1
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
2
|
Kawasaki K, Fukaya T. Regulatory landscape of enhancer-mediated transcriptional activation. Trends Cell Biol 2024; 34:826-837. [PMID: 38355349 DOI: 10.1016/j.tcb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Enhancers are noncoding regulatory elements that instruct spatial and temporal specificity of gene transcription in response to a variety of intrinsic and extrinsic signals during development. Although it has long been postulated that enhancers physically interact with target promoters through the formation of stable loops, recent studies have changed this static view: sequence-specific transcription factors (TFs) and coactivators are dynamically recruited to enhancers and assemble so-called transcription hubs. Dynamic assembly of transcription hubs appears to serve as a key scaffold to integrate regulatory information encoded by surrounding genome and biophysical properties of transcription machineries. In this review, we outline emerging new models of transcriptional regulation by enhancers and discuss future perspectives.
Collapse
Affiliation(s)
- Koji Kawasaki
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
3
|
Liefsoens M, Földes T, Barbi M. Spectral-based detection of chromatin loops in multiplexed super-resolution FISH data. Nat Commun 2024; 15:7670. [PMID: 39237524 PMCID: PMC11377450 DOI: 10.1038/s41467-024-51650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Involved in mitotic condensation, interaction of transcriptional regulatory elements and isolation of structural domains, loop formation has become a paradigm in the deciphering of chromatin architecture and its functional role. Despite the emergence of increasingly powerful genome visualization techniques, the high variability in cell populations and the randomness of conformations still make loop detection a challenge. We introduce an approach for determining the presence and frequency of loops in a collection of experimental conformations obtained by multiplexed super-resolution imaging. Based on a spectral approach, in conjunction with neural networks, this method offers a powerful tool to detect loops in large experimental data sets, both at the population and single-cell levels. The method's performance is confirmed on experimental FISH data where Hi-C and other loop detection results are available. The method is then applied to recently published experimental data, where it provides a detailed and statistically quantified description of the global architecture of the chromosomal region under study.
Collapse
Affiliation(s)
- Michaël Liefsoens
- Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001, Leuven, Belgium.
- LPTMC, Sorbonne Université, CNRS, F-75005, Paris, France.
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| | - Timothy Földes
- LPTMC, Sorbonne Université, CNRS, F-75005, Paris, France.
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, 02139, USA.
| | - Maria Barbi
- LPTMC, Sorbonne Université, CNRS, F-75005, Paris, France
| |
Collapse
|
4
|
Denaud S, Bardou M, Papadopoulos GL, Grob S, Di Stefano M, Sabarís G, Nollmann M, Schuettengruber B, Cavalli G. A PRE loop at the dac locus acts as a topological chromatin structure that restricts and specifies enhancer-promoter communication. Nat Struct Mol Biol 2024:10.1038/s41594-024-01375-7. [PMID: 39152239 DOI: 10.1038/s41594-024-01375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Three-dimensional (3D) genome folding has a fundamental role in the regulation of developmental genes by facilitating or constraining chromatin interactions between cis-regulatory elements (CREs). Polycomb response elements (PREs) are a specific kind of CRE involved in the memory of transcriptional states in Drosophila melanogaster. PREs act as nucleation sites for Polycomb group (PcG) proteins, which deposit the repressive histone mark H3K27me3, leading to the formation of a class of topologically associating domain (TAD) called a Polycomb domain. PREs can establish looping contacts that stabilize the gene repression of key developmental genes during development. However, the mechanism by which PRE loops fine-tune gene expression is unknown. Using clustered regularly interspaced short palindromic repeats and Cas9 genome engineering, we specifically perturbed PRE contacts or enhancer function and used complementary approaches including 4C-seq, Hi-C and Hi-M to analyze how chromatin architecture perturbation affects gene expression. Our results suggest that the PRE loop at the dac gene locus acts as a constitutive 3D chromatin scaffold during Drosophila development that forms independently of gene expression states and has a versatile function; it restricts enhancer-promoter communication and contributes to enhancer specificity.
Collapse
Affiliation(s)
- Sandrine Denaud
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Marion Bardou
- Centre de Biologie Structurale, IUMR5048 CNRS, INSERM U1054, University of Montpellier, Montpellier, France
| | | | - Stefan Grob
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Marco Di Stefano
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Gonzalo Sabarís
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, IUMR5048 CNRS, INSERM U1054, University of Montpellier, Montpellier, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Lakadamyali M. From feulgen to modern methods: marking a century of DNA imaging advances. Histochem Cell Biol 2024; 162:13-22. [PMID: 38753186 PMCID: PMC11227465 DOI: 10.1007/s00418-024-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/07/2024]
Abstract
The mystery of how human DNA is compactly packaged into a nucleus-a space a hundred thousand times smaller-while still allowing for the regulation of gene function, has long been one of the greatest enigmas in cell biology. This puzzle is gradually being solved, thanks in part to the advent of new technologies. Among these, innovative genome-labeling techniques combined with high-resolution imaging methods have been pivotal. These methods facilitate the visualization of DNA within intact nuclei and have significantly contributed to our current understanding of genome organization. This review will explore various labeling and imaging approaches that are revolutionizing our understanding of the three-dimensional organization of the genome, shedding light on the relationship between its structure and function.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
6
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
7
|
Mian Y, Wang L, Keikhosravi A, Guo K, Misteli T, Arda HE, Finn EH. Cell type- and transcription-independent spatial proximity between enhancers and promoters. Mol Biol Cell 2024; 35:ar96. [PMID: 38717453 PMCID: PMC11244156 DOI: 10.1091/mbc.e24-02-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Cell type-specific enhancers are critically important for lineage specification. The mechanisms that determine cell-type specificity of enhancer activity, however, are not fully understood. Most current models for how enhancers function invoke physical proximity between enhancer elements and their target genes. Here, we use an imaging-based approach to examine the spatial relationship of cell type-specific enhancers and their target genes with single-cell resolution. Using high-throughput microscopy, we measure the spatial distance from target promoters to their cell type-specific active and inactive enhancers in individual pancreatic cells derived from distinct lineages. We find increased proximity of all promoter-enhancer pairs relative to non-enhancer pairs separated by similar genomic distances. Strikingly, spatial proximity between enhancers and target genes was unrelated to tissue-specific enhancer activity. Furthermore, promoter-enhancer proximity did not correlate with the expression status of target genes. Our results suggest that promoter-enhancer pairs exist in a distinctive chromatin environment but that genome folding is not a universal driver of cell-type specificity in enhancer function.
