1
|
Cermakova K, Hodges HC. Pharmacologic Blockade of a Pioneer Transcription Factor. Cancer Res 2024; 84:4124-4125. [PMID: 39476188 DOI: 10.1158/0008-5472.can-24-3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cancers frequently co-opt lineage-specific transcription factors (TF) utilized in normal development to sustain proliferation. However, the effects of these TFs on tumor development depend considerably on where in the genome they bind. A new article by Taylor and colleagues expands on previously developed diamidine compounds that obstruct the DNA binding sites of the pioneer TF PU.1 (SPI1) in acute myeloid leukemia. Immobilization and sequencing of genomic DNA targeted by these compounds revealed that these inhibitors alter the genomic binding patterns of PU.1. The authors report that their strategy constrains the genomic binding preferences of PU.1, leading to redistribution of PU.1 to promoters and other gene-proximal regions with elevated guanine/cytosine content. In this study, we discuss recent developments for targeting PU.1 in hematologic malignancies. We also explore the shared functional roles of PU.1 and SWI/SNF ATP-dependent chromatin remodeling complexes, which not only work together to sustain the enhancer landscape needed for tumor cell proliferation but also play key roles in nontumor settings.
Collapse
Affiliation(s)
- Katerina Cermakova
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas
- Center for Precision Environmental Health and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - H Courtney Hodges
- Center for Precision Environmental Health and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
| |
Collapse
|
2
|
Perkins B, Novis C, Baessler A, Sircy LM, Thomas MM, Harrison-Chau M, Richens AW, Fuchs B, Nguyen NX, Flint K, Varley KE, Hale JS. Dnmt3a-mediated de novo methylation balances memory Th1 and Tfh cell plasticity and functionality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.623450. [PMID: 39677644 PMCID: PMC11642886 DOI: 10.1101/2024.12.03.623450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Following acute viral infection, naïve CD4+ T cells differentiate into T follicular helper (Tfh) and T helper 1 (Th1) cells that generate long-lived memory cells. However, it is unclear how memory Tfh and Th1 cells maintain their lineage commitment. Here we demonstrate that Tfh and Th1 lineages acquire distinct de novo DNA methylation programs that are preserved into memory. Using whole genome methylation analyses and deletion of DNA methyltransferase 3a, we found that de novo DNA methylation is required for generating epigenetic programing to enforce lineage commitment and preserve lineage-specific functions during a recall response to infection. Importantly, partial inhibition of de novo methylation using the methyltransferase inhibitor decitabine during priming enhances Tfh cell functionality in primary and secondary responses to viral infection. Together, these findings demonstrate that de novo DNA methylation is critical to balance lineage commitment and functionality of memory CD4+ T cell subsets and reveal novel potential strategies to modulate immune responses to infectious diseases.
Collapse
Affiliation(s)
- Bryant Perkins
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Camille Novis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Andrew Baessler
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Linda M Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Monyca M Thomas
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Malia Harrison-Chau
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Andrew W Richens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Bryce Fuchs
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Nguyen X. Nguyen
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Kaitlyn Flint
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - J. Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
3
|
Garnica J, Sole P, Yamanouchi J, Moro J, Mondal D, Fandos C, Serra P, Santamaria P. T-follicular helper cells are epigenetically poised to transdifferentiate into T-regulatory type 1 cells. eLife 2024; 13:RP97665. [PMID: 39576679 PMCID: PMC11584177 DOI: 10.7554/elife.97665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.
