1
|
Abel S, Naumann C. Evolution of phosphate scouting in the terrestrial biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230355. [PMID: 39343020 PMCID: PMC11528361 DOI: 10.1098/rstb.2023.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle06120, Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA95616, USA
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
| |
Collapse
|
2
|
Guo HL, Tian MZ, Ri X, Chen YF. Phosphorus acquisition, translocation, and redistribution in maize. J Genet Genomics 2024:S1673-8527(24)00256-X. [PMID: 39389460 DOI: 10.1016/j.jgg.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Phosphorus (P) is an essential nutrient for crop growth, making it important for maintaining food security as the global population continues to increase. Plants acquire P primarily via the uptake of inorganic phosphate (Pi) in soil through their roots. Pi, which is usually sequestered in soils, is not easily absorbed by plants and represses plant growth. Plants have developed a series of mechanisms to cope with P deficiency. Moreover, P fertilizer applications are critical for maximizing crop yield. Maize is a major cereal crop cultivated worldwide. Increasing its P-use efficiency is important for optimizing maize production. Over the past two decades, considerable progresses have been achieved in research aimed at adapting maize varieties to changes in environmental P supply. Here, we present an overview of the morphological, physiological, and molecular mechanisms involved in P acquisition, translocation, and redistribution in maize, and combine the advances in Arabidopsis and rice, to better elucidate the progress of P nutrition. Additionally, we summarize the correlation between P and abiotic stress responses. Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
Collapse
Affiliation(s)
- Hui-Ling Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng-Zhi Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xian Ri
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Ko SS, Lu WC, Hung JC, Chang HF, Li MJ, Yeh KC, Chiou TJ. Maternal effect contributes to grain-filling defects of Ospho1;2 rice mutants. THE NEW PHYTOLOGIST 2024; 244:351-357. [PMID: 39113415 DOI: 10.1111/nph.20033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, 711010, Taiwan
| | - Wen-Chien Lu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Jo-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, 711010, Taiwan
| | - Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Min-Jeng Li
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, 711010, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| |
Collapse
|
4
|
Lu Y, Yue CX, Zhang L, Yao D, Xia Y, Zhang Q, Zhang X, Li S, Shen Y, Cao M, Guo CR, Qin A, Zhao J, Zhou L, Yu Y, Cao Y. Structural basis for inositol pyrophosphate gating of the phosphate channel XPR1. Science 2024:eadp3252. [PMID: 39325866 DOI: 10.1126/science.adp3252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Precise regulation of intracellular phosphate (Pi) is critical for cellular function, with XPR1 serving as the sole Pi exporter in humans. The mechanism of Pi efflux, activated by inositol pyrophosphates (PP-IPs), has remained unclear. This study presents cryo-electron microscopy structures of XPR1 in multiple conformations, revealing a transmembrane pathway for Pi export and a dual-binding activation pattern by PP-IPs. A canonical binding site is located at the dimeric interface of SPX domains, and a second site, biased toward PP-IPs, is found between the transmembrane and SPX domains. By integrating structural studies with electrophysiological analyses, we characterize XPR1 as an IPs/PP-IPs-activated phosphate channel. The interplay among its TMDs, SPX domains, and IPs/PP-IPs orchestrates the conformational transition between its closed and open states.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chen-Xi Yue
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Li Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deqiang Yao
- Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Qing Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xinchen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
5
|
Zang J, Yao X, Zhang T, Yang B, Wang Z, Quan S, Zhang Z, Liu J, Chen H, Zhang X, Hou Y. Excess iron accumulation affects maize endosperm development by inhibiting starch synthesis and inducing DNA damage. J Cell Physiol 2024:e31427. [PMID: 39239803 DOI: 10.1002/jcp.31427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Iron (Fe) storage in cereal seeds is the principal source of dietary Fe for humans. In maize (Zea mays), the accumulation of Fe in seeds is known to be negatively correlated with crop yield. Hence, it is essential to understand the underlying mechanism, which is crucial for developing and breeding maize cultivars with high yields and high Fe concentrations in the kernels. Here, through the successful application of in vitro kernel culture, we demonstrated that excess Fe supply in the medium caused the kernel to become collapsed and lighter in color, consistent with those found in yellow strip like 2 (ysl2, a small kernel mutant), implicated a crucial role of Fe concentration in kernel development. Indeed, over-accumulation of Fe in endosperm inhibited the abundance and activity of ADP-glucose pyrophosphorylase (AGPase) and the kernel development defect was alleviated by overexpression of Briittle 2 (Bt2, encoding a small subunit of AGPase) in ysl2 mutant. Imaging and quantitative analyses of reactive oxygen species (ROS) and cell death showed that Fe stress-induced ROS burst and severe DNA damage in endosperm cells. In addition, we have successfully identified candidate genes that are associated with iron homeostasis within the kernel, as well as upstream transcription factors that regulate ZmYSL2 by yeast one-hybrid screening. Collectively, our study will provide insights into the molecular mechanism of Fe accumulation-regulated seed development and promote the future efficient application of Fe element in corn improvement.
Collapse
Affiliation(s)
- Jie Zang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Xueyan Yao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Tengfei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boming Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Shuxuan Quan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yifeng Hou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|
6
|
Li X, Tian J, Chen X, Liao H. Bioengineering and management for efficient and sustainable utilization of phosphorus in crops. Curr Opin Biotechnol 2024; 90:103180. [PMID: 39241658 DOI: 10.1016/j.copbio.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth, but low P availability in soils is also a primary constraint to crop production. To meet the increasing demands for food, P fertilizer applications have been increased, causing the accumulation of surplus P in soils, which has led to the frequency and magnitude of associated risk effects on agroecosystems. Finding solutions for efficient and sustainable crop P utilization is, therefore, an urgent priority. This review summarizes recent progress in bioengineering approaches to improving crop P efficiency and highlights that modifying root architecture in P-deficient soils and reducing P accumulation in grains in soils with P surplus could offer a way forward for improving P use efficiency.
Collapse
Affiliation(s)
- Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Dai S, Chen H, Shi Y, Xiao X, Xu L, Qin C, Zhu Y, Yi K, Lei M, Zeng H. PHOSPHATE1-mediated phosphate translocation from roots to shoots regulates floral transition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5054-5075. [PMID: 38753441 DOI: 10.1093/jxb/erae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Phosphorus nutrition has been known for a long time to influence floral transition in plants, but the underlying mechanism is unclear. Arabidopsis phosphate transporter PHOSPHATE1 (PHO1) plays a critical role in phosphate translocation from roots to shoots, but whether and how it regulates floral transition is unknown. Here, we show that knockout mutation of PHO1 delays flowering under both long- and short-day conditions. The late flowering of pho1 mutants can be partially rescued by Pi supplementation in rosettes or shoot apices. Grafting assay indicates that the late flowering of pho1 mutants is a result of impaired phosphate translocation from roots to shoots. Knockout mutation of SPX1 and SPX2, two negative regulators of the phosphate starvation response, partially rescues the late flowering of pho1 mutants. PHO1 is epistatic to PHO2, a negative regulator of PHO1, in flowering time regulation. Loss of PHO1 represses the expression of some floral activators, including FT encoding florigen, and induces the expression of some floral repressors in shoots. Genetic analyses indicate that at least jasmonic acid signaling is partially responsible for the late flowering of pho1 mutants. In addition, we find that rice PHO1;2, the homolog of PHO1, plays a similar role in floral transition. These results suggest that PHO1 integrates phosphorus nutrition and flowering time, and could be used as a potential target in modulating phosphorus nutrition-mediated flowering time in plants.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yutao Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinlong Xiao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingguang Lei
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Wang L, Cui J, Zhang N, Wang X, Su J, Vallés MP, Wu S, Yao W, Chen X, Chen D. OsIPK1 frameshift mutations disturb phosphorus homeostasis and impair starch synthesis during grain filling in rice. PLANT MOLECULAR BIOLOGY 2024; 114:91. [PMID: 39172289 DOI: 10.1007/s11103-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) catalyzes the final step in phytic acid (InsP6) synthesis. In this study, the effects of OsIPK1 mutations on InsP6 synthesis, grain filling and their underlying mechanisms were investigated. Seven gRNAs were designed to disrupt the OsIPK1 gene via CRISPR/CAS9 system. Only 4 of them generated 29 individual insertion or deletion T0 plants, in which nine biallelic or heterozygous genotypes were identified. Segregation analysis revealed that OsIPK1 frameshift mutants are homozygous lethality. The biallelic and heterozygous frameshift mutants exhibited significant reduction in yield-related traits, particularly in the seed-setting rate and yield per plant. Despite a notable decline in pollen viability, the male and female gametes had comparable transmission rates to their progenies in the mutants. A significant number of the filling-aborted (FA) grains was observed in mature grains of these heterozygous frameshift mutants. These grains exhibited a nearly complete blockage of InsP6 synthesis, resulting in a pronounced increase in Pi content. In contrast, a slight decline in InsP6 content was observed in the plump grains. During the filling stage, owing to the excessive accumulation of Pi, starch synthesis was significantly impaired, and the endosperm development-specific gene expression was nearly abolished. Consistently, the activity of whereas AGPase, a key enzyme in starch synthesis, was significantly decreased and Pi transporter gene expression was upregulated in the FA grains. Taken together, these results demonstrate that OsIPK1 frameshift mutations result in excessive Pi accumulation, decreased starch synthesis, and ultimately leading to lower yields in rice.