Collapse
Affiliation(s)
- Yasmine Mian
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Li Wang
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Adib Keikhosravi
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Konnie Guo
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - H. Efsun Arda
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elizabeth H. Finn
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| |
Collapse
|
8
|
Kirby TJ, Zahr HC, Fong EHH, Lammerding J. Eliminating elevated p53 signaling fails to rescue skeletal muscle defects or extend survival in lamin A/C-deficient mice. Cell Death Discov 2024; 10:245. [PMID: 38778055 PMCID: PMC11111808 DOI: 10.1038/s41420-024-01998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Lamins A and C, encoded by the LMNA gene, are nuclear intermediate filaments that provide structural support to the nucleus and contribute to chromatin organization and transcriptional regulation. LMNA mutations cause muscular dystrophies, dilated cardiomyopathy, and other diseases. The mechanisms by which many LMNA mutations result in muscle-specific diseases have remained elusive, presenting a major hurdle in the development of effective treatments. Previous studies using striated muscle laminopathy mouse models found that cytoskeletal forces acting on mechanically fragile Lmna-mutant nuclei led to transient nuclear envelope rupture, extensive DNA damage, and activation of DNA damage response (DDR) pathways in skeletal muscle cells in vitro and in vivo. Furthermore, hearts of Lmna mutant mice have elevated activation of the tumor suppressor protein p53, a central regulator of DDR signaling. We hypothesized that elevated p53 activation could present a pathogenic mechanism in striated muscle laminopathies, and that eliminating p53 activation could improve muscle function and survival in laminopathy mouse models. Supporting a pathogenic function of p53 activation in muscle, stabilization of p53 was sufficient to reduce contractility and viability in wild-type muscle cells in vitro. Using three laminopathy models, we found that increased p53 activity in Lmna-mutant muscle cells primarily resulted from mechanically induced damage to the myonuclei, and not from altered transcriptional regulation due to loss of lamin A/C expression. However, global deletion of p53 in a severe muscle laminopathy model did not reduce the disease phenotype or increase survival, indicating that additional drivers of disease must contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| | - Hind C Zahr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ern Hwei Hannah Fong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Tian H, Luan P, Liu Y, Li G. Tet-mediated DNA methylation dynamics affect chromosome organization. Nucleic Acids Res 2024; 52:3654-3666. [PMID: 38300758 DOI: 10.1093/nar/gkae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
DNA Methylation is a significant epigenetic modification that can modulate chromosome states, but its role in orchestrating chromosome organization has not been well elucidated. Here we systematically assessed the effects of DNA Methylation on chromosome organization with a multi-omics strategy to capture DNA Methylation and high-order chromosome interaction simultaneously on mouse embryonic stem cells with DNA methylation dioxygenase Tet triple knock-out (Tet-TKO). Globally, upon Tet-TKO, we observed weakened compartmentalization, corresponding to decreased methylation differences between CpG island (CGI) rich and poor domains. Tet-TKO could also induce hypermethylation for the CTCF binding peaks in TAD boundaries and chromatin loop anchors. Accordingly, CTCF peak generally weakened upon Tet-TKO, which results in weakened TAD structure and depletion of long-range chromatin loops. Genes that lost enhancer-promoter looping upon Tet-TKO showed DNA hypermethylation in their gene bodies, which may compensate for the disruption of gene expression. We also observed distinct effects of Tet1 and Tet2 on chromatin organization and increased DNA methylation correlation on spatially interacted fragments upon Tet inactivation. Our work showed the broad effects of Tet inactivation and DNA methylation dynamics on chromosome organization.
Collapse
Affiliation(s)
- Hao Tian
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Pengfei Luan
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yaping Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Guoqiang Li
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Hwang DW, Maekiniemi A, Singer RH, Sato H. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat Rev Genet 2024; 25:272-285. [PMID: 38195868 DOI: 10.1038/s41576-023-00684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.
Collapse
Affiliation(s)
- Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anna Maekiniemi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Hanae Sato
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
11
|
Chen Z, Snetkova V, Bower G, Jacinto S, Clock B, Dizehchi A, Barozzi I, Mannion BJ, Alcaina-Caro A, Lopez-Rios J, Dickel DE, Visel A, Pennacchio LA, Kvon EZ. Increased enhancer-promoter interactions during developmental enhancer activation in mammals. Nat Genet 2024; 56:675-685. [PMID: 38509385 PMCID: PMC11203181 DOI: 10.1038/s41588-024-01681-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
Remote enhancers are thought to interact with their target promoters via physical proximity, yet the importance of this proximity for enhancer function remains unclear. Here we investigate the three-dimensional (3D) conformation of enhancers during mammalian development by generating high-resolution tissue-resolved contact maps for nearly a thousand enhancers with characterized in vivo activities in ten murine embryonic tissues. Sixty-one percent of developmental enhancers bypass their neighboring genes, which are often marked by promoter CpG methylation. The majority of enhancers display tissue-specific 3D conformations, and both enhancer-promoter and enhancer-enhancer interactions are moderately but consistently increased upon enhancer activation in vivo. Less than 14% of enhancer-promoter interactions form stably across tissues; however, these invariant interactions form in the absence of the enhancer and are likely mediated by adjacent CTCF binding. Our results highlight the general importance of enhancer-promoter physical proximity for developmental gene activation in mammals.
Collapse
Affiliation(s)
- Zhuoxin Chen
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Valentina Snetkova
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Grace Bower
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Benjamin Clock
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Atrin Dizehchi
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Octant, Inc, Emeryville, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, School of the Biological Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Woodworth MA, Lakadamyali M. Toward a comprehensive view of gene architecture during transcription. Curr Opin Genet Dev 2024; 85:102154. [PMID: 38309073 PMCID: PMC10989512 DOI: 10.1016/j.gde.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
The activation of genes within the nucleus of eukaryotic cells is a tightly regulated process, orchestrated by a complex interplay of various physical properties and interacting factors. Studying the multitude of components and features that collectively contribute to gene activation has proven challenging due to the complexities of simultaneously visualizing the dynamic and transiently interacting elements that coalesce within the small space occupied by each individual gene. However, various labeling and imaging advances are now starting to overcome this challenge, enabling visualization of gene activation at different lengths and timescales. In this review, we aim to highlight these microscopy-based advances and suggest how they can be combined to provide a comprehensive view of the mechanisms regulating gene activation.
Collapse
Affiliation(s)
- Marcus A Woodworth
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Balasubramanian D, Borges Pinto P, Grasso A, Vincent S, Tarayre H, Lajoignie D, Ghavi-Helm Y. Enhancer-promoter interactions can form independently of genomic distance and be functional across TAD boundaries. Nucleic Acids Res 2024; 52:1702-1719. [PMID: 38084924 PMCID: PMC10899756 DOI: 10.1093/nar/gkad1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/29/2024] Open
Abstract
Topologically Associating Domains (TADs) have been suggested to facilitate and constrain enhancer-promoter interactions. However, the role of TAD boundaries in effectively restricting these interactions remains unclear. Here, we show that a significant proportion of enhancer-promoter interactions are established across TAD boundaries in Drosophila embryos, but that developmental genes are strikingly enriched in intra- but not inter-TAD interactions. We pursued this observation using the twist locus, a master regulator of mesoderm development, and systematically relocated one of its enhancers to various genomic locations. While this developmental gene can establish inter-TAD interactions with its enhancer, the functionality of these interactions remains limited, highlighting the existence of topological constraints. Furthermore, contrary to intra-TAD interactions, the formation of inter-TAD enhancer-promoter interactions is not solely driven by genomic distance, with distal interactions sometimes favored over proximal ones. These observations suggest that other general mechanisms must exist to establish and maintain specific enhancer-promoter interactions across large distances.
