1
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
2
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, Biomarker, and Behavioral Characterization of the Grn R493X Mouse Model of Frontotemporal Dementia. Mol Neurobiol 2024; 61:9708-9722. [PMID: 38696065 PMCID: PMC11496013 DOI: 10.1007/s12035-024-04190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M Smith
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Spencer A Jones
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Subhashis Banerjee
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA.
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA.
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA.
| |
Collapse
|
4
|
Koike Y. Molecular mechanisms linking loss of TDP-43 function to amyotrophic lateral sclerosis/frontotemporal dementia-related genes. Neurosci Res 2024; 208:1-7. [PMID: 38723906 DOI: 10.1016/j.neures.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 plays a key role in regulating the splicing of numerous genes, including TARDBP. This review aims to delineate two aspects of ALS/FTD pathogenesis associated with TDP-43 function. First, we described novel mechanistic insights into the splicing of UNC13A, a TDP-43 target gene. Single nucleotide polymorphisms (SNPs) in UNC13A are the most common risk factors for ALS/FTD. We found that TDP-43 represses "cryptic exon" inclusion during UNC13A RNA splicing. A risk-associated SNP in this exon results in increased RNA levels of UNC13A retaining the cryptic exon. Second, we described the perturbation of the TDP-43 autoregulatory mechanism caused by age-related DNA demethylation. Aging is a major risk factor for sporadic ALS/FTD. Typically, TDP-43 levels are regulated via alternative splicing of TARDBP mRNA. This review focused on that TARDBP methylation is altered by aging, thereby disrupting TDP-43 autoregulation. It was found that demethylation reduces the efficiency of alternative splicing and increases TARDBP mRNA levels. Moreover, we demonstrated that, with aging, this region is demethylated in the human motor cortex and is associated with the early onset of ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Japan.
| |
Collapse
|
5
|
Kiebler MA, Bauer KE. RNA granules in flux: dynamics to balance physiology and pathology. Nat Rev Neurosci 2024; 25:711-725. [PMID: 39367081 DOI: 10.1038/s41583-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
The life cycle of an mRNA is a complex process that is tightly regulated by interactions between the mRNA and RNA-binding proteins, forming molecular machines known as RNA granules. Various types of these membrane-less organelles form inside cells, including neurons, and contribute critically to various physiological processes. RNA granules are constantly in flux, change dynamically and adapt to their local environment, depending on their intracellular localization. The discovery that RNA condensates can form by liquid-liquid phase separation expanded our understanding of how compartments may be generated in the cell. Since then, a plethora of new functions have been proposed for distinct condensates in cells that await their validation in vivo. The finding that dysregulation of RNA granules (for example, stress granules) is likely to affect neurodevelopmental and neurodegenerative diseases further boosted interest in this topic. RNA granules have various physiological functions in neurons and in the brain that we would like to focus on. We outline examples of state-of-the-art experiments including timelapse microscopy in neurons to unravel the precise functions of various types of RNA granule. Finally, we distinguish physiologically occurring RNA condensation from aberrant aggregation, induced by artificial RNA overexpression, and present visual examples to discriminate both forms in neurons.
Collapse
Affiliation(s)
- Michael A Kiebler
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Karl E Bauer
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Al-Azzam N, To JH, Gautam V, Street LA, Nguyen CB, Naritomi JT, Lam DC, Madrigal AA, Lee B, Jin W, Avina A, Mizrahi O, Mueller JR, Ford W, Schiavon CR, Rebollo E, Vu AQ, Blue SM, Madakamutil YL, Manor U, Rothstein JD, Coyne AN, Jovanovic M, Yeo GW. Inhibition of RNA splicing triggers CHMP7 nuclear entry, impacting TDP-43 function and leading to the onset of ALS cellular phenotypes. Neuron 2024:S0896-6273(24)00728-1. [PMID: 39486415 DOI: 10.1016/j.neuron.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is linked to the reduction of certain nucleoporins in neurons. Increased nuclear localization of charged multivesicular body protein 7 (CHMP7), a protein involved in nuclear pore surveillance, has been identified as a key factor damaging nuclear pores and disrupting transport. Using CRISPR-based microRaft, followed by gRNA identification (CRaft-ID), we discovered 55 RNA-binding proteins (RBPs) that influence CHMP7 localization, including SmD1, a survival of motor neuron (SMN) complex component. Immunoprecipitation-mass spectrometry (IP-MS) and enhanced crosslinking and immunoprecipitation (CLIP) analyses revealed CHMP7's interactions with SmD1, small nuclear RNAs, and splicing factor mRNAs in motor neurons (MNs). ALS induced pluripotent stem cell (iPSC)-MNs show reduced SmD1 expression, and inhibiting SmD1/SMN complex increased CHMP7 nuclear localization. Crucially, overexpressing SmD1 in ALS iPSC-MNs restored CHMP7's cytoplasmic localization and corrected STMN2 splicing. Our findings suggest that early ALS pathogenesis is driven by SMN complex dysregulation.
