1
|
Frigon A, Lecomte CG. Stepping up after spinal cord injury: negotiating an obstacle during walking. Neural Regen Res 2025; 20:1919-1929. [PMID: 39254549 PMCID: PMC11691478 DOI: 10.4103/nrr.nrr-d-24-00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 09/11/2024] Open
Abstract
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles. After spinal cord injury, stepping over an obstacle becomes challenging. Stepping over an obstacle requires sensorimotor transformations in several structures of the brain, including the parietal cortex, premotor cortex, and motor cortex. Sensory information and planning are transformed into motor commands, which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory, coordinate the limbs, and maintain balance. After spinal cord injury, bidirectional communication between the brain and spinal cord is disrupted and animals, including humans, fail to voluntarily modify limb trajectory to step over an obstacle. Therefore, in this review, we discuss the neuromechanical control of stepping over an obstacle, why it fails after spinal cord injury, and how it recovers to a certain extent.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Doncel-Pérez E, Guízar-Sahagún G, Grijalva-Otero I. From single to combinatorial therapies in spinal cord injuries for structural and functional restoration. Neural Regen Res 2025; 20:660-670. [PMID: 38886932 PMCID: PMC11433899 DOI: 10.4103/nrr.nrr-d-23-01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities; the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.
Collapse
Affiliation(s)
- Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos de Toledo, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| | - Gabriel Guízar-Sahagún
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| | - Israel Grijalva-Otero
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| |
Collapse
|
3
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2024. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Guo XJ, He LW, Chang JQ, Su WN, Feng T, Gao YM, Wu YY, Zhao C, Rao JS. Epidural electrical stimulation combined with photobiomodulation restores hindlimb motor function in rats with thoracic spinal cord injury. Exp Neurol 2024; 385:115112. [PMID: 39667656 DOI: 10.1016/j.expneurol.2024.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Epidural electrical stimulation (EES) could restore motor function of paralyzed limbs of patients with spinal cord injury (SCI). However, its invasiveness limits its application in early stage of injury. Photobiomodulation (PBM) utilizes infrared light for percutaneous irradiation of the spinal cord to protect nerve tissue, delay muscle atrophy, and can be applied in early stage of SCI due to its non-invasiveness. This study tested the effect of the combination of EES and PBM on promoting motor function recovery in SCI rats. Severe contusion was induced at the T9 spinal segment in female rats, EES (applied to the L2 and S1 spinal cord segments) with treadmill training was conducted one week after the injury, and PBM percutaneous irradiation started at the injured segment on the day of surgery. In the third week post-injury, electromyographic and gait performance during training were recorded. Besides, the muscles of the hind limbs and the spinal cord on the caudal side of the injured segment were extracted. The results demonstrate that compared to the EES- or PBM-only group, this combined therapy led to several indicators returning to intact levels, including behavioral and electrophysiological, the gait patterns was also closer to intact rats. Additionally, the combined treatment group showed minimal muscle atrophy and maximal preservation of the injured spinal cord on the caudal side, with this histological improvement correlated with motor function recovery. Taken together, our results showed that this combined therapy was a more effective treatment for improving motor dysfunction after SCI which could protect the damaged spinal cord and promote the recovery of motor function in rats with SCI.
Collapse
Affiliation(s)
- Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jia-Qi Chang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Wen-Nan Su
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yi-Meng Gao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuan-Yuan Wu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China.
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
5
|
Wu N, Wu Z, Zhang C, Wu C, Huo X, Bai J, Zhang G. Retrograde evoked compound action potentials as an alternative for close-loop spinal cord stimulation. Sci Rep 2024; 14:30141. [PMID: 39627483 PMCID: PMC11615308 DOI: 10.1038/s41598-024-81775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Evoked compound action potential (ECAP) is an important parameter in close-loop spinal cord stimulation (SCS). The recording electrode is typically positioned proximal to the stimulation electrode to capture the antegrade ECAP signals generated by ascending fibers. However, relatively little research has been conducted on retrograde ECAPs. This study investigated retrograde ECAPs using custom-made epidural electrodes in 11 adult male Sprague-Dawley rats. Results show that the average motor threshold (MT) and ECAP threshold (ECAPT) for 11 anesthetized rats were 218.18 ± 69.54 μA and 107.27 ± 27.96 μA, respectively. The ECAP amplitudes increased with increasement of the stimulation current and pulse width (PW), and were larger in awake rats than in anesthetized rats. Additionally, aside from ECAPs recorded by a commercial electrophysiological recorder, ECAPs were also recorded by a custom-made amplifier for the purpose of future long-term implantation, but the custom-made amplifier showed lower signal to noise ratio than the commercial amplifier. In conclusion, this study illustrates that retrograde ECAP may also be considered as a feedback signal for close-loop SCS and more sophisticated ECAP recording circuits are needed to form a close-loop system.
Collapse
Affiliation(s)
- Nianshuang Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhu Bai
- Department of Spine and Spinal Cord Surgery, Beijing Bo'ai Hospital, Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Lawler NB, Bhatt U, Agarwal V, Evans CW, Kaluskar P, Amos SE, Chen K, Yao Y, Jiang H, Choi YS, Zheng M, Spagnoli D, Suarez‐Martinez I, Zetterlund PB, Wallace VP, Harvey AR, Hodgetts SI, Iyer KS. Transcriptomic Analysis Reveals the Heterogeneous Role of Conducting Films Upon Electrical Stimulation. Adv Healthc Mater 2024; 13:e2400364. [PMID: 39221662 PMCID: PMC11670273 DOI: 10.1002/adhm.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Central nervous system (CNS) injuries and neurodegenerative diseases have markedly poor prognoses and can result in permanent dysfunction due to the general inability of CNS neurons to regenerate. Differentiation of transplanted stem cells has emerged as a therapeutic avenue to regenerate tissue architecture in damaged areas. Electrical stimulation is a promising approach for directing the differentiation outcomes and pattern of outgrowth of transplanted stem cells, however traditional inorganic bio-electrodes can induce adverse effects such as inflammation. This study demonstrates the implementation of two organic thin films, a polymer/reduced graphene oxide nanocomposite (P(rGO)) and PEDOT:PSS, that have favorable properties for implementation as conductive materials for electrical stimulation, as well as an inorganic indium tin oxide (ITO) conductive film. Transcriptomic analysis reveals that electrical stimulation improves neuronal differentiation of SH-SY5Y cells on all three films, with the greatest effect for P(rGO). Unique material- and electrical stimuli-mediated effects are observed, associated with differentiation, cell-substrate adhesion, and translation. The work demonstrates that P(rGO) and PEDOT:PSS are highly promising organic materials for the development of biocompatible, conductive scaffolds that will enhance electrically-aided stem cell therapeutics for CNS injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicholas B. Lawler
- School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- School of PhysicsMathematics and ComputingThe University of Western AustraliaPerthWA6009Australia
- ARC Training Centre for Next‐Gen Technologies in Biomedical AnalysisSchool of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Uditi Bhatt
- School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- ARC Training Centre for Next‐Gen Technologies in Biomedical AnalysisSchool of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD)School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Cameron W. Evans
- School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- ARC Training Centre for Next‐Gen Technologies in Biomedical AnalysisSchool of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Priya Kaluskar
- School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- ARC Training Centre for Next‐Gen Technologies in Biomedical AnalysisSchool of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- Perron Institute for Neurological and Translational SciencePerthWA6009Australia
- Centre for Orthopaedic ResearchThe UWA Medical SchoolThe University of Western AustraliaPerthWA6009Australia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Sebastian E. Amos
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Kai Chen
- School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- ARC Training Centre for Next‐Gen Technologies in Biomedical AnalysisSchool of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- Department of ChemistryThe University of Hong KongHong KongChina
| | - Yin Yao
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Haibo Jiang
- School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- ARC Training Centre for Next‐Gen Technologies in Biomedical AnalysisSchool of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- Department of ChemistryThe University of Hong KongHong KongChina
| | - Yu Suk Choi
- ARC Training Centre for Next‐Gen Technologies in Biomedical AnalysisSchool of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Minghao Zheng
- Perron Institute for Neurological and Translational SciencePerthWA6009Australia
- Centre for Orthopaedic ResearchThe UWA Medical SchoolThe University of Western AustraliaPerthWA6009Australia
| | - Dino Spagnoli
- School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| | | | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD)School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Vincent P. Wallace
- School of PhysicsMathematics and ComputingThe University of Western AustraliaPerthWA6009Australia
| | - Alan R. Harvey
- Perron Institute for Neurological and Translational SciencePerthWA6009Australia
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Stuart I. Hodgetts
- Perron Institute for Neurological and Translational SciencePerthWA6009Australia
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - K. Swaminathan Iyer
- School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
- ARC Training Centre for Next‐Gen Technologies in Biomedical AnalysisSchool of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| |
Collapse
|
7
|
Cho N, Squair JW, Aureli V, James ND, Bole-Feysot L, Dewany I, Hankov N, Baud L, Leonhartsberger A, Sveistyte K, Skinnider MA, Gautier M, Laskaratos A, Galan K, Goubran M, Ravier J, Merlos F, Batti L, Pages S, Berard N, Intering N, Varescon C, Watrin A, Duguet L, Carda S, Bartholdi KA, Hutson TH, Kathe C, Hodara M, Anderson MA, Draganski B, Demesmaeker R, Asboth L, Barraud Q, Bloch J, Courtine G. Hypothalamic deep brain stimulation augments walking after spinal cord injury. Nat Med 2024; 30:3676-3686. [PMID: 39623087 DOI: 10.1038/s41591-024-03306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 12/15/2024]
Abstract
A spinal cord injury (SCI) disrupts the neuronal projections from the brain to the region of the spinal cord that produces walking, leading to various degrees of paralysis. Here, we aimed to identify brain regions that steer the recovery of walking after incomplete SCI and that could be targeted to augment this recovery. To uncover these regions, we constructed a space-time brain-wide atlas of transcriptionally active and spinal cord-projecting neurons underlying the recovery of walking after incomplete SCI. Unexpectedly, interrogation of this atlas nominated the lateral hypothalamus (LH). We demonstrate that glutamatergic neurons located in the LH (LHVglut2) contribute to the recovery of walking after incomplete SCI and that augmenting their activity improves walking. We translated this discovery into a deep brain stimulation therapy of the LH (DBSLH) that immediately augmented walking in mice and rats with SCI and durably increased recovery through the reorganization of residual lumbar-terminating projections from brainstem neurons. A pilot clinical study showed that DBSLH immediately improved walking in two participants with incomplete SCI and, in conjunction with rehabilitation, mediated functional recovery that persisted when DBSLH was turned off. There were no serious adverse events related to DBSLH. These results highlight the potential of targeting specific brain regions to maximize the engagement of spinal cord-projecting neurons in the recovery of neurological functions after SCI. Further trials must establish the safety and efficacy profile of DBSLH, including potential changes in body weight, psychological status, hormonal profiles and autonomic functions.
