1
|
Devadhasan A, Kolodny O, Carja O. Competition for resources can reshape the evolutionary properties of spatial structure. PLoS Comput Biol 2024; 20:e1012542. [PMID: 39576832 PMCID: PMC11623808 DOI: 10.1371/journal.pcbi.1012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/06/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Many evolving ecosystems have spatial structures that can be conceptualized as networks, with nodes representing individuals or homogeneous subpopulations and links the patterns of spread between them. Prior models of evolution on networks do not take ecological niche differences and eco-evolutionary interplay into account. Here, we combine a resource competition model with evolutionary graph theory to study how heterogeneous topological structure shapes evolutionary dynamics under global frequency-dependent ecological interactions. We find that the addition of ecological competition for resources can produce a reversal of roles between amplifier and suppressor networks for deleterious mutants entering the population. We show that this effect is a nonlinear function of ecological niche overlap and discuss intuition for the observed dynamics using simulations and analytical approximations. We use these theoretical results together with spatial representations from imaging data to show that, for ductal carcinoma, where tumor growth is highly spatially constrained, with cells confined to a tree-like network of ducts, the topological structure can lead to higher rates of deleterious mutant hitchhiking with metabolic driver mutations, compared to tumors characterized by different spatial topologies.
Collapse
Affiliation(s)
- Anush Devadhasan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Oren Kolodny
- Department of Ecology, Evolution, and Behavior, E. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Walsh K. The emergence of clonal hematopoiesis as a disease determinant. J Clin Invest 2024; 134:e180063. [PMID: 39352387 PMCID: PMC11444153 DOI: 10.1172/jci180063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
|
3
|
Moeller M, Werner B, Huang W. Accumulating waves of random mutations before fixation. Phys Rev E 2024; 110:044404. [PMID: 39562875 DOI: 10.1103/physreve.110.044404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/16/2024] [Indexed: 11/21/2024]
Abstract
Mutations provide variation for evolution to emerge. A quantitative analysis of how mutations arising in single individuals expand and possibly fixate in a population is essential for studying evolutionary processes. While it is intuitive to expect that a continuous influx of mutations will lead to a continuous flow of mutations fixating in a stable constant population, joint fixation of multiple mutations occur frequently in stochastic simulations even under neutral selection. We quantitatively measure and analyze the distribution of joint fixation events of neutral mutations in constant populations and discussed the connection with previous results. We propose a new concept, the mutation "waves," where multiple mutations reach given frequencies simultaneously. We show that all but the lowest frequencies of the variant allele frequency distribution are dominated by single mutation "waves," which approximately follow an exponential distribution in terms of size. Consequently, large swaths of empty frequencies are observed in the variant allele frequency distributions, with a few frequencies having numbers of mutations far in excess of the expected average values over multiple realizations. We quantify the amount of time each frequency is empty of mutations and further show that the discrete mutation waves average out to a continuous distribution named as the wave frequency distribution, the shape of which is predictable based on few model parameters.
Collapse
|
4
|
Kapadia CD, Williams N, Dawson KJ, Watson C, Yousefzadeh MJ, Le D, Nyamondo K, Cagan A, Waldvogel S, De La Fuente J, Leongamornlert D, Mitchell E, Florez MA, Aguilar R, Martell A, Guzman A, Harrison D, Niedernhofer LJ, King KY, Campbell PJ, Blundell J, Goodell MA, Nangalia J. Clonal dynamics and somatic evolution of haematopoiesis in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613129. [PMID: 39345649 PMCID: PMC11429886 DOI: 10.1101/2024.09.17.613129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Haematopoietic stem cells maintain blood production throughout life. While extensively characterised using the laboratory mouse, little is known about how the population is sustained and evolves with age. We isolated stem cells and progenitors from young and old mice, identifying 221,890 somatic mutations genome-wide in 1845 single cell-derived colonies, and used phylogenetic analysis to infer the ontogeny and population dynamics of the stem cell pool. Mouse stem cells and progenitors accrue ~45 somatic mutations per year, a rate only about 2-fold greater than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic patterns reveal that stem and multipotent progenitor cell pools are both established during embryogenesis, after which they independently self-renew in parallel over life. The stem cell pool grows steadily over the mouse lifespan to approximately 70,000 cells, self-renewing about every six weeks. Aged mice did not display the profound loss of stem cell clonal diversity characteristic of human haematopoietic ageing. However, targeted sequencing revealed small, expanded clones in the context of murine ageing, which were larger and more numerous following haematological perturbations and exhibited a selection landscape similar to humans. Our data illustrate both conserved features of population dynamics of blood and distinct patterns of age-associated somatic evolution in the short-lived mouse.