Collapse
Affiliation(s)
- Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Patricia Sole
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Cesar Fandos
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| |
Collapse
|
4
|
Tay T, Bommakanti G, Jaensch E, Gorthi A, Karapa Reddy I, Hu Y, Zhang R, Doshi AS, Tan SL, Brucklacher-Waldert V, Prickett L, Kurasawa J, Overstreet MG, Criscione S, Buenrostro JD, Mele DA. Degradation of IKZF1 prevents epigenetic progression of T cell exhaustion in an antigen-specific assay. Cell Rep Med 2024; 5:101804. [PMID: 39486420 PMCID: PMC11604474 DOI: 10.1016/j.xcrm.2024.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
In cancer, chronic antigen stimulation drives effector T cells to exhaustion, limiting the efficacy of T cell therapies. Recent studies have demonstrated that epigenetic rewiring governs the transition of T cells from effector to exhausted states and makes a subset of exhausted T cells non-responsive to PD1 checkpoint blockade. Here, we describe an antigen-specific assay for T cell exhaustion that generates T cells phenotypically and transcriptionally similar to those found in human tumors. We perform a screen of human epigenetic regulators, identifying IKZF1 as a driver of T cell exhaustion. We determine that the IKZF1 degrader iberdomide prevents exhaustion by blocking chromatin remodeling at T cell effector enhancers and preserving the binding of AP-1, NF-κB, and NFAT. Thus, our study uncovers a role for IKZF1 as a driver of T cell exhaustion through epigenetic modulation, providing a rationale for the use of iberdomide in solid tumors to prevent T cell exhaustion.
Collapse
Affiliation(s)
- Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
| | | | | | | | | | - Yan Hu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
| | - Ruochi Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Jason Daniel Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA.
| | | |
Collapse
|
5
|
Mangani D, Subramanian A, Huang L, Cheng H, Krovi SH, Wu Y, Yang D, Moreira TG, Escobar G, Schnell A, Dixon KO, Krishnan RK, Singh V, Sobel RA, Weiner HL, Kuchroo VK, Anderson AC. Transcription factor TCF1 binds to RORγt and orchestrates a regulatory network that determines homeostatic Th17 cell state. Immunity 2024; 57:2565-2582.e6. [PMID: 39447575 PMCID: PMC11614491 DOI: 10.1016/j.immuni.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
T helper (Th) 17 cells encompass a spectrum of cell states, including cells that maintain homeostatic tissue functions and pro-inflammatory cells that can drive autoimmune tissue damage. Identifying regulators that determine Th17 cell states can identify ways to control tissue inflammation and restore homeostasis. Here, we found that interleukin (IL)-23, a cytokine critical for inducing pro-inflammatory Th17 cells, decreased transcription factor T cell factor 1 (TCF1) expression. Conditional deletion of TCF1 in mature T cells increased the pro-inflammatory potential of Th17 cells, even in the absence of IL-23 receptor signaling, and conferred pro-inflammatory potential to homeostatic Th17 cells. Conversely, sustained TCF1 expression decreased pro-inflammatory Th17 potential. Mechanistically, TCF1 bound to RORγt, thereby interfering with its pro-inflammatory functions, and orchestrated a regulatory network that determined Th17 cell state. Our findings identify TCF1 as a major determinant of Th17 cell state and provide important insight for the development of therapies for Th17-driven inflammatory diseases.
Collapse
Affiliation(s)
- Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Ayshwarya Subramanian
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linglin Huang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hanning Cheng
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - S Harsha Krovi
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Yufan Wu
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dandan Yang
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Thais G Moreira
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Giulia Escobar
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Alexandra Schnell
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karen O Dixon
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Rajesh K Krishnan
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | | | - Raymond A Sobel
- Department of Pathology, Stanford University, Stanford, CA 94304, USA
| | - Howard L Weiner
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Li WP, Mao XT, Xie JH, Li JY, Liu BQ, Wu LX, Yang B, Li YY, Jin J. N-acetyltransferase 10 is implicated in the pathogenesis of cycling T cell-mediated autoimmune and inflammatory disorders in mice. Nat Commun 2024; 15:9388. [PMID: 39477944 PMCID: PMC11525920 DOI: 10.1038/s41467-024-53350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
T cell expansion has a crucial function in both autoimmune and chronic inflammatory diseases, with cycling T cells contributing to the pathogenesis of autoimmune diseases by causing uncontrolled immune responses and tissue damage. Yet the regulatory mechanisms governing T cell expansion remain incompletely understood. Here we show that the enzyme N-acetyltransferase 10 (NAT10) regulates T cell activation and proliferation upon antigen stimulation. T cell-specific NAT10 deficiency in mice reduces the number of mature T cells in peripheral lymphoid organs. Mechanistically, NAT10 acetylates RACK1 at K185, preventing subsequent RACK1 K48-linked ubiquitination and degradation. The increased RACK1 stability alters ribosome formation and cellular metabolism, leading to enhanced supply of energy and biosynthetic precursors and, eventually, T cell proliferation. Our findings thus highlight the essential function of NAT10 in T cell self-renewal and metabolism and elucidate NAT10 mode of action for the potential development of novel therapies for immune-related disorders.