Collapse
Affiliation(s)
- Lina Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Cui
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueqin Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingping Su
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - María Pilar Vallés
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, Spanish National Research Council (EEAD-CSIC), Zaragoza, 50059, Spain
| | - Shian Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Yao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
9
|
Ma B, Zhang Y, Fan Y, Zhang L, Li X, Zhang QQ, Shu Q, Huang J, Chen G, Li Q, Gao Q, Zhu XG, He Z, Wang P. Genetic improvement of phosphate-limited photosynthesis for high yield in rice. Proc Natl Acad Sci U S A 2024; 121:e2404199121. [PMID: 39136985 PMCID: PMC11348269 DOI: 10.1073/pnas.2404199121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024] Open
Abstract
Low phosphate (Pi) availability decreases photosynthesis, with phosphate limitation of photosynthesis occurring particularly during grain filling of cereal crops; however, effective genetic solutions remain to be established. We previously discovered that rice phosphate transporter OsPHO1;2 controls seed (sink) development through Pi reallocation during grain filling. Here, we find that OsPHO1;2 regulates Pi homeostasis and thus photosynthesis in leaves (source). Loss-of-function of OsPHO1;2 decreased Pi levels in leaves, leading to decreased photosynthetic electron transport activity, CO2 assimilation rate, and early occurrence of phosphate-limited photosynthesis. Interestingly, ectopic expression of OsPHO1;2 greatly increased Pi availability, and thereby, increased photosynthetic rate in leaves during grain filling, contributing to increased yield. This was supported by the effect of foliar Pi application. Moreover, analysis of core rice germplasm resources revealed that higher OsPHO1;2 expression was associated with enhanced photosynthesis and yield potential compared to those with lower expression. These findings reveal that phosphate-limitation of photosynthesis can be relieved via a genetic approach, and the OsPHO1;2 gene can be employed to reinforce crop breeding strategies for achieving higher photosynthetic efficiency.
Collapse
Affiliation(s)
- Bin Ma
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou225009, China
| | - You Zhang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Yanfei Fan
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Lin Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou225009, China
| | - Xiaoyuan Li
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou310024, China
| | - Qi-Qi Zhang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai200234, China
| | - Genyun Chen
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Qun Li
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Qifei Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xin-Guang Zhu
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Zuhua He
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Wang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| |
Collapse
|
10
|
Zeng R, Chen T, Li X, Cao J, Li J, Xu X, Zhang L, Chen Y. Integrated physiological, transcriptomic and metabolomic analyses reveal the mechanism of peanut kernel weight reduction under waterlogging stress. PLANT, CELL & ENVIRONMENT 2024; 47:3198-3214. [PMID: 38722055 DOI: 10.1111/pce.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024]
Abstract
Waterlogging stress (WS) hinders kernel development and directly reduces peanut yield; however, the mechanism of kernel filling in response to WS remains unknown. The waterlogging-sensitive variety Huayu 39 was subjected to WS for 3 days at 7 days after the gynophores touched the ground (DAG). We found that WS affected kernel filling at 14, 21, and 28 DAG. WS decreased the average filling rate and kernel dry weight, while transcriptome sequencing and widely targeted metabolomic analysis revealed that WS inhibited the gene expression in starch and sucrose metabolism, which reduced sucrose input and transformation ability. Additionally, genes related to ethylene and melatonin synthesis and the accumulation of tryptophan and methionine were upregulated in response to WS. WS upregulated the expression of the gene encoding tryptophan decarboxylase (AhTDC), and overexpression of AhTDC in Arabidopsis significantly reduced the seed length, width, and weight. Therefore, WS reduced the kernel-filling rate, leading to a reduction in the 100-kernel weight. This survey informs the development of measures that alleviate the negative impact of WS on peanut yield and quality and provides a basis for exploring high-yield and high-quality cultivation, molecular-assisted breeding, and waterlogging prevention in peanut farming.
Collapse
Affiliation(s)
- Ruier Zeng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Yong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Luo B, Ma P, Zhang C, Zhang X, Li J, Ma J, Han Z, Zhang S, Yu T, Zhang G, Zhang H, Zhang H, Li B, Guo J, Ge P, Lan Y, Liu D, Wu L, Gao D, Gao S, Su S, Gao S. Mining for QTL controlling maize low-phosphorus response genes combined with deep resequencing of RIL parental genomes and in silico GWAS analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:190. [PMID: 39043952 DOI: 10.1007/s00122-024-04696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
KEY MESSAGE Extensive and comprehensive phenotypic data from a maize RIL population under both low- and normal-Pi treatments were used to conduct QTL mapping. Additionally, we integrated parental resequencing data from the RIL population, GWAS results, and transcriptome data to identify candidate genes associated with low-Pi stress in maize. Phosphorus (Pi) is one of the essential nutrients that greatly affect the maize yield. However, the genes underlying the QTL controlling maize low-Pi response remain largely unknown. In this study, a total of 38 traits at both seedling and maturity stages were evaluated under low- and normal-Pi conditions using a RIL population constructed from X178 (tolerant) and 9782 (sensitive), and most traits varied significantly between low- and normal-Pi treatments. Twenty-nine QTLs specific to low-Pi conditions were identified after excluding those with common intervals under both low- and normal-Pi conditions. Furthermore, 45 additional QTLs were identified based on the index value ((Trait_under_LowPi-Trait_under_NormalPi)/Trait_under_NormalPi) of each trait. These 74 QTLs collectively were classified as Pi-dependent QTLs. Additionally, 39 Pi-dependent QTLs were clustered in nine HotspotQTLs. The Pi-dependent QTL interval contained 19,613 unique genes, 6,999 of which exhibited sequence differences with non-synonymous mutation sites between X178 and 9782. Combined with in silico GWAS results, 277 consistent candidate genes were identified, with 124 genes located within the HotspotQTL intervals. The transcriptome analysis revealed that 21 genes, including the Pi transporter ZmPT7 and the strigolactones pathway-related gene ZmPDR1, exhibited consistent low-Pi stress response patterns across various maize inbred lines or tissues. It is noteworthy that ZmPDR1 in maize roots can be sharply up-regulated by low-Pi stress, suggesting its potential importance as a candidate gene for responding to low-Pi stress through the strigolactones pathway.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Hongkai Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Binyang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Ge
- SaileGene Inc, Beijing, 100020, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Luo B, Sahito JH, Zhang H, Zhao J, Yang G, Wang W, Guo J, Zhang S, Ma P, Nie Z, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Gishkori ZGN, Gao S. SPX family response to low phosphorus stress and the involvement of ZmSPX1 in phosphorus homeostasis in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1385977. [PMID: 39040504 PMCID: PMC11260721 DOI: 10.3389/fpls.2024.1385977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024]
Abstract
Phosphorus (P) is a crucial macronutrient for plant growth and development, and low-Pi stress poses a significant limitation to maize production. While the role of the SPX domain in encoding proteins involved in phosphate (Pi) homeostasis and signaling transduction has been extensively studied in other model plants, the molecular and functional characteristics of the SPX gene family members in maize remain largely unexplored. In this study, we identified six SPX members, and the phylogenetic analysis of ZmSPXs revealed a close relationship with SPX genes in rice. The promoter regions of ZmSPXs were abundant in biotic and abiotic stress-related elements, particularly associated with various hormone signaling pathways, indicating potential intersections between Pi signaling and hormone signaling pathways. Additionally, ZmSPXs displayed tissue-specific expression patterns, with significant and differential induction in anthers and roots, and were localized to the nucleus and cytoplasm. The interaction between ZmSPXs and ZmPHRs was established via yeast two-hybrid assays. Furthermore, overexpression of ZmSPX1 enhanced root sensitivity to Pi deficiency and high-Pi conditions in Arabidopsis thaliana. Phenotypic identification of the maize transgenic lines demonstrated the negative regulatory effect on the P concentration of stems and leaves as well as yield. Notably, polymorphic sites including 34 single-nucleotide polymorphisms (SNPs) and seven insertions/deletions (InDels) in ZmSPX1 were significantly associated with 16 traits of low-Pi tolerance index. Furthermore, significant sites were classified into five haplotypes, and haplotype5 can enhance biomass production by promoting root development. Taken together, our results suggested that ZmSPX family members possibly play a pivotal role in Pi stress signaling in plants by interacting with ZmPHRs. Significantly, ZmSPX1 was involved in the Pi-deficiency response verified in transgenic Arabidopsis and can affect the Pi concentration of maize tissues and yield. This work lays the groundwork for deeper exploration of the maize SPX family and could inform the development of maize varieties with improved Pi efficiency.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Javed Hussain Sahito
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henen Agricultural University, Zhengzhou, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jin Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Wei Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Luo B, Zhang H, Han Z, Zhang X, Guo J, Zhang S, Luo X, Zhao J, Wang W, Yang G, Zhang C, Li J, Ma J, Zheng H, Tang Z, Lan Y, Ma P, Nie Z, Li Y, Liu D, Wu L, Gao D, Gao S, Su S, Guo J, Gao S. Exploring the phosphorus-starch content balance mechanisms in maize grains using GWAS population and transcriptome data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:158. [PMID: 38864891 DOI: 10.1007/s00122-024-04667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Xianfu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jin Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Wei Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Hao Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zirui Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Peng Ma