Collapse
Affiliation(s)
- Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Neurosciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Jenny H To
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vaishali Gautam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Chloe B Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jack T Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dylan C Lam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA
| | - Assael A Madrigal
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Benjamin Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wenhao Jin
- Sanford Laboratories for Innovative Medicines, San Diego, CA, USA
| | - Anthony Avina
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Willard Ford
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cara R Schiavon
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elena Rebollo
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yashwin L Madakamutil
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Uri Manor
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA.
| |
Collapse
|
7
|
Ko YH, Lokareddy RK, Doll SG, Yeggoni DP, Girdhar A, Mawn I, Klim JR, Rizvi NF, Meyers R, Gillilan RE, Guo L, Cingolani G. Single Acetylation-mimetic Mutation in TDP-43 Nuclear Localization Signal Disrupts Importin α1/β Signaling. J Mol Biol 2024; 436:168751. [PMID: 39181183 PMCID: PMC11443512 DOI: 10.1016/j.jmb.2024.168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/19/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Cytoplasmic aggregation of the TAR-DNA binding protein of 43 kDa (TDP-43) is the hallmark of sporadic amyotrophic lateral sclerosis (ALS). Most ALS patients with TDP-43 aggregates in neurons and glia do not have mutations in the TDP-43 gene but contain aberrantly post-translationally modified TDP-43. Here, we found that a single acetylation-mimetic mutation (K82Q) near the TDP-43 minor Nuclear Localization Signal (NLS) box, which mimics a post-translational modification identified in an ALS patient, can lead to TDP-43 mislocalization to the cytoplasm and irreversible aggregation. We demonstrate that the acetylation mimetic disrupts binding to importins, halting nuclear import and preventing importin α1/β anti-aggregation activity. We propose that perturbations near the NLS are an additional mechanism by which a cellular insult other than a genetically inherited mutation leads to TDP-43 aggregation and loss of function. Our findings are relevant to deciphering the molecular etiology of sporadic ALS.
Collapse
Affiliation(s)
- Ying-Hui Ko
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Ravi K Lokareddy
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Steven G Doll
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; Dept. of Neurology, Johns Hopkins University School of Medicine, 1800 Orleans St Baltimore, Baltimore, MD 21287, USA
| | - Daniel P Yeggoni
- Dept. of Cell Biology, UConn Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Amandeep Girdhar
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ian Mawn
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Lin Guo
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Wijegunawardana D, Nayak A, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons. Dev Cell 2024:S1534-5807(24)00572-0. [PMID: 39419034 DOI: 10.1016/j.devcel.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Altered RNA metabolism and misregulation of transactive response DNA-binding protein of 43 kDa (TDP-43), an essential RNA-binding protein (RBP), define amyotrophic lateral sclerosis (ALS). Intermediate-length polyglutamine (polyQ) expansions of Ataxin-2, a like-Sm (LSm) RBP, are associated with increased risk for ALS, but the underlying biological mechanisms remain unknown. Here, we studied the spatiotemporal dynamics and mRNA regulatory functions of TDP-43 and Ataxin-2 ribonucleoprotein (RNP) condensates in rodent (rat) primary cortical neurons and mouse motor neuron axons in vivo. We report that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within RNP condensates and disrupt both its motility along the axon and liquid-like properties. We provide evidence that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, our results support a model in which Ataxin-2 polyQ expansions disrupt stability, localization, and/or translation of critical axonal and cytoskeletal mRNAs, particularly important for motor neuron integrity.
Collapse
Affiliation(s)
- Denethi Wijegunawardana
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sonali S Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Neha Venkatesh
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
9
|
Zeng Y, Gitler AD. Regulators, mount up. Science 2024; 386:24-25. [PMID: 39361768 DOI: 10.1126/science.ads5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cryptic exons enable delivery of therapies only to sick neurons in a motor neuron disease.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Wilkins OG, Chien MZ, Wlaschin JJ, Barattucci S, Harley P, Mattedi F, Mehta PR, Pisliakova M, Ryadnov E, Keuss MJ, Thompson D, Digby H, Knez L, Simkin RL, Diaz JA, Zanovello M, Brown AL, Darbey A, Karda R, Fisher EM, Cunningham TJ, Le Pichon CE, Ule J, Fratta P. Creation of de novo cryptic splicing for ALS and FTD precision medicine. Science 2024; 386:61-69. [PMID: 39361759 PMCID: PMC7616720 DOI: 10.1126/science.adk2539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Loss of function of the RNA-binding protein TDP-43 (TDP-LOF) is a hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Here we describe TDP-REG, which exploits the specificity of cryptic splicing induced by TDP-LOF to drive protein expression when and where the disease process occurs. The SpliceNouveau algorithm combines deep learning with rational design to generate customizable cryptic splicing events within protein-coding sequences. We demonstrate that expression of TDP-REG reporters is tightly coupled to TDP-LOF in vitro and in vivo. TDP-REG enables genomic prime editing to ablate the UNC13A cryptic donor splice site specifically upon TDP-LOF. Finally, we design TDP-REG vectors encoding a TDP-43/Raver1 fusion protein that rescues key pathological cryptic splicing events, paving the way for the development of precision therapies for TDP43-related disorders.
