might be coordinated with each other and its potential significance.
Collapse
Affiliation(s)
- Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan.
| |
Collapse
|
32
|
Hada M, Miura H, Tanigawa A, Matoba S, Inoue K, Ogonuki N, Hirose M, Watanabe N, Nakato R, Fujiki K, Hasegawa A, Sakashita A, Okae H, Miura K, Shikata D, Arima T, Shirahige K, Hiratani I, Ogura A. Highly rigid H3.1/H3.2-H3K9me3 domains set a barrier for cell fate reprogramming in trophoblast stem cells. Genes Dev 2022; 36:84-102. [PMID: 34992147 PMCID: PMC8763053 DOI: 10.1101/gad.348782.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023]
Abstract
Here, Hada et al. comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). They used genome-wide, high-throughput analyses to show that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures that have a high degree of histone H3.1/3.2–H3K9me3 accumulation, termed TSC-defined highly heterochromatinized domains (THDs), and are uniquely developed in placental lineage cells that serve to protect them from fate reprogramming to stably maintain placental function. The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2–H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as Cdx2 and Elf5, and up-regulation of the pluripotent marker Oct3/4, indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.
Collapse
Affiliation(s)
- Masashi Hada
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Institute of Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akie Tanigawa
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Naomi Watanabe
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryuichiro Nakato
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Katsunori Fujiki
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8575, Japan
| | - Kento Miura
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Daiki Shikata
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8575, Japan
| | - Katsuhiko Shirahige
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,RIKEN Cluster for Pioneering Research, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.,RIKEN Cluster for Pioneering Research, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Bartlett DA, Dileep V, Baslan T, Gilbert DM. Mapping Replication Timing in Single Mammalian Cells. Curr Protoc 2022; 2:e334. [PMID: 34986273 PMCID: PMC8812816 DOI: 10.1002/cpz1.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Replication timing (RT) is the temporal order in which genomic DNA is replicated during S phase. Early and late replication correlate with transcriptionally active and inactive chromatin compartments, but mechanistic links between large-scale chromosome structure, transcription, and replication are still enigmatic. A proper RT program is necessary to maintain the global epigenome that defines cell identity, suggesting that RT is critical for epigenome integrity by facilitating the assembly of different types of chromatin at different times during S phase. RT is regulated during development and has been found to be altered in disease. Thus, RT can identify stable epigenetic differences distinguishing cell types, and can be used to help stratify patient outcomes and identify markers of disease. Most methods to profile RT require thousands of S-phase cells. In cases where cells are rare (e.g., early-stage embryos or rare primary cell types) or consist of a heterogeneous mixture of cell states (e.g., differentiation intermediates), or when the interest is in determining the degree of stable epigenetic heterogeneity within a population of cells, single-cell measurements of RT are necessary. We have previously developed single cell Repli-seq, a method to measure replication timing in single cells using DNA copy number quantification. To date, however, single-cell Repli-seq suffers from relatively low throughput and high costs. Here, we describe an improved single-cell Repli-seq protocol that uses degenerate oligonucleotide-primed PCR (DOP-PCR) for uniform whole-genome amplification and uniquely barcoded primers that permit early pooling of single-cell samples into a single library preparation. We also provide a bioinformatics platform for analysis of the data. The improved throughput and decreased costs of this method relative to previously published single-cell Repli-seq protocols should make it considerably more accessible to a broad range of investigators. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Whole Genome Amplification (WGA) of single cells and sequence library construction. Basic Protocol 2: Deriving and displaying single-cell replication timing data from whole genome sequencing.