Collapse
Affiliation(s)
- Newton Cho
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jordan W Squair
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Viviana Aureli
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicholas D James
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Léa Bole-Feysot
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Inssia Dewany
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Hankov
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Laetitia Baud
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Anna Leonhartsberger
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Kristina Sveistyte
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Michael A Skinnider
- Lewis-Sigler Institute of Integrative Genomics and Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Matthieu Gautier
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Achilleas Laskaratos
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Katia Galan
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jimmy Ravier
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Frederic Merlos
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Laura Batti
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Stéphane Pages
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Nadia Berard
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nadine Intering
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Camille Varescon
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | | | - Stefano Carda
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kay A Bartholdi
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Thomas H Hutson
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Claudia Kathe
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Michael Hodara
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Mark A Anderson
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Bogdan Draganski
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin Demesmaeker
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Leonie Asboth
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Quentin Barraud
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Grégoire Courtine
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Zhang X, Lu Y, Zhang B, Li H, Yao Q, Lim J, Wei Y, He K, Zuo C, Sui Y, Ma B, Ran M, Pan Y, Wang G, Li L. Voluntary walking related joint movement training with targeted epidural electrical stimulation enabled neural recovery for individuals with spinal cord injury. Sci Bull (Beijing) 2024; 69:3507-3511. [PMID: 39366832 DOI: 10.1016/j.scib.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/25/2024] [Accepted: 08/02/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Xi Zhang
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China; School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Lu
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Boyang Zhang
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China; School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Hongda Li
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China; School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Qingyu Yao
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China; School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Junhong Lim
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China; School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Yunyue Wei
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Kaibo He
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Chenhui Zuo
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Yanan Sui
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Bozhi Ma
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China; School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Mingshan Ran
- Department of Rehabilitation Medicine, Peking University Shougang Hospital, Beijing 100144, China
| | - Yu Pan
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Luming Li
- National Engineering Research Center of Neuromodulation, Tsinghua University, Beijing 100084, China; School of Aerospace Engineering, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing 100084, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
9
|
Beaubois R, Cheslet J, Ikeuchi Y, Branchereau P, Levi T. Real-time multicompartment Hodgkin-Huxley neuron emulation on SoC FPGA. Front Neurosci 2024; 18:1457774. [PMID: 39600652 PMCID: PMC11588749 DOI: 10.3389/fnins.2024.1457774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
Advanced computational models and simulations to unravel the complexities of brain function have known a growing interest in recent years in the field of neurosciences, driven by significant technological progress in computing platforms. Multicompartment models, which capture the detailed morphological and functional properties of neural circuits, represent a significant advancement in this area providing more biological coherence than single compartment modeling. These models serve as a cornerstone for exploring the neural basis of sensory processing, learning paradigms, adaptive behaviors, and neurological disorders. Yet, the high complexity of these models presents a challenge for their real-time implementation, which is essential for exploring alternative therapies for neurological disorders such as electroceutics that rely on biohybrid interaction. Here, we present an accessible, user-friendly, and real-time emulator for multicompartment Hodgkin-Huxley neurons on SoC FPGA. Our system enables real-time emulation of multicompartment neurons while emphasizing cost-efficiency, flexibility, and ease of use. We showcase an implementation utilizing a technology that remains underrepresented in the current literature for this specific application. We anticipate that our system will contribute to the enhancement of computation platforms by presenting an alternative architecture for multicompartment computation. Additionally, it constitutes a step toward developing neuromorphic-based neuroprostheses for bioelectrical therapeutics through an embedded real-time platform running at a similar timescale to biological networks.
Collapse
Affiliation(s)
- Romain Beaubois
- IMS, UMR5218, CNRS, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- JSPS International Research Fellow, The University of Tokyo, Tokyo, Japan
| | - Jérémy Cheslet
- IMS, UMR5218, CNRS, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | | | - Timothee Levi
- IMS, UMR5218, CNRS, University of Bordeaux, Talence, France
| |
Collapse
|
10
|
Guo J, Cao J, Wu J, Gao J. Electrical stimulation and conductive materials: electrophysiology-based treatment for spinal cord injury. Biomater Sci 2024; 12:5704-5721. [PMID: 39403758 DOI: 10.1039/d4bm00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Spinal cord injury is a serious disease of the central nervous system. The electrophysiological properties of the spinal cord that are essential to maintaining neurotransmission can be impaired after the injury. Therefore, electrophysiological evaluation is becoming an important indicator of the injury extent or the therapeutic outcomes by reflecting the potential propagation of neural pathways. On the other hand, the repair of damaged nerves is one of the main goals of spinal cord injury treatment. Growing research interest has been concentrated on developing effective therapeutic solutions to restore the normal electrophysiological function of the injured spinal cord by using conductive materials and/or exerting the merits of electrical stimulation. Accordingly, this review introduces the current common electrophysiological evaluation in spinal cord injury. Then the cutting-edge therapeutic strategies aiming at electrophysiological improvement in spinal cord injury are summarized. Finally, the challenges and future prospects of neural restoration after spinal cord injury are presented.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian Cao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, China
| |
Collapse
|
11
|
Rybka V, Sediva K, Spackova L, Kolar P, Bradac O, Kriz J. Epidural spinal cord stimulation can facilitate ejaculatory response in spinal cord injury individuals: a report of two cases. Int J Neurosci 2024; 134:1357-1364. [PMID: 37878354 DOI: 10.1080/00207454.2023.2273772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND The recovery of autonomic functions and the ability to reproduce in particular is of the highest priority to individuals with spinal cord injury (SCI). The potential of epidural spinal cord stimulation (ESCS) for promoting recovery of sensorimotor functions in the chronic phase of SCI has long been studied. In recent years, several studies have emerged confirming the positive effect of ESCS also on the cardiovascular system and neurogenic bladder and bowel. However, the potential of ESCS in restoring sexual function, especially ejaculation, has not yet been addressed. CASE REPORT Two cases of people with chronic sensorimotor complete SCI in the 4th thoracic spinal segment are presented. Both men were also diagnosed with severe erectile dysfunction and anejaculation. Thanks to ESCS, Participant 1 successfully restored the ejaculatory reflex using PVS in his home environment. His outcome was subsequently verified under clinical conditions. During ESCS, Participant 1 was also able to achieve ejaculation by masturbation; moreover, he conceived a child naturally without the need for IVF. In Participant 2, we then demonstrated the same effect of ESCS on the restoration of the ejaculatory reflex when targeting the stimulation to the same spinal segment. CONCLUSION This is the first report on the potential of ESCS for restoring the ability to ejaculate in individuals with complete SCI. Confirmation of these results could significantly reduce the need for assisted reproduction and improve the quality of life of men after SCI in the future.
Collapse
Affiliation(s)
- Vojtech Rybka
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
- Department of Rehabilitation and Sports Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Kristyna Sediva
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Lenka Spackova
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Kolar
- Department of Rehabilitation and Sports Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Ondrej Bradac
- Department of Neurosurgery for Children and Adults, 2nd Medical Faculty, Charles University and University Hospital Motol, Prague, Czechia
| | - Jiri Kriz
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
- Department of Orthopaedics and Traumatology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czechia
| |
Collapse
|
12
|
Scheuren PS, Kramer JLK. Next-gen spinal cord injury clinical trials: lessons learned and opportunities for future success. EBioMedicine 2024; 109:105381. [PMID: 39383609 PMCID: PMC11490878 DOI: 10.1016/j.ebiom.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Despite promising basic science discoveries and a surge in clinical trials, the quest for effective treatments that restore neurological function after spinal cord injury lags on. While "failed" in a conventional sense, emerging solutions to longstanding challenges represent promising steps towards a future with effective interventions. In this personal view, we highlight clinical trials implementing new solutions and their impact on the field. Our perspective is that, ultimately, the integration of shared knowledge, adaptive designs, and a deeper understanding of the intricacies of spinal cord injury holds promise of unlocking of major breakthroughs, leading to improved outcomes for people with spinal cord injury.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Mu Z, Qin J, Zhou X, Wang K. Synergistic effects of human umbilical cord mesenchymal stem cells/neural stem cells and epidural electrical stimulation on spinal cord injury rehabilitation. Sci Rep 2024; 14:26090. [PMID: 39478010 PMCID: PMC11526023 DOI: 10.1038/s41598-024-75754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological condition marked by a complex pathology leading to irreversible functional loss, which current treatments fail to improve. Epidural electrical stimulation (EES) shows promise in alleviating pathological pain, regulating hemodynamic disturbances, and enhancing motor function by modulating residual interneurons in the lower spinal cord. Cell transplantation (CT), especially using human umbilical cord mesenchymal stem cells (hUCMSCs) and neural stem cells (NSCs), has significantly improved sensory and motor recovery in SCI. However, the limitations of single treatments have driven the exploration of a multifaceted strategy, combining various modalities to optimize recovery at different stages. To comprehensively investigate the effectiveness of in situ transplantation of hUCMSCs/NSCs combined with subacute epidural electrical stimulation in a murine spinal cord crush injury model, providing valuable references for future animal studies and clinical research. In this study, we first examined neural stem cell changes via mRNA sequencing in an in vitro Transwell co-culture model. We then explored cell interaction mechanisms using proliferation assays, differentiation assays, and neuron complexity analysis. For animal experiments, 40 C57BL/6 mice were assigned to four groups (Injury/EES/CT/Combination). Histological evaluations employed HE and immunofluorescence staining, while electrophysiological and behavioral tests assessed motor recovery. Quantitative data were reported as mean ± standard error, with statistical analyses performed using GraphPad Prism and SPSS. Initially, we found that NSCs in the in vitro co-culture model showed a unique expression profile of differentially expressed genes (DEGs) compared to controls. GO/KEGG analysis indicated these DEGs were mainly linked to cell differentiation and growth factor secretion pathways. Neuronal and astrocytic markers further confirmed enhanced NSC differentiation and neuronal maturation in the co-culture model. In vivo, live imaging and human nuclei immunofluorescence staining revealed that transplanted cells persisted for some time post-transplantation. Histological analysis showed that during acute inflammation, both the stem cell and combined therapy groups significantly inhibited microglial polarization. In the chronic phase, these groups reduced fibrotic scar formation and encouraged astrocytic bridging. Behavioral tests, including swimming and gait analysis, demonstrated that combined CT and EES therapy was more effective than either treatment alone. In summary, the combined therapy offers a promising approach for spinal cord injury treatment, providing superior outcomes over individual treatments. Our findings underscore the potential of a combined treatment approach utilizing stem cells transplantation and EES as an effective strategy for the comprehensive management of spinal cord crush injury in mice. This integrated approach holds promise for enhancing functional recovery and improving the quality of life for individuals with spinal cord injury (SCI).
