1
|
Hirsch MG, Pal S, Rashidi Mehrabadi F, Malikic S, Gruen C, Sassano A, Pérez-Guijarro E, Merlino G, Sahinalp SC, Molloy EK, Day CP, Przytycka TM. Stochastic modeling of single-cell gene expression adaptation reveals non-genomic contribution to evolution of tumor subclones. Cell Syst 2024:101156. [PMID: 39701099 DOI: 10.1016/j.cels.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present a formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data. Applying our model to sublines derived from single cells of a mouse melanoma revealed that sublines with distinct phenotypes are underlined by different patterns of gene expression adaptation, indicating non-genetic mechanisms of cancer evolution. Sublines previously observed to be resistant to anti-CTLA4 treatment showed adaptive expression of genes related to invasion and non-canonical Wnt signaling, whereas sublines that responded to treatment showed adaptive expression of genes related to proliferation and canonical Wnt signaling. Our results suggest that clonal phenotypes emerge as the result of specific adaptivity patterns of gene expression. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- M G Hirsch
- National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Soumitra Pal
- Neurobiology Neurodegeneration and Repair Lab, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Farid Rashidi Mehrabadi
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Salem Malikic
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Charli Gruen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (IIBM, CSIC-UAM), Madrid 28029, Spain
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - S Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin K Molloy
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA; University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742, USA
| | - Chi-Ping Day
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Teresa M Przytycka
- National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Zeng G, Yu Y, Wang M, Liu J, He G, Yu S, Yan H, Yang L, Li H, Peng X. Advancing cancer research through organoid technology. J Transl Med 2024; 22:1007. [PMID: 39516934 PMCID: PMC11545094 DOI: 10.1186/s12967-024-05824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of tumors and the challenges associated with treatment often stem from the limitations of existing models in accurately replicating authentic tumors. Recently, organoid technology has emerged as an innovative platform for tumor research. This bioengineering approach enables researchers to simulate, in vitro, the interactions between tumors and their microenvironment, thereby enhancing the intricate interplay between tumor cells and their surroundings. Organoids also integrate multidimensional data, providing a novel paradigm for understanding tumor development and progression while facilitating precision therapy. Furthermore, advancements in imaging and genetic editing techniques have significantly augmented the potential of organoids in tumor research. This review explores the application of organoid technology for more precise tumor simulations and its specific contributions to cancer research advancements. Additionally, we discuss the challenges and evolving trends in developing comprehensive tumor models utilizing organoid technology.
Collapse
Affiliation(s)
- Guolong Zeng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Meiting Wang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Sixuan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Huining Yan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| |
Collapse
|
3
|
Ascic E, Åkerström F, Nair MS, Rosa A, Kurochkin I, Zimmermannova O, Catena X, Rotankova N, Veser C, Rudnik M, Ballocci T, Schärer T, Huang X, de Rosa Torres M, Renaud E, Santiago MV, Met Ö, Askmyr D, Lindstedt M, Greiff L, Ligeon LA, Agarkova I, Svane IM, Pires CF, Rosa FF, Pereira CF. In vivo dendritic cell reprogramming for cancer immunotherapy. Science 2024; 386:eadn9083. [PMID: 39236156 PMCID: PMC7616765 DOI: 10.1126/science.adn9083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Immunotherapy can lead to long-term survival for some cancer patients, yet generalized success has been hampered by insufficient antigen presentation and exclusion of immunogenic cells from the tumor microenvironment. Here, we developed an approach to reprogram tumor cells in vivo by adenoviral delivery of the transcription factors PU.1, IRF8, and BATF3, which enabled them to present antigens as type 1 conventional dendritic cells. Reprogrammed tumor cells remodeled their tumor microenvironment, recruited, and expanded polyclonal cytotoxic T cells; induced tumor regressions; and established long-term systemic immunity in multiple mouse melanoma models. In human tumor spheroids and xenografts, reprogramming to immunogenic dendritic-like cells progressed independently of immunosuppression, which usually limits immunotherapy. Our study paves the way for human clinical trials of in vivo immune cell reprogramming for cancer immunotherapy.
Collapse
Affiliation(s)
- Ervin Ascic
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | | | - Malavika Sreekumar Nair
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | - André Rosa
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | - Ilia Kurochkin
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | - Olga Zimmermannova
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | - Xavier Catena
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | | | | | | | - Tommaso Ballocci
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | | | - Xiaoli Huang
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | - Maria de Rosa Torres
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | - Emilie Renaud
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | - Marta Velasco Santiago
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730Herlev, Denmark
| | - Özcan Met
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - David Askmyr
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85Lund, Sweden
- Department of Clinical Sciences, Lund University, 221 84Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Medicon Village, 223 81Lund, Sweden
| | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85Lund, Sweden
- Department of Clinical Sciences, Lund University, 221 84Lund, Sweden
| | | | | | - Inge Marie Svane
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730Herlev, Denmark
| | | | - Fábio F. Rosa
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
- Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517Coimbra, Portugal
| |
Collapse
|
4
|
Sahni S, Wang B, Wu D, Dhruba SR, Nagy M, Patkar S, Ferreira I, Day CP, Wang K, Ruppin E. A machine learning model reveals expansive downregulation of ligand-receptor interactions that enhance lymphocyte infiltration in melanoma with developed resistance to immune checkpoint blockade. Nat Commun 2024; 15:8867. [PMID: 39402030 PMCID: PMC11473774 DOI: 10.1038/s41467-024-52555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/13/2024] [Indexed: 10/17/2024] Open
Abstract
Immune checkpoint blockade (ICB) is a promising cancer therapy; however, resistance frequently develops. To explore ICB resistance mechanisms, we develop Immunotherapy Resistance cell-cell Interaction Scanner (IRIS), a machine learning model aimed at identifying cell-type-specific tumor microenvironment ligand-receptor interactions relevant to ICB resistance. Applying IRIS to deconvolved transcriptomics data of the five largest melanoma ICB cohorts, we identify specific downregulated interactions, termed resistance downregulated interactions (RDI), as tumors develop resistance. These RDIs often involve chemokine signaling and offer a stronger predictive signal for ICB response compared to upregulated interactions or the state-of-the-art published transcriptomics biomarkers. Validation across multiple independent melanoma patient cohorts and modalities confirms that RDI activity is associated with CD8 + T cell infiltration and highly manifested in hot/brisk tumors. This study presents a strongly predictive ICB response biomarker, highlighting the key role of downregulating chemotaxis-associated ligand-receptor interactions in inhibiting lymphocyte infiltration in resistant tumors.
Collapse
Affiliation(s)
- Sahil Sahni
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Binbin Wang
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Di Wu
- Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Saugato Rahman Dhruba
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Matthew Nagy
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sushant Patkar
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Chi-Ping Day
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kun Wang
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
5
|
Daugherty-Lopès A, Pérez-Guijarro E, Gopalan V, Rappaport J, Chen Q, Huang A, Lam KC, Chin S, Ebersole J, Wu E, Needle GA, Church I, Kyriakopoulos G, Xie S, Zhao Y, Gruen C, Sassano A, Araya RE, Thorkelsson A, Smith C, Lee MP, Hannenhalli S, Day CP, Merlino G, Goldszmid RS. IMMUNE AND MOLECULAR CORRELATES OF RESPONSE TO IMMUNOTHERAPY REVEALED BY BRAIN-METASTATIC MELANOMA MODELS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609785. [PMID: 39372744 PMCID: PMC11451731 DOI: 10.1101/2024.08.26.609785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Despite the promising results of immune checkpoint blockade (ICB) therapy, outcomes for patients with brain metastasis (BrM) remain poor. Identifying resistance mechanisms has been hindered by limited access to patient samples and relevant preclinical models. Here, we developed two mouse melanoma BrM models that recapitulate the disparate responses to ICB seen in patients. We demonstrate that these models capture the cellular and molecular complexity of human disease and reveal key factors shaping the tumor microenvironment and influencing ICB response. BR1-responsive tumor cells express inflammatory programs that polarize microglia into reactive states, eliciting robust T cell recruitment. In contrast, BR3-resistant melanoma cells are enriched in neurological programs and exploit tolerance mechanisms to maintain microglia homeostasis and limit T cell infiltration. In humans, BR1 and BR3 expression signatures correlate positively or negatively with T cell infiltration and BrM patient outcomes, respectively. Our study provides clinically relevant models and uncovers mechanistic insights into BrM ICB responses, offering potential biomarkers and therapeutic targets to improve therapy efficacy.
Collapse
Affiliation(s)
- Amélie Daugherty-Lopès
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jessica Rappaport
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Quanyi Chen
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD, USA
| | - April Huang
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD, USA
| | - Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sung Chin
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Jessica Ebersole
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Emily Wu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gabriel A. Needle
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Isabella Church
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shaojun Xie
- CCR-SF Bioinformatics Team, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Team, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Charli Gruen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Romina E. Araya
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Andres Thorkelsson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cari Smith
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Brombin A, Patton EE. Melanocyte lineage dynamics in development, growth and disease. Development 2024; 151:dev201266. [PMID: 39092608 DOI: 10.1242/dev.201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.
Collapse
Affiliation(s)
- Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
7
|
Paolino G, Pampena R, Di Ciaccio SM, Carugno A, Cantisani C, Di Nicola MR, Losco L, Bortone G, Mercuri SR, Costanzo A, Ardigò M, Valenti M. Thin Amelanotic and Hypomelanotic Melanoma: Clinicopathological and Dermoscopic Features. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1239. [PMID: 39202520 PMCID: PMC11356094 DOI: 10.3390/medicina60081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Amelanotic/hypomelanotic melanomas (AHMs) account for 2-8% of all cutaneous melanomas. Due to their clinical appearance and the lack of specific dermoscopic indicators, AHMs are challenging to diagnose, particularly in thinner cutaneous lesions. The aim of our study was to evaluate the clinicopathological and dermoscopic features of thin AHMs. Identifying the baseline clinical-pathological features and dermoscopic aspects of thin AHMs is crucial to better understand this entity. Materials and Methods: We divided the AHM cohort into two groups based on Breslow thickness: thin (≤1.00 mm) and thick (>1.00 mm). This stratification helped identify any significant clinicopathological differences between the groups. For dermoscopic analysis, we employed the "pattern analysis" approach, which involves a simultaneous and subjective assessment of different criteria. Results: Out of the 2.800 melanomas analyzed for Breslow thickness, 153 were identified as AHMs. Among these, 65 patients presented with thin AHMs and 88 with thick AHMs. Red hair color and phototype II were more prevalent in patients with thin AHMs. The trunk was the most common anatomic site for thin AHMs. Patients with thin AHMs showed a higher number of multiple melanomas. Dermoscopic analysis revealed no significant difference between thin AHMs and thick AHMs, except for a more frequent occurrence of residual reticulum in thin AHMs. Conclusions: Thin AHMs typically affect individuals with lower phototypes and red hair color. These aspects can be related to the higher presence of pheomelanin, which provides limited protection against sun damage. This also correlates with the fact that the trunk, a site commonly exposed to intermittent sun exposure, is the primary anatomical location for thin AHMs. Multiple primary melanomas are more common in patients with thin AHMs, likely due to an intrinsic predisposition as well as greater periodic dermatologic follow-ups in this class of patients. Apart from the presence of residual reticulum, no other significant dermoscopic differences were observed, complicating the differential diagnosis between thin and thick AHMs based on dermoscopy alone.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
| | - Riccardo Pampena
- La Sapienza University of Rome, 00185 Rome, Italy; (R.P.); (S.M.D.C.)