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, China
| | - Yunjian Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
14
|
Mani B, Maurya K, Kohli PS, Giri J. Chickpea (Cicer arietinum) PHO1 family members function redundantly in Pi transport and root nodulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108712. [PMID: 38733940 DOI: 10.1016/j.plaphy.2024.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Phosphorus (P), a macronutrient, plays key roles in plant growth, development, and yield. Phosphate (Pi) transporters (PHTs) and PHOSPHATE1 (PHO1) are central to Pi acquisition and distribution. Potentially, PHO1 is also involved in signal transduction under low P. The current study was designed to identify and functionally characterize the PHO1 gene family in chickpea (CaPHO1s). Five CaPHO1 genes were identified through a comprehensive genome-wide search. Phylogenetically, CaPHO1s formed two clades, and protein sequence analyses confirmed the presence of conserved domains. CaPHO1s are expressed in different plant organs including root nodules and are induced by Pi-limiting conditions. Functional complementation of atpho1 mutant with three CaPHO1 members, CaPHO1, CaPHO1;like, and CaPHO1;H1, independently demonstrated their role in root to shoot Pi transport, and their redundant functions. To further validate this, we raised independent RNA-interference (RNAi) lines of CaPHO1, CaPHO1;like, and CaPHO1;H1 along with triple mutant line in chickpea. While single gene RNAi lines behaved just like WT, triple knock-down RNAi lines (capho1/like/h1) showed reduced shoot growth and shoot Pi content. Lastly, we showed that CaPHO1s are involved in root nodule development and Pi content. Our findings suggest that CaPHO1 members function redundantly in root to shoot Pi export and root nodule development in chickpea.
Collapse
Affiliation(s)
- Balaji Mani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Peng D, Pan S, Du X, Chen E, He J, Zhang Z. Central Roles of ZmNAC128 and ZmNAC130 in Nutrient Uptake and Storage during Maize Grain Filling. Genes (Basel) 2024; 15:663. [PMID: 38927600 PMCID: PMC11203180 DOI: 10.3390/genes15060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Grain filling is critical for determining yield and quality, raising the question of whether central coordinators exist to facilitate the uptake and storage of various substances from maternal to filial tissues. The duplicate NAC transcription factors ZmNAC128 and ZmNAC130 could potentially serve as central coordinators. By analyzing differentially expressed genes from zmnac128 zmnac130 mutants across different genetic backgrounds and growing years, we identified 243 highly and differentially expressed genes (hdEGs) as the core target genes. These 243 hdEGs were associated with storage metabolism and transporters. ZmNAC128 and ZmNAC130 play vital roles in storage metabolism, and this study revealed two additional starch metabolism-related genes, sugary enhancer1 and hexokinase1, as their direct targets. A key finding of this study was the inclusion of 17 transporter genes within the 243 hdEGs, with significant alterations in the levels of more than 10 elements/substances in mutant kernels. Among them, six out of the nine upregulated transporter genes were linked to the transport of heavy metals and metalloids (HMMs), which was consistent with the enrichment of cadmium, lead, and arsenic observed in mutant kernels. Interestingly, the levels of Mg and Zn, minerals important to biofortification efforts, were reduced in mutant kernels. In addition to their direct involvement in sugar transport, ZmNAC128 and ZmNAC130 also activate the expression of the endosperm-preferential nitrogen and phosphate transporters ZmNPF1.1 and ZmPHO1;2. This coordinated regulation limits the intake of HMMs, enhances biofortification, and facilitates the uptake and storage of essential nutrients.
Collapse
Affiliation(s)
- Di Peng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Shuxing Pan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Xin Du
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Erwang Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Junjun He
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China;
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| |
Collapse
|
16
|
Hui S, Zhang P, Yuan M. Optimizing nutrient transporters to enhance disease resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2799-2808. [PMID: 38437153 DOI: 10.1093/jxb/erae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Fertilizers and plant diseases contribute positively and negatively to crop production, respectively. Macro- and micronutrients provided by the soil and fertilizers are transported by various plant nutrient transporters from the soil to the roots and shoots, facilitating growth and development. However, the homeostasis of different nutrients has different effects on plant disease. This review is aimed at providing insights into the interconnected regulation between nutrient homeostasis and immune responses, and it highlights strategies to enhance disease resistance by optimal manipulation of nutrient transporters in rice. First, we highlight the essential roles of six macronutrients (nitrogen, phosphorus, potassium, sulfur, calcium, magnesium) and eight micronutrients (iron, manganese, zinc, copper, boron, molybdenum, silicon, nickel), and summarize the diverse effects of each on rice diseases. We then systematically review the molecular mechanisms of immune responses modulated by nutrient transporters and the genetic regulatory pathways that control the specific nutrient-mediated immune signaling that is regulated by the pathogens and the host plant. Finally, we discuss putative strategies for breeding disease-resistant rice by genetic engineering of nutrient transporters.
Collapse
Affiliation(s)
- Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572024, China
| |
Collapse
|
17
|
Ma B, Cao X, Li X, Bian Z, Zhang QQ, Fang Z, Liu J, Li Q, Liu Q, Zhang L, He Z. Two ABCI family transporters, OsABCI15 and OsABCI16, are involved in grain-filling in rice. J Genet Genomics 2024; 51:492-506. [PMID: 37913986 DOI: 10.1016/j.jgg.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Seed development is critical for plant reproduction and crop yield, with panicle seed-setting rate, grain-filling, and grain weight being key seed characteristics for yield improvement. However, few genes are known to regulate grain filling. Here, we identify two adenosine triphosphate (ATP)-binding cassette (ABC)I-type transporter genes, OsABCI15 and OsABCI16, involved in rice grain-filling. Both genes are highly expressed in developing seeds, and their proteins are localized to the plasma membrane and cytosol. Interestingly, knockout of OsABCI15 and OsABCI16 results in a significant reduction in seed-setting rate, caused predominantly by the severe empty pericarp phenotype, which differs from the previously reported low seed-setting phenotype resulting from failed pollination. Further analysis indicates that OsABCI15 and OsABCI16 participate in ion homeostasis and likely export ions between filial tissues and maternal tissues during grain filling. Importantly, overexpression of OsABCI15 and OsABCI16 enhances the seed-setting rate and grain yield in transgenic plants and decreases ion accumulation in brown rice. Moreover, the OsABCI15/16 orthologues in maize exhibit a similar role in kernel development, as demonstrated by their disruption in transgenic maize. Therefore, our findings reveal the important roles of two ABC transporters in cereal grain filling, highlighting their value in crop yield improvement.
Collapse
Affiliation(s)
- Bin Ma
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Xiubiao Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyuan Li
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang 310024, China
| | - Zhong Bian
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zijun Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
18
|
Yan M, Xie M, Chen W, Si WJ, Lin HH, Yang J. Transcriptome analysis with different leaf blades identifies the phloem-specific phosphate transporter OsPHO1;3 required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:905-919. [PMID: 38251949 DOI: 10.1111/tpj.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mengyang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wen-Jing Si
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
19
|
Yang SY, Lin WY, Hsiao YM, Chiou TJ. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. THE PLANT CELL 2024; 36:1504-1523. [PMID: 38163641 PMCID: PMC11062440 DOI: 10.1093/plcell/koad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Yi Lin
- Department of Agronomy, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Min Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
20
|
Puga MI, Poza-Carrión C, Martinez-Hevia I, Perez-Liens L, Paz-Ares J. Recent advances in research on phosphate starvation signaling in plants. JOURNAL OF PLANT RESEARCH 2024; 137:315-330. [PMID: 38668956 PMCID: PMC11081996 DOI: 10.1007/s10265-024-01545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Phosphorus is indispensable for plant growth and development, with its status crucial for determining crop productivity. Plants have evolved various biochemical, morphological, and developmental responses to thrive under conditions of low P availability, as inorganic phosphate (Pi), the primary form of P uptake, is often insoluble in soils. Over the past 25 years, extensive research has focused on understanding these responses, collectively forming the Pi starvation response system. This effort has not only expanded our knowledge of strategies to cope with Pi starvation (PS) but also confirmed their adaptive significance. Moreover, it has identified and characterized numerous components of the intricate regulatory network governing P homeostasis. This review emphasizes recent advances in PS signaling, particularly highlighting the physiological importance of local PS signaling in inhibiting primary root growth and uncovering the role of TORC1 signaling in this process. Additionally, advancements in understanding shoot-root Pi allocation and a novel technique for studying Pi distribution in plants are discussed. Furthermore, emerging data on the regulation of plant-microorganism interactions by the PS regulatory system, crosstalk between the signaling pathways of phosphate starvation, phytohormones and immunity, and recent studies on natural variation in Pi homeostasis are addressed.