Collapse
Affiliation(s)
- Deevitha Balasubramanian
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
- Indian Institute of Science Education and Research (IISER) Tirupati; Tirupati 517507 Andhra Pradesh, India
| | - Pedro Borges Pinto
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Alexia Grasso
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Séverine Vincent
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Hélène Tarayre
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Damien Lajoignie
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard-Lyon 1; 69364 Lyon, France
| |
Collapse
|
14
|
Devos X, Fiche JB, Bardou M, Messina O, Houbron C, Gurgo J, Schaeffer M, Götz M, Walter T, Mueller F, Nollmann M. pyHiM: a new open-source, multi-platform software package for spatial genomics based on multiplexed DNA-FISH imaging. Genome Biol 2024; 25:47. [PMID: 38351149 PMCID: PMC10863255 DOI: 10.1186/s13059-024-03178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Genome-wide ensemble sequencing methods improved our understanding of chromatin organization in eukaryotes but lack the ability to capture single-cell heterogeneity and spatial organization. To overcome these limitations, new imaging-based methods have emerged, giving rise to the field of spatial genomics. Here, we present pyHiM, a user-friendly python toolbox specifically designed for the analysis of multiplexed DNA-FISH data and the reconstruction of chromatin traces in individual cells. pyHiM employs a modular architecture, allowing independent execution of analysis steps and customization according to sample specificity and computing resources. pyHiM aims to facilitate the democratization and standardization of spatial genomics analysis.
Collapse
Affiliation(s)
- Xavier Devos
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Marion Bardou
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Olivier Messina
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Christophe Houbron
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Julian Gurgo
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Marie Schaeffer
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Markus Götz
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006, Paris, France
- Institut Curie, 75248, Paris, Cedex, France
- INSERM, U900, 75248, Paris, Cedex, France
| | - Florian Mueller
- Imaging and Modeling Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France.
| |
Collapse
|
15
|
Meeussen JVW, Lenstra TL. Time will tell: comparing timescales to gain insight into transcriptional bursting. Trends Genet 2024; 40:160-174. [PMID: 38216391 PMCID: PMC10860890 DOI: 10.1016/j.tig.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Recent imaging studies have captured the dynamics of regulatory events of transcription inside living cells. These events include transcription factor (TF) DNA binding, chromatin remodeling and modification, enhancer-promoter (E-P) proximity, cluster formation, and preinitiation complex (PIC) assembly. Together, these molecular events culminate in stochastic bursts of RNA synthesis, but their kinetic relationship remains largely unclear. In this review, we compare the timescales of upstream regulatory steps (input) with the kinetics of transcriptional bursting (output) to generate mechanistic models of transcription dynamics in single cells. We highlight open questions and potential technical advances to guide future endeavors toward a quantitative and kinetic understanding of transcription regulation.
Collapse
Affiliation(s)
- Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, The Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, The Netherlands.
| |
Collapse
|
16
|
Remini L, Segers M, Palmeri J, Walter JC, Parmeggiani A, Carlon E. Chromatin structure from high resolution microscopy: Scaling laws and microphase separation. Phys Rev E 2024; 109:024408. [PMID: 38491617 DOI: 10.1103/physreve.109.024408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024]
Abstract
Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase β. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.
Collapse
Affiliation(s)
- Loucif Remini
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Midas Segers
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Enrico Carlon
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Hunt G, Vaid R, Pirogov S, Pfab A, Ziegenhain C, Sandberg R, Reimegård J, Mannervik M. Tissue-specific RNA Polymerase II promoter-proximal pause release and burst kinetics in a Drosophila embryonic patterning network. Genome Biol 2024; 25:2. [PMID: 38166964 PMCID: PMC10763363 DOI: 10.1186/s13059-023-03135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Formation of tissue-specific transcriptional programs underlies multicellular development, including dorsoventral (DV) patterning of the Drosophila embryo. This involves interactions between transcriptional enhancers and promoters in a chromatin context, but how the chromatin landscape influences transcription is not fully understood. RESULTS Here we comprehensively resolve differential transcriptional and chromatin states during Drosophila DV patterning. We find that RNA Polymerase II pausing is established at DV promoters prior to zygotic genome activation (ZGA), that pausing persists irrespective of cell fate, but that release into productive elongation is tightly regulated and accompanied by tissue-specific P-TEFb recruitment. DV enhancers acquire distinct tissue-specific chromatin states through CBP-mediated histone acetylation that predict the transcriptional output of target genes, whereas promoter states are more tissue-invariant. Transcriptome-wide inference of burst kinetics in different cell types revealed that while DV genes are generally characterized by a high burst size, either burst size or frequency can differ between tissues. CONCLUSIONS The data suggest that pausing is established by pioneer transcription factors prior to ZGA and that release from pausing is imparted by enhancer chromatin state to regulate bursting in a tissue-specific manner in the early embryo. Our results uncover how developmental patterning is orchestrated by tissue-specific bursts of transcription from Pol II primed promoters in response to enhancer regulatory cues.
Collapse
Affiliation(s)
- George Hunt
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roshan Vaid
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergei Pirogov
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexander Pfab
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Rickard Sandberg
- Department Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reimegård
- Department Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Mannervik
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
18
|
Chen LF, Long HK. Topology regulatory elements: From shaping genome architecture to gene regulation. Curr Opin Struct Biol 2023; 83:102723. [PMID: 37931379 PMCID: PMC7615376 DOI: 10.1016/j.sbi.2023.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
The importance of 3D genome topology in the control of gene expression is becoming increasingly apparent, while regulatory mechanisms remain incompletely understood. Several recent studies have identified architectural elements that influence developmental gene expression by shaping locus topology. We refer to these elements as topological regulatory elements (TopoREs) to reflect their dual roles in genome organisation and gene expression. Importantly, these elements do not harbour autonomous transcriptional activation capacity, and instead appear to facilitate enhancer-promoter interactions, contributing to robust and precise timing of transcription. We discuss examples of TopoREs from two classes that are either dependent or independent of CTCF binding. Importantly, identification and interpretation of TopoRE function may shed light on multiple aspects of gene regulation, including the relationship between enhancer-promoter proximity and transcription, and enhancer-promoter specificity. Ultimately, understanding TopoRE diversity and function will aid in the interpretation of how human sequence variation can impact transcription and contribute to disease phenotypes.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah Katherine Long
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, UK.
| |
Collapse
|
19
|
Chung YC, Tu LC. Interplay of dynamic genome organization and biomolecular condensates. Curr Opin Cell Biol 2023; 85:102252. [PMID: 37806293 DOI: 10.1016/j.ceb.2023.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
After 60 years of chromatin investigation, our understanding of chromatin organization has evolved from static chromatin fibers to dynamic nuclear compartmentalization. Chromatin is embedded in a heterogeneous nucleoplasm in which molecules are grouped into distinct compartments, partitioning nuclear space through phase separation. Human genome organization affects transcription which controls euchromatin formation by excluding inactive chromatin. Chromatin condensates have been described as either liquid-like or solid-like. In this short review, we discuss the dynamic nature of chromatin from the perspective of biomolecular condensates and highlight new live-cell synthetic tools to probe and manipulate chromatin organization and associated condensates.