| | | | - Andrea Carugno
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Carmen Cantisani
- Dermatologic Clinic, La Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (G.B.)
| | - Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
| | - Luigi Losco
- Plastic Surgery Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy;
| | - Giulio Bortone
- Dermatologic Clinic, La Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (G.B.)
| | - Santo Raffaele Mercuri
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
- UniSr Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Antonio Costanzo
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| | - Marco Ardigò
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| | - Mario Valenti
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| |
Collapse
|
8
|
Tovar-Parra D, Zammit-Mangion M. Comparative Analysis of the Effect of the BRAF Inhibitor Dabrafenib in 2D and 3D Cell Culture Models of Human Metastatic Melanoma Cells. In Vivo 2024; 38:1579-1593. [PMID: 38936891 PMCID: PMC11215570 DOI: 10.21873/invivo.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Melanoma, a variant of skin cancer, presents the highest mortality rates among all skin cancers. Despite advancements in targeted therapies, immunotherapies, and tissue culture techniques, the absence of an effective early treatment model remains a challenge. This study investigated the impact of dabrafenib on both 2D and 3D cell culture models with distinct molecular profiles. MATERIALS AND METHODS We developed a high-throughput workflow enabling drug screening on spheroids. Our approach involved cultivating 2D and 3D cultures derived from normal melanocytes and metastatic melanoma cells, treating them with dabrafenib and conducting viability, aggregation, migration, cell cycle, and apoptosis assays. RESULTS Dabrafenib exerted multifaceted influences, particularly on migration at concentrations of 10 and 25 μM. It induced a decrease in cell viability, impeded cellular adhesion to the matrix, inhibited cellular aggregation and spheroid formation, arrested the cell cycle in the G1 phase, and induced apoptosis. CONCLUSION These results confirm the therapeutic potential of dabrafenib in treating melanoma with the BRAF V600E mutation and that 3D models are validated models to study the potential of new molecules for therapeutic purposes. Furthermore, our study underscores the relevance of 3D models in simulating physiological in vivo microenvironments, providing insights into varied treatment responses between normal and tumor cells.
Collapse
Affiliation(s)
- David Tovar-Parra
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta;
| | - Marion Zammit-Mangion
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta;
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
9
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
10
|
Mengoni M, Braun AD, Seedarala S, Bonifatius S, Kostenis E, Schanze D, Zenker M, Tüting T, Gaffal E. Transactivation of Met signaling by oncogenic Gnaq drives the evolution of melanoma in Hgf-Cdk4 mice. Cancer Gene Ther 2024; 31:884-893. [PMID: 38360887 PMCID: PMC11192630 DOI: 10.1038/s41417-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Recent pan-cancer genomic analyses have identified numerous oncogenic driver mutations that occur in a cell-type and tissue-specific distribution. For example, oncogenic mutations in Braf and Nras genes arise predominantly in melanocytic neoplasms of the epidermis, while oncogenic mutations in Gnaq/11 genes arise mostly in melanocytic lesions of the dermis or the uvea. The mechanisms promoting cell-type and tissue-specific oncogenic events currently remain poorly understood. Here, we report that Gnaq/11 hotspot mutations occur as early oncogenic drivers during the evolution of primary melanomas in Hgf-Cdk4 mice. Additional single base substitutions in the Trp53 gene and structural chromosomal aberrations favoring amplifications of the chromosomal region containing the Met receptor gene accumulate during serial tumor transplantation and in cell lines established in vitro. Mechanistically, we found that the GnaqQ209L mutation transactivates the Met receptor. Overexpression of oncogenic GnaqQ209L in the immortalized melanocyte cell line promoted in vivo growth that was enhanced by transgenic Hgf expression in the tumor microenvironment. This cross-signaling mechanism explains the selection of oncogenic Gnaq/11 in primary Hgf-Cdk4 melanomas and provides an example of how oncogenic driver mutations, intracellular signaling cascades, and microenvironmental cues cooperate to drive cancer development in a tissue-specific fashion.
Collapse
Affiliation(s)
- Miriam Mengoni
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Andreas Dominik Braun
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Sahithi Seedarala
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Susanne Bonifatius
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Thomas Tüting
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120, Magdeburg, Germany.
| |
Collapse
|
11
|
Hirsch M, Pal S, Mehrabadi FR, Malikic S, Gruen C, Sassano A, Pérez-Guijarro E, Merlino G, Sahinalp C, Molloy EK, Day CP, Przytycka TM. Stochastic modelling of single-cell gene expression adaptation reveals non-genomic contribution to evolution of tumor subclones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.588869. [PMID: 38712152 PMCID: PMC11071284 DOI: 10.1101/2024.04.17.588869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present the first formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data. Applying our model to sublines derived from single cells of a mouse melanoma revealed that sublines with distinct phenotypes are underlined by different patterns of gene expression adaptation, indicating non-genetic mechanisms of cancer evolution. Interestingly, sublines previously observed to be resistant to anti-CTLA-4 treatment showed adaptive expression of genes related to invasion and non-canonical Wnt signaling, whereas sublines that responded to treatment showed adaptive expression of genes related to proliferation and canonical Wnt signaling. Our results suggest that clonal phenotypes emerge as the result of specific adaptivity patterns of gene expression.
Collapse
Affiliation(s)
- M.G. Hirsch
- National Library of Medicine, NIH, Bethesda, Maryland, USA
- Department of Computer Science, University of Maryland, College Park, Maryland USA
| | - Soumitra Pal
- Neurobiology Neurodegeneration and Repair Lab, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Farid Rashidi Mehrabadi
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer institute, NIH, Bethesda, Maryland, USA
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Salem Malikic
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer institute, NIH, Bethesda, Maryland, USA
| | - Charli Gruen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (IIBM, CSIC-UAM), Madrid, Spain
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer institute, NIH, Bethesda, Maryland, USA
| | - Erin K. Molloy
- Department of Computer Science, University of Maryland, College Park, Maryland USA
- University of Maryland Institute for Advanced Computer Studies, College Park, Maryland USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
12
|
Chen H, Zhang Y, Chen X, Xu R, Zhu Y, He D, Cheng Y, Wang Z, Qing X, Cao K. Hypoxia is correlated with the tumor immune microenvironment: Potential application of immunotherapy in bladder cancer. Cancer Med 2023; 12:22333-22353. [PMID: 38063246 PMCID: PMC10757107 DOI: 10.1002/cam4.6617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/31/2023] Open
Abstract
OBJECTIVE Hypoxia, which can considerably affect the tumor microenvironment, hinders the use of immunotherapy in bladder cancer (BLCA). Therefore, we aimed to identify reliable hypoxia-related biomarkers to guide clinical immunotherapy in BLCA. METHODS Using data downloaded from TCGA-BLCA cohort, we determined BLCA subtypes which divide 408 samples into different subtypes. Tumor immune infiltration levels of two clusters were quantified using ssGSEA, MCPcounter, EPIC, ESTIMATE, and TIMER algorithms. Next, we constructed a hypoxia score based on the expression of hypoxia-related genes. The IMvigor210 cohort and SubMap analysis were used to predict immunotherapeutic responses in patients with different hypoxia scores. Hub genes were screened using cytoscape, immunohistochemistry (IHC), and multispectral immunofluorescence were used to detect the spatial distribution of immune markers. RESULTS Patients with BLCA were categorized into cluster1 (n = 227) and Cluster2 (n = 181). Immune infiltration and expression of immune markers were higher in Cluster1. Immune infiltration was also more obvious in the high-hypoxia score group which related to a better predicted response to immunotherapy. IHC, and multispectral immunofluorescence confirmed the importance of TLR8 in immune infiltration and immune phenotype. CONCLUSIONS BLCA subtype can evaluate the infiltration of immune cells in the tumor microenvironment of different patients. Hypoxia score in this study could effectively predict immunotherapeutic responses in patients with BLCA. TLR8 may be a potential target for clinical immunotherapy.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yao Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Runshi Xu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Department of Respiration, The Second People's Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, China
| | - YaXin Cheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Qing
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Arang N, Lubrano S, Ceribelli M, Rigiracciolo DC, Saddawi-Konefka R, Faraji F, Ramirez SI, Kim D, Tosto FA, Stevenson E, Zhou Y, Wang Z, Bogomolovas J, Molinolo AA, Swaney DL, Krogan NJ, Yang J, Coma S, Pachter JA, Aplin AE, Alessi DR, Thomas CJ, Gutkind JS. High-throughput chemogenetic drug screening reveals PKC-RhoA/PKN as a targetable signaling vulnerability in GNAQ-driven uveal melanoma. Cell Rep Med 2023; 4:101244. [PMID: 37858338 PMCID: PMC10694608 DOI: 10.1016/j.xcrm.2023.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Uveal melanoma (UM) is the most prevalent cancer of the eye in adults, driven by activating mutation of GNAQ/GNA11; however, there are limited therapies against UM and metastatic UM (mUM). Here, we perform a high-throughput chemogenetic drug screen in GNAQ-mutant UM contrasted with BRAF-mutant cutaneous melanoma, defining the druggable landscape of these distinct melanoma subtypes. Across all compounds, darovasertib demonstrates the highest preferential activity against UM. Our investigation reveals that darovasertib potently inhibits PKC as well as PKN/PRK, an AGC kinase family that is part of the "dark kinome." We find that downstream of the Gαq-RhoA signaling axis, PKN converges with ROCK to control FAK, a mediator of non-canonical Gαq-driven signaling. Strikingly, darovasertib synergizes with FAK inhibitors to halt UM growth and promote cytotoxic cell death in vitro and in preclinical metastatic mouse models, thus exposing a signaling vulnerability that can be exploited as a multimodal precision therapy against mUM.