Collapse
Affiliation(s)
- Wen-Ping Li
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin-Tao Mao
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia-Huan Xie
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie-Yu Li
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Bao-Qin Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Le-Xi Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
9
|
Inge M, Miller R, Hook H, Bray D, Keenan J, Zhao R, Gilmore T, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. Nucleic Acids Res 2024; 52:10276-10296. [PMID: 39166482 PMCID: PMC11417405 DOI: 10.1093/nar/gkae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here, we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced histone 3 lysine 27 acetylation (H3K27ac). Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data support clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- Melissa M Inge
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Rebekah Miller
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Bray
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Rose Zhao
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
10
|
Chowdhary K, Léon J, Mathis D, Benoist C. An integrated transcription factor framework for Treg identity and diversity. Proc Natl Acad Sci U S A 2024; 121:e2411301121. [PMID: 39196621 PMCID: PMC11388289 DOI: 10.1073/pnas.2411301121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Vertebrate cell identity depends on the combined activity of scores of transcription factors (TF). While TFs have often been studied in isolation, a systematic perspective on their integration has been missing. Focusing on FoxP3+ regulatory T cells (Tregs), key guardians of immune tolerance, we combined single-cell chromatin accessibility, machine learning, and high-density genetic variation, to resolve a validated framework of diverse Treg chromatin programs, each shaped by multi-TF inputs. This framework identified previously unrecognized Treg controllers (Smarcc1) and illuminated the mechanism of action of FoxP3, which amplified a pre-existing Treg identity, diversely activating or repressing distinct programs, dependent on different regulatory partners. Treg subpopulations in the colon relied variably on FoxP3, Helios+ Tregs being completely dependent, but RORγ+ Tregs largely independent. These differences were rooted in intrinsic biases decoded by the integrated framework. Moving beyond master regulators, this work unravels how overlapping TF activities coalesce into Treg identity and diversity.
Collapse
Affiliation(s)
| | - Juliette Léon
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- INSERM UMR 1163, Imagine Institute, University of Paris, Paris, France 75015
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
11
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Liao J, Hargreaves DC. Coordination of transcription factors and SWI-SNF complexes regulates chromatin priming in developing T cells. Nat Immunol 2024; 25:725-727. [PMID: 38641719 DOI: 10.1038/s41590-024-01822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Jingwen Liao
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
13
|
Gamble N, Bradu A, Caldwell JA, McKeever J, Bolonduro O, Ermis E, Kaiser C, Kim Y, Parks B, Klemm S, Greenleaf WJ, Crabtree GR, Koh AS. PU.1 and BCL11B sequentially cooperate with RUNX1 to anchor mSWI/SNF to poise the T cell effector landscape. Nat Immunol 2024; 25:860-872. [PMID: 38632339 PMCID: PMC11089574 DOI: 10.1038/s41590-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.
Collapse
Affiliation(s)
- Noah Gamble
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Alexandra Bradu
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jason A Caldwell
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Joshua McKeever
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, USA
| | - Olubusayo Bolonduro
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL, USA
| | - Ebru Ermis
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Caroline Kaiser
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - YeEun Kim
- Immunology Program, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benjamin Parks
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Andrew S Koh
- Department of Pathology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Inge MM, Miller R, Hook H, Bray D, Keenan JL, Zhao R, Gilmore TD, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588333. [PMID: 38617258 PMCID: PMC11014505 DOI: 10.1101/2024.04.05.588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced H3K27ac. Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data supports clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- M M Inge
- Department of Biology, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - R Miller
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - H Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - D Bray
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - J L Keenan
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - R Zhao
- Department of Biology, Boston University, Boston, MA, USA
| | - T D Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| | - T Siggers
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
15
|
Joulia E, Michieletto MF, Agesta A, Peillex C, Girault V, Le Dorze AL, Peroceschi R, Bucciarelli F, Szelechowski M, Chaubet A, Hakim N, Marrocco R, Lhuillier E, Lebeurrier M, Argüello RJ, Saoudi A, El Costa H, Adoue V, Walzer T, Sarry JE, Dejean AS. Eomes-dependent mitochondrial regulation promotes survival of pathogenic CD4+ T cells during inflammation. J Exp Med 2024; 221:e20230449. [PMID: 38189779 PMCID: PMC10772920 DOI: 10.1084/jem.20230449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.