Collapse
Affiliation(s)
- Daniel A. Bartlett
- Department of Biological Science Florida State University, Tallahassee, FL, 32306-4295, USA
| | - Vishnu Dileep
- Department of Biological Science Florida State University, Tallahassee, FL, 32306-4295, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - David M. Gilbert
- Department of Biological Science Florida State University, Tallahassee, FL, 32306-4295, USA,San Diego Biomedical Research Institute, La Jolla, CA, 92121, USA,Correspondence to:
| |
Collapse
|
34
|
Arrastia MV, Jachowicz JW, Ollikainen N, Curtis MS, Lai C, Quinodoz SA, Selck DA, Ismagilov RF, Guttman M. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nat Biotechnol 2022; 40:64-73. [PMID: 34426703 PMCID: PMC11588347 DOI: 10.1038/s41587-021-00998-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Although three-dimensional (3D) genome organization is central to many aspects of nuclear function, it has been difficult to measure at the single-cell level. To address this, we developed 'single-cell split-pool recognition of interactions by tag extension' (scSPRITE). scSPRITE uses split-and-pool barcoding to tag DNA fragments in the same nucleus and their 3D spatial arrangement. Because scSPRITE measures multiway DNA contacts, it generates higher-resolution maps within an individual cell than can be achieved by proximity ligation. We applied scSPRITE to thousands of mouse embryonic stem cells and detected known genome structures, including chromosome territories, active and inactive compartments, and topologically associating domains (TADs) as well as long-range inter-chromosomal structures organized around various nuclear bodies. We observe that these structures exhibit different levels of heterogeneity across the population, with TADs representing dynamic units of genome organization across cells. We expect that scSPRITE will be a critical tool for studying genome structure within heterogeneous populations.
Collapse
Affiliation(s)
- Mary V Arrastia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joanna W Jachowicz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew S Curtis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Charlotte Lai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David A Selck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
35
|
Chu WT, Yan Z, Chu X, Zheng X, Liu Z, Xu L, Zhang K, Wang J. Physics of biomolecular recognition and conformational dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:126601. [PMID: 34753115 DOI: 10.1088/1361-6633/ac3800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biomolecular recognition usually leads to the formation of binding complexes, often accompanied by large-scale conformational changes. This process is fundamental to biological functions at the molecular and cellular levels. Uncovering the physical mechanisms of biomolecular recognition and quantifying the key biomolecular interactions are vital to understand these functions. The recently developed energy landscape theory has been successful in quantifying recognition processes and revealing the underlying mechanisms. Recent studies have shown that in addition to affinity, specificity is also crucial for biomolecular recognition. The proposed physical concept of intrinsic specificity based on the underlying energy landscape theory provides a practical way to quantify the specificity. Optimization of affinity and specificity can be adopted as a principle to guide the evolution and design of molecular recognition. This approach can also be used in practice for drug discovery using multidimensional screening to identify lead compounds. The energy landscape topography of molecular recognition is important for revealing the underlying flexible binding or binding-folding mechanisms. In this review, we first introduce the energy landscape theory for molecular recognition and then address four critical issues related to biomolecular recognition and conformational dynamics: (1) specificity quantification of molecular recognition; (2) evolution and design in molecular recognition; (3) flexible molecular recognition; (4) chromosome structural dynamics. The results described here and the discussions of the insights gained from the energy landscape topography can provide valuable guidance for further computational and experimental investigations of biomolecular recognition and conformational dynamics.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiakun Chu
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Li Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| |
Collapse
|
36
|
Chu X, Wang J. Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. PLoS Comput Biol 2021; 17:e1009596. [PMID: 34752443 PMCID: PMC8631624 DOI: 10.1371/journal.pcbi.1009596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/30/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer reflects the dysregulation of the underlying gene network, which is strongly related to the 3D genome organization. Numerous efforts have been spent on experimental characterizations of the structural alterations in cancer genomes. However, there is still a lack of genomic structural-level understanding of the temporal dynamics for cancer initiation and progression. Here, we use a landscape-switching model to investigate the chromosome structural transition during the cancerization and reversion processes. We find that the chromosome undergoes a non-monotonic structural shape-changing pathway with initial expansion followed by compaction during both of these processes. Furthermore, our analysis reveals that the chromosome with a more expanding structure than those at both the normal and cancer cell during cancerization exhibits a sparse contact pattern, which shows significant structural similarity to the one at the embryonic stem cell in many aspects, including the trend of contact probability declining with the genomic distance, the global structural shape geometry and the spatial distribution of loci on the chromosome. In light of the intimate structure-function relationship at the chromosomal level, we further describe the cell state transition processes by the chromosome structural changes, suggesting an elevated cell stemness during the formation of the cancer cells. We show that cell cancerization and reversion are highly irreversible processes in terms of the chromosome structural transition pathways, spatial repositioning of chromosomal loci and hysteresis loop of contact evolution analysis. Our model draws a molecular-scale picture of cell cancerization from the chromosome structural perspective. The process contains initial reprogramming towards the stem cell followed by the differentiation towards the cancer cell, accompanied by an initial increase and subsequent decrease of the cell stemness.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, United States of America
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| |
Collapse
|
37
|
Bonora G, Ramani V, Singh R, Fang H, Jackson DL, Srivatsan S, Qiu R, Lee C, Trapnell C, Shendure J, Duan Z, Deng X, Noble WS, Disteche CM. Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation. Genome Biol 2021; 22:279. [PMID: 34579774 PMCID: PMC8474932 DOI: 10.1186/s13059-021-02432-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. RESULTS Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a "bookmark" mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. CONCLUSIONS Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.