Collapse
Affiliation(s)
- María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - César Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Laura Perez-Liens
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain.
| |
Collapse
|
21
|
Liu Y, Du Z, Wu P, Zhang L. Optimization of stage conversion time and modification of cell metabolism to enhance lipid production of Auxenochlorella pyrenoidosa in two-stage cultivation. BIORESOURCE TECHNOLOGY 2024; 395:130409. [PMID: 38295959 DOI: 10.1016/j.biortech.2024.130409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Traditionally, the time of maximum biomass concentration in stage I is the widely adopted stage conversion time in two-stage microalgae culture. This study challenges this conventional approach, demonstrating that the optimal stage conversion time in stage I is 72 h rather than 120 h for achieving maximum biomass concentration. A comparison of cell characteristics revealed that algal cells at 72 h exhibited better growth potential, leading to a higher biomass concentration after transfer to stage II and, consequently, increased lipid productivity. Moreover, the use of phosphorus repletion (5-fold) in stage II directed carbon flux toward biomass growth and lipid accumulation, thereby enhancing lipid productivity. By optimizing the stage conversion time and implementing phosphorus repletion, the mean lipid productivity of Auxenochlorella pyrenoidosa cultured under autotrophy-nitrogen starvation and autotrophy-high light conditions increased by 31 % and 60 %, respectively. This study underscores the importance of reevaluating the currently widely used stage conversion time.
Collapse
Affiliation(s)
- Yao Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zengzhen Du
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Penghui Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
22
|
Liu P, Zhang X, Lin L, Cao Y, Lin X, Ye L, Yan J, Gao H, Wen J, Mysore KS, Liu J. Nodulation Signaling Pathway 1 and 2 Modulate Vanadium Accumulation and Tolerance of Legumes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306389. [PMID: 38225717 DOI: 10.1002/advs.202306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.
Collapse
Affiliation(s)
- Peng Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Xinfei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Lin Lin
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Yanyan Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Xizhen Lin
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Liaoliao Ye
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Jun Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jinlong Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| |
Collapse
|
23
|
Guo M, Ruan W, Li R, Xu L, Hani S, Zhang Q, David P, Ren J, Zheng B, Nussaume L, Yi K. Visualizing plant intracellular inorganic orthophosphate distribution. NATURE PLANTS 2024; 10:315-326. [PMID: 38195907 DOI: 10.1038/s41477-023-01612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Intracellular inorganic orthophosphate (Pi) distribution and homeostasis profoundly affect plant growth and development. However, its distribution patterns remain elusive owing to the lack of efficient cellular Pi imaging methods. Here we develop a rapid colorimetric Pi imaging method, inorganic orthophosphate staining assay (IOSA), that can semi-quantitatively image intracellular Pi with high resolution. We used IOSA to reveal the alteration of cellular Pi distribution caused by Pi starvation or mutations that alter Pi homeostasis in two model plants, rice and Arabidopsis, and found that xylem parenchyma cells and basal node sieve tube element cells play a critical role in Pi homeostasis in rice. We also used IOSA to screen for mutants altered in cellular Pi homeostasis. From this, we have identified a novel cellular Pi distribution regulator, HPA1/PHO1;1, specifically expressed in the companion and xylem parenchyma cells regulating phloem Pi translocation from the leaf tip to the leaf base in rice. Taken together, IOSA provides a powerful method for visualizing cellular Pi distribution and facilitates the analysis of Pi signalling and homeostasis from the level of the cell to the whole plant.
Collapse
Affiliation(s)
- Meina Guo
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources/ National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Ruili Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sahar Hani
- EBMP (Environnement, Bioénergies, Microalgues et Plantes), Aix Marseille Univ, CEA, CNRS, UMR7265, BIAM, Saint-Paul lez Durance, France
| | - Qianqian Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pascale David
- EBMP (Environnement, Bioénergies, Microalgues et Plantes), Aix Marseille Univ, CEA, CNRS, UMR7265, BIAM, Saint-Paul lez Durance, France
| | - Jianhao Ren
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Laurent Nussaume
- EBMP (Environnement, Bioénergies, Microalgues et Plantes), Aix Marseille Univ, CEA, CNRS, UMR7265, BIAM, Saint-Paul lez Durance, France
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
24
|
Shi H, Wu X, Zhu Y, Jiang T, Wang Z, Li X, Liu J, Zhang Y, Chen F, Gao J, Xu X, Zhang G, Xiao N, Feng X, Zhang P, Wu Y, Li A, Chen P, Li X. RefMetaPlant: a reference metabolome database for plants across five major phyla. Nucleic Acids Res 2024; 52:D1614-D1628. [PMID: 37953341 PMCID: PMC10767953 DOI: 10.1093/nar/gkad980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Plants are unique with tremendous chemical diversity and metabolic complexity, which is highlighted by estimates that green plants collectively produce metabolites numbering in the millions. Plant metabolites play crucial roles in all aspects of plant biology, like growth, development, stress responses, etc. However, the lack of a reference metabolome for plants, and paucity of high-quality standard compound spectral libraries and related analytical tools, have hindered the discovery and functional study of phytochemicals in plants. Here, by leveraging an advanced LC-MS platform, we generated untargeted mass spectral data from >150 plant species collected across the five major phyla. Using a self-developed computation protocol, we constructed reference metabolome for 153 plant species. A 'Reference Metabolome Database for Plants' (RefMetaPlant) was built to encompass the reference metabolome, integrated standard compound mass spectral libraries for annotation, and related query and analytical tools like 'LC-MS/MS Query', 'RefMetaBlast' and 'CompoundLibBlast' for searches and profiling of plant metabolome and metabolite identification. Analogous to a reference genome in genomic research, RefMetaPlant provides a powerful platform to support plant genome-scale metabolite analysis to promote knowledge/data sharing and collaboration in the field of metabolomics. RefMetaPlant is freely available at https://www.biosino.org/RefMetaDB/.
Collapse
Affiliation(s)
- Han Shi
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Jiang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | - Xuetong Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianju Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | | | - Feng Chen
- Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyan Xu
- Core Facility Center, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Peng Zhang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongrui Wu
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Sun G, Luan M, Wen J, Wang B, Lan W. Genetically controlling VACUOLAR PHOSPHATE TRANSPORTER 1 contributes to low-phosphorus seeds in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2023; 18:2186641. [PMID: 36890723 PMCID: PMC10012917 DOI: 10.1080/15592324.2023.2186641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is an indispensable nutrient for seed germination, but the seeds always store excessive P over demand. High-P seeds of feeding crops lead to environmental and nutrition issues, because phytic acid (PA), the major form of P in seeds, cannot be digested by mono-gastric animals. Therefore, reduction of P level in seeds has become an imperative task in agriculture. Our study here suggested that both VPT1 and VPT3, two vacuolar phosphate transporters responsible for vacuolar Pi sequestration, were downregulated in leaves during the flowering stage, which led to less Pi accumulated in leaves and more Pi allocated to reproductive organs, and thus high-P containing seeds. To reduce the total P content in seeds, we genetically regulated VPT1 during the flowering stage and found that overexpression of VPT1 in leaves could reduce P content in seeds without affecting the production and seed vigor. Therefore, our finding provides a potential strategy to reduce the P level of the seeds to prevent the nutrition over-accumulation pollution.