Collapse
Affiliation(s)
- Emeline Joulia
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Michaël F. Michieletto
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arantxa Agesta
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Cindy Peillex
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Virginie Girault
- Suivi Immunologique des Thérapeutiques Innovantes, Pôle de Biologie, Pontchaillou University Hospital, Rennes, France
- UMR1236, University of Rennes, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Bretagne, Rennes, France
| | - Anne-Louise Le Dorze
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Romain Peroceschi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Florence Bucciarelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Marion Szelechowski
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Adeline Chaubet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rémi Marrocco
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Emeline Lhuillier
- GeT-Santé, Plateforme Génome et Transcriptome, GenoToul, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Manuel Lebeurrier
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rafael J. Argüello
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Abdelhadi Saoudi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Hicham El Costa
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Veronique Adoue
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Anne S. Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| |
Collapse
|
16
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2023:1-23. [PMID: 38100543 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
17
|
Zhang Y, Hu L, Ren G, Zeng Y, Zhao X, Zhong C. Distinct regulatory machineries underlying divergent chromatin landscapes distinguish innate lymphoid cells from T helper cells. Front Immunol 2023; 14:1271879. [PMID: 38106414 PMCID: PMC10722145 DOI: 10.3389/fimmu.2023.1271879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Innate lymphoid cells (ILCs), as the innate counterpart of CD4+ T helper (Th) cells, play crucial roles in maintaining tissue homeostasis. While the ILC subsets and their corresponding Th subsets demonstrate significant similarities in core programming related to effector function and regulatory mechanisms, their principal distinctions, given their innate and adaptive lymphocyte nature, remain largely unknown. In this study, we have employed an integrative analysis of 294 bulk RNA-sequencing results across all ILC and Th subsets, using scRNA-seq algorithms. Consequently, we identify two genesets that predominantly differentiate ILCs from Th cells, as well as three genesets that distinguish various immune responses. Furthermore, through chromatin accessibility analysis, we find that the ILC geneset tends to rely on specific transcriptional regulation at promoter regions compared with the Th geneset. Additionally, we observe that ILCs and Th cells are under differential transcriptional regulation. For example, ILCs are under stronger regulation by multiple transcription factors, including RORα, GATA3, and NF-κB. Otherwise, Th cells are under stronger regulation by AP-1. Thus, our findings suggest that, despite the acknowledged similarities in effector functions between ILC subsets and corresponding Th subsets, the underlying regulatory machineries still exhibit substantial distinctions. These insights provide a comprehensive understanding of the unique roles played by each cell type during immune responses.
Collapse
Affiliation(s)
- Yime Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Luni Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yanyu Zeng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xingyu Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|
18
|
Klocke C, Moran A, Adey A, McWeeney S, Wu G. Identification of Cellular Interactions in the Tumor Immune Microenvironment Underlying CD8 T Cell Exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566384. [PMID: 38014233 PMCID: PMC10680664 DOI: 10.1101/2023.11.09.566384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
While immune checkpoint inhibitors show success in treating a subset of patients with certain late-stage cancers, these treatments fail in many other patients as a result of mechanisms that have yet to be fully characterized. The process of CD8 T cell exhaustion, by which T cells become dysfunctional in response to prolonged antigen exposure, has been implicated in immunotherapy resistance. Single-cell RNA sequencing (scRNA-seq) produces an abundance of data to analyze this process; however, due to the complexity of the process, contributions of other cell types to a process within a single cell type cannot be simply inferred. We constructed an analysis framework to first rank human skin tumor samples by degree of exhaustion in tumor-infiltrating CD8 T cells and then identify immune cell type-specific gene-regulatory network patterns significantly associated with T cell exhaustion. Using this framework, we further analyzed scRNA-seq data from human tumor and chronic viral infection samples to compare the T cell exhaustion process between these two contexts. In doing so, we identified transcription factor activity in the macrophages of both tissue types associated with this process. Our framework can be applied beyond the tumor immune microenvironment to any system involving cell-cell communication, facilitating insights into key biological processes that underpin the effective treatment of cancer and other complicated diseases.