Collapse
Affiliation(s)
- Chiraag D. Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Kevin J. Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Caroline Watson
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Columbia Center for Translational Immunology, Columbia Center for Human Longevity, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Duy Le
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Kudzai Nyamondo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Departments of Genetics, Pathology & Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Josephine De La Fuente
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Marcus A. Florez
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Rogelio Aguilar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Alejandra Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Anna Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Katherine Y. King
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | | | - Jamie Blundell
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret A. Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Uddin MM, Saadatagah S, Niroula A, Yu B, Hornsby WE, Ganesh S, Lannery K, Schuermans A, Honigberg MC, Bick AG, Libby P, Ebert BL, Ballantyne CM, Natarajan P. Long-term longitudinal analysis of 4,187 participants reveals insights into determinants of clonal hematopoiesis. Nat Commun 2024; 15:7858. [PMID: 39251642 PMCID: PMC11385577 DOI: 10.1038/s41467-024-52302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CHIP is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CHIP. Splicing factor genes (SF3B1, SRSF2, U2AF1, and ZRSR2) and TET2 CHIP grow significantly faster than DNMT3A non-R882 clones. We find that age at baseline and sex significantly influence the incidence of CHIP, while ASCVD and other traditional ASCVD risk factors do not exhibit such associations. Additionally, baseline synonymous passenger mutations are strongly associated with CHIP status and are predictive of new CHIP clone acquisition and clonal growth over extended follow-up, providing valuable insights into clonal dynamics of aging hematopoietic stem and progenitor cells. This study also reveals associations between germline genetic variants and incident CHIP. Our comprehensive longitudinal assessment yields insights into cell-intrinsic and -extrinsic factors contributing to the development and progression of CHIP clones in older adults.
Collapse
Affiliation(s)
- Md Mesbah Uddin
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Whitney E Hornsby
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shriienidhie Ganesh
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Lannery
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Art Schuermans
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Michael C Honigberg
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Pradeep Natarajan
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Whiting FJH, Househam J, Baker AM, Sottoriva A, Graham TA. Phenotypic noise and plasticity in cancer evolution. Trends Cell Biol 2024; 34:451-464. [PMID: 37968225 DOI: 10.1016/j.tcb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Non-genetic alterations can produce changes in a cell's phenotype. In cancer, these phenomena can influence a cell's fitness by conferring access to heritable, beneficial phenotypes. Herein, we argue that current discussions of 'phenotypic plasticity' in cancer evolution ignore a salient feature of the original definition: namely, that it occurs in response to an environmental change. We suggest 'phenotypic noise' be used to distinguish non-genetic changes in phenotype that occur independently from the environment. We discuss the conceptual and methodological techniques used to identify these phenomena during cancer evolution. We propose that the distinction will guide efforts to define mechanisms of phenotype change, accelerate translational work to manipulate phenotypes through treatment, and, ultimately, improve patient outcomes.
Collapse
Affiliation(s)
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| |
Collapse
|
7
|
Bernstein N, Spencer Chapman M, Nyamondo K, Chen Z, Williams N, Mitchell E, Campbell PJ, Cohen RL, Nangalia J. Analysis of somatic mutations in whole blood from 200,618 individuals identifies pervasive positive selection and novel drivers of clonal hematopoiesis. Nat Genet 2024; 56:1147-1155. [PMID: 38744975 PMCID: PMC11176083 DOI: 10.1038/s41588-024-01755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Human aging is marked by the emergence of a tapestry of clonal expansions in dividing tissues, particularly evident in blood as clonal hematopoiesis (CH). CH, linked to cancer risk and aging-related phenotypes, often stems from somatic mutations in a set of established genes. However, the majority of clones lack known drivers. Here we infer gene-level positive selection in whole blood exomes from 200,618 individuals in UK Biobank. We identify 17 additional genes, ZBTB33, ZNF318, ZNF234, SPRED2, SH2B3, SRCAP, SIK3, SRSF1, CHEK2, CCDC115, CCL22, BAX, YLPM1, MYD88, MTA2, MAGEC3 and IGLL5, under positive selection at a population level, and validate this selection pattern in 10,837 whole genomes from single-cell-derived hematopoietic colonies. Clones with mutations in these genes grow in frequency and size with age, comparable to classical CH drivers. They correlate with heightened risk of infection, death and hematological malignancy, highlighting the significance of these additional genes in the aging process.
Collapse
Affiliation(s)
| | - Michael Spencer Chapman
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Kudzai Nyamondo
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | | | | | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Schiroli G, Kartha V, Duarte FM, Kristiansen TA, Mayerhofer C, Shrestha R, Earl A, Hu Y, Tay T, Rhee C, Buenrostro JD, Scadden DT. Cell of origin epigenetic priming determines susceptibility to Tet2 mutation. Nat Commun 2024; 15:4325. [PMID: 38773071 PMCID: PMC11109152 DOI: 10.1038/s41467-024-48508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.