Collapse
Affiliation(s)
- Yu-Chieh Chung
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Li-Chun Tu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
21
|
Liu Y, Wan X, Li H, Chen Y, Hu X, Chen H, Zhu D, Li C, Zhang Y. CTCF coordinates cell fate specification via orchestrating regulatory hubs with pioneer transcription factors. Cell Rep 2023; 42:113259. [PMID: 37851578 DOI: 10.1016/j.celrep.2023.113259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
CCCTC-binding factor (CTCF), a ubiquitously expressed architectural protein, has emerged as a key regulator of cell identity gene transcription. However, the precise molecular mechanism underlying specialized functions of CTCF remains elusive. Here, we investigate the mechanism through integrative analyses of primary hepatocytes, myocytes, and B cells from mouse and human. We demonstrate that CTCF cooperates with lineage-specific pioneer transcription factors (TFs), including MyoD, FOXA, and PU.1, to control cell identity at 1D and 3D levels. At the 1D level, pioneer TFs facilitate lineage-specific CTCF occupancy via opening chromatin. At the 3D level, CTCF and pioneer TFs form regulatory hubs to govern the expression of cell identity genes. This mechanism is validated using MyoD-null mice, CTCF knockout mice, and CRISPR editing during myogenic differentiation. Collectively, these findings uncover a general mechanism whereby CTCF acts as a cell identity cofactor to control cell identity genes via orchestrating regulatory hubs with pioneer TFs.
Collapse
Affiliation(s)
- Yuting Liu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xin Wan
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Yingxi Chen
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaodi Hu
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Taiping Road 27TH, Haidian District, Beijing 100850, China
| | - Dahai Zhu
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China.
| | - Yong Zhang
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| |
Collapse
|
22
|
Messina O, Raynal F, Gurgo J, Fiche JB, Pancaldi V, Nollmann M. 3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription. Nat Commun 2023; 14:6678. [PMID: 37865700 PMCID: PMC10590426 DOI: 10.1038/s41467-023-42485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
In mammals, insulators contribute to the regulation of loop extrusion to organize chromatin into topologically associating domains. In Drosophila the role of insulators in 3D genome organization is, however, under current debate. Here, we addressed this question by combining bioinformatics analysis and multiplexed chromatin imaging. We describe a class of Drosophila insulators enriched at regions forming preferential chromatin interactions genome-wide. Notably, most of these 3D interactions do not involve TAD borders. Multiplexed imaging shows that these interactions occur infrequently, and only rarely involve multiple genomic regions coalescing together in space in single cells. Finally, we show that non-border preferential 3D interactions enriched in this class of insulators are present before TADs and transcription during Drosophila development. Our results are inconsistent with insulators forming stable hubs in single cells, and instead suggest that they fine-tune existing 3D chromatin interactions, providing an additional regulatory layer for transcriptional regulation.
Collapse
Affiliation(s)
- Olivier Messina
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Flavien Raynal
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julian Gurgo
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
- Barcelona Supercomputing Center, Barcelona, Spain.
| | - Marcelo Nollmann
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, 34090, Montpellier, France.
| |
Collapse
|
23
|
Mohana G, Dorier J, Li X, Mouginot M, Smith RC, Malek H, Leleu M, Rodriguez D, Khadka J, Rosa P, Cousin P, Iseli C, Restrepo S, Guex N, McCabe BD, Jankowski A, Levine MS, Gambetta MC. Chromosome-level organization of the regulatory genome in the Drosophila nervous system. Cell 2023; 186:3826-3844.e26. [PMID: 37536338 PMCID: PMC10529364 DOI: 10.1016/j.cell.2023.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/31/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.
Collapse
Affiliation(s)
- Giriram Mohana
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Xiao Li
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Marion Mouginot
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Rebecca C Smith
- Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Héléna Malek
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marion Leleu
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Rodriguez
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jenisha Khadka
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrycja Rosa
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Pascal Cousin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Simon Restrepo
- Arcoris bio AG, Lüssirainstrasse 52, 6300 Zug, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Brian D McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Aleksander Jankowski
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland.
| | - Michael S Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | | |
Collapse
|
24
|
Sexton T, Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort M, Meabum K, Taylor T, Shchuka V, Kocanova S, Oliveira G, Mitchell J, Soutoglou E, Lenstra T, Molina N, Papantonis A, Bystricky K. Competition between transcription and loop extrusion modulates promoter and enhancer dynamics. RESEARCH SQUARE 2023:rs.3.rs-3164817. [PMID: 37645793 PMCID: PMC10462181 DOI: 10.21203/rs.3.rs-3164817/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the spatiotemporal arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find a close link between chromatin mobility and transcriptional status: active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.
Collapse
Affiliation(s)
- Tom Sexton
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | - Cathie Erb
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nacho Molina
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | | |
Collapse
|
25
|
Cho CY, O'Farrell PH. Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription. Nat Commun 2023; 14:4848. [PMID: 37563108 PMCID: PMC10415302 DOI: 10.1038/s41467-023-40485-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Binding of transcription factors (TFs) promotes the subsequent recruitment of coactivators and preinitiation complexes to initiate eukaryotic transcription, but this time course is usually not visualized. It is commonly assumed that recruited factors eventually co-reside in a higher-order structure, allowing distantly bound TFs to activate transcription at core promoters. We use live imaging of endogenously tagged proteins, including the pioneer TF Zelda, the coactivator dBrd4, and RNA polymerase II (RNAPII), to define a cascade of events upstream of transcriptional initiation in early Drosophila embryos. These factors are sequentially and transiently recruited to discrete clusters during activation of non-histone genes. Zelda and the acetyltransferase dCBP nucleate dBrd4 clusters, which then trigger pre-transcriptional clustering of RNAPII. Subsequent transcriptional elongation disperses clusters of dBrd4 and RNAPII. Our results suggest that activation of transcription by eukaryotic TFs involves a succession of distinct biomolecular condensates that culminates in a self-limiting burst of transcription.