Collapse
Affiliation(s)
- Guangfang Sun
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Mingda Luan
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiansheng Wen
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Bin Wang
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wenzhi Lan
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Vetal PV, Poirier Y. The Arabidopsis PHOSPHATE 1 exporter undergoes constitutive internalization via clathrin-mediated endocytosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1477-1491. [PMID: 37638714 DOI: 10.1111/tpj.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
SUMMARYInorganic phosphate (Pi) homeostasis is essential for plant growth and depends on the transport of Pi across cells. In Arabidopsis thaliana, PHOSPHATE 1 (PHO1) is present in the root pericycle and xylem parenchyma where it exports Pi into the xylem apoplast for its transfer to shoots. PHO1 consists of a cytosolic SPX domain followed by membrane‐spanning α‐helices and ends with the EXS domain, which participates in the steady‐state localization of PHO1 to the Golgi and trans‐Golgi network (TGN). However, PHO1 exports Pi across the plasma membrane (PM), making its localization difficult to reconcile with its function. To investigate whether PHO1 transiently associates with the PM, we inhibited clathrin‐mediated endocytosis (CME) by overexpressing AUXILIN‐LIKE 2 or HUB1. Inhibiting CME resulted in PHO1 re‐localization from the Golgi/TGN to the PM when PHO1 was expressed in Arabidopsis root pericycle or epidermis or Nicotiana benthamiana leaf epidermal cells. A fusion protein between the PHO1 EXS region and GFP was stabilized at the PM by CME inhibition, indicating that the EXS domain plays an important role in sorting PHO1 to/from the PM. PHO1 internalization from the PM occurred independently of AP2 and was not influenced by Pi deficiency, the ubiquitin‐conjugating E2 PHO2, or the potential ubiquitination of cytosolic lysines in the EXS domain. PM‐stabilized PHO1 showed reduced root‐to‐shoot Pi export activity, indicating that CME of PHO1 may be important for its optimal Pi export activity and plant Pi homeostasis.
Collapse
Affiliation(s)
- Pallavi V Vetal
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
27
|
Liu Y, Xi W, Wang X, Li H, Liu H, Li T, Hou J, Liu X, Hao C, Zhang X. TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat. J Genet Genomics 2023; 50:883-894. [PMID: 37062449 DOI: 10.1016/j.jgg.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Starch is the most abundant substance in wheat (Triticum aestivum L.) endosperm and provides the major carbohydrate energy for human daily life. Starch synthesis-related (SSR) genes are believed to be spatiotemporally specific, but their transcriptional regulation remains unclear in wheat. Here, we investigate the role of the basic helix-loop-helix (bHLH) transcription factor TabHLH95 in starch synthesis. TabHLH95 is preferentially expressed in the developing grains in wheat and encodes a nucleus localized protein without autoactivation activity. The Tabhlh95 knockout mutants display smaller grain size and less starch content than wild type, whereas overexpression of TabHLH95 enhances starch accumulation and significantly improves thousand grain weight. Transcriptome analysis reveals that the expression of multiple SSR genes is significantly reduced in the Tabhlh95 mutants. TabHLH95 binds to the promoters of ADP-glucose pyrophosphorylase large subunit 1 (AGPL1-1D/-1B), AGPL2-5D, and isoamylase (ISA1-7D) and enhances their transcription. Intriguingly, TabHLH95 interacts with the nuclear factor Y (NF-Y) family transcription factor TaNF-YB1, thereby synergistically regulating starch synthesis. These results suggest that the TabHLH95-TaNF-YB1 complex positively modulates starch synthesis and grain weight by regulating the expression of a subset of SSR genes, thus providing a good potential approach for genetic improvement of grain productivity in wheat.
Collapse
Affiliation(s)
- Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xi
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University)/Gansu Provincial Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, Gansu 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
28
|
Liu F, Cai S, Dai L, Zhou B. Two PHOSPHATE-TRANSPORTER1 genes in cotton enhance tolerance to phosphorus starvation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108128. [PMID: 39492164 DOI: 10.1016/j.plaphy.2023.108128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Phosphorus is an essential macronutrient element for productivity of crop ecosystems. But orthophosphate (Pi), the direct uptake form by plants, is found in low solubility in soil, leading to plants often suffer from Pi starvation when they grow. High-affinity Pi transporters (PTs) play roles in Pi starvation response (PSR), and they are the main Pi influx machinery. Like most sessile plants, cotton is also threatened by Pi deficiency and has developed sophisticated PSR systems to cope with phosphorus deficiency. However, the regulation mechanism of Pi homeostasis is largely unknown in cotton. Here, we identified that two cotton PHOSPHATE-TRANSPORTER1 family genes, GhPHT1;4 and GhPHT1;5, were mainly responsible for Pi uptake under Pi-starvation conditions in cotton. Their promoter activities were significantly activated by Pi deficiency and the overexpression of two genes enhanced the Pi uptake under Pi-deficiency and Pi-normal conditions. Furthermore, we found that PHT1;4 and PHT1;5 participated in modifying root architecture during Pi-starvation, as well as affecting the PSR in plant. Thus, we identified that two cotton Pi transporters functioned in Pi homeostasis, which would provide new gene resources for sustainable agriculture.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China; Nanjing Forestry University, 159 Longpan Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Lu S, Ye J, Li H, He F, Qi Y, Wang T, Wang W, Zheng L. The Splicing Factor OsSCL26 Regulates Phosphorus Homeostasis in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2326. [PMID: 37375951 DOI: 10.3390/plants12122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth. However, its deficiency poses a significant challenge for crop production. To overcome the low P availability, plants have developed various strategies to regulate their P uptake and usage. In this study, we identified a splicing factor, OsSCL26, belonging to the Serine/arginine-rich (SR) proteins, that plays a crucial role in regulating P homeostasis in rice. OsSCL26 is expressed in the roots, leaves, and base nodes, with higher expression levels observed in the leaf blades during the vegetative growth stage. The OsSCL26 protein is localized in the nucleus. Mutation of OsSCL26 resulted in the accumulation of P in the shoot compared to the wild-type, and the dwarf phenotype of the osscl26 mutant was alleviated under low P conditions. Further analysis revealed that the accumulated P concentrations in the osscl26 mutant were higher in the old leaves and lower in the new leaves. Furthermore, the P-related genes, including the PHT and SPX family genes, were upregulated in the osscl26 mutant, and the exclusion/inclusion ratio of the two genes, OsSPX-MFS2 and OsNLA2, was increased compared to wild-type rice. These findings suggest that the splicing factor OsSCL26 plays a pivotal role in maintaining P homeostasis in rice by influencing the absorption and distribution of P through the regulation of the transcription and splicing of the P transport genes.
Collapse
Affiliation(s)
- Shanshan Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Ye
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengyu He
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Qi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wujian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Wang X, Yuan D, Liu Y, Liang Y, He J, Yang X, Hang R, Jia H, Mo B, Tian F, Chen X, Liu L. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize. THE PLANT CELL 2023; 35:2208-2231. [PMID: 36943781 PMCID: PMC10226601 DOI: 10.1093/plcell/koad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/30/2023]
Abstract
The macronutrient phosphorus is essential for plant growth and development. Plants have evolved multiple strategies to increase the efficiency of phosphate (Pi) acquisition to protect themselves from Pi starvation. However, the crosstalk between Pi homeostasis and plant development remains to be explored. Here, we report that overexpressing microRNA399 (miR399) in maize (Zea mays) is associated with premature senescence after pollination. Knockout of ZmPHO2 (Phosphate 2), a miR399 target, resulted in a similar premature senescence phenotype. Strikingly, we discovered that INDETERMINATE1 (ID1), a floral transition regulator, inhibits the transcription of ZmMIR399 genes by directly binding to their promoters, alleviating the repression of ZmPHO2 by miR399 and ultimately contributing to the maintenance of Pi homeostasis in maize. Unlike ZmMIR399 genes, whose expression is induced by Pi deficiency, ID1 expression was independent of the external inorganic orthophosphate status, indicating that ID1 is an autonomous regulator of Pi homeostasis. Furthermore, we show that ZmPHO2 was under selection during maize domestication and cultivation, resulting in a more sensitive response to Pi starvation in temperate maize than in tropical maize. Our study reveals a direct functional link between Pi-deprivation sensing by the miR399-ZmPHO2 regulatory module and plant developmental regulation by ID1.
Collapse
Affiliation(s)
- Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Dan Yuan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yanchun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yameng Liang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Runlai Hang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hong Jia
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
32
|
Xu C, Xu J, Tang HW, Ericsson M, Weng JH, DiRusso J, Hu Y, Ma W, Asara JM, Perrimon N. A phosphate-sensing organelle regulates phosphate and tissue homeostasis. Nature 2023; 617:798-806. [PMID: 37138087 PMCID: PMC10443203 DOI: 10.1038/s41586-023-06039-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY, USA.