Collapse
Affiliation(s)
- Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
Du Q, Smith GC, Luu PL, Ferguson JM, Armstrong NJ, Caldon CE, Campbell EM, Nair SS, Zotenko E, Gould CM, Buckley M, Chia KM, Portman N, Lim E, Kaczorowski D, Chan CL, Barton K, Deveson IW, Smith MA, Powell JE, Skvortsova K, Stirzaker C, Achinger-Kawecka J, Clark SJ. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity. Cell Rep 2021; 36:109722. [PMID: 34551299 DOI: 10.1016/j.celrep.2021.109722] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.
Collapse
Affiliation(s)
- Qian Du
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Grady C Smith
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Phuc Loi Luu
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - James M Ferguson
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | | | - Shalima S Nair
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Elena Zotenko
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cathryn M Gould
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Michael Buckley
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kee-Ming Chia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Dominik Kaczorowski
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kirston Barton
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Ira W Deveson
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia; The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Martin A Smith
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia; The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Cellular Genomics Futures Institute, School of Medical Sciences, UNSW Sydney, NSW 2010, Australia
| | - Ksenia Skvortsova
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Susan J Clark
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
39
|
Smith CL, Poleshko A, Epstein JA. The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Res 2021; 49:6181-6195. [PMID: 34023908 PMCID: PMC8216274 DOI: 10.1093/nar/gkab392] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear architecture influences gene regulation and cell identity by controlling the three-dimensional organization of genes and their distal regulatory sequences, which may be far apart in linear space. The genome is functionally and spatially segregated in the eukaryotic nucleus with transcriptionally active regions in the nuclear interior separated from repressive regions, including those at the nuclear periphery. Here, we describe the identification of a novel type of nuclear peripheral chromatin domain that is enriched for tissue-specific transcriptional enhancers. Like other chromatin at the nuclear periphery, these regions are marked by H3K9me2. But unlike the nuclear peripheral Lamina-Associated Domains (LADs), these novel, enhancer-rich domains have limited Lamin B interaction. We therefore refer to them as H3K9me2-Only Domains (KODs). In mouse embryonic stem cells, KODs are found in Hi-C-defined A compartments and feature relatively accessible chromatin. KODs are characterized by low gene expression and enhancers located in these domains bear the histone marks of an inactive or poised state. These results indicate that KODs organize a subset of inactive, tissue-specific enhancers at the nuclear periphery. We hypothesize that KODs may play a role in facilitating and perhaps constraining the enhancer-promoter interactions underlying spatiotemporal regulation of gene expression programs in differentiation and development.
Collapse
Affiliation(s)
- Cheryl L Smith
- Department of Cell and Developmental Biology and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Jonathan A Epstein
- Department of Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| |
Collapse
|
40
|
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. Int J Mol Sci 2021; 22:ijms22094764. [PMID: 33946274 PMCID: PMC8125245 DOI: 10.3390/ijms22094764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.