Collapse
Affiliation(s)
- Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
26
|
Ochiai H, Ohishi H, Sato Y, Kimura H. Organization of transcription and 3D genome as revealed by live-cell imaging. Curr Opin Struct Biol 2023; 81:102615. [PMID: 37257205 DOI: 10.1016/j.sbi.2023.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Higher-order genomic structures play a critical role in regulating gene expression by influencing the spatial proximity of promoters and enhancers. Live-cell imaging studies have demonstrated that three-dimensional genome structures undergo dynamic changes over time. Transcription is also dynamic, with genes frequently switching between active and inactive states. Recent observations suggest that the formation of condensates, composed of transcription-related factors, RNA, and RNA-binding proteins, around genes can regulate transcription. Advancements in technology have facilitated the visualization of the intricate spatiotemporal relationship between higher-order genomic structures, condensate formation, and transcriptional activity in living cells.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan.
| | - Hiroaki Ohishi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Yuko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
27
|
Theis A, Harrison MM. Reprogramming of three-dimensional chromatin organization in the early embryo. Curr Opin Struct Biol 2023; 81:102613. [PMID: 37224641 PMCID: PMC10524315 DOI: 10.1016/j.sbi.2023.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Chromatin organization within the three-dimensional (3D) nuclear space is important for proper gene expression and developmental programming. This organization is established during the dramatic reprogramming that occurs in early embryonic development. Thus, the early embryo is an ideal model for examining the formation and dynamics of 3D chromatin structure. Advances in high-resolution microscopy and single-nucleus genomic analyses have provided fundamental insights into the mechanisms driving genome organization in the early embryo. Here, we highlight recent findings describing the dynamics and driving mechanisms for establishing 3D chromatin organization and discuss the role such organization has on gene regulation in early embryonic development.
Collapse
Affiliation(s)
- Alexandra Theis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
28
|
Liu Z, Chen Y, Xia Q, Liu M, Xu H, Chi Y, Deng Y, Xing D. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 2023; 380:1070-1076. [PMID: 37289875 DOI: 10.1126/science.adg3797] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Much progress has been made recently in single-cell chromosome conformation capture technologies. However, a method that allows simultaneous profiling of chromatin architecture and gene expression has not been reported. Here, we developed an assay named "Hi-C and RNA-seq employed simultaneously" (HiRES) and performed it on thousands of single cells from developing mouse embryos. Single-cell three-dimensional genome structures, despite being heavily determined by the cell cycle and developmental stages, gradually diverged in a cell type-specific manner as development progressed. By comparing the pseudotemporal dynamics of chromatin interactions with gene expression, we found a widespread chromatin rewiring that occurred before transcription activation. Our results demonstrate that the establishment of specific chromatin interactions is tightly related to transcriptional control and cell functions during lineage specification.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yujie Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Menghan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Heming Xu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yi Chi
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yujing Deng
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| |
Collapse
|
29
|
Pancaldi V. Network models of chromatin structure. Curr Opin Genet Dev 2023; 80:102051. [PMID: 37245241 DOI: 10.1016/j.gde.2023.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Increasing numbers of datasets and experimental assays that capture the organization of chromatin inside the nucleus warrant an effort to develop tools to visualize and analyze these structures. Alongside polymer physics or constraint-based modeling, network theory approaches to describe 3D epigenome organization have gained in popularity. Representing genomic regions as nodes in a network enables visualization of 1D epigenomics datasets in the context of chromatin structure maps, while network theory metrics can be used to describe 3D epigenome organization and dynamics. In this review, we summarize the most salient applications of network theory to the study of chromatin contact maps, demonstrating its potential in revealing epigenomic patterns and relating them to cellular phenotypes.
Collapse
Affiliation(s)
- Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
30
|
Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort MAC, Meaburn K, Taylor T, Shchuka VM, Kocanova S, Oliveira GM, Mitchell JA, Soutoglou E, Lenstra TL, Molina N, Papantonis A, Bystricky K, Sexton T. Competition between transcription and loop extrusion modulates promoter and enhancer dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538222. [PMID: 37162887 PMCID: PMC10168261 DOI: 10.1101/2023.04.25.538222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the 4D arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find that alterations in chromatin mobility, not promoter-enhancer distance, is more informative about transcriptional status. Active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.
Collapse
Affiliation(s)
- Angeliki Platania
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Cathie Erb
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Mariano Barbieri
- Translational Epigenetics Group, Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Bastien Molcrette
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Erwan Grandgirard
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Marit AC de Kort
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Karen Meaburn
- Genome Damage and Stability Centre, Sussex University, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Silvia Kocanova
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) University of Toulouse Paul Sabatier, CNRS, 31062 Toulouse, France
| | - Guilherme Monteiro Oliveira
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Evi Soutoglou
- Genome Damage and Stability Centre, Sussex University, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Nacho Molina
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Kerstin Bystricky
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) University of Toulouse Paul Sabatier, CNRS, 31062 Toulouse, France
- Institut Universitaire de France (IUF)
| | - Tom Sexton
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| |
Collapse
|
31
|
Schaeffer M, Nollmann M. Contributions of 3D chromatin structure to cell-type-specific gene regulation. Curr Opin Genet Dev 2023; 79:102032. [PMID: 36893484 DOI: 10.1016/j.gde.2023.102032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Eukaryotic genomes are organized in 3D in a multiscale manner, and different mechanisms acting at each of these scales can contribute to transcriptional regulation. However, the large single-cell variability in 3D chromatin structures represents a challenge to understand how transcription may be differentially regulated between cell types in a robust and efficient manner. Here, we describe the different mechanisms by which 3D chromatin structure was shown to contribute to cell-type-specific transcriptional regulation. Excitingly, several novel methodologies able to measure 3D chromatin conformation and transcription in single cells in their native tissue context, or to detect the dynamics of cis-regulatory interactions, are starting to allow quantitative dissection of chromatin structure noise and relate it to how transcription may be regulated between different cell types and cell states.
Collapse
Affiliation(s)
- Marie Schaeffer
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, France.
| |
Collapse
|
32
|
Chen LF, Lee J, Boettiger A. Recent progress and challenges in single-cell imaging of enhancer-promoter interaction. Curr Opin Genet Dev 2023; 79:102023. [PMID: 36854248 DOI: 10.1016/j.gde.2023.102023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/27/2023]
Abstract
In the past two years, approaches relying on high-resolution microscopy and live-cell imaging have increasingly contributed to our understanding of the 3D genome organization and its importance for transcriptional control. Here, we describe recent progress that has highlighted how flexible and heterogeneous 3D chromatin structure is, on the length scales relevant to transcriptional control. We describe work that has investigated how robust transcriptional outcomes may be derived from such flexible organization without the need for clearly distinct structures in active and silent cells. We survey the latest state of the art in directly observing the dynamics of chromatin interactions, and suggest how some recent, apparently contradictory conclusions may be reconciled.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Chemical and Systems Biology, Stanford University, USA
| | - Joo Lee
- Department of Developmental Biology, Stanford University, USA
| | | |
Collapse
|
33
|
Pecori F, Torres-Padilla ME. Dynamics of nuclear architecture during early embryonic development and lessons from liveimaging. Dev Cell 2023; 58:435-449. [PMID: 36977375 PMCID: PMC10062924 DOI: 10.1016/j.devcel.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Nuclear organization has emerged as a potential key regulator of genome function. During development, the deployment of transcriptional programs must be tightly coordinated with cell division and is often accompanied by major changes in the repertoire of expressed genes. These transcriptional and developmental events are paralleled by changes in the chromatin landscape. Numerous studies have revealed the dynamics of nuclear organization underlying them. In addition, advances in live-imaging-based methodologies enable the study of nuclear organization with high spatial and temporal resolution. In this Review, we summarize the current knowledge of the changes in nuclear architecture in the early embryogenesis of various model systems. Furthermore, to highlight the importance of integrating fixed-cell and live approaches, we discuss how different live-imaging techniques can be applied to examine nuclear processes and their contribution to our understanding of transcription and chromatin dynamics in early development. Finally, we provide future avenues for outstanding questions in this field.