Collapse
Affiliation(s)
- Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simone Lubrano
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | | | | | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney I Ramirez
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Daehwan Kim
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Frances A Tosto
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Julius Bogomolovas
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jing Yang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Bruno V, Betti M, D'Ambrosio L, Massacci A, Chiofalo B, Pietropolli A, Piaggio G, Ciliberto G, Nisticò P, Pallocca M, Buda A, Vizza E. Machine learning endometrial cancer risk prediction model: integrating guidelines of European Society for Medical Oncology with the tumor immune framework. Int J Gynecol Cancer 2023; 33:1708-1714. [PMID: 37875322 PMCID: PMC10646888 DOI: 10.1136/ijgc-2023-004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE Current prognostic factors for endometrial cancer are not sufficient to predict recurrence in early stages. Treatment choices are based on the prognostic factors included in the risk classes defined by the ESMO-ESGO-ESTRO (European Society for Medical Oncology-European Society of Gynaecological Oncology-European Society for Radiotherapy and Oncology) consensus conference with the new biomolecular classification based on POLE, TP53, and microsatellite instability status. However, a minority of early stage cases relapse regardless of their low risk profiles. Integration of the immune context status to existing molecular based models has not been fully evaluated. This study aims to investigate whether the integration of the immune landscape in the tumor microenvironment could improve clinical risk prediction models and allow better profiling of early stages. METHODS Leveraging the potential of in silico deconvolution tools, we estimated the relative abundances of immune populations in public data and then applied feature selection methods to generate a machine learning based model for disease free survival probability prediction. RESULTS We included information on International Federation of Gynecology and Obstetrics (FIGO) stage, tumor mutational burden, microsatellite instability, POLEmut status, interferon γ signature, and relative abundances of monocytes, natural killer cells, and CD4+T cells to build a relapse prediction model and obtained a balanced accuracy of 69%. We further identified two novel early stage profiles that undergo different pathways of recurrence. CONCLUSION This study presents an extension of current prognostic factors for endometrial cancer by exploiting machine learning models and deconvolution techniques on available public biomolecular data. Prospective clinical trials are advisable to validate the early stage stratification.
Collapse
Affiliation(s)
- Valentina Bruno
- Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Alice Massacci
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Benito Chiofalo
- Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Adalgisa Pietropolli
- Section of Ginecology and Obstetrics, Department of Surgical Sciences, University of Rome Tor Vergata, Roma, Italy
| | - Giulia Piaggio
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Paola Nisticò
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Alessandro Buda
- Division of Gynecologic Oncology, Michele and Pietro Ferrero Hospital, Verduno, Italy
| | - Enrico Vizza
- Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
15
|
Zhang J, Ye ZW, Chakraborty P, Luo Z, Culpepper J, Aslam M, Zhang L, Johansson K, Haeggström JZ, Xu J, Olsson M, Townsend DM, Mehrotra S, Morgenstern R, Tew KD. Microsomal glutathione transferase 1 controls metastasis and therapeutic response in melanoma. Pharmacol Res 2023; 196:106899. [PMID: 37648102 PMCID: PMC10623471 DOI: 10.1016/j.phrs.2023.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
While recent targeted and immunotherapies in malignant melanoma are encouraging, most patients acquire resistance, implicating a need to identify additional drug targets to improve outcomes. Recently, attention has been given to pathways that regulate redox homeostasis, especially the lipid peroxidase pathway that protects cells against ferroptosis. Here we identify microsomal glutathione S-transferase 1 (MGST1), a non-selenium-dependent glutathione peroxidase, as highly expressed in malignant and drug resistant melanomas and as a specific determinant of metastatic spread and therapeutic sensitivity. Loss of MGST1 in mouse and human melanoma enhanced cellular oxidative stress, and diminished glycolysis, oxidative phosphorylation, and pentose phosphate pathway. Gp100 activated pmel-1 T cells killed more Mgst1 KD than control melanoma cells and KD cells were more sensitive to cytotoxic anticancer drugs and ferroptotic cell death. When compared to control, mice bearing Mgst1 KD B16 tumors had more CD8+ T cell infiltration with reduced expression of inhibitory receptors and increased cytokine response, large reduction of lung metastases and enhanced survival. Targeting MGST1 alters the redox balance and limits metastases in melanoma, enhancing the therapeutic index for chemo- and immunotherapies.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - John Culpepper
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Muhammad Aslam
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States
| | | | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Divisions of Biochemistry and Chemisty 2, Karolinska Institutet, Biomedicum 9A, 17165 Stockholm, Sweden
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Magnus Olsson
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
16
|
Sahni S, Wang B, Wu D, Dhruba SR, Nagy M, Patkar S, Ferreira I, Wang K, Ruppin E. Deactivation of ligand-receptor interactions enhancing lymphocyte infiltration drives melanoma resistance to Immune Checkpoint Blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558683. [PMID: 37886558 PMCID: PMC10602042 DOI: 10.1101/2023.09.20.558683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Immune checkpoint blockade (ICB) is a promising cancer therapy; however, resistance often develops. To learn more about ICB resistance mechanisms, we developed IRIS (Immunotherapy Resistance cell-cell Interaction Scanner), a machine learning model aimed at identifying candidate ligand-receptor interactions (LRI) that are likely to mediate ICB resistance in the tumor microenvironment (TME). We developed and applied IRIS to identify resistance-mediating cell-type-specific ligand-receptor interactions by analyzing deconvolved transcriptomics data of the five largest melanoma ICB therapy cohorts. This analysis identifies a set of specific ligand-receptor pairs that are deactivated as tumors develop resistance, which we refer to as resistance deactivated interactions (RDI). Quite strikingly, the activity of these RDIs in pre-treatment samples offers a markedly stronger predictive signal for ICB therapy response compared to those that are activated as tumors develop resistance. Their predictive accuracy surpasses the state-of-the-art published transcriptomics biomarker signatures across an array of melanoma ICB datasets. Many of these RDIs are involved in chemokine signaling. Indeed, we further validate on an independent large melanoma patient cohort that their activity is associated with CD8+ T cell infiltration and enriched in hot/brisk tumors. Taken together, this study presents a new strongly predictive ICB response biomarker signature, showing that following ICB treatment resistant tumors turn inhibit lymphocyte infiltration by deactivating specific key ligand-receptor interactions.
Collapse
Affiliation(s)
- Sahil Sahni
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Binbin Wang
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Di Wu
- Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Saugato Rahman Dhruba
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Matthew Nagy
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Sushant Patkar
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK
| | - Kun Wang
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| |
Collapse
|
17
|
Noviello TMR, Di Giacomo AM, Caruso FP, Covre A, Mortarini R, Scala G, Costa MC, Coral S, Fridman WH, Sautès-Fridman C, Brich S, Pruneri G, Simonetti E, Lofiego MF, Tufano R, Bedognetti D, Anichini A, Maio M, Ceccarelli M. Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial. Nat Commun 2023; 14:5914. [PMID: 37739939 PMCID: PMC10516894 DOI: 10.1038/s41467-023-40994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
Association with hypomethylating agents is a promising strategy to improve the efficacy of immune checkpoint inhibitors-based therapy. The NIBIT-M4 was a phase Ib, dose-escalation trial in patients with advanced melanoma of the hypomethylating agent guadecitabine combined with the anti-CTLA-4 antibody ipilimumab that followed a traditional 3 + 3 design (NCT02608437). Patients received guadecitabine 30, 45 or 60 mg/m2/day subcutaneously on days 1 to 5 every 3 weeks starting on week 0 for a total of four cycles, and ipilimumab 3 mg/kg intravenously starting on day 1 of week 1 every 3 weeks for a total of four cycles. Primary outcomes of safety, tolerability, and maximum tolerated dose of treatment were previously reported. Here we report the 5-year clinical outcome for the secondary endpoints of overall survival, progression free survival, and duration of response, and an exploratory integrated multi-omics analysis on pre- and on-treatment tumor biopsies. With a minimum follow-up of 45 months, the 5-year overall survival rate was 28.9% and the median duration of response was 20.6 months. Re-expression of immuno-modulatory endogenous retroviruses and of other repetitive elements, and a mechanistic signature of guadecitabine are associated with response. Integration of a genetic immunoediting index with an adaptive immunity signature stratifies patients/lesions into four distinct subsets and discriminates 5-year overall survival and progression free survival. These results suggest that coupling genetic immunoediting with activation of adaptive immunity is a relevant requisite for achieving long term clinical benefit by epigenetic immunomodulation in advanced melanoma patients.
Collapse
Affiliation(s)
- Teresa Maria Rosaria Noviello
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
- NIBIT Foundation Onlus, Siena, Italy
| | - Francesca Pia Caruso
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | | | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Dept. of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Maria Claudia Costa
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | | | - Wolf H Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team Cancer, Immune Control and Escape, Paris, France
- University Paris Descartes Paris 5, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team Cancer, Immune Control and Escape, Paris, France
- University Paris Descartes Paris 5, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Simonetti
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | | - Rossella Tufano
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Davide Bedognetti
- Cancer Program, Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Dept. of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Maio
- University of Siena, Siena, Italy.
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy.
- NIBIT Foundation Onlus, Siena, Italy.
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
18
|
Taves MD, Otsuka S, Taylor MA, Donahue KM, Meyer TJ, Cam MC, Ashwell JD. Tumors produce glucocorticoids by metabolite recycling, not synthesis, and activate Tregs to promote growth. J Clin Invest 2023; 133:e164599. [PMID: 37471141 PMCID: PMC10503810 DOI: 10.1172/jci164599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
Glucocorticoids are steroid hormones with potent immunosuppressive properties. Their primary source is the adrenals, where they are generated via de novo synthesis from cholesterol. In addition, many tissues have a recycling pathway in which glucocorticoids are regenerated from inactive metabolites by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1, encoded by Hsd11b1). Here, we find that multiple tumor types express Hsd11b1 and produce active glucocorticoids. Genetic ablation of Hsd11b1 in such cells had no effect on in vitro growth, but reduced in vivo tumor progression, which corresponded with increased frequencies of CD8+ tumor-infiltrating lymphocytes (TILs) expressing activation markers and producing effector cytokines. Tumor-derived glucocorticoids were found to promote signatures of Treg activation and suppress signatures of conventional T cell activation in tumor-infiltrating Tregs. Indeed, CD8+ T cell activation was restored and tumor growth reduced in mice with Treg-specific glucocorticoid receptor deficiency. Importantly, pharmacologic inhibition of 11β-HSD1 reduced tumor growth to the same degree as gene knockout and rendered immunotherapy-resistant tumors susceptible to PD-1 blockade. Given that HSD11B1 expression is upregulated in many human tumors and that inhibition of 11β-HSD1 is well tolerated in clinical studies, these data suggest that targeting 11β-HSD1 may be a beneficial adjunct in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Margaret C. Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
19
|
Cui Y, Miao Y, Cao L, Guo L, Cui Y, Yan C, Zeng Z, Xu M, Han T. Activation of melanocortin-1 receptor signaling in melanoma cells impairs T cell infiltration to dampen antitumor immunity. Nat Commun 2023; 14:5740. [PMID: 37714844 PMCID: PMC10504282 DOI: 10.1038/s41467-023-41101-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Inhibition of T cell infiltration dampens antitumor immunity and causes resistance to immune checkpoint blockade (ICB) therapy. By in vivo CRISPR screening in B16F10 melanoma in female mice, here we report that loss of melanocortin-1 receptor (MC1R) in melanoma cells activates antitumor T cell response and overcomes resistance to ICB. Depletion of MC1R from another melanocytic melanoma model HCmel1274 also enhances ICB efficacy. By activating the GNAS-PKA axis, MC1R inhibits interferon-gamma induced CXCL9/10/11 transcription, thus impairing T cell infiltration into the tumor microenvironment. In human melanomas, high MC1R expression correlates with reduced CXCL9/10/11 expression, impaired T cell infiltration, and poor patient prognosis. Whereas MC1R activation is restricted to melanoma, GNAS activation by hotspot mutations is observed across diverse cancer types and is associated with reduced CXCL9/10/11 expression. Our study implicates MC1R as a melanoma immunotherapy target and suggests GNAS-PKA signaling as a pan-cancer oncogenic pathway inhibiting antitumor T cell response.