Collapse
Affiliation(s)
- Giulia Schiroli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Vinay Kartha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Trine A Kristiansen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Christina Mayerhofer
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Rojesh Shrestha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yan Hu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine Rhee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
9
|
Janssen H, Koekkoek LL, Swirski FK. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:157-169. [PMID: 37752350 DOI: 10.1038/s41569-023-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Exercise, stress, sleep and diet are four distinct but intertwined lifestyle factors that influence the cardiovascular system. Abundant epidemiological, clinical and preclinical studies have underscored the importance of managing stress, having good sleep hygiene and responsible eating habits and exercising regularly. We are born with a genetic blueprint that can protect us against or predispose us to a particular disease. However, lifestyle factors build upon and profoundly influence those predispositions. Studies in the past 10 years have shown that the immune system in general and leukocytes in particular are particularly susceptible to environmental perturbations. Lifestyle factors such as stress, sleep, diet and exercise affect leukocyte behaviour and function and thus the immune system at large. In this Review, we explore the various mechanisms by which lifestyle factors modulate haematopoiesis and leukocyte migration and function in the context of cardiovascular health. We pay particular attention to the role of the nervous system as the key executor that connects environmental influences to leukocyte behaviour.
Collapse
Affiliation(s)
- Henrike Janssen
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura L Koekkoek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Guo J, Walter K, Quiros PM, Gu M, Baxter EJ, Danesh J, Di Angelantonio E, Roberts D, Guglielmelli P, Harrison CN, Godfrey AL, Green AR, Vassiliou GS, Vuckovic D, Nangalia J, Soranzo N. Inherited polygenic effects on common hematological traits influence clonal selection on JAK2 V617F and the development of myeloproliferative neoplasms. Nat Genet 2024; 56:273-280. [PMID: 38233595 PMCID: PMC10864174 DOI: 10.1038/s41588-023-01638-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
Myeloproliferative neoplasms (MPNs) are chronic cancers characterized by overproduction of mature blood cells. Their causative somatic mutations, for example, JAK2V617F, are common in the population, yet only a minority of carriers develop MPN. Here we show that the inherited polygenic loci that underlie common hematological traits influence JAK2V617F clonal expansion. We identify polygenic risk scores (PGSs) for monocyte count and plateletcrit as new risk factors for JAK2V617F positivity. PGSs for several hematological traits influenced the risk of different MPN subtypes, with low PGSs for two platelet traits also showing protective effects in JAK2V617F carriers, making them two to three times less likely to have essential thrombocythemia than carriers with high PGSs. We observed that extreme hematological PGSs may contribute to an MPN diagnosis in the absence of somatic driver mutations. Our study showcases how polygenic backgrounds underlying common hematological traits influence both clonal selection on somatic mutations and the subsequent phenotype of cancer.
Collapse
Affiliation(s)
- Jing Guo
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | | | - Pedro M Quiros
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Muxin Gu
- Wellcome Sanger Institute, Hinxton, UK
| | - E Joanna Baxter
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - John Danesh
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Fondazione Human Technopole, Milan, Italy
| | - David Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant-Oxford Centre, John Radcliffe Hospital and Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center for Research and Innovation of Myeloproliferative Neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Dragana Vuckovic
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Trust, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Nicole Soranzo
- Wellcome Sanger Institute, Hinxton, UK.
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- Fondazione Human Technopole, Milan, Italy.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Moeller ME, Mon Père NV, Werner B, Huang W. Measures of genetic diversification in somatic tissues at bulk and single-cell resolution. eLife 2024; 12:RP89780. [PMID: 38265286 PMCID: PMC10945735 DOI: 10.7554/elife.89780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Intra-tissue genetic heterogeneity is universal to both healthy and cancerous tissues. It emerges from the stochastic accumulation of somatic mutations throughout development and homeostasis. By combining population genetics theory and genomic information, genetic heterogeneity can be exploited to infer tissue organization and dynamics in vivo. However, many basic quantities, for example the dynamics of tissue-specific stem cells remain difficult to quantify precisely. Here, we show that single-cell and bulk sequencing data inform on different aspects of the underlying stochastic processes. Bulk-derived variant allele frequency spectra (VAF) show transitions from growing to constant stem cell populations with age in samples of healthy esophagus epithelium. Single-cell mutational burden distributions allow a sample size independent measure of mutation and proliferation rates. Mutation rates in adult hematopietic stem cells are higher compared to inferences during development, suggesting additional proliferation-independent effects. Furthermore, single-cell derived VAF spectra contain information on the number of tissue-specific stem cells. In hematopiesis, we find approximately 2 × 105 HSCs, if all stem cells divide symmetrically. However, the single-cell mutational burden distribution is over-dispersed compared to a model of Poisson distributed random mutations. A time-associated model of mutation accumulation with a constant rate alone cannot generate such a pattern. At least one additional source of stochasticity would be needed. Possible candidates for these processes may be occasional bursts of stem cell divisions, potentially in response to injury, or non-constant mutation rates either through environmental exposures or cell-intrinsic variation.