Collapse
Affiliation(s)
- Federico Pecori
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany; Faculty of Biology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
34
|
Cavalheiro GR, Girardot C, Viales RR, Pollex T, Cao TBN, Lacour P, Feng S, Rabinowitz A, Furlong EEM. CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles. SCIENCE ADVANCES 2023; 9:eade1085. [PMID: 36735786 PMCID: PMC9897672 DOI: 10.1126/sciadv.ade1085] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 05/31/2023]
Abstract
The boundaries of topologically associating domains (TADs) are delimited by insulators and/or active promoters; however, how they are initially established during embryogenesis remains unclear. Here, we examined this during the first hours of Drosophila embryogenesis. DNA-FISH confirms that intra-TAD pairwise proximity is established during zygotic genome activation (ZGA) but with extensive cell-to-cell heterogeneity. Most newly formed boundaries are occupied by combinations of CTCF, BEAF-32, and/or CP190. Depleting each insulator individually from chromatin revealed that TADs can still establish, although with lower insulation, with a subset of boundaries (~10%) being more dependent on specific insulators. Some weakened boundaries have aberrant gene expression due to unconstrained enhancer activity. However, the majority of misexpressed genes have no obvious direct relationship to changes in domain-boundary insulation. Deletion of an active promoter (thereby blocking transcription) at one boundary had a greater impact than deleting the insulator-bound region itself. This suggests that cross-talk between insulators and active promoters and/or transcription might reinforce domain boundary insulation during embryogenesis.
Collapse
Affiliation(s)
- Gabriel R. Cavalheiro
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Baden-Württemberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Rebecca R. Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - T. B. Ngoc Cao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Perrine Lacour
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
- École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
| | - Songjie Feng
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Eileen E. M. Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
35
|
van Mierlo G, Pushkarev O, Kribelbauer JF, Deplancke B. Chromatin modules and their implication in genomic organization and gene regulation. Trends Genet 2023; 39:140-153. [PMID: 36549923 DOI: 10.1016/j.tig.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Regulation of gene expression is a complex but highly guided process. While genomic technologies and computational approaches have allowed high-throughput mapping of cis-regulatory elements (CREs) and their interactions in 3D, their precise role in regulating gene expression remains obscure. Recent complementary observations revealed that interactions between CREs frequently result in the formation of small-scale functional modules within topologically associating domains. Such chromatin modules likely emerge from a complex interplay between regulatory machineries assembled at CREs, including site-specific binding of transcription factors. Here, we review the methods that allow identifying chromatin modules, summarize possible mechanisms that steer CRE interactions within these modules, and discuss outstanding challenges to uncover how chromatin modules fit in our current understanding of the functional 3D genome.
Collapse
Affiliation(s)
- Guido van Mierlo
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Olga Pushkarev
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Judith F Kribelbauer
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
36
|
Mahmood SR, Said NHE, Gunsalus KC, Percipalle P. β-actin mediated H3K27ac changes demonstrate the link between compartment switching and enhancer-dependent transcriptional regulation. Genome Biol 2023; 24:18. [PMID: 36698204 PMCID: PMC9875490 DOI: 10.1186/s13059-023-02853-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Recent work has demonstrated that three-dimensional genome organization is directly affected by changes in the levels of nuclear cytoskeletal proteins such as β-actin. The mechanisms which translate changes in 3D genome structure into changes in transcription, however, are not fully understood. Here, we use a comprehensive genomic analysis of cells lacking nuclear β-actin to investigate the mechanistic links between compartment organization, enhancer activity, and gene expression. RESULTS Using HiC-Seq, ATAC-Seq, and RNA-Seq, we first demonstrate that transcriptional and chromatin accessibility changes observed upon β-actin loss are highly enriched in compartment-switching regions. Accessibility changes within compartment switching genes, however, are mainly observed in non-promoter regions which potentially represent distal regulatory elements. Our results also show that β-actin loss induces widespread accumulation of the enhancer-specific epigenetic mark H3K27ac. Using the ABC model of enhancer annotation, we then establish that these epigenetic changes have a direct impact on enhancer activity and underlie transcriptional changes observed upon compartment switching. A complementary analysis of fibroblasts undergoing reprogramming into pluripotent stem cells further confirms that this relationship between compartment switching and enhancer-dependent transcriptional change is not specific to β-actin knockout cells but represents a general mechanism linking compartment-level genome organization to gene expression. CONCLUSIONS We demonstrate that enhancer-dependent transcriptional regulation plays a crucial role in driving gene expression changes observed upon compartment-switching. Our results also reveal a novel function of nuclear β-actin in regulating enhancer function by influencing H3K27 acetylation levels.
Collapse
Affiliation(s)
- Syed Raza Mahmood
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates ,grid.137628.90000 0004 1936 8753Department of Biology, New York University, New York, NY 10003 USA
| | - Nadine Hosny El Said
- grid.440573.10000 0004 1755 5934Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Kristin C. Gunsalus
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates ,grid.137628.90000 0004 1936 8753Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003 USA
| | - Piergiorgio Percipalle
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates ,grid.440573.10000 0004 1755 5934Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates ,grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
37
|
Abstract
In animals, the sequences for controlling gene expression do not concentrate just at the transcription start site of genes, but are frequently thousands to millions of base pairs distal to it. The interaction of these sequences with one another and their transcription start sites is regulated by factors that shape the three-dimensional (3D) organization of the genome within the nucleus. Over the past decade, indirect tools exploiting high-throughput DNA sequencing have helped to map this 3D organization, have identified multiple key regulators of its structure and, in the process, have substantially reshaped our view of how 3D genome architecture regulates transcription. Now, new tools for high-throughput super-resolution imaging of chromatin have directly visualized the 3D chromatin organization, settling some debates left unresolved by earlier indirect methods, challenging some earlier models of regulatory specificity and creating hypotheses about the role of chromatin structure in transcriptional regulation.
Collapse
|
38
|
Zhou JJ, Cho KWY. Epigenomic dynamics of early Xenopus Embryos. Dev Growth Differ 2022; 64:508-516. [PMID: 36168140 PMCID: PMC10550391 DOI: 10.1111/dgd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/31/2022]
Abstract
How the embryonic genome regulates accessibility to transcription factors is one of the major questions in understanding the spatial and temporal dynamics of gene expression during embryogenesis. Epigenomic analyses of embryonic chromatin provide molecular insights into cell-specific gene activities and genomic architectures. In recent years, significant advances have been made to elucidate the dynamic changes behind the activation of the zygotic genome in various model organisms. Here we provide an overview of the recent epigenomic studies pertaining to early Xenopus development.