Collapse
Affiliation(s)
- Zhiping Mu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Jiaodi Qin
- First Clinical Institute, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaohua Zhou
- Chongqing Shizhu Tujia Autonomous County Traditional Chinese Medicine Hospital, Chongqing, 409199, People's Republic of China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Wang Z, Brannigan M, Friedrich L, Blackmore MG. Chronic activation of corticospinal tract neurons after pyramidotomy injury enhances neither behavioral recovery nor axonal sprouting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620314. [PMID: 39484429 PMCID: PMC11527142 DOI: 10.1101/2024.10.25.620314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Modulation of neural activity is a promising strategy to influence the growth of axons and improve behavioral recovery after damage to the central nervous system. The benefits of neuromodulation likely depend on optimization across multiple input parameters. Here we used a chemogenetic approach to achieve continuous, long-term elevation of neural activity in murine corticospinal tract (CST) neurons. To specifically target CST neurons, AAV2-retro-DIO-hM3Dq-mCherry or matched mCherry control was injected to the cervical spinal cord of adult Emx1-Cre transgenic mice. Pilot studies verified efficient transgene expression in CST neurons and effective elevation of neural activity as assessed by cFos immunohistochemistry. In subsequent experiments mice were administered either DIO-hM3Dq-mCherry or control DIO-mCherry, were pre-trained on a pellet retrieval task, and then received unilateral pyramidotomy injury to selectively ablate the right CST. Mice then received continual clozapine via drinking water and weekly testing on the pellet retrieval task, followed by cortical injection of a viral tracer to assess cross-midline sprouting by the spared CST. After sacrifice at eight weeks post-injury immunohistochemistry for cFos verified elevated CST activity in hM3Dq-treated animals and immunohistochemistry for PKC-gamma verified unilateral ablation of the CST in all animals. Despite the chronic elevation of CST activity, however, both groups showed similar levels of cross-midline CST sprouting and similar success in the pellet retrieval task. These data indicate that continuous, long-term elevation of activity that is targeted specifically to CST neurons does not affect compensatory sprouting or directed forelimb movements.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201
| | - Matthew Brannigan
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201
| | - Logan Friedrich
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201
| | - Murray G. Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201
| |
Collapse
|
15
|
Villani M, Avaltroni P, Scordo G, Rubeca D, Kreynin P, Bereziy E, Berger D, Cappellini G, Sylos-Labini F, Lacquaniti F, Ivanenko Y. Evaluation of EMG patterns in children during assisted walking in the exoskeleton. Front Neurosci 2024; 18:1461323. [PMID: 39513047 PMCID: PMC11541598 DOI: 10.3389/fnins.2024.1461323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
While exoskeleton technology is becoming more and more common for gait rehabilitation in children with neurological disorders, evaluation of gait performance still faces challenges and concerns. The reasoning behind evaluating the spinal locomotor output is that, while exoskeleton's guidance forces create the desired walking kinematics, they also affect sensorimotor interactions, which may lead to an abnormal spatiotemporal integration of activity in particular spinal segments and the risk of abnormalities in gait recovery. Therefore, traditional indicators based on kinematic or kinetic characteristics for optimizing exoskeleton controllers for gait rehabilitation may be supplemented by performance measures associated with the neural control mechanisms. The purpose of this study on a sample of children was to determine the basic features of lower limb muscle activity and to implement a method for assessing the neuromechanics of spinal locomotor output during exoskeleton-assisted gait. To this end, we assessed the effects of a robotic exoskeleton (ExoAtlet Bambini) on gait performance, by recording electromyographic activity of leg muscles and analyzing the corresponding spinal motor pool output. A slower walking setting (about 0.2 m/s) was chosen on the exoskeleton. The results showed that, even with slower walking, the level of muscle activation was roughly comparable during exoskeleton-assisted gait and normal walking. This suggests that, despite full assistance for leg movements, the child's locomotor controllers can interpret step-related afferent information promoting essential activity in leg muscles. This is most likely explained by the active nature of stepping in the exoskeleton (the child was not fully relaxed, experienced full foot loading and needed to maintain the upper trunk posture). In terms of the general muscle activity patterns, we identified notable variations for the proximal leg muscles, coactivation of the lumbar and sacral motor pools, and weak propulsion from the distal extensors at push-off. These changes led to the lack of characteristic lumbosacral oscillations of the center of motoneuron activity, normally associated with the pendulum mechanism of bipedal walking. This work shows promise as a useful technique for analyzing exoskeleton performance to help children develop their natural gait pattern and to guide system optimization in the future for inclusion into clinical care.
Collapse
Affiliation(s)
- Margherita Villani
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Priscilla Avaltroni
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Scordo
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Damiana Rubeca
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Denise Berger
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Germana Cappellini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
16
|
Liu J, Zhang W, Zhou Y, Xu L, Chu YH, Jia F. An open-access lumbosacral spine MRI dataset with enhanced spinal nerve root structure resolution. Sci Data 2024; 11:1131. [PMID: 39406785 PMCID: PMC11480038 DOI: 10.1038/s41597-024-03919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Spinal cord injury (SCI) profoundly affects an individual's ability to move. Fortunately, recent advancements in neuromodulation, particularly the spatio-temporal epidural electrical stimulation (EES) targeting the spinal nerve roots, promoted rapid rehabilitation of SCI patients. Such neuromodulation techniques require precise anatomical modelling of spinal cord. However, the lack of spine imaging datasets, especially high-quality magnetic resonance imaging (MRI) datasets highlighting nerve roots, hinders the translation of EES into medical practice. To address this problem, we introduce an open-access lumbosacral spine MRI dataset acquired in 14 healthy adults, using constructive interference in steady state (CISS) sequence, double echo steady state (DESS) sequence, and T2-weight turbo spin echo (T2-TSE) sequence, with enhanced nerve root resolution. The dataset also includes the corresponding anatomical annotations of nerve roots and the final reconstructed 3D spinal cord models. The quality of our dataset is assessed using image quality metrics implemented in MRI quality control tool (MRIQC). Our dataset provides a valuable platform to promote a wide range of spinal cord neuromodulation research and collaboration among neurorehabilitation engineers.
Collapse
Affiliation(s)
- Jionghui Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wenqi Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yuxing Zhou
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Linhao Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ying-Hua Chu
- MR Research Collaboration Team, Siemens Healthineers Ltd., Shanghai, China
| | - Fumin Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Parker SR, Calvert JS, Darie R, Jang J, Govindarajan LN, Angelino K, Chitnis G, Iyassu Y, Shaaya E, Fridley JS, Serre T, Borton DA, McLaughlin BL. An active electronic, high-density epidural paddle array for chronic spinal cord neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596250. [PMID: 38853820 PMCID: PMC11160681 DOI: 10.1101/2024.05.29.596250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Objective: Epidural electrical stimulation (EES) has shown promise as both a clinical therapy and research tool for studying nervous system function. However, available clinical EES paddles are limited to using a small number of contacts due to the burden of wires necessary to connect each contact to the therapeutic delivery device, limiting the treatment area or density of epidural electrode arrays. We aimed to eliminate this burden using advanced on-paddle electronics. Approach: We developed a smart EES paddle with a 60-electrode programmable array, addressable using an active electronic multiplexer embedded within the electrode paddle body. The electronics are sealed in novel, ultra-low profile hermetic packaging. We conducted extensive reliability testing on the novel array, including a battery of ISO 10993-1 biocompatibility tests and determination of the hermetic package leak rate. We then evaluated the EES device in vivo, placed on the epidural surface of the ovine lumbosacral spinal cord for 15 months. Main results: The active paddle array performed nominally when implanted in sheep for over 15 months and no device-related malfunctions were observed. The onboard multiplexer enabled bespoke electrode arrangements across, and within, experimental sessions. We identified stereotyped responses to stimulation in lower extremity musculature, and examined local field potential responses to EES using high-density recording bipoles. Finally, spatial electrode encoding enabled machine learning models to accurately perform EES parameter inference for unseen stimulation electrodes, reducing the need for extensive training data in future deep models. Significance: We report the development and chronic large animal in vivo evaluation of a high-density EES paddle array containing active electronics. Our results provide a foundation for more advanced computation and processing to be integrated directly into devices implanted at the neural interface, opening new avenues for the study of nervous system function and new therapies to treat neural injury and dysfunction.
Collapse
|
18
|
Carroll AH, Fakhre E, Quinonez A, Tannous O, Mesfin A. An Update on Spinal Cord Injury and Current Management. JBJS Rev 2024; 12:01874474-202410000-00004. [PMID: 39446982 DOI: 10.2106/jbjs.rvw.24.00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
» Spinal cord injury is associated with increased lifelong cost and decreased life expectancy.» Current treatment guidelines have been limited to studies of small effect sizes and limited availability of randomized control trials.» Recovery is best correlated with the initial American Spinal Injury Association impairment scale grade with A and B less likely to recover regarding ambulation as compared with C and D grades.» Surgical intervention within less than 24 hours, especially in the cervical spine, has been associated with some motor improvement.» The use of mean arterial pressure goals and steroids to maintain perfusion and decrease secondary injury requires further study to elucidate clearer evidence-based results.
Collapse
Affiliation(s)
- Austin H Carroll
- Department of Orthopaedic Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Edward Fakhre
- Department of Orthopaedic Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Alejandro Quinonez
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Oliver Tannous
- Department of Orthopaedic Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Addisu Mesfin
- Department of Orthopaedic Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| |
Collapse
|
19
|
Nierula B, Stephani T, Bailey E, Kaptan M, Pohle LMG, Horn U, Mouraux A, Maess B, Villringer A, Curio G, Nikulin VV, Eippert F. A multichannel electrophysiological approach to noninvasively and precisely record human spinal cord activity. PLoS Biol 2024; 22:e3002828. [PMID: 39480757 PMCID: PMC11527246 DOI: 10.1371/journal.pbio.3002828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024] Open
Abstract
The spinal cord is of fundamental importance for integrative processing in brain-body communication, yet routine noninvasive recordings in humans are hindered by vast methodological challenges. Here, we overcome these challenges by developing an easy-to-use electrophysiological approach based on high-density multichannel spinal recordings combined with multivariate spatial-filtering analyses. These advances enable a spatiotemporal characterization of spinal cord responses and demonstrate a sensitivity that permits assessing even single-trial responses. To furthermore enable the study of integrative processing along the neural processing hierarchy in somatosensation, we expand this approach by simultaneous peripheral, spinal, and cortical recordings and provide direct evidence that bottom-up integrative processing occurs already within the spinal cord and thus after the first synaptic relay in the central nervous system. Finally, we demonstrate the versatility of this approach by providing noninvasive recordings of nociceptive spinal cord responses during heat-pain stimulation. Beyond establishing a new window on human spinal cord function at millisecond timescale, this work provides the foundation to study brain-body communication in its entirety in health and disease.