Collapse
Affiliation(s)
- Yazhong Cui
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yang Miao
- National Institute of Biological Sciences, 102206, Beijing, China
- PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Longzhi Cao
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Lifang Guo
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China
| | - Yue Cui
- National Institute of Biological Sciences, 102206, Beijing, China
- Graduate Program, School of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Chuanzhe Yan
- National Institute of Biological Sciences, 102206, Beijing, China
- PTN Joint Graduate Program, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Zhi Zeng
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Mo Xu
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Ting Han
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
20
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Kang H, Zhu X, Cui Y, Xiong Z, Zong W, Bao Y, Jia P. A Comprehensive Benchmark of Transcriptomic Biomarkers for Immune Checkpoint Blockades. Cancers (Basel) 2023; 15:4094. [PMID: 37627121 PMCID: PMC10452274 DOI: 10.3390/cancers15164094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy by inducing durable clinical responses, but only a small percentage of patients can benefit from ICB treatments. Many studies have established various biomarkers to predict ICB responses. However, different biomarkers were found with diverse performances in practice, and a timely and unbiased assessment has yet to be conducted due to the complexity of ICB-related studies and trials. In this study, we manually curated 29 published datasets with matched transcriptome and clinical data from more than 1400 patients, and uniformly preprocessed these datasets for further analyses. In addition, we collected 39 sets of transcriptomic biomarkers, and based on the nature of the corresponding computational methods, we categorized them into the gene-set-like group (with the self-contained design and the competitive design, respectively) and the deconvolution-like group. Next, we investigated the correlations and patterns of these biomarkers and utilized a standardized workflow to systematically evaluate their performance in predicting ICB responses and survival statuses across different datasets, cancer types, antibodies, biopsy times, and combinatory treatments. In our benchmark, most biomarkers showed poor performance in terms of stability and robustness across different datasets. Two scores (TIDE and CYT) had a competitive performance for ICB response prediction, and two others (PASS-ON and EIGS_ssGSEA) showed the best association with clinical outcome. Finally, we developed ICB-Portal to host the datasets, biomarkers, and benchmark results and to implement the computational methods for researchers to test their custom biomarkers. Our work provided valuable resources and a one-stop solution to facilitate ICB-related research.
Collapse
Affiliation(s)
- Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuli Zhu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xiong
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenting Zong
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
22
|
Talwar JV, Laub D, Pagadala MS, Castro A, Lewis M, Luebeck GE, Gorman BR, Pan C, Dong FN, Markianos K, Teerlink CC, Lynch J, Hauger R, Pyarajan S, Tsao PS, Morris GP, Salem RM, Thompson WK, Curtius K, Zanetti M, Carter H. Autoimmune alleles at the major histocompatibility locus modify melanoma susceptibility. Am J Hum Genet 2023; 110:1138-1161. [PMID: 37339630 PMCID: PMC10357503 DOI: 10.1016/j.ajhg.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Autoimmunity and cancer represent two different aspects of immune dysfunction. Autoimmunity is characterized by breakdowns in immune self-tolerance, while impaired immune surveillance can allow for tumorigenesis. The class I major histocompatibility complex (MHC-I), which displays derivatives of the cellular peptidome for immune surveillance by CD8+ T cells, serves as a common genetic link between these conditions. As melanoma-specific CD8+ T cells have been shown to target melanocyte-specific peptide antigens more often than melanoma-specific antigens, we investigated whether vitiligo- and psoriasis-predisposing MHC-I alleles conferred a melanoma-protective effect. In individuals with cutaneous melanoma from both The Cancer Genome Atlas (n = 451) and an independent validation set (n = 586), MHC-I autoimmune-allele carrier status was significantly associated with a later age of melanoma diagnosis. Furthermore, MHC-I autoimmune-allele carriers were significantly associated with decreased risk of developing melanoma in the Million Veteran Program (OR = 0.962, p = 0.024). Existing melanoma polygenic risk scores (PRSs) did not predict autoimmune-allele carrier status, suggesting these alleles provide orthogonal risk-relevant information. Mechanisms of autoimmune protection were neither associated with improved melanoma-driver mutation association nor improved gene-level conserved antigen presentation relative to common alleles. However, autoimmune alleles showed higher affinity relative to common alleles for particular windows of melanocyte-conserved antigens and loss of heterozygosity of autoimmune alleles caused the greatest reduction in presentation for several conserved antigens across individuals with loss of HLA alleles. Overall, this study presents evidence that MHC-I autoimmune-risk alleles modulate melanoma risk unaccounted for by current PRSs.
Collapse
Affiliation(s)
- James V Talwar
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - David Laub
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Meghana S Pagadala
- Biomedical Science Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - McKenna Lewis
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Georg E Luebeck
- Public Health Sciences Division, Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Cuiping Pan
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA
| | - Frederick N Dong
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02115, USA
| | - Craig C Teerlink
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Julie Lynch
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard Hauger
- VA San Diego Healthcare System, La Jolla, CA, USA; Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Brigham Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Kit Curtius
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; The Laboratory of Immunology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, Division of Hematology and Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Guo Y, Shen R, Yang K, Wang Y, Song H, Liu X, Cheng X, Wu R, Song Y, Wang D. RNF8 enhances the sensitivity of PD-L1 inhibitor against melanoma through ubiquitination of galectin-3 in stroma. Cell Death Discov 2023; 9:205. [PMID: 37391451 DOI: 10.1038/s41420-023-01500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
The failure of melanoma immunotherapy can be mediated by immunosuppression in the tumor microenvironment (TME), and insufficient activation of effector T cells against the tumor. Here, we show that inhibition of galectin-3 (gal-3) enhances the infiltration of T cells in TME and improves the sensitivity of anti-PD-L1 therapy. We identify that RNF8 downregulated the expression of gal-3 by K48-polyubiquitination and promoted gal-3 degradation via the ubiquitin-proteasome system. RNF8 deficiency in the host but sufficiency in implanted melanoma results in immune exclusion and tumor progression due to the upregulation of gal-3. Upregulation of gal-3 decreased the immune cell infiltration by restricting IL-12 and IFN-γ. Inhibition of gal-3 reverses immunosuppression and induces immune cell infiltration in the tumor microenvironment. Moreover, gal-3 inhibitor treatment can increase the sensitivity of PD-L1 inhibitors via increasing immune cell infiltration and enhancing immune response in tumors. This study reveals a previously unrecognized immunoregulation function of RNF8 and provides a promising strategy for the therapy of "cold" tumors. Tremendous effects of melanoma treatment can be achieved by facilitating immune cell infiltration combined with anti-PD-L1 treatment.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Keren Yang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yutong Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiangwen Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xin Cheng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Rile Wu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
- NHC Key Laboratory of diagnosis and therapy of Gastrointestinal Tumor, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Spain L, Coulton A, Lobon I, Rowan A, Schnidrig D, Shepherd ST, Shum B, Byrne F, Goicoechea M, Piperni E, Au L, Edmonds K, Carlyle E, Hunter N, Renn A, Messiou C, Hughes P, Nobbs J, Foijer F, van den Bos H, Wardenaar R, Spierings DC, Spencer C, Schmitt AM, Tippu Z, Lingard K, Grostate L, Peat K, Kelly K, Sarker S, Vaughan S, Mangwende M, Terry L, Kelly D, Biano J, Murra A, Korteweg J, Lewis C, O'Flaherty M, Cattin AL, Emmerich M, Gerard CL, Pallikonda HA, Lynch J, Mason R, Rogiers A, Xu H, Huebner A, McGranahan N, Al Bakir M, Murai J, Naceur-Lombardelli C, Borg E, Mitchison M, Moore DA, Falzon M, Proctor I, Stamp GW, Nye EL, Young K, Furness AJ, Pickering L, Stewart R, Mahadeva U, Green A, Larkin J, Litchfield K, Swanton C, Jamal-Hanjani M, Turajlic S. Late-Stage Metastatic Melanoma Emerges through a Diversity of Evolutionary Pathways. Cancer Discov 2023; 13:1364-1385. [PMID: 36977461 PMCID: PMC10236155 DOI: 10.1158/2159-8290.cd-22-1427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma. SIGNIFICANCE Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA. See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Lavinia Spain
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander Coulton
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
| | - Irene Lobon
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Desiree Schnidrig
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Scott T.C. Shepherd
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Benjamin Shum
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fiona Byrne
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maria Goicoechea
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Elisa Piperni
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lewis Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Kim Edmonds
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Nikki Hunter
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Christina Messiou
- The Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, Kensington and Chelsea, United Kingdom
| | - Peta Hughes
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jaime Nobbs
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Charlotte Spencer
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Zayd Tippu
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Kema Peat
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Sarah Sarker
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | - Lauren Terry
- The Royal Marsden Hospital, London, United Kingdom
| | - Denise Kelly
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Aida Murra
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | | | - Anne-Laure Cattin
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Max Emmerich
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- St. John's Institute of Dermatology, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - Camille L. Gerard
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Precision Oncology Center, Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Joanna Lynch
- The Royal Marsden Hospital, London, United Kingdom
| | - Robert Mason
- Gold Coast University Hospital, Queensland, Australia
| | - Aljosja Rogiers
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Hang Xu
- The Francis Crick Institute, London, United Kingdom
| | - Ariana Huebner
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
| | - Jun Murai
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
- Drug Discovery Technology Laboratories, Ono Pharmaceutical Co., Ltd. Osaka, Japan
| | | | - Elaine Borg
- University College London Hospital, London, United Kingdom
| | | | - David A. Moore
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mary Falzon
- University College London Hospital, London, United Kingdom
| | - Ian Proctor
- University College London Hospital, London, United Kingdom
| | | | - Emma L. Nye
- The Francis Crick Institute, London, United Kingdom
| | - Kate Young
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrew J.S. Furness
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, Kensington and Chelsea, United Kingdom
| | | | - Ruby Stewart
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ula Mahadeva
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Anna Green
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - James Larkin
- Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Kevin Litchfield
- Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals, London, United Kingdom
| | | | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
- Skin and Renal Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
25
|
Dong Y, Gao Q, Chen Y, Zhang Z, Du Y, Liu Y, Zhang G, Li S, Wang G, Chen X, Liu H, Han L, Ye Y. Identification of CircRNA signature associated with tumor immune infiltration to predict therapeutic efficacy of immunotherapy. Nat Commun 2023; 14:2540. [PMID: 37137884 PMCID: PMC10156742 DOI: 10.1038/s41467-023-38232-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Circular RNAs (circRNAs) play important roles in the regulation of cancer. However, the clinical implications and regulatory networks of circRNAs in cancer patients receiving immune checkpoint blockades (ICB) have not been fully elucidated. Here, we characterize circRNA expression profiles in two independent cohorts of 157 ICB-treated advanced melanoma patients and reveal overall overexpression of circRNAs in ICB non-responders in both pre-treatment and early during therapy. Then, we construct circRNA-miRNA-mRNA regulatory networks to reveal circRNA-related signaling pathways in the context of ICB treatment. Further, we construct an ICB-related circRNA signature (ICBcircSig) score model based on progression-free survival-related circRNAs to predict immunotherapy efficacy. Mechanistically, the overexpression of ICBcircSig circTMTC3 and circFAM117B could increase PD-L1 expression via the miR-142-5p/PD-L1 axis, thus reducing T cell activity and leading to immune escape. Overall, our study characterizes circRNA profiles and regulatory networks in ICB-treated patients, and highlights the clinical utility of circRNAs as predictive biomarkers of immunotherapy.