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Maria Ericsson
- Department of Cell Biology, Electron Microscopy Facility, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jui-Hsia Weng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jonathan DiRusso
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Department of Medicine, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Ma C, Liu F, Yang J, Liu N, Zhang K, Berrettoni M, Zhang H. The newly absorbed atmospheric lead by wheat spike during filling stage is the primary reason for grain lead pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161965. [PMID: 36737026 DOI: 10.1016/j.scitotenv.2023.161965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Wheat spikes could directly absorb lead (Pb) from atmospheric depositions. However, the mechanism by which the spikes contribute to Pb accumulation in the grain remains unclear. To investigate this mechanism, a field experiment was conducted using three comparative spikes shading treatments: 1) exposed to atmospheric deposition and light (CK), 2) non-exposed to atmospheric deposition and light (T1), and 3) non-exposed to atmospheric deposition but light-transmitting (T2). Spikes shading treatments reduced the average rate and peak value of the accumulation of Pb in grains, which significantly decreased the grain Pb concentration by 57.44 % and 50.26 % in T1 and T2 treatments, respectively. Moreover, Pb isotopic analysis shows that the Pb in spike and grain was mainly from atmospheric deposition, and the percentage of the grain Pb originated from atmospheric Pb decreased from 85.98 % in CK to 72.87 % and 79.59 % in T1 and T2, respectively. In addition, the spikes, rather than the leaves/roots, were the largest wheat tissue source of Pb in grains, and the relative contribution of spikes to grain Pb accumulation increased to 65.57 % at the maturity stage, of which the stored Pb re-translocation of spikes and the newly absorbed Pb by spikes during the filling stage contributed 13.37 % and 52.20 % to the grain Pb, respectively. Thus, the contribution of the spike to the grain Pb was mainly from the newly absorbed Pb from the atmospheric deposition during the grain filling phase, and grain filling phase is the key stage for the absorption of Pb by the grain. In brief, the newly absorbed atmospheric Pb by wheat spike during filling stage is the primary cause of grain Pb contamination, which provided a new insight for effective control of wheat Pb pollution.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China; University of Camerino, School of Science and Technology, ChIP, via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Mario Berrettoni
- University of Camerino, School of Science and Technology, ChIP, via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| |
Collapse
|
34
|
Lu H, Wang F, Wang Y, Lin R, Wang Z, Mao C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1104-1119. [PMID: 36208118 DOI: 10.1111/pce.14457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is a macronutrient required for plant growth and reproduction. Orthophosphate (Pi), the preferred P form for plant uptake, is easily fixed in the soil, making it unavailable to plants. Limited phosphate rock resources, low phosphate fertilizer use efficiency and high demands for green agriculture production make it important to clarify the molecular mechanisms underlying plant responses to P deficiency and to improve plant phosphate efficiency in crops. Over the past 20 years, tremendous progress has been made in understanding the regulatory mechanisms of the plant P starvation response. Here, we systematically review current research on the mechanisms of Pi acquisition, transport and distribution from the rhizosphere to the shoot; Pi redistribution and reuse during reproductive growth; and the molecular mechanisms of arbuscular mycorrhizal symbiosis in rice (Oryza sativa L.) under Pi deficiency. Furthermore, we discuss several strategies for boosting P utilization efficiency and yield in rice.
Collapse
Affiliation(s)
- Hong Lu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Guo R, Zhang Q, Ying Y, Liao W, Liu Y, Whelan J, Chuanzao M, Shou H. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. PLANT, CELL & ENVIRONMENT 2023; 46:1264-1277. [PMID: 35909262 DOI: 10.1111/pce.14414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Plant vacuoles serve as the primary intracellular compartments for phosphorus (P) storage. The Oryza sativa genome contains three genes that encode SPX ( SYG1/ PHO81/ XPR1)-MFS ( Major Facility Superfamily) proteins (OsSPX-MFS1-3). The physiological roles of the three transporters under varying P conditions in laboratory and field are not known. To address this knowledge gap, we generated single, double and triple mutants for three OsSPX-MFS genes. All the mutants except Osspx-mfs2 display lower vacuolar Pi concentrations and OsSPX-MFSs overexpression plant display higher Pi accumulation, demonstrating that all OsSPX-MFSs are vacuolar Pi influx transporters. OsSPX-MFS3 plays the dominant role based on the phenotypes of single mutants in terms of growth, vacuolar and tissue Pi concentrations. OsSPX-MFS2 is the weakest and only functions as vacuole Pi sequestration in an Osspx-mfs1/3 background. The vacuolar Pi sequestration capacity was severely impaired in Osspx-mfs1/3 and Osspx-mfs1/2/3, which resulted in increased Pi allocation to aerial organs. High P in the panicle impaired panicle and fertility in Osspx-mfs1/3 and Osspx-mfs1/2/3. Osspx-mfs2 resulted in a more stable yield compared to the wild type under low P in field grown plants. The results suggest that alteration of vacuolar Pi sequestration may be a novel effective strategy to improve rice tolerance to low phosphorus in cropping systems.
Collapse
Affiliation(s)
- Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Qi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Animal, Plant and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Victoria, Australia
| | - Mao Chuanzao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
36
|
Pontigo S, Parra-Almuna L, Luengo-Escobar A, Poblete-Grant P, Nunes-Nesi A, Mora MDLL, Cartes P. Biochemical and Molecular Responses Underlying the Contrasting Phosphorus Use Efficiency in Ryegrass Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:1224. [PMID: 36986913 PMCID: PMC10057710 DOI: 10.3390/plants12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Improving plant ability to acquire and efficiently utilize phosphorus (P) is a promising approach for developing sustainable pasture production. This study aimed to identify ryegrass cultivars with contrasting P use efficiency, and to assess their associated biochemical and molecular responses. Nine ryegrass cultivars were hydroponically grown under optimal (0.1 mM) or P-deficient (0.01 mM) conditions, and P uptake, dry biomass, phosphorus acquisition efficiency (PAE) and phosphorus utilization efficiency (PUE) were evaluated. Accordingly, two cultivars with high PAE but low PUE (Ansa and Stellar), and two cultivars with low PAE and high PUE (24Seven and Extreme) were selected to analyze the activity and gene expression of acid phosphatases (APases), as well as the transcript levels of P transporters. Our results showed that ryegrass cultivars with high PAE were mainly influenced by root-related responses, including the expression of genes codifying for the P transporter LpPHT1;4, purple acid phosphatase LpPAP1 and APase activity. Moreover, the traits that contributed greatly to enhanced PUE were the expression of LpPHT1;1/4 and LpPHO1;2, and the APase activity in shoots. These outcomes could be useful to evaluate and develop cultivars with high P-use efficiency, thus contributing to improve the management of P in grassland systems.
Collapse
Affiliation(s)
- Sofía Pontigo
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4780000, Chile
| | - Leyla Parra-Almuna
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4780000, Chile
| | - Ana Luengo-Escobar
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, km 10 camino Cajón-Vilcún s/n, Temuco P.O. Box 929, Chile
| | - Patricia Poblete-Grant
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4780000, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - María de la Luz Mora
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4780000, Chile
| | - Paula Cartes
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4780000, Chile
| |
Collapse
|
37
|
Lin Y, Chen W, Yang Q, Zhang Y, Ma X, Li M. Genome-Wide Characterization and Gene Expression Analyses of Malate Dehydrogenase ( MDH) Genes in Low-Phosphorus Stress Tolerance of Chinese Fir ( Cunninghamia lanceolata). Int J Mol Sci 2023; 24:ijms24054414. [PMID: 36901845 PMCID: PMC10003207 DOI: 10.3390/ijms24054414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Malate dehydrogenase (MDH) genes play vital roles in developmental control and environmental stress tolerance in sessile plants by modulating the organic acid-malic acid level. However, MDH genes have not yet been characterized in gymnosperm, and their roles in nutrient deficiency are largely unexplored. In this study, 12 MDH genes were identified in Chinese fir (Cunninghamia lanceolata), namely, ClMDH-1, -2, -3, …, and -12. Chinese fir is one of the most abundant commercial timber trees in China, and low phosphorus has limited its growth and production due to the acidic soil of southern China. According to the phylogenetic analysis, MDH genes were classified into five groups, and Group 2 genes (ClMDH-7, -8, -9, and 10) were only found to be present in Chinese fir but not in Arabidopsis thaliana and Populus trichocarpa. In particular, the Group 2 MDHs also had specific functional domains-Ldh_1_N (malidase NAD-binding functional domain) and Ldh_1_C (malate enzyme C-terminal functional domain)-indicating a specific function of ClMDHs in the accumulation of malate. All ClMDH genes contained the conserved MDH gene characteristic functional domains Ldh_1_N and Ldh_1_C, and all ClMDH proteins exhibited similar structures. Twelve ClMDH genes were identified from eight chromosomes, involving fifteen ClMDH homologous gene pairs, each with a Ka/Ks ratio of <1. The analysis of cis-elements, protein interactions, and transcription factor interactions of MDHs showed that the ClMDH gene might play a role in plant growth and development, and in response to stress mechanisms. The results of transcriptome data and qRT-PCR validation based on low-phosphorus stress showed that ClMDH1, ClMDH6, ClMDH7, ClMDH2, ClMDH4, ClMDH5, ClMDH10 and ClMDH11 were upregulated under low-phosphorus stress and played a role in the response of fir to low-phosphorus stress. In conclusion, these findings lay a foundation for further improving the genetic mechanism of the ClMDH gene family in response to low-phosphorus stress, exploring the potential function of this gene, promoting the improvement of fir genetics and breeding, and improving production efficiency.