Collapse
Affiliation(s)
- Jeff Jiajing Zhou
- Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, California, USA
- Center for Complex Biological Systems, University of California, Irvine, California, USA
| |
Collapse
|
39
|
Unveiling dynamic enhancer–promoter interactions in Drosophila melanogaster. Biochem Soc Trans 2022; 50:1633-1642. [DOI: 10.1042/bst20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Proper enhancer–promoter interactions are essential to maintaining specific transcriptional patterns and preventing ectopic gene expression. Drosophila is an ideal model organism to study transcriptional regulation due to extensively characterized regulatory regions and the ease of implementing new genetic and molecular techniques for quantitative analysis. The mechanisms of enhancer–promoter interactions have been investigated over a range of length scales. At a DNA level, compositions of both enhancer and promoter sequences affect transcriptional dynamics, including duration, amplitude, and frequency of transcriptional bursting. 3D chromatin topology is also important for proper enhancer–promoter contacts. By working competitively or cooperatively with one another, multiple, simultaneous enhancer–enhancer, enhancer–promoter, and promoter–promoter interactions often occur to maintain appropriate levels of mRNAs. For some long-range enhancer–promoter interactions, extra regulatory elements like insulators and tethering elements are required to promote proper interactions while blocking aberrant ones. This review provides an overview of our current understanding of the mechanism of enhancer–promoter interactions and how perturbations of such interactions affect transcription and subsequent physiological outcomes.
Collapse
|
40
|
Cho CY, Kemp JP, Duronio RJ, O'Farrell PH. Coordinating transcription and replication to mitigate their conflicts in early Drosophila embryos. Cell Rep 2022; 41:111507. [PMID: 36261005 PMCID: PMC9667882 DOI: 10.1016/j.celrep.2022.111507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Collisions between transcribing RNA polymerases and DNA replication forks are disruptive. The threat of collisions is particularly acute during the rapid early embryonic cell cycles of Drosophila when S phase occupies the entirety of interphase. We hypothesize that collision-avoidance mechanisms safeguard this early transcription. Real-time imaging of endogenously tagged RNA polymerase II (RNAPII) and a reporter for nascent transcripts in unperturbed embryos shows clustering of RNAPII at around 2 min after mitotic exit, followed by progressive dispersal as associated nascent transcripts accumulate later in interphase. Abrupt inhibition of various steps in DNA replication, including origin licensing, origin firing, and polymerization, suppresses post-mitotic RNAPII clustering and transcription in nuclear cycles. We propose that replication dependency defers the onset of transcription so that RNAPII transcribes behind advancing replication forks. The resulting orderly progression can explain how early embryos circumvent transcription-replication conflicts to express essential developmental genes.
Collapse
Affiliation(s)
- Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
41
|
A Tremendous Reorganization Journey for the 3D Chromatin Structure from Gametes to Embryos. Genes (Basel) 2022; 13:genes13101864. [PMID: 36292750 PMCID: PMC9602195 DOI: 10.3390/genes13101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
The 3D chromatin structure within the nucleus is important for gene expression regulation and correct developmental programs. Recently, the rapid development of low-input chromatin conformation capture technologies has made it possible to study 3D chromatin structures in gametes, zygotes and early embryos in a variety of species, including flies, vertebrates and mammals. There are distinct 3D chromatin structures within the male and female gametes. Following the fertilization of male and female gametes, fertilized eggs undergo drastic epigenetic reprogramming at multi levels, including the 3D chromatin structure, to convert the terminally differentiated gamete state into the totipotent state, which can give rise to an individual. However, to what extent the 3D chromatin structure reorganization is evolutionarily conserved and what the underlying mechanisms are for the tremendous reorganization in early embryos remain elusive. Here, we review the latest findings on the 3D chromatin structure reorganization during embryogenesis, and discuss the convergent and divergent reprogramming patterns and key molecular mechanisms for the 3D chromatin structure reorganization from gametes to embryos in different species. These findings shed light on how the 3D chromatin structure reorganization contribute to embryo development in different species. The findings also indicate the role of the 3D chromatin structure on the acquisition of totipotent developmental potential.
Collapse
|
42
|
Feric M, Sarfallah A, Dar F, Temiakov D, Pappu RV, Misteli T. Mesoscale structure-function relationships in mitochondrial transcriptional condensates. Proc Natl Acad Sci U S A 2022; 119:e2207303119. [PMID: 36191226 PMCID: PMC9565167 DOI: 10.1073/pnas.2207303119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, NIH, Bethesda, MD 20892
- National Institute of General Medical Sciences, NIH, Bethesda, MD 20892
| | - Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
43
|
Dimitrova E, Feldmann A, van der Weide RH, Flach KD, Lastuvkova A, de Wit E, Klose RJ. Distinct roles for CKM-Mediator in controlling Polycomb-dependent chromosomal interactions and priming genes for induction. Nat Struct Mol Biol 2022; 29:1000-1010. [PMID: 36220895 PMCID: PMC9568430 DOI: 10.1038/s41594-022-00840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Precise control of gene expression underpins normal development. This relies on mechanisms that enable communication between gene promoters and other regulatory elements. In embryonic stem cells (ESCs), the cyclin-dependent kinase module Mediator complex (CKM-Mediator) has been reported to physically link gene regulatory elements to enable gene expression and also prime genes for induction during differentiation. Here, we show that CKM-Mediator contributes little to three-dimensional genome organization in ESCs, but it has a specific and essential role in controlling interactions between inactive gene regulatory elements bound by Polycomb repressive complexes (PRCs). These interactions are established by the canonical PRC1 (cPRC1) complex but rely on CKM-Mediator, which facilitates binding of cPRC1 to its target sites. Importantly, through separation-of-function experiments, we reveal that this collaboration between CKM-Mediator and cPRC1 in creating long-range interactions does not function to prime genes for induction during differentiation. Instead, we discover that priming relies on an interaction-independent mechanism whereby the CKM supports core Mediator engagement with gene promoters during differentiation to enable gene activation.
Collapse
Affiliation(s)
| | - Angelika Feldmann
- Department of Biochemistry, University of Oxford, Oxford, UK
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robin H van der Weide
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Hubrecht Institute KNAW, Utrecht, The Netherlands
| | - Koen D Flach
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
44
|
Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila. Nat Commun 2022; 13:5375. [PMID: 36104317 PMCID: PMC9474875 DOI: 10.1038/s41467-022-32973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe spatial organization of chromatin at the scale of topologically associating domains (TADs) and below displays large cell-to-cell variations. Up until now, how this heterogeneity in chromatin conformation is shaped by chromatin condensation, TAD insulation, and transcription has remained mostly elusive. Here, we used Hi-M, a multiplexed DNA-FISH imaging technique providing developmental timing and transcriptional status, to show that the emergence of TADs at the ensemble level partially segregates the conformational space explored by single nuclei during the early development of Drosophila embryos. Surprisingly, a substantial fraction of nuclei display strong insulation even before TADs emerge. Moreover, active transcription within a TAD leads to minor changes to the local inter- and intra-TAD chromatin conformation in single nuclei and only weakly affects insulation to the neighboring TAD. Overall, our results indicate that multiple parameters contribute to shaping the chromatin architecture of single nuclei at the TAD scale.