Collapse
|
19
|
Shin B, Zhou W, Wang J, Gao F, Rothenberg EV. Runx factors launch T cell and innate lymphoid programs via direct and gene network-based mechanisms. Nat Immunol 2023; 24:1458-1472. [PMID: 37563311 PMCID: PMC10673614 DOI: 10.1038/s41590-023-01585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Runx factors are essential for lineage specification of various hematopoietic cells, including T lymphocytes. However, they regulate context-specific genes and occupy distinct genomic regions in different cell types. Here, we show that dynamic Runx binding shifts in mouse early T cell development are mostly not restricted by local chromatin state but regulated by Runx dosage and functional partners. Runx cofactors compete to recruit a limited pool of Runx factors in early T progenitor cells, and a modest increase in Runx protein availability at pre-commitment stages causes premature Runx occupancy at post-commitment binding sites. This increased Runx factor availability results in striking T cell lineage developmental acceleration by selectively activating T cell-identity and innate lymphoid cell programs. These programs are collectively regulated by Runx together with other, Runx-induced transcription factors that co-occupy Runx-target genes and propagate gene network changes.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wen Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
- BillionToOne, Menlo Park, CA, USA
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
| | - Fan Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Bioinformatics Resource Center, Beckman Institute of California Institute of Technology, Pasadena, CA, USA
- Lyterian Therapeutics, South San Francisco, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
20
|
Chowdhary K, Benoist C. A variegated model of transcription factor function in the immune system. Trends Immunol 2023; 44:530-541. [PMID: 37258360 PMCID: PMC10332489 DOI: 10.1016/j.it.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Specific combinations of transcription factors (TFs) control the gene expression programs that underlie specialized immune responses. Previous models of TF function in immunocytes had restricted each TF to a single functional categorization [e.g., lineage-defining (LDTFs) vs. signal-dependent TFs (SDTFs)] within one cell type. Synthesizing recent results, we instead propose a variegated model of immunological TF function, whereby many TFs have flexible and different roles across distinct cell states, contributing to cell phenotypic diversity. We discuss evidence in support of this variegated model, describe contextual inputs that enable TF diversification, and look to the future to imagine warranted experimental and computational tools to build quantitative and predictive models of immunocyte gene regulatory networks.
Collapse
|
21
|
McDonald B, Chick BY, Ahmed NS, Burns M, Ma S, Casillas E, Chen D, Mann TH, O'Connor C, Hah N, Hargreaves DC, Kaech SM. Canonical BAF complex activity shapes the enhancer landscape that licenses CD8 + T cell effector and memory fates. Immunity 2023; 56:1303-1319.e5. [PMID: 37315534 PMCID: PMC10281564 DOI: 10.1016/j.immuni.2023.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
CD8+ T cells provide host protection against pathogens by differentiating into distinct effector and memory cell subsets, but how chromatin is site-specifically remodeled during their differentiation is unclear. Due to its critical role in regulating chromatin and enhancer accessibility through its nucleosome remodeling activities, we investigated the role of the canonical BAF (cBAF) chromatin remodeling complex in antiviral CD8+ T cells during infection. ARID1A, a subunit of cBAF, was recruited early after activation and established de novo open chromatin regions (OCRs) at enhancers. Arid1a deficiency impaired the opening of thousands of activation-induced enhancers, leading to loss of TF binding, dysregulated proliferation and gene expression, and failure to undergo terminal effector differentiation. Although Arid1a was dispensable for circulating memory cell formation, tissue-resident memory (Trm) formation was strongly impaired. Thus, cBAF governs the enhancer landscape of activated CD8+ T cells that orchestrates TF recruitment and activity and the acquisition of specific effector and memory differentiation states.