Collapse
Affiliation(s)
- Marius E Moeller
- Department of Mathematics, Queen Mary University of LondonLondonUnited Kingdom
| | - Nathaniel V Mon Père
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Centre, Queen Mary University of LondonLondonUnited Kingdom
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de BruxellesIxellesBelgium
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Centre, Queen Mary University of LondonLondonUnited Kingdom
| | - Weini Huang
- Department of Mathematics, Queen Mary University of LondonLondonUnited Kingdom
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
12
|
Karakostis K, Malbert-Colas L, Thermou A, Vojtesek B, Fåhraeus R. The DNA damage sensor ATM kinase interacts with the p53 mRNA and guides the DNA damage response pathway. Mol Cancer 2024; 23:21. [PMID: 38263180 PMCID: PMC10804554 DOI: 10.1186/s12943-024-01933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The ATM kinase constitutes a master regulatory hub of DNA damage and activates the p53 response pathway by phosphorylating the MDM2 protein, which develops an affinity for the p53 mRNA secondary structure. Disruption of this interaction prevents the activation of the nascent p53. The link of the MDM2 protein-p53 mRNA interaction with the upstream DNA damage sensor ATM kinase and the role of the p53 mRNA in the DNA damage sensing mechanism, are still highly anticipated. METHODS The proximity ligation assay (PLA) has been extensively used to reveal the sub-cellular localisation of the protein-mRNA and protein-protein interactions. ELISA and co-immunoprecipitation confirmed the interactions in vitro and in cells. RESULTS This study provides a novel mechanism whereby the p53 mRNA interacts with the ATM kinase enzyme and shows that the L22L synonymous mutant, known to alter the secondary structure of the p53 mRNA, prevents the interaction. The relevant mechanistic roles in the DNA Damage Sensing pathway, which is linked to downstream DNA damage response, are explored. Following DNA damage (double-stranded DNA breaks activating ATM), activated MDMX protein competes the ATM-p53 mRNA interaction and prevents the association of the p53 mRNA with NBS1 (MRN complex). These data also reveal the binding domains and the phosphorylation events on ATM that regulate the interaction and the trafficking of the complex to the cytoplasm. CONCLUSION The presented model shows a novel interaction of ATM with the p53 mRNA and describes the link between DNA Damage Sensing with the downstream p53 activation pathways; supporting the rising functional implications of synonymous mutations altering secondary mRNA structures.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire, Paris Cité Université, Hôpital St. Louis, Paris, France.
- Institut de Biotecnologia I de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
| | - Laurence Malbert-Colas
- Inserm UMRS1131, Institut de Génétique Moléculaire, Paris Cité Université, Hôpital St. Louis, Paris, France
| | - Aikaterini Thermou
- Inserm UMRS1131, Institut de Génétique Moléculaire, Paris Cité Université, Hôpital St. Louis, Paris, France
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Robin Fåhraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Paris Cité Université, Hôpital St. Louis, Paris, France.
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Medical Biosciences, Umeå University, Umeå, 90185, Sweden.
| |
Collapse
|
13
|
Spencer Chapman M, Cull AH, Ciuculescu MF, Esrick EB, Mitchell E, Jung H, O'Neill L, Roberts K, Fabre MA, Williams N, Nangalia J, Quinton J, Fox JM, Pellin D, Makani J, Armant M, Williams DA, Campbell PJ, Kent DG. Clonal selection of hematopoietic stem cells after gene therapy for sickle cell disease. Nat Med 2023; 29:3175-3183. [PMID: 37973947 PMCID: PMC10719109 DOI: 10.1038/s41591-023-02636-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Gene therapy (GT) provides a potentially curative treatment option for patients with sickle cell disease (SCD); however, the occurrence of myeloid malignancies in GT clinical trials has prompted concern, with several postulated mechanisms. Here, we used whole-genome sequencing to track hematopoietic stem cells (HSCs) from six patients with SCD at pre- and post-GT time points to map the somatic mutation and clonal landscape of gene-modified and unmodified HSCs. Pre-GT, phylogenetic trees were highly polyclonal and mutation burdens per cell were elevated in some, but not all, patients. Post-GT, no clonal expansions were identified among gene-modified or unmodified cells; however, an increased frequency of potential driver mutations associated with myeloid neoplasms or clonal hematopoiesis (DNMT3A- and EZH2-mutated clones in particular) was observed in both genetically modified and unmodified cells, suggesting positive selection of mutant clones during GT. This work sheds light on HSC clonal dynamics and the mutational landscape after GT in SCD, highlighting the enhanced fitness of some HSCs harboring pre-existing driver mutations. Future studies should define the long-term fate of mutant clones, including any contribution to expansions associated with myeloid neoplasms.