Collapse
Affiliation(s)
- Birgit Nierula
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tilman Stephani
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Emma Bailey
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Lisa-Marie Geertje Pohle
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Burkhard Maess
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Curio
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Vadim V. Nikulin
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
20
|
Micera S, Foffani G. The expanding horizon of neurotechnology: Is multimodal neuromodulation the future? PLoS Biol 2024; 22:e3002885. [PMID: 39466832 PMCID: PMC11527385 DOI: 10.1371/journal.pbio.3002885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/31/2024] [Indexed: 10/30/2024] Open
Abstract
The clinical applications of neurotechnology are rapidly expanding, and the combination of different approaches could be more effective and precise to treat brain disorders. This Perspective discusses the potential and challenges of "multimodal neuromodulation," which combines modalities such as electrical, magnetic, and ultrasound stimulation.
Collapse
Affiliation(s)
- Silvestro Micera
- Bioelectronics Area and MINE Laboratory, The BioRobotics Institute, and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Neuro-X Institute, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele, Milan, Italy
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| |
Collapse
|
21
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Eldabe S, Nevitt S, Bentley A, Mekhail NA, Gilligan C, Billet B, Staats PS, Maden M, Soliday N, Leitner A, Duarte RV. Response to "Competing Narratives: Moving the Field Forward on Spinal Cord Stimulation". Clin J Pain 2024; 40:557-560. [PMID: 39023036 DOI: 10.1097/ajp.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough
| | - Sarah Nevitt
- Centre for Reviews and Dissemination University of York, York
| | | | - Nagy A Mekhail
- Evidence-Based Pain Management Research, Cleveland Clinic, Cleveland, OH
| | | | | | | | - Michelle Maden
- Department of Health Data Science University of Liverpool, Liverpool, UK
| | - Nicole Soliday
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Angela Leitner
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Rui V Duarte
- Department of Health Data Science University of Liverpool, Liverpool, UK
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| |
Collapse
|
23
|
Wang L, Liu S, Zhao W, Li J, Zeng H, Kang S, Sheng X, Wang L, Fan Y, Yin L. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Adv Healthc Mater 2024; 13:e2303316. [PMID: 38323711 DOI: 10.1002/adhm.202303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.
Collapse
Affiliation(s)
- Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wentai Zhao
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Jiakun Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Haoxuan Zeng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
25
|
Daneshgar S, Hoitz F, Enoka RM. Temporal Variability in Stride Kinematics during the Application of TENS: A Machine Learning Analysis. Med Sci Sports Exerc 2024; 56:1701-1708. [PMID: 38686963 DOI: 10.1249/mss.0000000000003469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
INTRODUCTION The purpose of our report was to use a Random Forest classification approach to predict the association between transcutaneous electrical nerve stimulation (TENS) and walking kinematics at the stride level when middle-aged and older adults performed the 6-min test of walking endurance. METHODS Data from 41 participants (aged 64.6 ± 9.7 yr) acquired in two previously published studies were analyzed with a Random Forest algorithm that focused on upper and lower limb, lumbar, and trunk kinematics. The four most predictive kinematic features were identified and utilized in separate models to distinguish between three walking conditions: burst TENS, continuous TENS, and control. SHAP analysis and linear mixed models were used to characterize the differences among these conditions. RESULTS Modulation of four key kinematic features-toe-out angle, toe-off angle, and lumbar range of motion (ROM) in coronal and sagittal planes-accurately predicted walking conditions for the burst (82% accuracy) and continuous (77% accuracy) TENS conditions compared with control. Linear mixed models detected a significant difference in lumbar sagittal ROM between the TENS conditions. SHAP analysis revealed that burst TENS was positively associated with greater lumbar coronal ROM, smaller toe-off angle, and less lumbar sagittal ROM. Conversely, continuous TENS was associated with less lumbar coronal ROM and greater lumbar sagittal ROM. CONCLUSIONS Our approach identified four kinematic features at the stride level that could distinguish between the three walking conditions. These distinctions were not evident in average values across strides.
Collapse
Affiliation(s)
- Sajjad Daneshgar
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | | | | |
Collapse
|
26
|
Scheffler MS, Martin CA, Dietz V, Faraji AH, Sayenko DG. Synergistic implications of combinatorial rehabilitation approaches using spinal stimulation on therapeutic outcomes in spinal cord injury. Clin Neurophysiol 2024; 165:166-179. [PMID: 39033698 PMCID: PMC11325878 DOI: 10.1016/j.clinph.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this narrative review was to locate and assess recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. We sought to provide relevant knowledge of recent literature and advance understanding on outcomes reported, to better equip those working in neurorehabilitation and neuromodulation. METHODS Articles were selected and analyzed based on study approach, stimulation parameters, outcome measures, and presence of neurophysiological data to support findings. RESULTS This narrative review analyzed 44 recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. Our findings showed that limited research exists regarding such combinatorial approaches, particularly when considering modalities beyond activity-based training. There is also limited consistency in neurophysiological and quality of life outcomes. CONCLUSION Articles involving transcutaneous spinal cord stimulation or epidural spinal cord stimulation with other modalities are limited in the current body of literature. Authors noted variety in approach, sample size, and use of participant perspective. Opportunities are present to add high quality research to this body of literature. SIGNIFICANCE Transcutaneous spinal cord stimulation and epidural spinal cord stimulation are emerging in research as viable avenues for targeting improvement of function after traumatic spinal cord injury, particularly when combined with activity-based training. This body of literature demonstrates viable areas for growth from both neurophysiological and functional perspectives. Further, exploration of novel combinatorial approaches holds potential to offer enhanced contributions to clinical and neurophysiological rehabilitation and research.
Collapse
Affiliation(s)
- Michelle S Scheffler
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Catherine A Martin
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Valerie Dietz
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Micera S, Menciassi A, Cianferotti L, Gruppioni E, Lionetti V. Organ Neuroprosthetics: Connecting Transplanted and Artificial Organs with the Nervous System. Adv Healthc Mater 2024; 13:e2302896. [PMID: 38656615 DOI: 10.1002/adhm.202302896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to treat diseases such as diabetes or hypertension. Here, this study proposes to extend the use of these technologies to (re-)establish the connection between new (transplanted or artificial) organs and the nervous system in order to increase the long-term efficacy and the effective biointegration of these solutions. In this perspective paper, some clinically relevant applications of this approach are briefly described. Then, the choices that neural engineers must implement about the type, implantation location, and closed-loop control algorithms to successfully realize this approach are highlighted. It is believed that these new "organ neuroprostheses" are going to become more and more valuable and very effective solutions in the years to come.
Collapse
Affiliation(s)
- Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Interdisciplinary Research Center Health Science, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Neuro-X Institute, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Arianna Menciassi
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Interdisciplinary Research Center Health Science, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Luisella Cianferotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, 50121, Italy
| | | | - Vincenzo Lionetti
- Interdisciplinary Research Center Health Science, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- UOSVD Anesthesia and Resuscitation, Fondazione Toscana G. Monasterio, Pisa, 56127, Italy
| |
Collapse
|
28
|
Giannotti A, Santanché R, Zinno C, Carpaneto J, Micera S, Riva ER. Characterization of a conductive hydrogel@Carbon fibers electrode as a novel intraneural interface. Bioelectron Med 2024; 10:20. [PMID: 39187894 PMCID: PMC11348655 DOI: 10.1186/s42234-024-00154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Peripheral neural interfaces facilitate bidirectional communication between the nervous system and external devices, enabling precise control for prosthetic limbs, sensory feedback systems, and therapeutic interventions in the field of Bioelectronic Medicine. Intraneural interfaces hold great promise since they ensure high selectivity in communicating only with the desired nerve fascicles. Despite significant advancements, challenges such as chronic immune response, signal degradation over time, and lack of long-term biocompatibility remain critical considerations in the development of such devices. Here we report on the development and benchtop characterization of a novel design of an intraneural interface based on carbon fiber bundles. Carbon fibers possess low impedance, enabling enhanced signal detection and stimulation efficacy compared to traditional metal electrodes. We provided a 3D-stabilizing structure for the carbon fiber bundles made of PEDOT:PSS hydrogel, to enhance the biocompatibility between the carbon fibers and the nervous tissue. We further coated the overall bundles with a thin layer of elastomeric material to provide electrical insulation. Taken together, our results demonstrated that our electrode possesses adequate structural and electrochemical properties to ensure proper stimulation and recording of peripheral nerve fibers and a biocompatible interface with the nervous tissue.
Collapse
Affiliation(s)
- Alice Giannotti
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Ranieri Santanché
- Dipartimento Di Ingegneria Civile E Industriale (DICI), Università Di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Ciro Zinno
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Silvestro Micera
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Bertarelli Foundation Chair in Translational Neuroengineering, ÉcolePolytechniqueFédérale de Lausanne (EPFL), 1007, Lausanne, Switzerland
| | - Eugenio Redolfi Riva
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
- Department of Excellence in Robotics&AI, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
| |
Collapse
|
29
|
Bandres MF, Gomes JL, McPherson JG. Intraspinal microstimulation of the ventral horn has therapeutically relevant cross-modal effects on nociception. Brain Commun 2024; 6:fcae280. [PMID: 39355006 PMCID: PMC11444082 DOI: 10.1093/braincomms/fcae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 10/03/2024] Open
Abstract
Electrical stimulation of spinal networks below a spinal cord injury is a promising approach to restore functions compromised by inadequate and/or inappropriate neural drive. The most translationally successful examples are paradigms intended to increase neural transmission in weakened yet spared descending motor pathways and spinal motoneurons rendered dormant after being severed from their inputs by lesion. Less well understood is whether spinal stimulation is also capable of reducing neural transmission in pathways made pathologically overactive by spinal cord injury. Debilitating spasms, spasticity and neuropathic pain are all common manifestations of hyperexcitable spinal responses to sensory feedback. Whereas spasms and spasticity can often be managed pharmacologically, spinal cord injury-related neuropathic pain is notoriously medically refractory. Interestingly, however, spinal stimulation is a clinically available option for ameliorating neuropathic pain arising from aetiologies other than spinal cord injury, and the limited evidence available to date suggests that it holds considerable promise for reducing spinal cord injury-related neuropathic pain, as well. Spinal stimulation for pain amelioration has traditionally been assumed to modulate sensorimotor networks overlapping with those engaged by spinal stimulation for rehabilitation of movement impairments. Thus, we hypothesize that spinal stimulation intended to increase the ability to move voluntarily may simultaneously reduce transmission in spinal pain pathways. To test this hypothesis, we coupled a rat model of incomplete thoracic spinal cord injury, which results in moderate to severe bilateral movement impairments and spinal cord injury-related neuropathic pain, with in vivo electrophysiological measures of neural transmission in networks of spinal neurons integral to the development and persistence of the neuropathic pain state. We find that when intraspinal microstimulation is delivered to the ventral horn with the intent of enhancing voluntary movement, transmission through nociceptive specific and wide dynamic range neurons is significantly depressed in response to pain-related sensory feedback. By comparison, spinal responsiveness to non-pain-related sensory feedback is largely preserved. These results suggest that spinal stimulation paradigms could be intentionally designed to afford multi-modal therapeutic benefits, directly addressing the diverse, intersectional rehabilitation goals of people living with spinal cord injury.