Collapse
Affiliation(s)
- Yu Dong
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Lin Gang Laboratory, Shanghai, 200025, China
| | - Qian Gao
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200433, P. R. China
| | - Yanhua Du
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Guangxiong Zhang
- Lin Gang Laboratory, Shanghai, 200025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 201620, China
| | - Gaoyang Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiang Chen
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China.
| | - Hong Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
26
|
Alam MM, Gower T, Jiang M, Oppenheim JJ, Yang D. A Therapeutic Vaccine in Combination with Cyclic GMP-AMP Cures More Differentiated Melanomas in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1428-1436. [PMID: 36947147 PMCID: PMC10121855 DOI: 10.4049/jimmunol.2200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
We have identified a combinational immunotherapy termed TheraVac vaccine (TheraVac) that can cure multiple large established mouse tumors, but it failed to cure melanoma in mice. TheraVac consists of an immunostimulating arm containing an agonist (HMGN1 [N1]) for TLR4 and an agonist (R848) for TLR7/8 that synergize to activate tumor-infiltrating dendritic cells (DCs) and promote Th1 immune responses. The second arm uses an immune checkpoint blockade, anti-PDL-1, to diminish tumor-associated immunosuppression. In this study, we investigated supplementation of TheraVac by a stimulator of IFN genes (STING) agonist, cyclic GMP-AMP (cGAMP), because together they synergize in activating DCs and produced more immunostimulating IL-12p70 and TNF-α cytokines. The synergistic activation and maturation of DCs is dependent on the activation of tank binding kinase-1 (TBK1). Treatment of three different melanin-producing mouse melanomas (B16F1, M3, and M4) with intratumoral delivery of cGAMP and TheraVac eradicated 60-80% of these melanomas. Immunoprofiling of M3 tumor treated with TheraVac plus cGAMP showed an increase in CD8+ CTLs and macrophages in the tumor. There was also a marked increase of CD4, CD8 effector and memory T cells and generation of functional tumor-specific CTLs in tumor-draining lymph nodes. The resultant tumor-free mice were selectively resistant to subsequent challenge with the same tumors, indicating long-term tumor-specific protective immunity. Overall, our findings have important implications for clinical trials with a combination of these immunotherapeutics to cure melanin-producing human melanomas, without the need for exogenous tumor Ags and no clear toxic effects in mice.
Collapse
Affiliation(s)
- Md Masud Alam
- Cellular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Timothy Gower
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mengmeng Jiang
- Cellular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joost J Oppenheim
- Cellular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - De Yang
- Cellular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
27
|
Wakefield L, Agarwal S, Tanner K. Preclinical models for drug discovery for metastatic disease. Cell 2023; 186:1792-1813. [PMID: 37059072 DOI: 10.1016/j.cell.2023.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Abstract
Despite many advances, metastatic disease remains essentially uncurable. Thus, there is an urgent need to better understand mechanisms that promote metastasis, drive tumor evolution, and underlie innate and acquired drug resistance. Sophisticated preclinical models that recapitulate the complex tumor ecosystem are key to this process. We begin with syngeneic and patient-derived mouse models that are the backbone of most preclinical studies. Second, we present some unique advantages of fish and fly models. Third, we consider the strengths of 3D culture models for resolving remaining knowledge gaps. Finally, we provide vignettes on multiplexed technologies to advance our understanding of metastatic disease.
Collapse
Affiliation(s)
- Lalage Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Gruen C, Yang HH, Sassano A, Wu E, Gopalan V, Marie KL, Castro A, Mehrabadi FR, Wu CH, Church I, Needle GA, Smith C, Chin S, Ebersole J, Marcelus C, Fon A, Liu H, Malikic S, Sahinalp C, Carter H, Hannenhalli S, Day CP, Lee MP, Merlino G, Pérez-Guijarro E. Melanoma clonal subline analysis uncovers heterogeneity-driven immunotherapy resistance mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535074. [PMID: 37333132 PMCID: PMC10274874 DOI: 10.1101/2023.04.03.535074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Intratumoral heterogeneity (ITH) can promote cancer progression and treatment failure, but the complexity of the regulatory programs and contextual factors involved complicates its study. To understand the specific contribution of ITH to immune checkpoint blockade (ICB) response, we generated single cell-derived clonal sublines from an ICB-sensitive and genetically and phenotypically heterogeneous mouse melanoma model, M4. Genomic and single cell transcriptomic analyses uncovered the diversity of the sublines and evidenced their plasticity. Moreover, a wide range of tumor growth kinetics were observed in vivo , in part associated with mutational profiles and dependent on T cell-response. Further inquiry into melanoma differentiation states and tumor microenvironment (TME) subtypes of untreated tumors from the clonal sublines demonstrated correlations between highly inflamed and differentiated phenotypes with the response to anti-CTLA-4 treatment. Our results demonstrate that M4 sublines generate intratumoral heterogeneity at both levels of intrinsic differentiation status and extrinsic TME profiles, thereby impacting tumor evolution during therapeutic treatment. These clonal sublines proved to be a valuable resource to study the complex determinants of response to ICB, and specifically the role of melanoma plasticity in immune evasion mechanisms.
Collapse
|
29
|
Kato S, Maeda Y, Sugiyama D, Watanabe K, Nishikawa H, Hinohara K. The cancer epigenome: Non-cell autonomous player in tumor immunity. Cancer Sci 2023; 114:730-740. [PMID: 36468774 PMCID: PMC9986067 DOI: 10.1111/cas.15681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of the tumor-intrinsic epigenetic circuit is a key driver event for the development of cancer. Accumulating evidence suggests that epigenetic and/or genetic drivers stimulate intrinsic oncogenic pathways as well as extrinsic factors that modulate the immune system. These modulations indeed shape the tumor microenvironment (TME), allowing pro-oncogenic factors to become oncogenic, thereby contributing to cancer development and progression. Here we review the epigenetic dysregulation arising in cancer cells that disseminates throughout the TME and beyond. Recent CRISPR screening has elucidated key epigenetic drivers that play important roles in the proliferation of cancer cells (intrinsic) and inhibition of antitumor immunity (extrinsic), which lead to the development and progression of cancer. These epigenetic players can serve as promising targets for cancer therapy as a dual (two-in-one)-targeted approach. Considering the interplay between cancer and the immune system as a key determinant of immunotherapy, we discuss a novel lineage-tracing technology that enables longitudinal monitoring of cancer and immune phenotypic heterogeneity and fate paths during cancer development, progression, and therapeutic interventions.
Collapse
Affiliation(s)
- Shinichiro Kato
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Maeda
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Research Institute, Tokyo, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Watanabe
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Research Institute, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Research Institute, Tokyo, Japan.,Institute for Advanced Study, Nagoya University, Nagoya, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Study, Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
Sahu A, Wang X, Munson P, Klomp JP, Wang X, Gu SS, Han Y, Qian G, Nicol P, Zeng Z, Wang C, Tokheim C, Zhang W, Fu J, Wang J, Nair NU, Rens JA, Bourajjaj M, Jansen B, Leenders I, Lemmers J, Musters M, van Zanten S, van Zelst L, Worthington J, Liu JS, Juric D, Meyer CA, Oubrie A, Liu XS, Fisher DE, Flaherty KT. Discovery of Targets for Immune-Metabolic Antitumor Drugs Identifies Estrogen-Related Receptor Alpha. Cancer Discov 2023; 13:672-701. [PMID: 36745048 PMCID: PMC9975674 DOI: 10.1158/2159-8290.cd-22-0244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 02/07/2023]
Abstract
Drugs that kill tumors through multiple mechanisms have the potential for broad clinical benefits. Here, we first developed an in silico multiomics approach (BipotentR) to find cancer cell-specific regulators that simultaneously modulate tumor immunity and another oncogenic pathway and then used it to identify 38 candidate immune-metabolic regulators. We show the tumor activities of these regulators stratify patients with melanoma by their response to anti-PD-1 using machine learning and deep neural approaches, which improve the predictive power of current biomarkers. The topmost identified regulator, ESRRA, is activated in immunotherapy-resistant tumors. Its inhibition killed tumors by suppressing energy metabolism and activating two immune mechanisms: (i) cytokine induction, causing proinflammatory macrophage polarization, and (ii) antigen-presentation stimulation, recruiting CD8+ T cells into tumors. We also demonstrate a wide utility of BipotentR by applying it to angiogenesis and growth suppressor evasion pathways. BipotentR (http://bipotentr.dfci.harvard.edu/) provides a resource for evaluating patient response and discovering drug targets that act simultaneously through multiple mechanisms. SIGNIFICANCE BipotentR presents resources for evaluating patient response and identifying targets for drugs that can kill tumors through multiple mechanisms concurrently. Inhibition of the topmost candidate target killed tumors by suppressing energy metabolism and effects on two immune mechanisms. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Avinash Sahu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Xiaoman Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Phillip Munson
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Xiaoqing Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shengqing Stan Gu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ya Han
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gege Qian
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Phillip Nicol
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chenfei Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wubing Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jingxin Fu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jin Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Bas Jansen
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | | | - Jaap Lemmers
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | - Mark Musters
- Lead Pharma, Kloosterstraat, Oss, the Netherlands
| | | | | | | | - Jun S. Liu
- Department of Statistics, Harvard University, Cambridge, Massachusetts
| | - Dejan Juric
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Clifford A. Meyer
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - X. Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David E. Fisher
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Keith T. Flaherty
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
31
|
Liu Y, Yu L, Liang Y, Cheng X, Jiang S, Yu H, Zhang Z, Lu L, Qu B, Chen Y, Zhang X. Research landscape and trends of melanoma immunotherapy: A bibliometric analysis. Front Oncol 2023; 12:1024179. [PMID: 36698407 PMCID: PMC9868470 DOI: 10.3389/fonc.2022.1024179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Immunotherapy for lung cancer has been a hot research area for years. This bibliometric analysis was intended to present research trends on melanoma immunotherapy. Method On April 1, 2022, the authors identified 2,109 papers on melanoma immunotherapy using the Web of Science and extracted their general information and the total number of citations. The authors then conducted a bibliometric analysis to present the research landscape, clarify the research trends, and determine the most cited papers (top-papers) as well as major journals on melanoma immunotherapy. Subsequently, recent research hotspots were identified by analyzing the latest articles in major journals. Results The total and median number of citations of these 2,109 papers on melanoma immunotherapy was 137,686 and 11, respectively. "Improved survival with ipilimumab in patients with metastatic melanoma" by Hodi et al. was the most cited paper (9,824 citations). Among the journals, the top-paper number (16), average citations per paper (2,510.7), and top-papers rate (100%) of New England Journal of Medicine were the highest. Corresponding authors represented the USA took part in most articles (784). Since 2016, the hottest research area has changed from CTLA-4 to PD-1. Conclusions This bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on 2,109 relevant publications, and further suggests future research directions. The researchers can benefit in selecting journals and in finding potential collaborators. This study can help researchers gain a comprehensive impression of the research landscape, historical development, and current hotspots in melanoma immunotherapy and can provide inspiration for future research.