Collapse
Affiliation(s)
- Michael Spencer Chapman
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alyssa H Cull
- York Biomedical Research Institute, University of York, York, UK
| | | | - Erica B Esrick
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | | | | | | | - Margarete A Fabre
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Joanne Quinton
- York Biomedical Research Institute, University of York, York, UK
| | - James M Fox
- York Biomedical Research Institute, University of York, York, UK
| | - Danilo Pellin
- Harvard Medical School, Boston, MA, USA
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Julie Makani
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar-es-Salaam, Tanzania
- SickleInAfrica Clinical Coordinating Center, MUHAS, Dar-es-Salaam, Tanzania
- Imperial College London, London, UK
| | - Myriam Armant
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| | - David G Kent
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
14
|
Watson CJ, Blundell JR. Mutation rates and fitness consequences of mosaic chromosomal alterations in blood. Nat Genet 2023; 55:1677-1685. [PMID: 37697102 PMCID: PMC10562253 DOI: 10.1038/s41588-023-01490-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
Mosaic chromosomal alterations (mCAs) are common in cancers and can arise decades before diagnosis. A quantitative understanding of the rate at which these events occur, and their functional consequences, could improve cancer risk prediction and our understanding of somatic evolution. Using mCA clone size estimates from the blood of approximately 500,000 UK Biobank participants, we estimate mutation rates and fitness consequences of acquired gain, loss and copy-neutral loss of heterozygosity events. Most mCAs have moderate to high fitness effects but occur at a low rate, being more than tenfold less common than equivalently fit single-nucleotide variants. Notable exceptions are mosaic loss of X and Y, which we estimate have roughly 1,000-fold higher mutation rates than autosomal mCAs. Although the way in which most mCAs increase in prevalence with age is consistent with constant growth rates, some mCAs exhibit different behavior, suggesting that their fitness may depend on inherited variants, extrinsic factors or distributions of fitness effects.
Collapse
Affiliation(s)
- Caroline J Watson
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, Cambridgeshire, UK.
| | - Jamie R Blundell
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
15
|
Quantifying fitness effects and mutation rates of mCAs in blood. Nat Genet 2023; 55:1617-1618. [PMID: 37697103 DOI: 10.1038/s41588-023-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
|
16
|
Borgsmüller N, Valecha M, Kuipers J, Beerenwinkel N, Posada D. Single-cell phylogenies reveal changes in the evolutionary rate within cancer and healthy tissues. CELL GENOMICS 2023; 3:100380. [PMID: 37719146 PMCID: PMC10504633 DOI: 10.1016/j.xgen.2023.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023]
Abstract
Cell lineages accumulate somatic mutations during organismal development, potentially leading to pathological states. The rate of somatic evolution within a cell population can vary due to multiple factors, including selection, a change in the mutation rate, or differences in the microenvironment. Here, we developed a statistical test called the Poisson Tree (PT) test to detect varying evolutionary rates among cell lineages, leveraging the phylogenetic signal of single-cell DNA sequencing (scDNA-seq) data. We applied the PT test to 24 healthy and cancer samples, rejecting a constant evolutionary rate in 11 out of 15 cancer and five out of nine healthy scDNA-seq datasets. In six cancer datasets, we identified subclonal mutations in known driver genes that could explain the rate accelerations of particular cancer lineages. Our findings demonstrate the efficacy of scDNA-seq for studying somatic evolution and suggest that cell lineages often evolve at different rates within cancer and healthy tissues.
Collapse
Affiliation(s)
- Nico Borgsmüller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
17
|
Wakeley J, Fan WT(L, Koch E, Sunyaev S. Recurrent mutation in the ancestry of a rare variant. Genetics 2023; 224:iyad049. [PMID: 36967220 PMCID: PMC10324944 DOI: 10.1093/genetics/iyad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023] Open
Abstract
Recurrent mutation produces multiple copies of the same allele which may be co-segregating in a population. Yet, most analyses of allele-frequency or site-frequency spectra assume that all observed copies of an allele trace back to a single mutation. We develop a sampling theory for the number of latent mutations in the ancestry of a rare variant, specifically a variant observed in relatively small count in a large sample. Our results follow from the statistical independence of low-count mutations, which we show to hold for the standard neutral coalescent or diffusion model of population genetics as well as for more general coalescent trees. For populations of constant size, these counts are distributed like the number of alleles in the Ewens sampling formula. We develop a Poisson sampling model for populations of varying size and illustrate it using new results for site-frequency spectra in an exponentially growing population. We apply our model to a large data set of human SNPs and use it to explain dramatic differences in site-frequency spectra across the range of mutation rates in the human genome.