Collapse
|
41
|
Three-dimensional genome rewiring during the development of antibody-secreting cells. Biochem Soc Trans 2021; 48:1109-1119. [PMID: 32453419 PMCID: PMC7329350 DOI: 10.1042/bst20191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
The development of B lymphocytes into antibody-secreting plasma cells is central to the adaptive immune system in that it confers protective and specific antibody response against invading pathogen. This developmental process involves extensive morphological and functional alterations that begin early after antigenic stimulation. These include chromatin restructuring that is critical in regulating gene expression, DNA rearrangement and other cellular processes. Here we outline the recent understanding of the three-dimensional architecture of the genome, specifically focused on its contribution to the process of B cell activation and terminal differentiation into antibody-secreting cells.
Collapse
|
42
|
Poonperm R, Hiratani I. Formation of a multi-layered 3-dimensional structure of the heterochromatin compartment during early mammalian development. Dev Growth Differ 2021; 63:5-17. [PMID: 33491197 DOI: 10.1111/dgd.12709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023]
Abstract
During embryogenesis in mammals, the 3-dimensional (3D) genome organization changes globally in parallel with transcription changes in a cell-type specific manner. This involves the progressive formation of heterochromatin, the best example of which is the inactive X chromosome (Xi) in females, originally discovered as a compact 3D structure at the nuclear periphery known as the Barr body. The heterochromatin formation on the autosomes and the Xi is tightly associated with the differentiation state and the developmental potential of cells, making it an ideal readout of the cellular epigenetic state. At a glance, the heterochromatin appears to be uniform. However, recent studies are beginning to reveal a more complex picture, with multiple hierarchical levels co-existing within the heterochromatin compartment. Such hierarchical levels appear to exist in the heterochromatin compartment on autosomes as well as on the Xi. Here, we review recent progress in our understanding of the 3D genome organization changes during the period of differentiation surrounding pluripotency in vivo and in vitro, with a focus on the heterochromatin compartment. We first look at the whole genome, then focus on the Xi, and discuss their differences and similarities. Finally, we present a unified view of how the heterochromatin compartment is formed and regulated during early development. In particular, we emphasize that there are multiple layers within the heterochromatic compartment on both the autosomes and the Xi, with regulatory mechanisms common and specific to each layer.
Collapse
Affiliation(s)
- Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
43
|
Miura H, Takahashi S, Shibata T, Nagao K, Obuse C, Okumura K, Ogata M, Hiratani I, Takebayashi SI. Mapping replication timing domains genome wide in single mammalian cells with single-cell DNA replication sequencing. Nat Protoc 2020; 15:4058-4100. [PMID: 33230331 DOI: 10.1038/s41596-020-0378-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Replication timing (RT) domains are stable units of chromosome structure that are regulated in the context of development and disease. Conventional genome-wide RT mapping methods require many S-phase cells for either the effective enrichment of replicating DNA through bromodeoxyuridine (BrdU) immunoprecipitation or the determination of copy-number differences during S-phase, which precludes their application to non-abundant cell types and single cells. Here, we provide a simple, cost-effective, and robust protocol for single-cell DNA replication sequencing (scRepli-seq). The scRepli-seq methodology relies on whole-genome amplification (WGA) of genomic DNA (gDNA) from single S-phase cells and next-generation sequencing (NGS)-based determination of copy-number differences that arise between replicated and unreplicated DNA. Haplotype-resolved scRepli-seq, which distinguishes pairs of homologous chromosomes within a single cell, is feasible by using single-nucleotide polymorphism (SNP)/indel information. We also provide computational pipelines for quality control, normalization, and binarization of the scRepli-seq data. The experimental portion of this protocol (before sequencing) takes 3 d.