Collapse
Affiliation(s)
- Yawen Lin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wanting Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajing Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangqing Ma
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Colleges and University Engineering Research Center of Plantation Sustainable Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Colleges and University Engineering Research Center of Plantation Sustainable Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-591-8378-0261
| |
Collapse
|
38
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
39
|
Soumya PR, Vengavasi K, Pandey R. Adaptive strategies of plants to conserve internal phosphorus under P deficient condition to improve P utilization efficiency. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1981-1993. [PMID: 36573147 PMCID: PMC9789281 DOI: 10.1007/s12298-022-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) is one of the limiting factors for plant growth and productivity due to its slow diffusion and immobilization in the soil which necessitates application of phosphatic fertilizers to meet the crop demand and obtain maximum yields. However, plants have evolved mechanisms to adapt to low P stress conditions either by increasing acquisition (alteration of belowground processes) or by internal inorganic P (Pi) utilization (cellular Pi homeostasis) or both. In this review, we have discussed the adaptive strategies that conserve the use of P and maintain cellular Pi homeostasis in the cytoplasm. These strategies involve modification in membrane lipid composition, flavanol/anthocyanin level, scavenging and reutilization of Pi adsorbed in cell wall pectin, remobilization of Pi during senescence by enzymes like RNases and purple acid phosphatases, alternative mitochondrial electron transport, and glycolytic pathways. The remobilization of Pi from senescing tissues and its internal redistribution to various cellular organelles is mediated by various Pi transporters. Although much efforts have been made to enhance P acquisition efficiency, an understanding of the physiological mechanisms conserving internal Pi and their manipulation would be useful for plants that can utilize P more efficiently to produce optimum growth per unit P uptake.
Collapse
Affiliation(s)
- Preman R. Soumya
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
- Present Address: Regional Agricultural Research Station, Kerala Agricultural University, Ambalavayal, Wayanad, Kerala 673593 India
| | - Krishnapriya Vengavasi
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
40
|
Wan X, Zeng W. Composition of Three Common Chinese Herbal Medicines and the Influence of Preparation Types on the Bioaccessibility of Trace Elements. TOXICS 2022; 10:719. [PMID: 36548552 PMCID: PMC9787523 DOI: 10.3390/toxics10120719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The high concentration of trace elements in Chinese herbal medicine (CHM) is an important research topic for quality control. This study investigated the total concentration of trace elements in three herbs used as both medicine and supplementary food, including Astragalus membranaceus, Glycyrrhiza, and Isatidis. Further, the effects of different preparation ways, such as decoct, granule, and oral liquid, on the bioaccessibility of trace elements in CHM were disclosed. Results indicated that the total concentrations of trace elements in these three herbs were lower than the medical standards, but the concentrations of As and Pb in CHMs were higher than the standards for supplementary food. Different preparations ways affect bioaccessibility. Powder and oral liquid show a high bioaccessibility possibly because of the grinding process and the repeated extraction with ethanol. Among the three different CHMs, Isatidis showed higher bioaccessibility of As, which may be related to the sulfur fumigation process of this CHM. The three investigated CHMs were found to be safe as medicine but presented risks as supplementary food. The apparent influence of preparation procedures on the bioaccessibility of trace elements indicated that it is necessary to appropriately regulate preparation processes for CHMs.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Luan M, Zhao F, Sun G, Xu M, Fu A, Lan W, Luan S. A SPX domain vacuolar transporter links phosphate sensing to homeostasis in Arabidopsis. MOLECULAR PLANT 2022; 15:1590-1601. [PMID: 36097639 DOI: 10.1016/j.molp.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Excess phosphate (Pi) is stored into the vacuole through Pi transporters so that cytoplasmic Pi levels remain stable in plant cells. We hypothesized that the vacuolar Pi transporters may harbor a Pi-sensing mechanism so that they are activated to deliver Pi into the vacuole only when cytosolic Pi reaches a threshold high level. We tested this hypothesis using Vacuolar Phosphate Transporter 1 (VPT1), a SPX domain-containing vacuolar Pi transporter, as a model. Recent studies have defined SPX as a Pi-sensing module that binds inositol polyphosphate signaling molecules (InsPs) produced at high cellular Pi status. We showed here that Pi-deficient conditions or mutation of the SPX domain severely impaired the transport activity of VPT1. We further identified an auto-inhibitory domain in VPT1 that suppresses its transport activity. Taking together the results from detailed structure-function analyses, our study suggests that VPT1 is in the auto-inhibitory state when Pi status is low, whereas at high cellular Pi status InsPs are produced and bind SPX domain to switch on VPT1 activity to deliver Pi into the vacuole. This thus provides an auto-regulatory mechanism for VPT1-mediated Pi sensing and homeostasis in plant cells.
Collapse
Affiliation(s)
- Mingda Luan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Fugeng Zhao
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guangfang Sun
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Min Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Aigen Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wenzhi Lan
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Wan X, Zeng W, Zhang D, Wang L, Lei M, Chen T. Changes in the concentration, distribution, and speciation of arsenic in the hyperaccumulator Pteris vittata at different growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156708. [PMID: 35718183 DOI: 10.1016/j.scitotenv.2022.156708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The arsenic (As) hyperaccumulator has become a model plant for the study of the interaction between plants and trace elements. However, the change in As concentration, distribution and speciation of hyperaccumulator Pteris vittata at different growth stages, especially with the aging process remains unknown. We collected P. vittata at different growth ages and analyzed As concentration, distribution, and speciation. Furthermore, metabolic profiling was conducted for P. vittata at different growth stages. With aging, the reduced glutathione/ oxidized glutathione ratio decreased while the malondialdehyde content increased, accompanied by the change in the main As speciation in P. vittata from arsenite to arsenate. Metabolic profiling also indicated significant difference in the compositions of metabolites during different growth stages. Specifically, flavonoid compounds were found to be positively correlated with As concentration. Results indicated that with the aging of P. vittata, the redox potential increased in the pinnae, leading to the oxidation of As, which may have impacted the distribution of As in this fern. Furthermore, the correlation between As concentration and flavonoid compounds implied the essential role of flavonoid metabolism in the accumulation and transport of As in this plant.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Degang Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Honghe University, Mengzi 661199, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Yang X, Zhang K, Nvsvrot T, Zhang Y, Cai G, Huang L, Ren W, Ding Y, Hammond JP, Shi L, Wang N. Phosphate (Pi) stress-responsive transcription factors PdeWRKY6 and PdeWRKY65 regulate the expression of PdePHT1;9 to modulate tissue Pi concentration in poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1753-1767. [PMID: 35883193 DOI: 10.1111/tpj.15922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is an important nutrient for plants. Here, we identify a WRKY transcription factor (TF) in poplar (Populus deltoides × Populus euramericana) (PdeWRKY65) that modulates tissue phosphate (Pi) concentrations in poplar. PdeWRKY65 overexpression (OE) transgenic lines showed reduced shoot Pi concentrations under both low and normal Pi availabilities, while PdeWRKY65 reduced expression (RE) lines showed the opposite phenotype. A gene encoding a Pi transporter (PHT), PdePHT1;9, was identified as the direct downstream target of PdeWRKY65 by RNA sequencing (RNA-Seq). The negative regulation of PdePHT1;9 expression by PdeWRKY65 was confirmed by DNA-protein interaction assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), co-expression of the promoters of PdePHT1;9 and PdeWRKY65 in tobacco (Nicotiana benthamiana) leaves, and chromatin immunoprecipitation-quantitative PCR. A second WRKY TF, PdeWRKY6, was subsequently identified and confirmed to positively regulate the expression of PdePHT1;9 by DNA-protein interaction assays. PdePHT1;9 and PdeWRKY6 OE and RE poplar transgenic lines were used to confirm their positive regulation of shoot Pi concentrations, under both normal and low Pi availabilities. No interaction between PdeWRKY6 and PdeWRKY65 was observed at the DNA or protein levels. Collectively, these data suggest that the low Pi-responsive TFs PdeWRKY6 and PdeWRKY65 independently regulate the expression of PHT1;9 to modulate tissue Pi concentrations in poplar.