Collapse
Affiliation(s)
- John Wakeley
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wai-Tong (Louis) Fan
- Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
| | - Evan Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Polizio AH, Park E, Walsh K. Clonal Hematopoiesis: Connecting Aging and Inflammation in Atherosclerosis. Curr Atheroscler Rep 2023; 25:105-111. [PMID: 36808603 PMCID: PMC10552081 DOI: 10.1007/s11883-023-01083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/20/2023]
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis (CH) is a prevalent condition that results from the acquisition of somatic mutations in hematopoietic stem cells. When these mutations occur in "driver" genes, they can potentially confer fitness advantages to the cell, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers display long-term risks of all-cause mortality and age-associated diseases including cardiovascular disease (CVD). This review summarizes recent findings in CH related to aging, atherosclerotic CVD, and inflammation, emphasizing epidemiological and mechanistic studies, and potential therapeutic options to treat CVDs that are promoted by CH. RECENT FINDINGS Epidemiological studies have revealed associations between CH and CVDs. Experimental studies with CH models employing the Tet2- and Jak2-mutant mouse lines display inflammasome activation and a chronic inflammatory state that leads to accelerated atherosclerotic lesion growth. A body of evidence suggests that CH represents a new causal risk factor for CVD. Studies also indicate that understanding an individual's CH status could provide guidance for personalized approaches to treat atherosclerosis and other CVDs with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ariel H Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eunbee Park
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
19
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
20
|
Marshall CH, Gondek LP, Luo J, Antonarakis ES. Clonal Hematopoiesis of Indeterminate Potential in Patients with Solid Tumor Malignancies. Cancer Res 2022; 82:4107-4113. [PMID: 36040522 PMCID: PMC9669303 DOI: 10.1158/0008-5472.can-22-0985] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to the expansion of cells of hematopoietic lineage that carry acquired somatic alterations associated with hematologic malignancies. The most commonly altered genes giving rise to CHIP are DNMT3A, TET2, and ASXL1. However, advanced sequencing technologies have resulted in highly sensitive detection of clonal hematopoiesis beyond these known driver genes. In practice, CHIP is commonly identified as an incidental finding in liquid and tissue biopsies of patients with solid tumors. CHIP can have broad clinical consequences, given its association with hematologic malignancies and nonmalignant diseases. CHIP can also interfere with next-generation DNA sequencing results, so clinicians should pay careful attention when these results are being used to guide therapy. Future research is needed to determine how solid tumor malignancies and their treatments alter the progression of CHIP, and in turn, how CHIP might be used to improve treatment selection and outcomes for patients with solid tumors.
Collapse
Affiliation(s)
- Catherine H. Marshall
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lukasz P. Gondek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jun Luo
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
21
|
McAlpine CS, Kiss MG, Zuraikat FM, Cheek D, Schiroli G, Amatullah H, Huynh P, Bhatti MZ, Wong LP, Yates AG, Poller WC, Mindur JE, Chan CT, Janssen H, Downey J, Singh S, Sadreyev RI, Nahrendorf M, Jeffrey KL, Scadden DT, Naxerova K, St-Onge MP, Swirski FK. Sleep exerts lasting effects on hematopoietic stem cell function and diversity. J Exp Med 2022; 219:213487. [PMID: 36129517 PMCID: PMC9499822 DOI: 10.1084/jem.20220081] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
A sleepless night may feel awful in its aftermath, but sleep's revitalizing powers are substantial, perpetuating the idea that convalescent sleep is a consequence-free physiological reset. Although recent studies have shown that catch-up sleep insufficiently neutralizes the negative effects of sleep debt, the mechanisms that control prolonged effects of sleep disruption are not understood. Here, we show that sleep interruption restructures the epigenome of hematopoietic stem and progenitor cells (HSPCs) and increases their proliferation, thus reducing hematopoietic clonal diversity through accelerated genetic drift. Sleep fragmentation exerts a lasting influence on the HSPC epigenome, skewing commitment toward a myeloid fate and priming cells for exaggerated inflammatory bursts. Combining hematopoietic clonal tracking with mathematical modeling, we infer that sleep preserves clonal diversity by limiting neutral drift. In humans, sleep restriction alters the HSPC epigenome and activates hematopoiesis. These findings show that sleep slows decay of the hematopoietic system by calibrating the hematopoietic epigenome, constraining inflammatory output, and maintaining clonal diversity.