Collapse
Affiliation(s)
- Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Takahiro Shibata
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Japan.,Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Katsuzumi Okumura
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Masato Ogata
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| | - Shin-Ichiro Takebayashi
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Japan. .,Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan.
| |
Collapse
|
44
|
Akdemir KC, Le VT, Kim JM, Killcoyne S, King DA, Lin YP, Tian Y, Inoue A, Amin SB, Robinson FS, Nimmakayalu M, Herrera RE, Lynn EJ, Chan K, Seth S, Klimczak LJ, Gerstung M, Gordenin DA, O'Brien J, Li L, Deribe YL, Verhaak RG, Campbell PJ, Fitzgerald R, Morrison AJ, Dixon JR, Andrew Futreal P. Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nat Genet 2020; 52:1178-1188. [PMID: 33020667 PMCID: PMC8350746 DOI: 10.1038/s41588-020-0708-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
Somatic mutations in driver genes may ultimately lead to the development of cancer. Understanding how somatic mutations accumulate in cancer genomes and the underlying factors that generate somatic mutations is therefore crucial for developing novel therapeutic strategies. To understand the interplay between spatial genome organization and specific mutational processes, we studied 3,000 tumor-normal-pair whole-genome datasets from 42 different human cancer types. Our analyses reveal that the change in somatic mutational load in cancer genomes is co-localized with topologically-associating-domain boundaries. Domain boundaries constitute a better proxy to track mutational load change than replication timing measurements. We show that different mutational processes lead to distinct somatic mutation distributions where certain processes generate mutations in active domains, and others generate mutations in inactive domains. Overall, the interplay between three-dimensional genome organization and active mutational processes has a substantial influence on the large-scale mutation-rate variations observed in human cancers.
Collapse
Affiliation(s)
- Kadir C Akdemir
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Victoria T Le
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Justin M Kim
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Sarah Killcoyne
- MRC Cancer Unit, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Devin A King
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ya-Ping Lin
- Department of Ophthalmology and Visual Sciences, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Yanyan Tian
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akira Inoue
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Frederick S Robinson
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manjunath Nimmakayalu
- Graduate Program in Diagnostic Genetics and Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Erica J Lynn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kin Chan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC, USA
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sahil Seth
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC, USA
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC, USA
| | - John O'Brien
- Department of Ophthalmology and Visual Sciences, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Life Science Institute, Zhejiiang University, Hangzhou, China
| | - Yonathan Lissanu Deribe
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roel G Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Rebecca Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK
| | | | - Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Chu X, Wang J. Microscopic Chromosomal Structural and Dynamical Origin of Cell Differentiation and Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001572. [PMID: 33101859 PMCID: PMC7578896 DOI: 10.1002/advs.202001572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
As an essential and fundamental process of life, cell development involves large-scale reorganization of the 3D genome architecture, which forms the basis of gene regulation. Here, a landscape-switching model is developed to explore the microscopic chromosomal structural origin of embryonic stem cell (ESC) differentiation and somatic cell reprogramming. It is shown that chromosome structure exhibits significant compartment-switching in the unit of topologically associating domain. It is found that the chromosome during differentiation undergoes monotonic compaction with spatial repositioning of active and inactive chromosomal loci toward the chromosome surface and interior, respectively. In contrast, an overexpanded chromosome, which exhibits universal localization of loci at the chromosomal surface with erasing the structural characteristics formed in the somatic cells, is observed during reprogramming. An early distinct differentiation pathway from the ESC to the terminally differentiated cell, giving rise to early bifurcation on the Waddington landscape for the ESC differentiation is suggested. The theoretical model herein including the non-equilibrium effects, draws a picture of the highly irreversible cell differentiation and reprogramming processes, in line with the experiments. The predictions provide a physical understanding of cell differentiation and reprogramming from the chromosomal structural and dynamical perspective and can be tested by future experiments.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of ChemistryState University of New York at Stony BrookStony BrookNY11794USA
| | - Jin Wang
- Department of ChemistryState University of New York at Stony BrookStony BrookNY11794USA
- Department of Physics and AstronomyState University of New York at Stony BrookStony BrookNY11794USA
| |
Collapse
|
46
|
Hadjadj D, Denecker T, Guérin E, Kim SJ, Fauchereau F, Baldacci G, Maric C, Cadoret JC. Efficient, quick and easy-to-use DNA replication timing analysis with START-R suite. NAR Genom Bioinform 2020; 2:lqaa045. [PMID: 33575597 PMCID: PMC7671386 DOI: 10.1093/nargab/lqaa045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
DNA replication must be faithful and follow a well-defined spatiotemporal program closely linked to transcriptional activity, epigenomic marks, intranuclear structures, mutation rate and cell fate determination. Among the readouts of the spatiotemporal program of DNA replication, replication timing analyses require not only complex and time-consuming experimental procedures, but also skills in bioinformatics. We developed a dedicated Shiny interactive web application, the START-R (Simple Tool for the Analysis of the Replication Timing based on R) suite, which analyzes DNA replication timing in a given organism with high-throughput data. It reduces the time required for generating and analyzing simultaneously data from several samples. It automatically detects different types of timing regions and identifies significant differences between two experimental conditions in ∼15 min. In conclusion, START-R suite allows quick, efficient and easier analyses of DNA replication timing for all organisms. This novel approach can be used by every biologist. It is now simpler to use this method in order to understand, for example, whether 'a favorite gene or protein' has an impact on replication process or, indirectly, on genomic organization (as Hi-C experiments), by comparing the replication timing profiles between wild-type and mutant cell lines.