Collapse
Affiliation(s)
- Maria F Bandres
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jefferson L Gomes
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jacob Graves McPherson
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Program in Neurosciences, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
30
|
Seufert CG, Borutta MC, Regensburger M, Zhao Y, Kinfe T. New Perspectives for Spinal Cord Stimulation in Parkinson's Disease-Associated Gait Impairment: A Systematic Review. Biomedicines 2024; 12:1824. [PMID: 39200289 PMCID: PMC11351408 DOI: 10.3390/biomedicines12081824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's Disease is a neurodegenerative disorder manifesting itself as a hypokinetic movement impairment with postural instability and gait disturbance. In case of failure and/or limited response, deep brain stimulation has been established as an alternative and effective treatment modality. However, a subset of PD patients with gait impairment represents a therapeutic challenge. A systematic review (2000-2023) was performed using PubMed, Embase, Web of Science, Scopus, and Cochrane Library databases to determine the efficacy, stimulation waveform/parameters, spine level, and outcome measures of spinal cord stimulation using different waveforms in PD patients with and without chronic pain. Spinal cord stimulation responsiveness was assessed within the pre-defined follow-up period in three groups (short-term follow-up = 0-3 months; intermediate follow-up = 3-12 months; and long-term follow-up = more than 12 months). In addition, we briefly outline alternative neurostimulation therapies and the most recent developments in closed-loop spinal cord stimulation relevant to PD. In summary, 18 publications and 70 patients from uncontrolled observational trials were included, with low-quality evidence and conflicting findings. First and foremost, the currently available data do not support the use of spinal cord stimulation to treat PD-related gait disorders but have confirmed its usefulness for PD-associated chronic pain.
Collapse
Affiliation(s)
- Christian G. Seufert
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.G.S.); (Y.Z.)
| | - Matthias C. Borutta
- Department of Neurology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Martin Regensburger
- Department of Neurology, Molecular Neurology, Division of Movement Disorders, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Yining Zhao
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.G.S.); (Y.Z.)
| | - Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.G.S.); (Y.Z.)
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
31
|
Shukla PD, Burke JF, Kunwar N, Presbrey K, Balakid J, Yaroshinsky M, Louie K, Jacques L, Shirvalkar P, Wang DD. Human Cervical Epidural Spinal Electrogram Topographically Maps Distinct Volitional Movements. J Neurosci 2024; 44:e2258232024. [PMID: 38960719 PMCID: PMC11308355 DOI: 10.1523/jneurosci.2258-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Little is known about the electrophysiologic activity of the intact human spinal cord during volitional movement. We analyzed epidural spinal recordings from a total of five human subjects of both sexes during a variety of upper extremity movements and found that these spinal epidural electrograms contain spectral information distinguishing periods of movement, rest, and sensation. Cervical epidural electrograms also contained spectral changes time-locked with movement. We found that these changes were primarily associated with increased power in the theta (4-8 Hz) band and feature increased theta phase to gamma amplitude coupling, and this increase in theta power can be used to topographically map distinct upper extremity movements onto the cervical spinal cord in accordance with established myotome maps of the upper extremity. Our findings have implications for the development of neurostimulation protocols and devices focused on motor rehabilitation for the upper extremity, and the approach presented here may facilitate spatiotemporal mapping of naturalistic movements.
Collapse
Affiliation(s)
- Poojan D Shukla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - John F Burke
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, Oklahoma 73104
| | - Nikhita Kunwar
- School of Medicine, University of California San Diego, San Diego, California 92093
| | - Kara Presbrey
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Jannine Balakid
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Maria Yaroshinsky
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Kenneth Louie
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Line Jacques
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Prasad Shirvalkar
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
- Department of Anesthesia and Pain Management, University of California, San Francisco, California 94143
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Doris D Wang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
32
|
Draganich C, Anderson D, Dornan GJ, Sevigny M, Berliner J, Charlifue S, Welch A, Smith A. Predictive modeling of ambulatory outcomes after spinal cord injury using machine learning. Spinal Cord 2024; 62:446-453. [PMID: 38890506 DOI: 10.1038/s41393-024-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
STUDY DESIGN Retrospective multi-site cohort study. OBJECTIVES To develop an accurate machine learning predictive model using predictor variables from the acute rehabilitation period to determine ambulatory status in spinal cord injury (SCI) one year post injury. SETTING Model SCI System (SCIMS) database between January 2000 and May 2019. METHODS Retrospective cohort study using data that were previously collected as part of the SCI Model System (SCIMS) database. A total of 4523 patients were analyzed comparing traditional models (van Middendorp and Hicks) compared to machine learning algorithms including Elastic Net Penalized Logistic Regression (ENPLR), Gradient Boosted Machine (GBM), and Artificial Neural Networks (ANN). RESULTS Compared with GBM and ANN, ENPLR was determined to be the preferred model based on predictive accuracy metrics, calibration, and variable selection. The primary metric to judge discrimination was the area under the receiver operating characteristic curve (AUC). When compared to the van Middendorp all patients (0.916), ASIA A and D (0.951) and ASIA B and C (0.775) and Hicks all patients (0.89), ASIA A and D (0.934) and ASIA B and C (0.775), ENPLR demonstrated improved AUC for all patients (0.931), ASIA A and D (0.965) ASIA B and C (0.803). CONCLUSIONS Utilizing artificial intelligence and machine learning methods are feasible for accurately classifying outcomes in SCI and may provide improved sensitivity in identifying which individuals are less likely to ambulate and may benefit from augmentative strategies, such as neuromodulation. Future directions should include the use of additional variables to further refine these models.
Collapse
Affiliation(s)
- Christina Draganich
- University of Colorado Department of Physical Medicine and Rehabilitation, Aurora, CO, USA.
| | | | | | | | - Jeffrey Berliner
- University of Colorado Department of Physical Medicine and Rehabilitation, Aurora, CO, USA
- Craig Hospital, Englewood, CO, USA
| | | | | | - Andrew Smith
- University of Colorado Department of Physical Medicine and Rehabilitation, Aurora, CO, USA
| |
Collapse
|
33
|
Wang X, Hong CG, Duan R, Pang ZL, Zhang MN, Xie H, Liu ZZ. Transplantation of olfactory mucosa mesenchymal stromal cells repairs spinal cord injury by inducing microglial polarization. Spinal Cord 2024; 62:429-439. [PMID: 38849489 DOI: 10.1038/s41393-024-01004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
STUDY DESIGN Animal studies OBJECTIVES: To evaluate the therapeutic effect of olfactory mucosa mesenchymal stem cell (OM-MSCs) transplantation in mice with spinal cord injury (SCI) and to explore the mechanism by which OM-MSCs inhibit neuroinflammation and improve SCI. SETTING Xiangya Hospital, Central South University; Affiliated Hospital of Guangdong Medical University. METHODS Mice (C57BL/6, female, 6-week-old) were randomly divided into sham, SCI, and SCI + OM-MSC groups. The SCI mouse model was generated using Allen's method. OM-MSCs were immediately delivered to the lateral ventricle after SCI using stereotaxic brain injections. One day prior to injury and on days 1, 5, 7, 14, 21, and 28 post-injury, the Basso Mouse Scale and Rivlin inclined plate tests were performed. Inflammation and microglial polarization were evaluated using histological staining, immunofluorescence, and qRT-PCR. RESULTS OM-MSCs originating from the neuroectoderm have great potential in the management of SCI owing to their immunomodulatory effects. OM-MSCs administration improved motor function, alleviated inflammation, promoted the transformation of the M1 phenotype of microglia into the M2 phenotype, facilitated axonal regeneration, and relieved spinal cord injury in SCI mice. CONCLUSIONS OM-MSCs reduced the level of inflammation in the spinal cord tissue, protected neurons, and repaired spinal cord injury by regulating the M1/M2 polarization of microglia.
Collapse
Affiliation(s)
- Xin Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ran Duan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhi-Lin Pang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Min-Na Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zheng-Zhao Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
34
|
Hvingelby VS, Carra RB, Terkelsen MH, Hamani C, Capato T, Košutzká Z, Krauss JK, Moro E, Pavese N, Cury RG. A Pragmatic Review on Spinal Cord Stimulation Therapy for Parkinson's Disease Gait Related Disorders: Gaps and Controversies. Mov Disord Clin Pract 2024; 11:927-947. [PMID: 38899557 PMCID: PMC11329578 DOI: 10.1002/mdc3.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Parkinson's Disease (PD) is a progressive neurological disorder that results in potentially debilitating mobility deficits. Recently, spinal cord stimulation (SCS) has been proposed as a novel therapy for PD gait disorders. The highest levels of evidence remain limited for SCS. OBJECTIVES In this systematic review and narrative synthesis, the literature was searched using combinations of key phrases indicating spinal cord stimulation and PD. METHODS We included pre-clinical studies and all published clinical trials, case reports, conference abstracts as well as protocols for ongoing clinical trials. Additionally, we included trials of SCS applied to atypical parkinsonism. RESULTS A total of 45 human studies and trials met the inclusion criteria. Based on the narrative synthesis, a number of knowledge gaps and future avenues of potential research were identified. This review demonstrated that evidence for SCS is currently not sufficient to recommend it as an evidence-based therapy for PD related gait disorders. There remain challenges and significant barriers to widespread implementation, including issues regarding patient selection, effective outcome selection, stimulation location and mode, and in programming parameter optimization. Results of early randomized controlled trials are currently pending. SCS is prone to placebo, lessebo and nocebo as well as blinding effects which may impact interpretation of outcomes, particularly when studies are underpowered. CONCLUSION Therapies such as SCS may build on current evidence and be shown to improve specific gait features in PD. Early negative trials should be interpreted with caution, as more evidence will be required to develop effective methodologies in order to drive clinical outcomes.