Collapse
Affiliation(s)
- Cameron S. McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Cameron S. McAlpine:
| | - Máté G. Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Faris M. Zuraikat
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - David Cheek
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Giulia Schiroli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Hajera Amatullah
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mehreen Z. Bhatti
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Lai-Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA
| | - Abi G. Yates
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wolfram C. Poller
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - John E. Mindur
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Christopher T. Chan
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Henrike Janssen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jeffrey Downey
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sumnima Singh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Matthias Nahrendorf
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Kate L. Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David T. Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Kamila Naxerova
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Marie-Pierre St-Onge
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Marie-Pierre St-Onge:
| | - Filip K. Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Correspondence to Filip K. Swirski:
| |
Collapse
|
22
|
Sherman MA, Yaari AU, Priebe O, Dietlein F, Loh PR, Berger B. Genome-wide mapping of somatic mutation rates uncovers drivers of cancer. Nat Biotechnol 2022; 40:1634-1643. [PMID: 35726091 PMCID: PMC9646522 DOI: 10.1038/s41587-022-01353-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/10/2022] [Indexed: 01/12/2023]
Abstract
Identification of cancer driver mutations that confer a proliferative advantage is central to understanding cancer; however, searches have often been limited to protein-coding sequences and specific non-coding elements (for example, promoters) because of the challenge of modeling the highly variable somatic mutation rates observed across tumor genomes. Here we present Dig, a method to search for driver elements and mutations anywhere in the genome. We use deep neural networks to map cancer-specific mutation rates genome-wide at kilobase-scale resolution. These estimates are then refined to search for evidence of driver mutations under positive selection throughout the genome by comparing observed to expected mutation counts. We mapped mutation rates for 37 cancer types and applied these maps to identify putative drivers within intronic cryptic splice regions, 5' untranslated regions and infrequently mutated genes. Our high-resolution mutation rate maps, available for web-based exploration, are a resource to enable driver discovery genome-wide.
Collapse
Affiliation(s)
- Maxwell A Sherman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam U Yaari
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Center for Brains, Minds and Machines of MIT and Harvard, Cambridge, MA, USA
| | - Oliver Priebe
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Dietlein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
23
|
Somatic variation in normal tissues: friend or foe of cancer early detection? Ann Oncol 2022; 33:1239-1249. [PMID: 36162751 DOI: 10.1016/j.annonc.2022.09.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Seemingly normal tissues progressively become populated by mutant clones over time. Most of these clones bear mutations in well-known cancer genes but only rarely do they transform into cancer. This poses questions on what triggers cancer initiation and what implications somatic variation has for cancer early detection. DESIGN We analysed recent mutational screens of healthy and cancer-free diseased tissues to compare somatic drivers and the causes of somatic variation across tissues. We then reviewed the mechanisms of clonal expansion and their relationships with age and diseases other than cancer. We finally discussed the relevance of somatic variation for cancer initiation and how it can help or hinder cancer detection and prevention. RESULTS The extent of somatic variation is highly variable across tissues and depends on intrinsic features, such as tissue architecture and turnover, as well as the exposure to endogenous and exogenous insults. Most somatic mutations driving clonal expansion are tissue-specific and inactivate tumor suppressor genes involved in chromatin modification and cell growth signaling. Some of these genes are more frequently mutated in normal tissues than cancer, indicating a context-dependent cancer promoting or protective role. Mutant clones can persist over a long time or disappear rapidly, suggesting that their fitness depends on the dynamic equilibrium with the environment. The disruption of this equilibrium is likely responsible for their transformation into malignant clones and knowing what triggers this process is key for cancer prevention and early detection. Somatic variation should be considered in liquid biopsy, where it may contribute cancer-independent mutations, and in the identification of cancer drivers, since not all mutated genes favoring clonal expansion also drive tumorigenesis. CONCLUSIONS Somatic variation and the factors governing homeostasis of normal tissues should be taken into account when devising strategies for cancer prevention and early detection.
Collapse
|
24
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
25
|
Gabbutt C, Wright NA, Baker A, Shibata D, Graham TA. Lineage tracing in human tissues. J Pathol 2022; 257:501-512. [PMID: 35415852 PMCID: PMC9253082 DOI: 10.1002/path.5911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 11/11/2022]
Abstract
The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Calum Gabbutt
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
- London Interdisciplinary Doctoral Training Programme (LIDo)LondonUK
| | - Nicholas A Wright
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ann‐Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| | - Darryl Shibata
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Trevor A Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| |
Collapse
|
26
|
Mitchell E, Spencer Chapman M, Williams N, Dawson KJ, Mende N, Calderbank EF, Jung H, Mitchell T, Coorens THH, Spencer DH, Machado H, Lee-Six H, Davies M, Hayler D, Fabre MA, Mahbubani K, Abascal F, Cagan A, Vassiliou GS, Baxter J, Martincorena I, Stratton MR, Kent DG, Chatterjee K, Parsy KS, Green AR, Nangalia J, Laurenti E, Campbell PJ. Clonal dynamics of haematopoiesis across the human lifespan. Nature 2022; 606:343-350. [PMID: 35650442 PMCID: PMC9177428 DOI: 10.1038/s41586-022-04786-y] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.