Collapse
Affiliation(s)
- Djihad Hadjadj
- Pathologies de la Réplication de l'ADN, Université de Paris; Institut Jacques-Monod, UMR7592, CNRS, F-75006 Paris, France
| | - Thomas Denecker
- Institut de Biologie Intégrative de la Cellule, UMR9198, CNRS, Université Paris-Saclay, Université Paris-Sud, F-91405 Orsay, France
| | - Eva Guérin
- Pathologies de la Réplication de l'ADN, Université de Paris; Institut Jacques-Monod, UMR7592, CNRS, F-75006 Paris, France
| | - Su-Jung Kim
- Pathologies de la Réplication de l'ADN, Université de Paris; Institut Jacques-Monod, UMR7592, CNRS, F-75006 Paris, France
| | - Fabien Fauchereau
- Pathologies de la Réplication de l'ADN, Université de Paris; Institut Jacques-Monod, UMR7592, CNRS, F-75006 Paris, France
| | - Giuseppe Baldacci
- Pathologies de la Réplication de l'ADN, Université de Paris; Institut Jacques-Monod, UMR7592, CNRS, F-75006 Paris, France
| | - Chrystelle Maric
- Pathologies de la Réplication de l'ADN, Université de Paris; Institut Jacques-Monod, UMR7592, CNRS, F-75006 Paris, France
| | - Jean-Charles Cadoret
- Pathologies de la Réplication de l'ADN, Université de Paris; Institut Jacques-Monod, UMR7592, CNRS, F-75006 Paris, France
| |
Collapse
|
47
|
Shinkai S, Sugawara T, Miura H, Hiratani I, Onami S. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization. Biophys J 2020; 118:2220-2228. [PMID: 32191860 PMCID: PMC7203008 DOI: 10.1016/j.bpj.2020.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
The one-dimensional information of genomic DNA is hierarchically packed inside the eukaryotic cell nucleus and organized in a three-dimensional (3D) space. Genome-wide chromosome conformation capture (Hi-C) methods have uncovered the 3D genome organization and revealed multiscale chromatin domains of compartments and topologically associating domains (TADs). Moreover, single-nucleosome live-cell imaging experiments have revealed the dynamic organization of chromatin domains caused by stochastic thermal fluctuations. However, the mechanism underlying the dynamic regulation of such hierarchical and structural chromatin units within the microscale thermal medium remains unclear. Microrheology is a way to measure dynamic viscoelastic properties coupling between thermal microenvironment and mechanical response. Here, we propose a new, to our knowledge, microrheology for Hi-C data to analyze the dynamic compliance property as a measure of rigidness and flexibility of genomic regions along with the time evolution. Our method allows the conversion of an Hi-C matrix into the spectrum of the dynamic rheological property along the genomic coordinate of a single chromosome. To demonstrate the power of the technique, we analyzed Hi-C data during the neural differentiation of mouse embryonic stem cells. We found that TAD boundaries behave as more rigid nodes than the intra-TAD regions. The spectrum clearly shows the dynamic viscoelasticity of chromatin domain formation at different timescales. Furthermore, we characterized the appearance of synchronous and liquid-like intercompartment interactions in differentiated cells. Together, our microrheology data derived from Hi-C data provide physical insights into the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Soya Shinkai
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Takeshi Sugawara
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
48
|
Noordermeer D, Feil R. Differential 3D chromatin organization and gene activity in genomic imprinting. Curr Opin Genet Dev 2020; 61:17-24. [PMID: 32299027 DOI: 10.1016/j.gde.2020.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/08/2023]
Abstract
Genomic imprinting gives rise to parent-of-origin dependent allelic gene expression. Most imprinted genes cluster in domains where differentially methylated regions (DMRs)-carrying CpG methylation on one parental allele-regulate their activity. Several imprinted DMRs bind CTCF on the non-methylated allele. CTCF structures TADs ('Topologically Associating Domains'), which are structural units of transcriptional regulation. Recent investigations show that imprinted domains are embedded within TADs that are similar on both parental chromosomes. Within these TADs, however, allelic subdomains are structured by combinations of mono-allelic and bi-allelic CTCF binding that guide imprinted expression. This emerging view indicates that imprinted chromosomal domains should be considered at the overarching TAD level, and questions how CTCF integrates with other regulatory proteins and lncRNAs to achieve imprinted transcriptional programs.