Collapse
Affiliation(s)
- Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Brent Y Chick
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Nasiha S Ahmed
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mannix Burns
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shixin Ma
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eduardo Casillas
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas H Mann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carolyn O'Connor
- Flow Cytometry Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nasun Hah
- Chapman Charitable Foundations Genomic Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Chronic lymphocytic leukemia presence impairs antigen-specific CD8 + T-cell responses through epigenetic reprogramming towards short-lived effectors. Leukemia 2023; 37:606-616. [PMID: 36658390 PMCID: PMC9851097 DOI: 10.1038/s41375-023-01817-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
T-cell dysregulation in chronic lymphocytic leukemia (CLL) associates with low response rates to autologous T cell-based therapies. How CLL affects antigen-specific T-cell responses remains largely unknown. We investigated (epi)genetic and functional consequences of antigen-specific T-cell responses in presence of CLL in vitro and in an adoptive-transfer murine model. Already at steady-state, antigen-experienced patient-derived T cells were skewed towards short-lived effector cells (SLEC) at the expense of memory-precursor effector cells (MPEC). Stimulation of these T cells in vitro showed rapid induction of effector genes and suppression of key memory transcription factors only in presence of CLL cells, indicating epigenetic regulation. This was investigated in vivo by following antigen-specific responses of naïve OT-I CD8+ cells to mCMV-OVA in presence/absence of TCL1 B-cell leukemia. Presence of leukemia resulted in increased SLEC formation, with disturbed inflammatory cytokine production. Chromatin and transcriptome profiling revealed strong epigenetic modifications, leading to activation of an effector and silencing of a memory profile through presence of CLL cells. Secondary challenge in vivo confirmed dysfunctional memory responses by antigen-experienced OT-I cells generated in presence of CLL. Altogether, we show that presence of CLL induces a short-lived effector phenotype and impaired memory responses by epigenetic reprogramming during primary responses.
Collapse
|
23
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
24
|
Chen C, Ye L. The m1A modification of tRNAs: a translational accelerator of T-cell activation. Cell Mol Immunol 2022; 19:1328-1329. [PMID: 36336727 PMCID: PMC9709032 DOI: 10.1038/s41423-022-00942-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Cheng Chen
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
25
|
Zebley CC, Youngblood B. Mechanisms of T cell exhaustion guiding next-generation immunotherapy. Trends Cancer 2022; 8:726-734. [PMID: 35570136 PMCID: PMC9388609 DOI: 10.1016/j.trecan.2022.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
The functional decline in T cells during their chronic stimulation, commonly referred to as T cell exhaustion, is a major limitation for current immunotherapy approaches. As modern medicine embraces therapeutic approaches that exploit the immuno-oncology interface, a primary question is how is T cell function maintained over time in scenarios of prolonged tumor burden. Deciphering the molecular mechanisms of T cell exhaustion is now enabling the field to begin using cardinal features of T cell differentiation to develop biomarkers that can delineate responders from nonresponders prior to treatment with T cell-based therapeutics. Furthermore, applying principles of basic T cell immunity toward the development of cancer treatments is laying a foundation for rational approaches to improve immunotherapy by redirecting T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Ben Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
26
|
Schroeder JH, Howard JK, Lord GM. Transcription factor-driven regulation of ILC1 and ILC3. Trends Immunol 2022; 43:564-579. [PMID: 35618586 PMCID: PMC10166716 DOI: 10.1016/j.it.2022.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Mammalian innate lymphoid cells (ILCs) have functional relevance under both homeostatic and disease settings, such as inflammatory bowel disease (IBD), particularly in the context of maintaining the integrity of mucosal surfaces. Early reports highlighted group 1 and 3 ILC regulatory transcription factors (TFs), T-box expressed in T cells (T-bet; Tbx21) and RAR-related orphan nuclear receptor γt (RORγt; Rorc), as key regulators of ILC biology. Since then, other canonical TFs have been shown to have a role in the development and function of ILC subsets. In this review, we focus on recent insights into the balance between mature ILC1 and ILC3 based on these TFs and how they interact with other key cell-intrinsic molecular pathways. We outline how this TF interplay might be explored to identify novel candidate therapeutic avenues for human diseases.
Collapse
|
27
|
TCF-1: a maverick in T cell development and function. Nat Immunol 2022; 23:671-678. [PMID: 35487986 PMCID: PMC9202512 DOI: 10.1038/s41590-022-01194-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with β-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for β-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.
Collapse
|
28
|
Parsing the transcription factors governing T cell immunity. Nat Immunol 2021; 23:3-4. [PMID: 34937931 DOI: 10.1038/s41590-021-01075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|