Collapse
Affiliation(s)
- Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | | | - Nicole Mende
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Emily F Calderbank
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | | | - David H Spencer
- Department of Medicine, McDonnell Genome Institute, Washington University, St Louis, MO, USA
| | | | | | - Megan Davies
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, UK
| | - Daniel Hayler
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Margarete A Fabre
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | | | - George S Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Krishna Chatterjee
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Elisa Laurenti
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
27
|
Yang J, Gupta E, Horton JR, Blumenthal RM, Zhang X, Cheng X. Differential ETS1 binding to T:G mismatches within a CpG dinucleotide contributes to C-to-T somatic mutation rate of the IDH2 hotspot at codon Arg140. DNA Repair (Amst) 2022; 113:103306. [PMID: 35255310 PMCID: PMC9411267 DOI: 10.1016/j.dnarep.2022.103306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
Cytosine to thymine (C>T) somatic mutation is highly enriched in certain types of cancer, and most commonly occurs via deamination of a 5-methylcytosine (5mC) to thymine, in the context of a CpG dinucleotide. In theory, deamination should occur at equal rates to both 5mC nucleotides on opposite strands. In most cases, the resulting T:G or G:T mismatch can be repaired by thymine DNA glycosylase activities. However, while some hotspot-associated CpG mutations have approximately equal numbers of mutations that resulted either from C>T or G>A in a CpG dinucleotide, many showed strand bias, being skewed toward C>T of the first base pair or G>A of the second base pair. Using the IDH2 Arg140 codon as a case study, we show that the two possible T:G mismatches at the codon-specific CpG site have differing effects on transcription factor ETS1 binding affinity, differentially affecting access of a repair enzyme (MBD4) to the deamination-caused T:G mismatch. Our study thus provides a plausible mechanism for exclusion of repair enzymes by the differential binding of transcription factors affecting the rate at which the antecedent opposite-strand mutations occur.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Esha Gupta
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Cheek DM, Naxerova K. Mapping the long road to cancer. Cell 2022; 185:939-940. [PMID: 35263624 DOI: 10.1016/j.cell.2022.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Every cell in our body accumulates mutations throughout life, and sometimes an unfortunate combination of mutations drives the initiation of cancer. A new study infers extraordinarily detailed timelines of pre-cancerous evolution by sequencing single-cell genomes in patients with blood malignancies-finding that key mutations can arrive decades before diagnosis.
Collapse
Affiliation(s)
- David M Cheek
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Estimating selection in healthy tissues. Nat Methods 2022; 19:33. [PMID: 35017738 DOI: 10.1038/s41592-021-01383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Stein A, Metzeler K, Kubasch AS, Rommel KP, Desch S, Buettner P, Rosolowski M, Cross M, Platzbecker U, Thiele H. Clonal hematopoiesis and cardiovascular disease: deciphering interconnections. Basic Res Cardiol 2022; 117:55. [PMID: 36355225 PMCID: PMC9649510 DOI: 10.1007/s00395-022-00969-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Cardiovascular and oncological diseases represent the global major causes of death. For both, a novel and far-reaching risk factor has been identified: clonal hematopoiesis (CH). CH is defined as clonal expansion of peripheral blood cells on the basis of somatic mutations, without overt hematological malignancy. The most commonly affected genes are TET2, DNMT3A, ASXL1 and JAK2. By the age of 70, at least 20-50% of all individuals carry a CH clone, conveying a striking clinical impact by increasing all-cause mortality by 40%. This is due predominantly to a nearly two-fold increase of cardiovascular risk, but also to an elevated risk of malignant transformation. Individuals with CH show not only increased risk for, but also worse outcomes after arteriosclerotic events, such as stroke or myocardial infarction, decompensated heart failure and cardiogenic shock. Elevated cytokine levels, dysfunctional macrophage activity and activation of the inflammasome suggest that a vicious cycle of chronic inflammation and clonal expansion represents the major functional link. Despite the apparently high impact of this entity, awareness, functional understanding and especially clinical implications still require further research. This review provides an overview of the current knowledge of CH and its relation to cardiovascular and hematological diseases. It focuses on the basic functional mechanisms in the interplay between atherosclerosis, inflammation and CH, identifies issues for further research and considers potential clinical implications.
Collapse
Affiliation(s)
- Anna Stein
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Klaus Metzeler
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Anne Sophie Kubasch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Karl-Philipp Rommel
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig and Leipzig Heart Institute, Strümpellstr. 39, 04289 Leipzig, Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig and Leipzig Heart Institute, Strümpellstr. 39, 04289 Leipzig, Germany
| | - Petra Buettner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig and Leipzig Heart Institute, Strümpellstr. 39, 04289 Leipzig, Germany
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Michael Cross
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig and Leipzig Heart Institute, Strümpellstr. 39, 04289 Leipzig, Germany
| |
Collapse
|
31
|
|