Collapse
Affiliation(s)
- Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
49
|
Hulke ML, Massey DJ, Koren A. Genomic methods for measuring DNA replication dynamics. Chromosome Res 2020; 28:49-67. [PMID: 31848781 PMCID: PMC7131883 DOI: 10.1007/s10577-019-09624-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Genomic DNA replicates according to a defined temporal program in which early-replicating loci are associated with open chromatin, higher gene density, and increased gene expression levels, while late-replicating loci tend to be heterochromatic and show higher rates of genomic instability. The ability to measure DNA replication dynamics at genome scale has proven crucial for understanding the mechanisms and cellular consequences of DNA replication timing. Several methods, such as quantification of nucleotide analog incorporation and DNA copy number analyses, can accurately reconstruct the genomic replication timing profiles of various species and cell types. More recent developments have expanded the DNA replication genomic toolkit to assays that directly measure the activity of replication origins, while single-cell replication timing assays are beginning to reveal a new level of replication timing regulation. The combination of these methods, applied on a genomic scale and in multiple biological systems, promises to resolve many open questions and lead to a holistic understanding of how eukaryotic cells replicate their genomes accurately and efficiently.
Collapse
Affiliation(s)
- Michelle L Hulke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
50
|
Das P, Golloshi R, McCord RP, Shen T. Using contact statistics to characterize structure transformation of biopolymer ensembles. Phys Rev E 2020; 101:012419. [PMID: 32069653 PMCID: PMC7329163 DOI: 10.1103/physreve.101.012419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/20/2022]
Abstract
As a unique subset of functional polymers, many biopolymers have a set of well-defined three-dimensional (3D) structural characteristics that can be described by spatial contacts between monomers. Statistical analysis of the contacts has been extremely productive in characterizing the biopolymer structural ensemble, such as for 3D chromosome structures. Often, native contacts and compartment structures are the focus of the studies, while the generic polymer aspect, such as the overall decaying of contacts with increasing sequence distance, is analyzed separately or preemptively removed. Here, we explore insights that can be gained by performing "compartment analysis" that keeps the distance decay, which we believe is particularly useful for characterizing the structure transformation of biopolymers. We tested contact analysis on several such transformations under physical perturbation or biological processes, including (1) unfolding of proteins induced by thermal denaturation, (2) chromosome conformation transition during the cell cycle, and (3) chromosome unpacking by physicochemical perturbations. Useful score functions were developed to further quantitatively characterize the transformation judging from the contact analysis. We also find that the sinusoidal undertone of eigenvector patterns (the "unwanted," low frequency signal, in contrast to the detailed A/B compartment) that had previously been attributed to biological effects of centromere proximal and distal interactions may in fact reflect a universal feature of polymers that have relatively weaker long-range contacts.
Collapse
Affiliation(s)
- Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, Tennessee 37996, USA
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|