Collapse
|
45
|
Bauer M, Payer B, Filion GJ. Causality in transcription and genome folding: Insights from X inactivation. Bioessays 2022; 44:e2200105. [PMID: 36028473 DOI: 10.1002/bies.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022]
Abstract
The spatial organization of genomes is becoming increasingly understood. In mammals, where it is most investigated, this organization ties in with transcription, so an important research objective is to understand whether gene activity is a cause or a consequence of genome folding in space. In this regard, the phenomena of X-chromosome inactivation and reactivation open a unique window of investigation because of the singularities of the inactive X chromosome. Here we focus on the cause-consequence nexus between genome conformation and transcription and explain how recent results about the structural changes associated with inactivation and reactivation of the X chromosome shed light on this problem.
Collapse
Affiliation(s)
- Moritz Bauer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillaume J Filion
- Dept. Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
46
|
Barutcu AR, Elizalde G, Gonzalez AE, Soni K, Rinn JL, Wagers AJ, Almada AE. Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells. Skelet Muscle 2022; 12:20. [PMID: 35971133 PMCID: PMC9377060 DOI: 10.1186/s13395-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation. METHODS We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions. RESULTS Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes. CONCLUSIONS Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Present address: Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Gabriel Elizalde
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alfredo E Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kartik Soni
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Present address: BioFrontiers and Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
48
|
DNA methylation in transposable elements buffers the connection between three-dimensional chromatin organization and gene transcription upon rice genome duplication. J Adv Res 2022; 42:41-53. [PMID: 35933090 PMCID: PMC9788948 DOI: 10.1016/j.jare.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Polyploidy is a major force in plant evolution and the domestication of cultivated crops. OBJECTIVES The study aimed to explore the relationship and underlying mechanism between three-dimensional (3D) chromatin organization and gene transcription upon rice genome duplication. METHODS The 3D chromatin structures between diploid (2C) and autotetraploid (4C) rice were compared using high-throughput chromosome conformation capture (Hi-C) analysis. The study combined genetics, transcriptomics, whole-genome bisulfite sequencing (WGBS-seq) and 3D genomics approaches to uncover the mechanism for DNA methylation in modulating gene transcription through 3D chromatin architectures upon rice genome duplication. RESULTS We found that 4C rice presents weakened intra-chromosomal interactions compared to its 2C progenitor in some chromosomes. In addition, we found that changes of 3D chromatin organizations including chromatin compartments, topologically associating domains (TADs), and loops, are uncorrelated with gene transcription. Moreover, DNA methylations in the regulatory sequences of genes in compartment A/B switched regions and TAD boundaries are unrelated to their expression. Importantly, although there was no significant difference in the methylation levels in transposable elements (TEs) in differentially expressed gene (DEG) and non-DEG promoters between 2C and 4C rice, we found that the hypermethylated TEs across genes in compartment A/B switched regions and TAD boundaries may suppress the expression of these genes. CONCLUSION The study proposed that the rice genome doubling might modulate TE methylation to buffer the effects of chromatin architecture on gene transcription in compartment A/B switched regions and TAD boundaries, resulting in the disconnection between 3D chromatin structure alteration and gene transcription upon rice genome duplication.
Collapse
|
49
|
Thompson JJ, Lee DJ, Mitra A, Frail S, Dale RK, Rocha PP. Extensive co-binding and rapid redistribution of NANOG and GATA6 during emergence of divergent lineages. Nat Commun 2022; 13:4257. [PMID: 35871075 PMCID: PMC9308780 DOI: 10.1038/s41467-022-31938-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Fate-determining transcription factors (TFs) can promote lineage-restricted transcriptional programs from common progenitor states. The inner cell mass (ICM) of mouse blastocysts co-expresses the TFs NANOG and GATA6, which drive the bifurcation of the ICM into either the epiblast (Epi) or the primitive endoderm (PrE), respectively. Here, we induce GATA6 in embryonic stem cells-that also express NANOG-to characterize how a state of co-expression of opposing TFs resolves into divergent lineages. Surprisingly, we find that GATA6 and NANOG co-bind at the vast majority of Epi and PrE enhancers, a phenomenon we also observe in blastocysts. The co-bound state is followed by eviction and repression of Epi TFs, and quick remodeling of chromatin and enhancer-promoter contacts thus establishing the PrE lineage while repressing the Epi fate. We propose that co-binding of GATA6 and NANOG at shared enhancers maintains ICM plasticity and promotes the rapid establishment of Epi- and PrE-specific transcriptional programs.
Collapse
Affiliation(s)
- Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel J Lee
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Frail
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Barho F, Fiche JB, Bardou M, Messina O, Martiniere A, Houbron C, Nollmann M. Qudi-HiM: an open-source acquisition software package for highly multiplexed sequential and combinatorial optical imaging. OPEN RESEARCH EUROPE 2022; 2:46. [PMID: 37645324 PMCID: PMC10445908 DOI: 10.12688/openreseurope.14641.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 09/13/2023]
Abstract
Multiplexed sequential and combinatorial imaging enables the simultaneous detection of multiple biological molecules, e.g. proteins, DNA, or RNA, enabling single-cell spatial multi-omics measurements at sub-cellular resolution. Recently, we designed a multiplexed imaging approach (Hi-M) to study the spatial organization of chromatin in single cells. In order to enable Hi-M sequential imaging on custom microscope setups, we developed Qudi-HiM, a modular software package written in Python 3. Qudi-HiM contains modules to automate the robust acquisition of thousands of three-dimensional multicolor microscopy images, the handling of microfluidics devices, and the remote monitoring of ongoing acquisitions and real-time analysis. In addition, Qudi-HiM can be used as a stand-alone tool for other imaging modalities.
Collapse
Affiliation(s)
- Franziska Barho
- Centre de Biologie Structurale, Centre National de la Recherche Scientifique, UMR5048, Montpellier, 34090, France
| | - Jean-Bernard Fiche
- Centre de Biologie Structurale, Centre National de la Recherche Scientifique, UMR5048, Montpellier, 34090, France
| | - Marion Bardou
- Centre de Biologie Structurale, Centre National de la Recherche Scientifique, UMR5048, Montpellier, 34090, France
| | - Olivier Messina
- Centre de Biologie Structurale, Centre National de la Recherche Scientifique, UMR5048, Montpellier, 34090, France
| | | | - Christophe Houbron
- Centre de Biologie Structurale, Centre National de la Recherche Scientifique, UMR5048, Montpellier, 34090, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, Centre National de la Recherche Scientifique, UMR5048, Montpellier, 34090, France
| |
Collapse
|