Collapse
Affiliation(s)
- Yanhao Liu
- *Correspondence: Xiaotao Zhang, ; Yanhao Liu,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Michielon E, de Gruijl TD, Gibbs S. From simplicity to complexity in current melanoma models. Exp Dermatol 2022; 31:1818-1836. [PMID: 36103206 PMCID: PMC10092692 DOI: 10.1111/exd.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Despite the recent impressive clinical success of immunotherapy against melanoma, development of primary and adaptive resistance against immune checkpoint inhibitors remains a major issue in a large number of treated patients. This highlights the need for melanoma models that replicate the tumor's intricate dynamics in the tumor microenvironment (TME) and associated immune suppression to study possible resistance mechanisms in order to improve current and test novel therapeutics. While two-dimensional melanoma cell cultures have been widely used to perform functional genomics screens in a high-throughput fashion, they are not suitable to answer more complex scientific questions. Melanoma models have also been established in a variety of experimental (humanized) animals. However, due to differences in physiology, such models do not fully represent human melanoma development. Therefore, fully human three-dimensional in vitro models mimicking melanoma cell interactions with the TME are being developed to address this need for more physiologically relevant models. Such models include melanoma organoids, spheroids, and reconstructed human melanoma-in-skin cultures. Still, while major advances have been made to complement and replace animals, these in vitro systems have yet to fully recapitulate human tumor complexity. Lastly, technical advancements have been made in the organ-on-chip field to replicate functions and microstructures of in vivo human tissues and organs. This review summarizes advancements made in understanding and treating melanoma and specifically aims to discuss the progress made towards developing melanoma models, their applications, limitations, and the advances still needed to further facilitate the development of therapeutics.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Haddad AF, Young JS, Gill S, Aghi MK. Resistance to immune checkpoint blockade: Mechanisms, counter-acting approaches, and future directions. Semin Cancer Biol 2022; 86:532-541. [PMID: 35276342 PMCID: PMC9458771 DOI: 10.1016/j.semcancer.2022.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Immunotherapies seek to unleash the immune system against cancer cells. While a variety of immunotherapies exist, one of the most commonly used is immune checkpoint blockade, which refers to the use of antibodies to interfere with immunosuppressive signaling through immune checkpoint molecules. Therapies against various checkpoints have had success in the clinic across cancer types. However, the efficacy of checkpoint inhibitors has varied across different cancer types and non-responsive patient populations have emerged. Non-responders to these therapies have highlighted the importance of understanding underlying mechanisms of resistance in order to predict which patients will respond and to tailor individual treatment paradigms. In this review we discuss the literature surrounding tumor mediated mechanisms of immune checkpoint resistance. We also describe efforts to overcome resistance and combine checkpoint inhibitors with additional immunotherapies. Finally, we provide insight into the future of immune checkpoint blockade, including the need for improved preclinical modeling and predictive biomarkers to facilitate personalized cancer treatments for patients.
Collapse
Affiliation(s)
| | | | | | - Manish K. Aghi
- Corresponding author at: Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave, M-779, San Francisco, CA 94143-0112, USA. (M.K. Aghi)
| |
Collapse
|
34
|
Karz A, Dimitrova M, Kleffman K, Alvarez-Breckenridge C, Atkins MB, Boire A, Bosenberg M, Brastianos P, Cahill DP, Chen Q, Ferguson S, Forsyth P, Glitza Oliva IC, Goldberg SB, Holmen SL, Knisely JPS, Merlino G, Nguyen DX, Pacold ME, Perez-Guijarro E, Smalley KSM, Tawbi HA, Wen PY, Davies MA, Kluger HM, Mehnert JM, Hernando E. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2022; 35:554-572. [PMID: 35912544 PMCID: PMC10171356 DOI: 10.1111/pcmr.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy, and targeted therapy. Advances in the basic scientific understanding of MBM, including the role of astrocytes and metabolic adaptations to the brain microenvironment, are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single-cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in the coming years and render novel treatment approaches that might improve MBM patient outcomes.
Collapse
Affiliation(s)
- Alcida Karz
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Maya Dimitrova
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Kevin Kleffman
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | | | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Marcus Bosenberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Priscilla Brastianos
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jonathan P S Knisely
- Meyer Cancer Center and Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Don X Nguyen
- Department of Pathology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael E Pacold
- Department of Radiation Oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Eva Perez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, United States, Boston, Massachusetts, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Janice M Mehnert
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| |
Collapse
|
35
|
Zhu EY, Riordan JD, Vanneste M, Henry MD, Stipp CS, Dupuy AJ. SRC-RAC1 signaling drives drug resistance to BRAF inhibition in de-differentiated cutaneous melanomas. NPJ Precis Oncol 2022; 6:74. [PMID: 36271142 PMCID: PMC9587254 DOI: 10.1038/s41698-022-00310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Rare gain-of-function mutations in RAC1 drive drug resistance to targeted BRAF inhibition in cutaneous melanoma. Here, we show that wildtype RAC1 is a critical driver of growth and drug resistance, but only in a subset of melanomas with elevated markers of de-differentiation. Similarly, SRC inhibition also selectively sensitized de-differentiated melanomas to BRAF inhibition. One possible mechanism may be the suppression of the de-differentiated state, as SRC and RAC1 maintained markers of de-differentiation in human melanoma cells. The functional differences between melanoma subtypes suggest that the clinical management of cutaneous melanoma can be enhanced by the knowledge of differentiation status. To simplify the task of classification, we developed a binary classification strategy based on a small set of ten genes. Using this gene set, we reliably determined the differentiation status previously defined by hundreds of genes. Overall, our study informs strategies that enhance the precision of BRAFi by discovering unique vulnerabilities of the de-differentiated cutaneous melanoma subtype and creating a practical method to resolve differentiation status.
Collapse
Affiliation(s)
- Eliot Y Zhu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Cancer Biology Graduate Program, The University of Iowa, Iowa City, IA, USA.,The Medical Scientist Training Program, The University of Iowa, Iowa City, IA, USA
| | - Jesse D Riordan
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
| | - Marion Vanneste
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Michael D Henry
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Christopher S Stipp
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
36
|
Xu Z, Zhang L, Wang M, Huang Y, Zhang M, Li S, Wang L, Li K, Hou Y. A novel subtype to predict prognosis and treatment response with DNA driver methylation-transcription in ovarian cancer. Epigenomics 2022; 14:1073-1088. [PMID: 36200265 DOI: 10.2217/epi-2022-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To identify a novel subtype with DNA driver methylation-transcriptomic multiomics and predict prognosis and therapy response in serous ovarian cancer (SOC). Methods: SOC cohorts with both mRNA and methylation were collected, and DNA driver methylation (DNAme) was identified with the MithSig method. A novel prognostic subtype was developed by integrating the information on DNAme and prognosis-regulated DNAme-associated mRNA by similarity network fusion. Results: 43 overlapped DNAme were identified in three independent cohorts. SOC patients were categorized into three distinct subtypes by integrated multiomics. There were differences in prognosis, tumor microenvironment and response to therapy among the subtypes. Conclusion: This study identified 43 DNAmes and proposes a novel subtype toward personalized chemotherapy and immunotherapy for SOC patients based on multiomics.
Collapse
Affiliation(s)
- Zhenyi Xu
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Liuchao Zhang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Meng Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yue Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Min Zhang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Shuang Li
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Liuying Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Kang Li
- Department of Epidemiology & Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yan Hou
- Department of Biostatistics, Peking University, Beijing, 100000, China
| |
Collapse
|
37
|
Patterson A, Auslander N. Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma. Nat Commun 2022; 13:5151. [PMID: 36123351 PMCID: PMC9485158 DOI: 10.1038/s41467-022-32838-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023] Open
Abstract
Immune Checkpoint Inhibitor (ICI) therapy has revolutionized treatment for advanced melanoma; however, only a subset of patients benefit from this treatment. Despite considerable efforts, the Tumor Mutation Burden (TMB) is the only FDA-approved biomarker in melanoma. However, the mechanisms underlying TMB association with prolonged ICI survival are not entirely understood and may depend on numerous confounding factors. To identify more interpretable ICI response biomarkers based on tumor mutations, we train classifiers using mutations within distinct biological processes. We evaluate a variety of feature selection and classification methods and identify key mutated biological processes that provide improved predictive capability compared to the TMB. The top mutated processes we identify are leukocyte and T-cell proliferation regulation, which demonstrate stable predictive performance across different data cohorts of melanoma patients treated with ICI. This study provides biologically interpretable genomic predictors of ICI response with substantially improved predictive performance over the TMB.