Collapse
Affiliation(s)
- Victor S. Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Rafael B. Carra
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Miriam H. Terkelsen
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Tamine Capato
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Zuzana Košutzká
- Second Department of NeurologyComenius University BratislavaBratislavaSlovakia
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of NeurosciencesGrenobleFrance
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
35
|
Keesey R, Hofstoetter U, Hu Z, Lombardi L, Hawthorn R, Bryson N, Rowald A, Minassian K, Seáñez I. FUNDAMENTAL LIMITATIONS OF KILOHERTZ-FREQUENCY CARRIERS IN AFFERENT FIBER RECRUITMENT WITH TRANSCUTANEOUS SPINAL CORD STIMULATION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.603982. [PMID: 39211255 PMCID: PMC11361147 DOI: 10.1101/2024.07.26.603982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The use of kilohertz-frequency (KHF) waveforms has rapidly gained momentum in transcutaneous spinal cord stimulation (tSCS) to restore motor function after paralysis. However, the mechanisms by which these fast-alternating currents depolarize efferent and afferent fibers remain unknown. Our study fills this research gap by providing a hypothesis-and evidence-based investigation using peripheral nerve stimulation, lumbar tSCS, and cervical tSCS in 25 unimpaired participants together with computational modeling. Peripheral nerve stimulation experiments and computational modeling showed that KHF waveforms negatively impact the processes required to elicit action potentials, thereby increasing response thresholds and biasing the recruitment towards efferent fibers. While these results translate to tSCS, we also demonstrate that lumbar tSCS results in the preferential recruitment of afferent fibers, while cervical tSCS favors recruitment of efferent fibers. Given the assumed importance of proprioceptive afferents in motor recovery, our work suggests that the use of KHF waveforms should be reconsidered to maximize neurorehabilitation outcomes, particularly for cervical tSCS. We posit that careful analysis of the mechanisms that mediate responses elicited by novel approaches in tSCS is crucial to understanding their potential to restore motor function after paralysis.
Collapse
|
36
|
Jiang X, Li J, Zhu Z, Liu X, Yuan Y, Chou C, Yan S, Dai C, Jia F. MovePort: Multimodal Dataset of EMG, IMU, MoCap, and Insole Pressure for Analyzing Abnormal Movements and Postures in Rehabilitation Training. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2633-2643. [PMID: 39024074 DOI: 10.1109/tnsre.2024.3429637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In most real world rehabilitation training, patients are trained to regain motion capabilities with the aid of functional/epidural electrical stimulation (FES/EES), under the support of gravity-assist systems to prevent falls. However, the lack of motion analysis dataset designed specifically for rehabilitation-related applications largely limits the conduct of pilot research. We provide an open access dataset, consisting of multimodal data collected via 16 electromyography (EMG) sensors, 6 inertial measurement unit (IMU) sensors, and 230 insole pressure sensors (IPS) per foot, together with a 26-sensor motion capture system, under different MOVEments and POstures for Rehabilitation Training (MovePort). Data were collected under diverse experimental paradigms. Twenty four participants first imitated multiple normal and abnormal body postures including (1) normal standing still, (2) leaning forward, (3) leaning back, and (4) half-squat, which in practical applications, can be detected as feedback to tune the parameters of FES/EES and gravity-assist systems to keep patients in a target body posture. Data under imitated abnormal gaits, e.g., (1) with legs raised higher under excessive electrical stimulation, and (2) with dragging legs under insufficient stimulation, were also collected. Data under normal gaits with low, medium and high speeds are also included. Pathological gait data from a subject with spastic paraplegia further increases the clinical value of our dataset. We also provide source codes to perform both intra- and inter-participant motion analyses of our dataset. We expect our dataset can provide a unique platform to promote collaboration among neurorehabilitation engineers.
Collapse
|
37
|
Rejc E, Zaccaron S, Bowersock C, Pisolkar T, Ugiliweneza B, Forrest GF, Agrawal S, Harkema SJ, Angeli CA. Effects of Robotic Postural Stand Training with Epidural Stimulation on Sitting Postural Control in Individuals with Spinal Cord Injury: A Pilot Study. J Clin Med 2024; 13:4309. [PMID: 39124576 PMCID: PMC11313204 DOI: 10.3390/jcm13154309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Background. High-level spinal cord injury (SCI) disrupts trunk control, leading to an impaired performance of upright postural tasks in sitting and standing. We previously showed that a novel robotic postural stand training with spinal cord epidural stimulation targeted at facilitating standing (Stand-scES) largely improved standing trunk control in individuals with high-level motor complete SCI. Here, we aimed at assessing the effects of robotic postural stand training with Stand-scES on sitting postural control in the same population. (2) Methods. Individuals with cervical (n = 5) or high-thoracic (n = 1) motor complete SCI underwent approximately 80 sessions (1 h/day; 5 days/week) of robotic postural stand training with Stand-scES, which was performed with free hands (i.e., without using handlebars) and included periods of standing with steady trunk control, self-initiated trunk and arm movements, and trunk perturbations. Sitting postural control was assessed on a standard therapy mat, with and without scES targeted at facilitating sitting (Sit-scES), before and after robotic postural stand training. Independent sit time and trunk center of mass (CM) displacement were assessed during a 5 min time window to evaluate steady sitting control. Self-initiated antero-posterior and medial-lateral trunk movements were also attempted from a sitting position, with the goal of covering the largest distance in the respective cardinal directions. Finally, the four Neuromuscular Recovery Scale items focused on sitting trunk control (Sit, Sit-up, Trunk extension in sitting, Reverse sit-up) were assessed. (3) Results. In summary, neither statistically significant differences nor large Effect Size were promoted by robotic postural stand training for the sitting outcomes considered for analysis. (4) Conclusions. The findings of the present study, together with previous observations, may suggest that robotic postural stand training with Stand-scES promoted trunk motor learning that was posture- and/or task-specific and, by itself, was not sufficient to significantly impact sitting postural control.
Collapse
Affiliation(s)
- Enrico Rejc
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; (G.F.F.); (C.A.A.)
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine (UD), Italy;
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
| | - Simone Zaccaron
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine (UD), Italy;
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Collin Bowersock
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
- Biomechatronics Lab, Department of Mechanical Engineering, Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, USA
| | - Tanvi Pisolkar
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Gail F. Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; (G.F.F.); (C.A.A.)
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Sunil Agrawal
- Department of Mechanical Engineering, Columbia University, 220 S. W. Mudd Building, 500 West 120th Street, New York, NY 10027, USA;
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY 10032, USA
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY 40202, USA; (C.B.); (T.P.); (B.U.); (S.J.H.)
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Claudia A. Angeli
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA; (G.F.F.); (C.A.A.)
| |
Collapse
|
38
|
Lam DV, Chin J, Brucker-Hahn MK, Settell M, Romanauski B, Verma N, Upadhye A, Deshmukh A, Skubal A, Nishiyama Y, Hao J, Lujan JL, Zhang S, Knudsen B, Blanz S, Lempka SF, Ludwig KA, Shoffstall AJ, Park HJ, Ellison ER, Zhang M, Lavrov I. The role of spinal cord neuroanatomy and the variances of epidurally evoked spinal responses. Bioelectron Med 2024; 10:17. [PMID: 39020366 PMCID: PMC11253499 DOI: 10.1186/s42234-024-00149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) has demonstrated multiple benefits in treating chronic pain and other clinical disorders related to sensorimotor dysfunctions. However, the underlying mechanisms are still not fully understood, including how electrode placement in relation to the spinal cord neuroanatomy influences epidural spinal recordings (ESRs). To characterize this relationship, this study utilized stimulation applied at various anatomical sections of the spinal column, including at levels of the intervertebral disc and regions correlating to the dorsal root entry zone. METHOD Two electrode arrays were surgically implanted into the dorsal epidural space of the swine. The stimulation leads were positioned such that the caudal-most electrode contact was at the level of a thoracic intervertebral segment. Intraoperative cone beam computed tomography (CBCT) images were utilized to precisely determine the location of the epidural leads relative to the spinal column. High-resolution microCT imaging and 3D-model reconstructions of the explanted spinal cord illustrated precise positioning and dimensions of the epidural leads in relation to the surrounding neuroanatomy, including the spinal rootlets of the dorsal and ventral columns of the spinal cord. In a separate swine cohort, implanted epidural leads were used for SCS and recording evoked ESRs. RESULTS Reconstructed 3D-models of the swine spinal cord with epidural lead implants demonstrated considerable distinctions in the dimensions of a single electrode contact on a standard industry epidural stimulation lead compared to dorsal rootlets at the dorsal root entry zone (DREZ). At the intervertebral segment, it was observed that a single electrode contact may cover 20-25% of the DREZ if positioned laterally. Electrode contacts were estimated to be ~0.75 mm from the margins of the DREZ when placed at the midline. Furthermore, ventral rootlets were observed to travel in proximity and parallel to dorsal rootlets at this level prior to separation into their respective sides of the spinal cord. Cathodic stimulation at the level of the intervertebral disc, compared to an 'off-disc' stimulation (7 mm rostral), demonstrated considerable variations in the features of recorded ESRs, such as amplitude and shape, and evoked unintended motor activation at lower stimulation thresholds. This substantial change may be due to the influence of nearby ventral roots. To further illustrate the influence of rootlet activation vs. dorsal column activation, the stimulation lead was displaced laterally at ~2.88 mm from the midline, resulting in variances in both evoked compound action potential (ECAP) components and electromyography (EMG) components in ESRs at lower stimulation thresholds. CONCLUSION The results of this study suggest that the ECAP and EMG components of recorded ESRs can vary depending on small differences in the location of the stimulating electrodes within the spinal anatomy, such as at the level of the intervertebral segment. Furthermore, the effects of sub-centimeter lateral displacement of the stimulation lead from the midline, leading to significant changes in electrophysiological metrics. The results of this pilot study reveal the importance of the small displacement of the electrodes that can cause significant changes to evoked responses SCS. These results may provide further valuable insights into the underlying mechanisms and assist in optimizing future SCS-related applications.