Collapse
Affiliation(s)
- Xiaoqing Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keai Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanghua Cai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyu Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Ren
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Ding
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Lei Shi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
44
|
Wang R, Chen Y, Kaur G, Wu X, Nguyen HT, Shen R, Pandey AK, Lan P. Differentially reset transcriptomes and genome bias response orchestrate wheat response to phosphate deficiency. PHYSIOLOGIA PLANTARUM 2022; 174:e13767. [PMID: 36281840 DOI: 10.1111/ppl.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all organisms. Phosphate (Pi) deficiency reduces grain yield and quality in wheat. Understanding how wheat responds to Pi deficiency at the global transcriptional level remains limited. We revisited the available RNA-seq transcriptome from Pi-starved wheat roots and shoots subjected to Pi starvation. Genome-wide transcriptome resetting was observed under Pi starvation, with a total of 917 and 2338 genes being differentially expressed in roots and shoots, respectively. Chromosomal distribution analysis of the gene triplets and differentially expressed genes (DEGs) revealed that the D genome displayed genome induction bias and, specifically, the chromosome 2D might be a key contributor to Pi-limiting triggered gene expression response. Alterations in multiple metabolic pathways pertaining to secondary metabolites, transcription factors and Pi uptake-related genes were evidenced. This study provides genomic insight and the dynamic landscape of the transcriptional changes contributing to the hexaploid wheat during Pi starvation. The outcomes of this study and the follow-up experiments have the potential to assist the development of Pi-efficient wheat cultivars.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinglong Chen
- UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Xiaoba Wu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Henry T Nguyen
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Ma B, Liu Y, Li X, Fang Z, Zhang L, He Z. A combined approach to evaluate total phosphorus/inorganic phosphate levels in plants. STAR Protoc 2022; 3:101456. [PMID: 35719721 PMCID: PMC9204740 DOI: 10.1016/j.xpro.2022.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Liu
- School of Life Science, Zhejiang University, Hangzhou, China
| | - Xiaoyuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zijun Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
46
|
Verma L, Bhadouria J, Bhunia RK, Singh S, Panchal P, Bhatia C, Eastmond PJ, Giri J. Monogalactosyl diacylglycerol synthase 3 affects phosphate utilization and acquisition in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5033-5051. [PMID: 35526193 DOI: 10.1093/jxb/erac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Galactolipids are essential to compensate for the loss of phospholipids by 'membrane lipid remodelling' in plants under phosphorus (P) deficiency conditions. Monogalactosyl diacylglycerol (MGDG) synthases catalyse the synthesis of MGDG which is further converted into digalactosyl diacylglycerol (DGDG), later replacing phospholipids in the extraplastidial membranes. However, the roles of these enzymes are not well explored in rice. In this study, the rice MGDG synthase 3 gene (OsMGD3) was identified and functionally characterized. We showed that the plant phosphate (Pi) status and the transcription factor PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) are involved in the transcriptional regulation of OsMGD3. CRISPR/Cas9 knockout and overexpression lines of OsMGD3 were generated to explore its potential role in rice adaptation to Pi deficiency. Compared with the wild type, OsMGD3 knockout lines displayed a reduced Pi acquisition and utilization while overexpression lines showed an enhancement of the same. Further, OsMGD3 showed a predominant role in roots, altering lateral root growth. Our comprehensive lipidomic analysis revealed a role of OsMGD3 in membrane lipid remodelling, in addition to a role in regulating diacylglycerol and phosphatidic acid contents that affected the expression of Pi transporters. Our study highlights the role of OsMGD3 in affecting both internal P utilization and P acquisition in rice.
Collapse
Affiliation(s)
- Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Shweta Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Chitra Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Peter J Eastmond
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
47
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
48
|
Alonso‐Nieves AL, Salazar‐Vidal MN, Torres‐Rodríguez JV, Pérez‐Vázquez LM, Massange‐Sánchez JA, Gillmor CS, Sawers RJH. The pho1;2a'-m1.1 allele of Phosphate1 conditions misregulation of the phosphorus starvation response in maize ( Zea mays ssp. mays L.). PLANT DIRECT 2022; 6:e416. [PMID: 35844781 PMCID: PMC9277030 DOI: 10.1002/pld3.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Plant PHO1 proteins play a central role in the translocation and sensing of inorganic phosphate. The maize (Zea mays ssp. mays) genome encodes two co-orthologs of the Arabidopsis PHO1 gene, designated ZmPho1;2a and ZmPho1;2b. Here, we report the characterization of the transposon footprint allele Zmpho1;2a'-m1.1, which we refer to hereafter as pho1;2a. The pho1;2a allele is a stable derivative formed by excision of an Activator transposable element from the ZmPho1;2a gene. The pho1;2a allele contains an 8-bp insertion at the point of transposon excision that disrupts the reading frame and is predicted to generate a premature translational stop. We show that the pho1;2a allele is linked to a dosage-dependent reduction in Pho1;2a transcript accumulation and a mild reduction in seedling growth. Characterization of shoot and root transcriptomes under full nutrient, low nitrogen, low phosphorus, and combined low nitrogen and low phosphorus conditions identified 1100 differentially expressed genes between wild-type plants and plants carrying the pho1;2a mutation. Of these 1100 genes, 966 were upregulated in plants carrying pho1;2a, indicating the wild-type PHO1;2a to predominantly impact negative gene regulation. Gene set enrichment analysis of the pho1;2a-misregulated genes revealed associations with phytohormone signaling and the phosphate starvation response. In roots, differential expression was broadly consistent across all nutrient conditions. In leaves, differential expression was largely specific to low phosphorus and combined low nitrogen and low phosphorus conditions. Of 276 genes upregulated in the leaves of pho1;2a mutants in the low phosphorus condition, 153 were themselves induced in wild-type plants with respect to the full nutrient condition. Our observations suggest that Pho1;2a functions in the fine-tuning of the transcriptional response to phosphate starvation through maintenance and/or sensing of plant phosphate status.
Collapse
Affiliation(s)
- Ana Laura Alonso‐Nieves
- Langebio, Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMexico
| | - M. Nancy Salazar‐Vidal
- Langebio, Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMexico
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Division of Plant SciencesUniversity of MissouriColumbiaMissouriUSA
| | - J. Vladimir Torres‐Rodríguez
- Langebio, Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMexico
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Leonardo M. Pérez‐Vázquez
- Langebio, Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMexico
| | - Julio A. Massange‐Sánchez
- Langebio, Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMexico
- Unidad de Biotecnología VegetalCentro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ) Subsede ZapopanGuadalajaraMexico
| | - C. Stewart Gillmor
- Langebio, Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMexico
| | - Ruairidh J. H. Sawers
- Langebio, Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMexico
- Department of Plant ScienceThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| |
Collapse
|
49
|
Zhao D, Zhang C, Li Q, Liu Q. Genetic control of grain appearance quality in rice. Biotechnol Adv 2022; 60:108014. [PMID: 35777622 DOI: 10.1016/j.biotechadv.2022.108014] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023]
Abstract
Grain appearance, one of the key determinants of rice quality, reflects the ability to attract consumers, and is characterized by four major properties: grain shape, chalkiness, transparency, and color. Mining of valuable genes, genetic mechanisms, and breeding cultivars with improved grain appearance are essential research areas in rice biology. However, grain appearance is a complex and comprehensive trait, making it challenging to understand the molecular details, and therefore, achieve precise improvement. This review highlights the current findings of grain appearance control, including a detailed description of the key genes involved in the formation of grain appearance, and the major environmental factors affecting chalkiness. We also discuss the integration of current knowledge on valuable genes to enable accurate breeding strategies for generation of rice grains with superior appearance quality.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
50
|
Han Y, Hong W, Xiong C, Lambers H, Sun Y, Xu Z, Schulze WX, Cheng L. Combining analyses of metabolite profiles and phosphorus fractions to explore high phosphorus utilization efficiency in maize. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4184-4203. [PMID: 35303743 DOI: 10.1093/jxb/erac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) limitation is a significant factor restricting crop production in agricultural systems, and enhancing the internal P utilization efficiency (PUE) of crops plays an important role in ensuring sustainable P use in agriculture. To better understand how P is remobilized to affect crop growth, we first screened P-efficient (B73 and GEMS50) and P-inefficient (Liao5114) maize genotypes at the same shoot P content, and then analyzed P pools and performed non-targeted metabolomic analyses to explore changes in cellular P fractions and metabolites in maize genotypes with contrasting PUE. We show that lipid P and nucleic acid P concentrations were significantly lower in lower leaves of P-efficient genotypes, and these P pools were remobilized to a major extent in P-efficient genotypes. Broad metabolic alterations were evident in leaves of P-efficient maize genotypes, particularly affecting products of phospholipid turnover and phosphorylated compounds, and the shikimate biosynthesis pathway. Taken together, our results suggest that P-efficient genotypes have a high capacity to remobilize lipid P and nucleic acid P and promote the shikimate pathway towards efficient P utilization in maize.
Collapse
Affiliation(s)
- Yang Han
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Wanting Hong
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Chuanyong Xiong
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Hans Lambers
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
- School of Biological Sciences and UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Yan Sun
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Zikai Xu
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Lingyun Cheng
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|