Collapse
Affiliation(s)
- Andrew Patterson
- Genomics and Computational Biology Graduate Group, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Noam Auslander
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
39
|
Zhang J, Li F, Yin Y, Liu N, Zhu M, Zhang H, Liu W, Yang M, Qin S, Fan X, Yang Y, Zhang K, Yu F. Alpha radionuclide-chelated radioimmunotherapy promoters enable local radiotherapy/chemodynamic therapy to discourage cancer progression. Biomater Res 2022; 26:44. [PMID: 36076298 PMCID: PMC9461185 DOI: 10.1186/s40824-022-00290-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/28/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Astatine-211 is an α-emitter with high-energy α-ray and high cytotoxicity for cancer cells. However, the targeted alpha therapy (TAT) also suffers from insufficient systematic immune activation, resulting in tumor metastasis and relapse. Combined immune checkpoint blockade (ICB) with chemodynamic therapy (CDT) could boost antitumor immunity, which may magnify the immune responses of TAT. This study aims to discourage tumor metastasis and relapse by tri-model TAT-CDT-ICB strategy. METHODS We successfully designed Mn-based radioimmunotherapy promoters (211At-ATE-MnO2-BSA), which are consisting of 211At, MnO2 and bovine serum albumin (BSA). The efficacy of 211At-ATE-MnO2-BSA was studied as monotherapy or in combination with anti-PD-L1 in both metastatic and relapse models. The immune effects of radioimmunotherapy promoters on cytotoxic T lymphocytes and dendritic cells (DCs) were analyzed by flow cytometry. Enzyme-linked immunosorbent assay and immunofluorescence were used to explore the underlying mechanism. RESULTS Such radioimmunotherapy promoters could not only enhance the therapeutic outcomes of TAT and CDT, but also induce robust anti-cancer immune activity by activating dendritic cells. More intriguingly, 211At-ATE-MnO2-BSA could effectively suppress the growths of primary tumors and distant tumors when combined with immune checkpoint inhibitors. CONCLUSIONS The tri-model TAT-CDT-ICB strategy provides a long-term immunological memory, which can protect against tumor rechallenge after eliminating original tumors. Therefore, this work presents a novel approach for TAT-CDT-ICB tri-modal cancer therapy with repressed metastasis and relapse in clinics.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Kun Zhang
- Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
40
|
Al Khamici H, Sanchez VC, Yan H, Cataisson C, Michalowski AM, Yang HH, Li L, Lee MP, Huang J, Yuspa SH. The oxidoreductase CLIC4 is required to maintain mitochondrial function and resistance to exogenous oxidants in breast cancer cells. J Biol Chem 2022; 298:102275. [PMID: 35863434 PMCID: PMC9418444 DOI: 10.1016/j.jbc.2022.102275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023] Open
Abstract
The chloride intracellular channel-4 (CLIC4) is one of the six highly conserved proteins in the CLIC family that share high structural homology with GST-omega in the GST superfamily. While CLIC4 is a multifunctional protein that resides in multiple cellular compartments, the discovery of its enzymatic glutaredoxin-like activity in vitro suggested that it could function as an antioxidant. Here, we found that deleting CLIC4 from murine 6DT1 breast tumor cells using CRISPR enhanced the accumulation of reactive oxygen species (ROS) and sensitized cells to apoptosis in response to H2O2 as a ROS-inducing agent. In intact cells, H2O2 increased the expression of both CLIC4 mRNA and protein. In addition, increased superoxide production in 6DT1 cells lacking CLIC4 was associated with mitochondrial hyperactivity including increased mitochondrial membrane potential and mitochondrial organelle enlargement. In the absence of CLIC4, however, H2O2-induced apoptosis was associated with low expression and degradation of the antiapoptotic mitochondrial protein Bcl2 and the negative regulator of mitochondrial ROS, UCP2. Furthermore, transcriptomic profiling of H2O2-treated control and CLIC4-null cells revealed upregulation of genes associated with ROS-induced apoptosis and downregulation of genes that sustain mitochondrial functions. Accordingly, tumors that formed from transplantation of CLIC4-deficient 6DT1 cells were highly necrotic. These results highlight a critical role for CLIC4 in maintaining redox-homeostasis and mitochondrial functions in 6DT1 cells. Our findings also raise the possibility of targeting CLIC4 to increase cancer cell sensitivity to chemotherapeutic drugs that are based on elevating ROS in cancer cells.
Collapse
Affiliation(s)
- Heba Al Khamici
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Vanesa C Sanchez
- Office of Science, Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hualong Yan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Luowei Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA.
| |
Collapse
|
41
|
Pozzi S, Scomparin A, Ben-Shushan D, Yeini E, Ofek P, Nahmad AD, Soffer S, Ionescu A, Ruggiero A, Barzel A, Brem H, Hyde TM, Barshack I, Sinha S, Ruppin E, Weiss T, Madi A, Perlson E, Slutsky I, Florindo HF, Satchi-Fainaro R. MCP-1/CCR2 axis inhibition sensitizes the brain microenvironment against melanoma brain metastasis progression. JCI Insight 2022; 7:154804. [PMID: 35980743 PMCID: PMC9536270 DOI: 10.1172/jci.insight.154804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Development of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells. In vivo pharmacological blockade of MCP-1 or molecular knockout of CCR2/CCR4 increased the infiltration of cytotoxic CD8+ T cells and attenuated the immunosuppressive phenotype of the BME as shown by decreased infiltration of Tregs and tumor-associated macrophages/microglia in several models of intracranially injected MBM. These in vivo strategies led to decreased MBM outgrowth and prolonged the overall survival of the mice. Our findings highlight the therapeutic potential of inhibiting interactions between BME and melanoma cells for the treatment of this disease.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alessio D Nahmad
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Soffer
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Barzel
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States of America
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - Sanju Sinha
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | - Tomer Weiss
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Nair NU, Cheng K, Naddaf L, Sharon E, Pal LR, Rajagopal PS, Unterman I, Aldape K, Hannenhalli S, Day CP, Tabach Y, Ruppin E. Cross-species identification of cancer resistance-associated genes that may mediate human cancer risk. SCIENCE ADVANCES 2022; 8:eabj7176. [PMID: 35921407 PMCID: PMC9348801 DOI: 10.1126/sciadv.abj7176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cancer is a predominant disease across animals. We applied a comparative genomics approach to systematically characterize genes whose conservation levels correlate positively (PC) or negatively (NC) with cancer resistance estimates across 193 vertebrates. Pathway analysis reveals that NC genes are enriched for metabolic functions and PC genes in cell cycle regulation, DNA repair, and immune response, pointing to their corresponding roles in mediating cancer risk. We find that PC genes are less tolerant to loss-of-function (LoF) mutations, are enriched in cancer driver genes, and are associated with germline mutations that increase human cancer risk. Their relevance to cancer risk is further supported via the analysis of mouse functional genomics and cancer mortality of zoo mammals' data. In sum, our study describes a cross-species genomic analysis pointing to candidate genes that may mediate human cancer risk.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Kuoyuan Cheng
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Lamis Naddaf
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Elad Sharon
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Lipika R. Pal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Padma S. Rajagopal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| |
Collapse
|
43
|
Andrews MC, Oba J, Wu CJ, Zhu H, Karpinets T, Creasy CA, Forget MA, Yu X, Song X, Mao X, Robertson AG, Romano G, Li P, Burton EM, Lu Y, Sloane RS, Wani KM, Rai K, Lazar AJ, Haydu LE, Bustos MA, Shen J, Chen Y, Morgan MB, Wargo JA, Kwong LN, Haymaker CL, Grimm EA, Hwu P, Hoon DSB, Zhang J, Gershenwald JE, Davies MA, Futreal PA, Bernatchez C, Woodman SE. Multi-modal molecular programs regulate melanoma cell state. Nat Commun 2022; 13:4000. [PMID: 35810190 PMCID: PMC9271073 DOI: 10.1038/s41467-022-31510-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.
Collapse
Affiliation(s)
- Miles C. Andrews
- grid.1002.30000 0004 1936 7857Department of Medicine, Monash University, Melbourne, VIC Australia ,grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Junna Oba
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.26091.3c0000 0004 1936 9959Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Chang-Jiun Wu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Haifeng Zhu
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Tatiana Karpinets
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Caitlin A. Creasy
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marie-Andrée Forget
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Xiaoxing Yu
- grid.26091.3c0000 0004 1936 9959Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Xingzhi Song
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Xizeng Mao
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - A. Gordon Robertson
- grid.434706.20000 0004 0410 5424Canada’s Michael Smith Genome Sciences Center, BC Cancer, Vancouver, BC Canada ,Dxige Research Inc., Courtenay, BC Canada
| | - Gabriele Romano
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Peng Li
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Elizabeth M. Burton
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yiling Lu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Robert Szczepaniak Sloane
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Khalida M. Wani
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Kunal Rai
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Alexander J. Lazar
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lauren E. Haydu
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Matias A. Bustos
- grid.416507.10000 0004 0450 0360Departments of Translational Molecular Medicine and Genomic Sequencing Center, St John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA USA
| | - Jianjun Shen
- grid.240145.60000 0001 2291 4776Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX USA
| | - Yueping Chen
- grid.240145.60000 0001 2291 4776Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX USA
| | - Margaret B. Morgan
- grid.240145.60000 0001 2291 4776Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jennifer A. Wargo
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lawrence N. Kwong
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Cara L. Haymaker
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Elizabeth A. Grimm
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Patrick Hwu
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.468198.a0000 0000 9891 5233H Lee Moffitt Cancer Center, Tampa, FL USA
| | - Dave S. B. Hoon
- grid.416507.10000 0004 0450 0360Departments of Translational Molecular Medicine and Genomic Sequencing Center, St John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA USA
| | - Jianhua Zhang
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jeffrey E. Gershenwald
- grid.240145.60000 0001 2291 4776Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Michael A. Davies
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - P. Andrew Futreal
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Chantale Bernatchez
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Biologics Development, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Scott E. Woodman
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
44
|
Roelofsen L, Kaptein P, Thommen D. Multimodal predictors for precision immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2022; 14:100071. [PMID: 35755892 PMCID: PMC9216437 DOI: 10.1016/j.iotech.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune checkpoint blockade (ICB) unleashes immune cells to attack tumors, thereby inducing durable clinical responses in many cancer types. The number of patients responding to ICB is modest, however, and combination treatments are likely needed to overcome the multifaceted suppressive pathways active in the tumor microenvironment (TME). The development of precision immuno-oncology (IO) strategies allowing to identify the optimal treatment of each patient upfront is therefore a pivotal question in the field of cancer immunotherapy. Although single-parameter biomarkers can enrich for response to ICB, their predictive capacity is far from perfect and their clinical utility is complicated by their continuous nature and the difficulty to determine cut-offs that reliably distinguish responding patients from those without clinical benefit. The antitumor immune response that is induced or reinvigorated by immunotherapy is a complex cascade of events requiring the interplay of multiple cell types. To move towards precision IO, it is therefore essential to understand for each individual patient at which level(s) the antitumor immune response failed and how it can be therapeutically restored. Holistic approaches to profile human tumor microenvironments and treatment-induced responses may help to identify critical rate-limiting factors of antitumor immunity. These factors need to be translated into clinically applicable multimodal predictors that allow for the selection of the best IO treatment. This review discusses strategies to (i) create such holistic views of antitumor immunity, (ii) identify measurable parameters capturing the complexity of a patient's immune status, and (iii) facilitate the incorporation of precision IO research in the clinic.