Collapse
Affiliation(s)
- Danny V Lam
- Neural Lab, Abbott Neuromodulation, Plano, TX, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Louis Stokes Cleveland, Cleveland, OH, USA
| | - Justin Chin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Meagan K Brucker-Hahn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Megan Settell
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Ben Romanauski
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | - Aniruddha Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ashlesha Deshmukh
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Aaron Skubal
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | | | - Jian Hao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - J Luis Lujan
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Simeng Zhang
- Neural Lab, Abbott Neuromodulation, Plano, TX, USA
| | - Bruce Knudsen
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Stephan Blanz
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Louis Stokes Cleveland, Cleveland, OH, USA
| | | | | | | | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
39
|
Chen W, Wang S, Bao J, Yu C, Jiang Q, Song J, Zheng Y, Hao Y, Xu K. Restoration of coherent reach-grasp-pull movement via sequential intraneural peripheral nerve stimulation in rats. J Neural Eng 2024; 21:046007. [PMID: 38885677 DOI: 10.1088/1741-2552/ad5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.Peripheral nerve stimulation (PNS) has been demonstrated as an effective way to selectively activate muscles and to produce fine hand movements. However, sequential multi-joint upper limb movements, which are critical for paralysis rehabilitation, has not been tested with PNS. Here, we aimed to restore multiple upper limb joint movements through an intraneural interface with a single electrode, achieving coherent reach-grasp-pull movement tasks through sequential stimulation.Approach.A transverse intrafascicular multichannel electrode was implanted under the axilla of the rat's upper limb, traversing the musculocutaneous, radial, median, and ulnar nerves. Intramuscular electrodes were implanted into the biceps brachii (BB), triceps brachii (TB), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles to record electromyographic (EMG) activity and video recordings were used to capture the kinematics of elbow, wrist, and digit joints. Charge-balanced biphasic pulses were applied to different channels to recruit distinct upper limb muscles, with concurrent recording of EMG signals and joint kinematics to assess the efficacy of the stimulation. Finally, a sequential stimulation protocol was employed by generating coordinated pulses in different channels.Main results.BB, TB, FCR and ECR muscles were selectively activated and various upper limb movements, including elbow flexion, elbow extension, wrist flexion, wrist extension, digit flexion, and digit extension, were reliably generated. The modulation effects of stimulation parameters, including pulse width, amplitude, and frequency, on induced joint movements were investigated and reach-grasp-pull movement was elicited by sequential stimulation.Significance.Our results demonstrated the feasibility of sequential intraneural stimulation for functional multi-joint movement restoration, providing a new approach for clinical rehabilitation in paralyzed patients.
Collapse
Affiliation(s)
- Weihuang Chen
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, People's Republic of China
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Suhao Wang
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jieting Bao
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Chaonan Yu
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
| | - Qianqian Jiang
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jizhou Song
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yongte Zheng
- Cereblink (Hangzhou) Technology Co., Ltd, Hangzhou, People's Republic of China
| | - Yaoyao Hao
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, People's Republic of China
- Nanhu Brain-computer interface institute, Hangzhou 311100, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311100, People's Republic of China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
40
|
Xi P, Yao Q, Liu Y, He J, Tang R, Lang Y. Biomimetic Peripheral Nerve Stimulation Promotes the Rat Hindlimb Motion Modulation in Stepping: An Experimental Analysis. CYBORG AND BIONIC SYSTEMS 2024; 5:0131. [PMID: 38966124 PMCID: PMC11223769 DOI: 10.34133/cbsystems.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 07/06/2024] Open
Abstract
Peripheral nerve stimulation is an effective neuromodulation method in patients with lower extremity movement disorders caused by stroke, spinal cord injury, or other diseases. However, most current studies on rehabilitation using sciatic nerve stimulation focus solely on ankle motor regulation through stimulation of common peroneal and tibial nerves. Using the electrical nerve stimulation method, we here achieved muscle control via different sciatic nerve branches to facilitate the regulation of lower limb movements during stepping and standing. A map of relationships between muscles and nerve segments was established to artificially activate specific nerve fibers with the biomimetic stimulation waveform. Then, characteristic curves depicting the relationship between neural electrical stimulation intensity and joint control were established. Finally, by testing the selected stimulation parameters in anesthetized rats, we confirmed that single-cathode extraneural electrical stimulation could activate combined movements to promote lower limb movements. Thus, this method is effective and reliable for use in treatment for improving and rehabilitating lower limb motor dysfunction.
Collapse
Affiliation(s)
- Pengcheng Xi
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Qingyu Yao
- National Engineering Research Center of Neuromodulation,
Tsinghua University, Beijing, People’s Republic of China
| | - Yafei Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Jiping He
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Rongyu Tang
- Institute of Semiconductors,
Chinese Academy of Science, Beijing, People’s Republic of China
| | - Yiran Lang
- School of Life Science,
Beijing Institute of Technology, Beijing, People’s Republic of China
| |
Collapse
|
41
|
Khalili MR, Shadmani A, Sanie-Jahromi F. Application of electrostimulation and magnetic stimulation in patients with optic neuropathy: A mechanistic review. Dev Neurobiol 2024; 84:236-248. [PMID: 38844425 DOI: 10.1002/dneu.22949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
Visual impairment caused by optic neuropathies is irreversible because retinal ganglion cells (RGCs), the specialized neurons of the retina, do not have the capacity for self-renewal and self-repair. Blindness caused by optic nerve neuropathies causes extensive physical, financial, and social consequences in human societies. Recent studies on different animal models and humans have established effective strategies to prevent further RGC degeneration and replace the cells that have deteriorated. In this review, we discuss the application of electrical stimulation (ES) and magnetic field stimulation (MFS) in optic neuropathies, their mechanisms of action, their advantages, and limitations. ES and MFS can be applied effectively in the field of neuroregeneration. Although stem cells are becoming a promising approach for regenerating RGCs, the inhibitory environment of the CNS and the long visual pathway from the optic nerve to the superior colliculus are critical barriers to overcome. Scientific evidence has shown that adjuvant treatments, such as the application of ES and MFS help direct thetransplanted RGCs to extend their axons and form new synapses in the central nervous system (CNS). In addition, these techniques improve CNS neuroplasticity and decrease the inhibitory effects of the CNS. Possible mechanisms mediating the effects of electrical current on biological tissues include the release of anti-inflammatory cytokines, improvement of microcirculation, stimulation of cell metabolism, and modification of stem cell function. ES and MFS have the potential to promote angiogenesis, direct axon growth toward the intended target, and enhance appropriate synaptogenesis in optic nerve regeneration.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Athar Shadmani
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Skinnider MA, Gautier M, Teo AYY, Kathe C, Hutson TH, Laskaratos A, de Coucy A, Regazzi N, Aureli V, James ND, Schneider B, Sofroniew MV, Barraud Q, Bloch J, Anderson MA, Squair JW, Courtine G. Single-cell and spatial atlases of spinal cord injury in the Tabulae Paralytica. Nature 2024; 631:150-163. [PMID: 38898272 DOI: 10.1038/s41586-024-07504-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 05/01/2024] [Indexed: 06/21/2024]
Abstract
Here, we introduce the Tabulae Paralytica-a compilation of four atlases of spinal cord injury (SCI) comprising a single-nucleus transcriptome atlas of half a million cells, a multiome atlas pairing transcriptomic and epigenomic measurements within the same nuclei, and two spatial transcriptomic atlases of the injured spinal cord spanning four spatial and temporal dimensions. We integrated these atlases into a common framework to dissect the molecular logic that governs the responses to injury within the spinal cord1. The Tabulae Paralytica uncovered new biological principles that dictate the consequences of SCI, including conserved and divergent neuronal responses to injury; the priming of specific neuronal subpopulations to upregulate circuit-reorganizing programs after injury; an inverse relationship between neuronal stress responses and the activation of circuit reorganization programs; the necessity of re-establishing a tripartite neuroprotective barrier between immune-privileged and extra-neural environments after SCI and a failure to form this barrier in old mice. We leveraged the Tabulae Paralytica to develop a rejuvenative gene therapy that re-established this tripartite barrier, and restored the natural recovery of walking after paralysis in old mice. The Tabulae Paralytica provides a window into the pathobiology of SCI, while establishing a framework for integrating multimodal, genome-scale measurements in four dimensions to study biology and medicine.
Collapse
Affiliation(s)
- Michael A Skinnider
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Matthieu Gautier
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Alan Yue Yang Teo
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Claudia Kathe
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Thomas H Hutson
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Achilleas Laskaratos
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Alexandra de Coucy
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Nicola Regazzi
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Viviana Aureli
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicholas D James
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Bernard Schneider
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Bertarelli Platform for Gene Therapy, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Quentin Barraud
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Jocelyne Bloch
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mark A Anderson
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Jordan W Squair
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Grégoire Courtine
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
43
|
Li J, Zhang F, Lyu H, Yin P, Shi L, Li Z, Zhang L, Di CA, Tang P. Evolution of Musculoskeletal Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303311. [PMID: 38561020 DOI: 10.1002/adma.202303311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The musculoskeletal system, constituting the largest human physiological system, plays a critical role in providing structural support to the body, facilitating intricate movements, and safeguarding internal organs. By virtue of advancements in revolutionized materials and devices, particularly in the realms of motion capture, health monitoring, and postoperative rehabilitation, "musculoskeletal electronics" has actually emerged as an infancy area, but has not yet been explicitly proposed. In this review, the concept of musculoskeletal electronics is elucidated, and the evolution history, representative progress, and key strategies of the involved materials and state-of-the-art devices are summarized. Therefore, the fundamentals of musculoskeletal electronics and key functionality categories are introduced. Subsequently, recent advances in musculoskeletal electronics are presented from the perspectives of "in vitro" to "in vivo" signal detection, interactive modulation, and therapeutic interventions for healing and recovery. Additionally, nine strategy avenues for the development of advanced musculoskeletal electronic materials and devices are proposed. Finally, concise summaries and perspectives are proposed to highlight the directions that deserve focused attention in this booming field.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houchen Lyu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Lei Shi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Zhiyi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| |
Collapse
|
44
|
Cuellar C, Lehto L, Islam R, Mangia S, Michaeli S, Lavrov I. Selective Activation of the Spinal Cord with Epidural Electrical Stimulation. Brain Sci 2024; 14:650. [PMID: 39061391 PMCID: PMC11274919 DOI: 10.3390/brainsci14070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord epidural electrical stimulation (EES) has been successfully employed to treat chronic pain and to restore lost functions after spinal cord injury. Yet, the efficacy of this approach is largely challenged by the suboptimal spatial distribution of the electrode contacts across anatomical targets, limiting the spatial selectivity of stimulation. In this study, we exploited different ESS paradigms, designed as either Spatial-Selective Stimulation (SSES) or Orientation-Selective Epidural Stimulation (OSES), and compared them to Conventional Monopolar Epidural Stimulation (CMES). SSES, OSES, and CMES were delivered with a 3- or 4-contact electrode array. Amplitudes and latencies of the Spinally Evoked Motor Potentials (SEMPs) were evaluated with different EES modalities. The results demonstrate that the amplitudes of SEMPs in hindlimb muscles depend on the orientation of the electrical field and vary between stimulation modalities. These findings show that the electric field applied with SSES or OSES provides more selective control of amplitudes of the SEMPs as compared to CMES. We demonstrate that spinal cord epidural stimulation applied with SSES or OSES paradigms in the rodent model could be tailored to the functional spinal cord neuroanatomy and can be tuned to specific target fibers and their orientation, optimizing the effect of neuromodulation.
Collapse
Affiliation(s)
- Carlos Cuellar
- School of Sport Sciences, Universidad Anáhuac México, Huixquilucan 52786, Mexico;
| | - Lauri Lehto
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA; (L.L.); (S.M.)
| | - Riaz Islam
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Silvia Mangia
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA; (L.L.); (S.M.)
| | - Shalom Michaeli
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA; (L.L.); (S.M.)
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Laboratory of Neuromodulation, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Dabbagh A, Horn U, Kaptan M, Mildner T, Müller R, Lepsien J, Weiskopf N, Brooks JCW, Finsterbusch J, Eippert F. Reliability of task-based fMRI in the dorsal horn of the human spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572825. [PMID: 38187724 PMCID: PMC10769329 DOI: 10.1101/2023.12.22.572825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC). At the group level, we observed robust autonomic responses as well as spatially specific spinal cord BOLD responses at the expected location, but no spatial overlap in BOLD response patterns across days. While autonomic indicators of pain processing showed good-to-excellent reliability, both β-estimates and z-scores of task-related BOLD responses showed poor reliability across days in the target region (gray matter of the ipsilateral dorsal horn). When taking into account the sensitivity of gradient-echo echo planar imaging (GE-EPI) to draining vein signals by including the venous plexus in the analysis, we observed BOLD responses with fair reliability across days. Taken together, these results demonstrate that heat pain stimuli as short as one second are able to evoke a robust and spatially specific BOLD response, which is however strongly variable within participants across time, resulting in low reliability in the dorsal horn gray matter. Further improvements in data acquisition and analysis techniques are thus necessary before event-related spinal cord fMRI as used here can be reliably employed in longitudinal designs or clinical settings.
Collapse
Affiliation(s)
- Alice Dabbagh
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, CA, USA
| | - Toralf Mildner
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roland Müller
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jöran Lepsien
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), Norwich, United Kingdom
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
46
|
Bakare AO, Stephens K, Sanchez KR, Liu V, Zheng L, Goel V, Guan Y, Sivanesan E. Spinal cord stimulation attenuates paclitaxel-induced gait impairment and mechanical hypersensitivity via peripheral neuroprotective mechanisms in tumor-bearing rats. Reg Anesth Pain Med 2024:rapm-2024-105433. [PMID: 38844412 PMCID: PMC11645439 DOI: 10.1136/rapm-2024-105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Taxanes such as paclitaxel (PTX) induce dose-dependent chemotherapy-induced peripheral neuropathy (CIPN), which is associated with debilitating chronic pain and gait impairment. Increased macrophage-related proinflammatory activities have been reported to mediate the development and maintenance of neuropathic pain. While spinal cord stimulation (SCS) has been used for a number of pain conditions, the mechanisms supporting its use for CIPN remain to be elucidated. Thus, we aimed to examine whether SCS can attenuate Schwann cell-mediated and macrophage-mediated neuroinflammation in the sciatic nerve of Rowlette Nude (RNU) rats with PTX-induced gait impairment and mechanical hypersensitivity. METHODS Adult male tumor-bearing RNU rats were used for this study examining PTX treatment and SCS. Gait and mechanical hypersensitivity were assessed weekly. Cytokines, gene expression, macrophage infiltration and polarization, nerve morphology and Schwann cells were examined in sciatic nerves using multiplex immunoassay, bulk RNA sequencing, histochemistry and immunohistochemistry techniques. RESULTS SCS (50 Hz, 0.2 milliseconds, 80% motor threshold) attenuated the development of mechanical hypersensitivity (20.93±0.80 vs 12.23±2.71 grams, p<0.0096) and temporal gait impairment [swing (90.41±7.03 vs 117.27±9.71%, p<0.0076), and single stance times (94.92±3.62 vs 112.75±7.27%, p<0.0245)] induced by PTX (SCS+PTX+Tumor vs Sham SCS+PTX+Tumor). SCS also attenuated the reduction in Schwann cells, myelin thickness and increased the concentration of anti-inflammatory cytokine interleukin (IL)-10. Bulk RNA sequencing revealed differential gene expression after SCS, with 607 (59.2%) genes upregulated while 418 (40.8%) genes were downregulated. Notably, genes related to anti-inflammatory cytokines and neuronal growth were upregulated, while genes related to proinflammatory-promoting genes, increased M2γ polarization and decreased macrophage infiltration and Schwann cell loss were downregulated. CONCLUSION SCS may attenuate PTX-induced pain and temporal gait impairment, which may be partly attributed to decreases in Schwann cell loss and macrophage-mediated neuroinflammation in sciatic nerves.
Collapse
Affiliation(s)
- Ahmed Olalekan Bakare
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly Stephens
- Arkansas Children's Research Institute, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karla R Sanchez
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vivian Liu
- Department of Computer Science, Johns Hopkins Whiting School of Engineering, Baltimore, Maryland, USA
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vasudha Goel
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Xu R, Bestmann S, Treeby BE, Martin E. Strategies and safety simulations for ultrasonic cervical spinal cord neuromodulation. Phys Med Biol 2024; 69:125011. [PMID: 38788727 DOI: 10.1088/1361-6560/ad506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Objective. Focused ultrasound spinal cord neuromodulation has been demonstrated in small animals. However, most of the tested neuromodulatory exposures are similar in intensity and exposure duration to the reported small animal threshold for possible spinal cord damage. All efforts must be made to minimize the risk and assure the safety of potential human studies, while maximizing potential treatment efficacy. This requires an understanding of ultrasound propagation and heat deposition within the human spine.Approach. Combined acoustic and thermal modelling was used to assess the pressure and heat distributions produced by a 500 kHz source focused to the C5/C6 level via two approaches (a) the posterior acoustic window between vertebral posterior arches, and (b) the lateral intervertebral foramen from which the C6 spinal nerve exits. Pulse trains of fifty 0.1 s pulses (pulse repetition frequency: 0.33 Hz, free-field spatial peak pulse-averaged intensity: 10 W cm-2) were simulated for four subjects and for ±10 mm translational and ±10∘rotational source positioning errors.Main results.Target pressures ranged between 20%-70% of free-field spatial peak pressures with the posterior approach, and 20%-100% with the lateral approach. When the posterior source was optimally positioned, peak spine heating values were below 1 ∘C, but source mispositioning resulted in bone heating up to 4 ∘C. Heating with the lateral approach did not exceed 2 ∘C within the mispositioning range. There were substantial inter-subject differences in target pressures and peak heating values. Target pressure varied three to four-fold between subjects, depending on approach, while peak heating varied approximately two-fold between subjects. This results in a nearly ten-fold range between subjects in the target pressure achieved per degree of maximum heating.Significance. This study highlights the utility of trans-spine ultrasound simulation software and need for precise source-anatomy positioning to assure the subject-specific safety and efficacy of focused ultrasound spinal cord therapies.
Collapse
Affiliation(s)
- Rui Xu
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, University College London, London, United Kingdom
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| |
Collapse
|
48
|
Hingorani S, Paniagua Soriano G, Sánchez Huertas C, Villalba Riquelme EM, López Mocholi E, Martínez Rojas B, Alastrué Agudo A, Dupraz S, Ferrer Montiel AV, Moreno Manzano V. Transplantation of dorsal root ganglia overexpressing the NaChBac sodium channel improves locomotion after complete SCI. Mol Ther 2024; 32:1739-1759. [PMID: 38556794 PMCID: PMC11184342 DOI: 10.1016/j.ymthe.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.
Collapse
Affiliation(s)
- Sonia Hingorani
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Guillem Paniagua Soriano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carlos Sánchez Huertas
- Development and Assembly of Bilateral Neural Circuits Laboratory, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández, Avenida Santiago Ramon y Cajal, s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Eva María Villalba Riquelme
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Eric López Mocholi
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Beatriz Martínez Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Ana Alastrué Agudo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Sebastián Dupraz
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonio Vicente Ferrer Montiel
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| |
Collapse
|
49
|
Sun P, Li C, Yang C, Sun M, Hou H, Guan Y, Chen J, Liu S, Chen K, Ma Y, Huang Y, Li X, Wang H, Wang L, Chen S, Cheng H, Xiong W, Sheng X, Zhang M, Peng J, Wang S, Wang Y, Yin L. A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves. Nat Commun 2024; 15:4721. [PMID: 38830884 PMCID: PMC11148186 DOI: 10.1038/s41467-024-49166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.
Collapse
Affiliation(s)
- Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Can Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Mengchun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Hanqing Hou
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Jinger Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuan Ma
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunxiang Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xiangling Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huachun Wang
- School of Integrated Circuits, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Liu Wang
- School of Biological Science and Medical Engineering, Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P. R. China
- School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Haofeng Cheng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, 102206, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, P. R. China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, P. R. China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, P. R. China
| | - Shirong Wang
- MegaRobo Technologies Co. ltd, Beijing, 100085, P. R. China.
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, P. R. China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
50
|
McIntosh JR, Joiner EF, Goldberg JL, Greenwald P, Dionne AC, Murray LM, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Chan AK, Riew KD, Harel NY, Virk MS, Mandigo C, Carmel JB. Timing-dependent synergies between motor cortex and posterior spinal stimulation in humans. J Physiol 2024; 602:2961-2983. [PMID: 38758005 PMCID: PMC11178459 DOI: 10.1113/jp286183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.
Collapse
Affiliation(s)
- James R McIntosh
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Evan F Joiner
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Phoebe Greenwald
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Alexandra C Dionne
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Lynda M Murray
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Med. Ctr., Bronx, NY, USA
| | - Earl Thuet
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Oleg Modik
- Department of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Evgeny Shelkov
- Department of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Joseph M Lombardi
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Zeeshan M Sardar
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Ronald A Lehman
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Andrew K Chan
- Department of Neurological Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - K Daniel Riew
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Noam Y Harel
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Med. Ctr., Bronx, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Virk
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Christopher Mandigo
- Department of Neurological Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Jason B Carmel
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| |
Collapse
|