Collapse
Affiliation(s)
| | | | - D.S. Thommen
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Dinavahi SS, Chen YC, Punnath K, Berg A, Herlyn M, Foroutan M, Huntington ND, Robertson GP. Targeting WEE1/AKT restores p53-dependent NK cell activation to induce immune checkpoint blockade responses in 'cold' melanoma. Cancer Immunol Res 2022; 10:757-769. [PMID: 35439317 DOI: 10.1158/2326-6066.cir-21-0587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/19/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Immunotherapy has revolutionized cancer treatment. Unfortunately, most tumor types do not respond to immunotherapy due to a lack of immune infiltration or 'cold' tumor microenvironment (TME), a contributing factor in treatment failure. Activation of the p53 pathway can increase apoptosis of cancer cells, leading to enhanced antigen presentation, and can stimulate natural killer (NK) cells through expression of stress ligands. Therefore, modulation of the p53 pathway in cancer cells with wildtype TP53 has the potential to enhance tumor immunogenicity to NK cells, produce an inflammatory TME, and ultimately lead to tumor regression. In this study, we report simultaneous targeting of the AKT/WEE1 pathways is a novel and tolerable approach to synergistically induce p53 activation to inhibit tumor development. This approach reduced the growth of melanoma cells and induced plasma membrane surface localization of the ER-resident protein calreticulin, an indicator of immunogenic cell death (ICD). Increase in ICD led to enhanced expression of stress ligands recognized by the activating NK cell receptor NKG2D, promoting tumor lysis. WEE1/AKT inhibition resulted in recruitment and activation of immune cells, including NK cells, in the TME, triggering an inflammatory cascade that transformed the 'cold' TME of B16F10 melanoma into a 'hot' TME that responded to anti-PD-1, resulting in complete regression of established tumors. These results suggest that AKT/WEE1 pathway inhibition is a potential approach to broaden the utility of class-leading anti-PD-1 therapies by enhancing p53-mediated, NK cell-dependent tumor inflammation and supports the translation of this novel approach to further improve response rates for metastatic melanoma.
Collapse
Affiliation(s)
| | - Yu-Chi Chen
- Penn State College of Medicine, Hershey, PA, United States
| | - Kishore Punnath
- Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Arthur Berg
- Pennsylvania State University College of Medicine, Hershey, PA, United States
| | | | | | | | - Gavin P Robertson
- Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
46
|
Wang K, Patkar S, Lee JS, Gertz EM, Robinson W, Schischlik F, Crawford DR, Schäffer AA, Ruppin E. Deconvolving Clinically Relevant Cellular Immune Cross-talk from Bulk Gene Expression Using CODEFACS and LIRICS Stratifies Patients with Melanoma to Anti-PD-1 Therapy. Cancer Discov 2022; 12:1088-1105. [PMID: 34983745 PMCID: PMC8983586 DOI: 10.1158/2159-8290.cd-21-0887] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a complex mixture of cell types whose interactions affect tumor growth and clinical outcome. To discover such interactions, we developed CODEFACS (COnfident DEconvolution For All Cell Subsets), a tool deconvolving cell type-specific gene expression in each sample from bulk expression, and LIRICS (Ligand-Receptor Interactions between Cell Subsets), a statistical framework prioritizing clinically relevant ligand-receptor interactions between cell types from the deconvolved data. We first demonstrate the superiority of CODEFACS versus the state-of-the-art deconvolution method CIBERSORTx. Second, analyzing The Cancer Genome Atlas, we uncover cell type-specific ligand-receptor interactions uniquely associated with mismatch-repair deficiency across different cancer types, providing additional insights into their enhanced sensitivity to anti-programmed cell death protein 1 (PD-1) therapy compared with other tumors with high neoantigen burden. Finally, we identify a subset of cell type-specific ligand-receptor interactions in the melanoma TME that stratify survival of patients receiving anti-PD-1 therapy better than some recently published bulk transcriptomics-based methods. SIGNIFICANCE This work presents two new computational methods that can deconvolve a large collection of bulk tumor gene expression profiles into their respective cell type-specific gene expression profiles and identify cell type-specific ligand-receptor interactions predictive of response to immune-checkpoint blockade therapy. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Kun Wang
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
| | - Sushant Patkar
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
- Department of Computer Science, University of Maryland, College Park, MD
| | - Joo Sang Lee
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
- Department of Artificial Intelligence & Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - E. Michael Gertz
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
| | - Welles Robinson
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
- Department of Computer Science, University of Maryland, College Park, MD
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
| | - David R. Crawford
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | | | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
| |
Collapse
|
47
|
Benboubker V, Boivin F, Dalle S, Caramel J. Cancer Cell Phenotype Plasticity as a Driver of Immune Escape in Melanoma. Front Immunol 2022; 13:873116. [PMID: 35432344 PMCID: PMC9012258 DOI: 10.3389/fimmu.2022.873116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapies blocking negative immune checkpoints are now approved for the treatment of a growing number of cancers. However, even in metastatic melanoma, where sustained responses are observed, a significant number of patients still do not respond or display resistance. Increasing evidence indicates that non-genetic cancer cell-intrinsic alterations play a key role in resistance to therapies and immune evasion. Cancer cell plasticity, mainly associated with the epithelial-to-mesenchymal transition in carcinoma, relies on transcriptional, epigenetic or translational reprogramming. In melanoma, an EMT-like dedifferentiation process is characterized by the acquisition of invasive or neural crest stem cell-like features. Herein, we discuss recent findings on the specific roles of phenotypic reprogramming of melanoma cells in driving immune evasion and resistance to immunotherapies. The mechanisms by which dedifferentiated melanoma cells escape T cell lysis, mediate T cell exclusion or remodel the immune microenvironment will be detailed. The expanded knowledge on tumor cell plasticity in melanoma should contribute to the development of novel therapeutic combination strategies to further improve outcomes in this deadly metastatic cancer.
Collapse
Affiliation(s)
- Valentin Benboubker
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| | - Félix Boivin
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
- Dermatology Unit, Hospices Civils de Lyon, CH Lyon Sud, Pierre Bénite Cedex, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, “Cancer cell Plasticity in Melanoma” team, Lyon, France
| |
Collapse
|
48
|
Capparelli C, Purwin TJ, Glasheen M, Caksa S, Tiago M, Wilski N, Pomante D, Rosenbaum S, Nguyen MQ, Cai W, Franco-Barraza J, Zheng R, Kumar G, Chervoneva I, Shimada A, Rebecca VW, Snook AE, Hookim K, Xu X, Cukierman E, Herlyn M, Aplin AE. Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nat Commun 2022; 13:1381. [PMID: 35296667 PMCID: PMC8927161 DOI: 10.1038/s41467-022-28801-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.
Collapse
Affiliation(s)
- Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Timothy J. Purwin
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - McKenna Glasheen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Signe Caksa
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Manoela Tiago
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Nicole Wilski
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Danielle Pomante
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Sheera Rosenbaum
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Mai Q. Nguyen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Weijia Cai
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Janusz Franco-Barraza
- grid.249335.a0000 0001 2218 7820Cancer Signaling and Epigenetics Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| | - Richard Zheng
- grid.265008.90000 0001 2166 5843Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Gaurav Kumar
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Inna Chervoneva
- grid.265008.90000 0001 2166 5843Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Ayako Shimada
- grid.265008.90000 0001 2166 5843Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Vito W. Rebecca
- grid.251075.40000 0001 1956 6678Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104 USA ,grid.21107.350000 0001 2171 9311Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Adam E. Snook
- grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Kim Hookim
- grid.265008.90000 0001 2166 5843Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Xiaowei Xu
- grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Edna Cukierman
- grid.249335.a0000 0001 2218 7820Cancer Signaling and Epigenetics Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Andrew E. Aplin
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
49
|
Bok I, Angarita A, Douglass SM, Weeraratna AT, Karreth FA. A Series of BRAF- and NRAS-Driven Murine Melanoma Cell Lines with Inducible Gene Modulation Capabilities. JID INNOVATIONS 2022; 2:100076. [PMID: 35146482 PMCID: PMC8819036 DOI: 10.1016/j.xjidi.2021.100076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
Murine cancer cell lines are powerful research tools to complement studies in genetically engineered mouse models. We have established 21 melanoma cell lines from embryonic stem cell-genetically engineered mouse models driven by alleles that model the most frequent genetic alterations in human melanoma. In addition, these cell lines harbor regulatory alleles for the genomic integration of transgenes and the regulation of expression of such transgenes. In this study, we report a comprehensive characterization of these cell lines. Specifically, we validated melanocytic origin, driver allele recombination and expression, and activation of the oncogenic MAPK and protein kinase B pathways. We further tested tumor formation in syngeneic immunocompetent recipients as well as the functionality of the integrated Tet-ON system and recombination-mediated cassette exchange homing cassette. Finally, by deleting the transcription factor MAFG with an inducible CRISPR/Cas9 approach, we show the utility of the regulatory alleles for candidate gene modulation. These cell lines will be a valuable resource for studying melanoma biology and therapy.
Collapse
Key Words
- BCC, BrafV600E Cdkn2aΔ/Δ
- BPP, BrafV600E PtenΔ/Δ
- CHC, collagen homing cassette
- Dox, doxycycline
- ESC, embryonic stem cell
- FBS, fetal bovine serum
- GEMM, genetically engineered mouse model
- NCC, NrasQ61R Cdkn2aΔ/Δ
- NPP, NrasQ61R PtenΔ/Δ
- RMCE, recombination-mediated cassette exchange
- sgRNA, single-guide RNA
Collapse
Affiliation(s)
- Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Cancer Biology PhD program, Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Ariana Angarita
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Stephen M. Douglass
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, University, Baltimore, Maryland, USA
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
50
|
Wu Z, Lei K, Xu S, He J, Shi E. Establishing a Prognostic Model Based on Ulceration and Immune Related Genes in Melanoma Patients and Identification of EIF3B as a Therapeutic Target. Front Immunol 2022; 13:824946. [PMID: 35273605 PMCID: PMC8901887 DOI: 10.3389/fimmu.2022.824946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Ulceration and immune status are independent prognostic factors for survival in melanoma patients. Herein univariate Cox regression analysis revealed 53 ulcer-immunity-related DEGs. We performed consensus clustering to divide The Cancer Genome Atlas (TCGA) cohort (n = 467) into three subtypes with different prognosis and biological functions, followed by validation in three merged Gene Expression Omnibus (GEO) cohorts (n = 399). Multiomics approach was used to assess differences among the subtypes. Cluster 3 showed relatively lesser amplification and expression of immune checkpoint genes. Moreover, Cluster 3 lacked immune-related pathways and immune cell infiltration, and had higher proportion of non-responders to immunotherapy. We also constructed a prognostic model based on ulceration and immune related genes in melanoma. EIF3B was a hub gene in the intersection between genes specific to Cluster 3 and those pivotal for melanoma growth (DepMap, https://depmap.org/portal/download/). High EIF3B expression in TCGA and GEO datasets was related to worst prognosis. In vitro models revealed that EIF3B knockdown inhibited melanoma cell migration and invasion, and decreased TGF-β1 level in supernatant compared with si-NC cells. EIF3B expression was negatively correlated with immune-related signaling pathways, immune cell gene signatures, and immune checkpoint gene expression. Moreover, its low expression could predict partial response to anti-PD-1 immunotherapy. To summarize, we established a prognostic model for melanoma and identified the role of EIF3B in melanoma progression and immunotherapy resistance development.
Collapse
Affiliation(s)
- Zhengquan Wu
- Walter Brendel Center for Experimental Medicine, University of Munich, Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Munich, Munich, Germany
| | - Ke Lei
- Department of Dermatology, The Second People’s Hospital of Chengdu, Chengdu, China
| | - Sheng Xu
- Patient Monitor and Life Supporting (PMLS), Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China
| | - Jiali He
- Department of General Outpatient, Shen zhen Healthcare Committee Office, Shenzhen, China
| | - Enxian Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Munich, Munich, Germany
| |
Collapse
|