Collapse
Affiliation(s)
- Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Max Z.Y.J. Chien
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Josette J. Wlaschin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Simone Barattucci
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Francesca Mattedi
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Maria Pisliakova
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Eugeni Ryadnov
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Matthew J. Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - David Thompson
- Mammalian Genetics Unit, MRC Harwell Institute; Oxfordshire, OX11 0RD, UK
| | - Holly Digby
- The Francis Crick Institute; London, NW1 1AT, UK
- UK Dementia Research Institute at King’s College London, London, SE5 9RX, UK
| | - Lea Knez
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Rebecca L. Simkin
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Juan Antinao Diaz
- EGA-Institute for Women’s Health, University College London; London, WC1E 6HX, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Annalucia Darbey
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Rajvinder Karda
- EGA-Institute for Women’s Health, University College London; London, WC1E 6HX, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
| | - Thomas J. Cunningham
- Mammalian Genetics Unit, MRC Harwell Institute; Oxfordshire, OX11 0RD, UK
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, W1W 7FF, UK
| | - Claire E. Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, MD 20892, USA
| | - Jernej Ule
- The Francis Crick Institute; London, NW1 1AT, UK
- UK Dementia Research Institute at King’s College London, London, SE5 9RX, UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| |
Collapse
|
11
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
12
|
Germeys C, Vandoorne T, Davie K, Poovathingal S, Heeren K, Vermeire W, Nami F, Moisse M, Quaegebeur A, Sierksma A, Rué L, Sicart A, Eykens C, De Cock L, De Strooper B, Carmeliet P, Van Damme P, De Bock K, Van Den Bosch L. Targeting EGLN2/PHD1 protects motor neurons and normalizes the astrocytic interferon response. Cell Rep 2024; 43:114719. [PMID: 39255062 DOI: 10.1016/j.celrep.2024.114719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Neuroinflammation and dysregulated energy metabolism are linked to motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The egl-9 family hypoxia-inducible factor (EGLN) enzymes, also known as prolyl hydroxylase domain (PHD) enzymes, are metabolic sensors regulating cellular inflammation and metabolism. Using an oligonucleotide-based and a genetic approach, we showed that the downregulation of Egln2 protected motor neurons and mitigated the ALS phenotype in two zebrafish models and a mouse model of ALS. Single-nucleus RNA sequencing of the murine spinal cord revealed that the loss of EGLN2 induced an astrocyte-specific downregulation of interferon-stimulated genes, mediated via the stimulator of interferon genes (STING) protein. In addition, we found that the genetic deletion of EGLN2 restored this interferon response in patient induced pluripotent stem cell (iPSC)-derived astrocytes, confirming the link between EGLN2 and astrocytic interferon signaling. In conclusion, we identified EGLN2 as a motor neuron protective target normalizing the astrocytic interferon-dependent inflammatory axis in vivo, as well as in patient-derived cells.
Collapse
Affiliation(s)
- Christine Germeys
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Kristofer Davie
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Bioinformatics Unit, 3000 Leuven, Belgium
| | - Suresh Poovathingal
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Microfluidics & Analytics Unit, 3000 Leuven, Belgium; VIB, Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium
| | - Kara Heeren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Wendy Vermeire
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - FatemehArefeh Nami
- KU Leuven - University of Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), 3000 Leuven, Belgium
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Annelies Quaegebeur
- University of Cambridge, Department of Clinical Neurosciences, CB2 2PY Cambridge, UK; Cambridge University Hospitals, Department of Histopathology, CB2 0QQ Cambridge, UK
| | - Annerieke Sierksma
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Laura Rué
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Adrià Sicart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Caroline Eykens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Lenja De Cock
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Bart De Strooper
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium; Dementia Research Institute, University College London, WC1E 6BT London, UK
| | - Peter Carmeliet
- KU Leuven - University of Leuven, Department of Oncology and Leuven Cancer Institute (LKI), Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; Khalifa University of Science and Technology, Center for Biotechnology, Abu Dhabi, United Arab Emirates
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, 8092 Zürich, Switzerland
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Bubenik JL, Scotti MM, Swanson MS. Therapeutic targeting of RNA for neurological and neuromuscular disease. Genes Dev 2024; 38:698-717. [PMID: 39142832 PMCID: PMC11444190 DOI: 10.1101/gad.351612.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders. This review focuses on the current range of RNA targeting modalities using examples of both dominant and recessive neurological and neuromuscular diseases.
Collapse
Affiliation(s)
- Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
14
|
Aygün N, Vuong C, Krupa O, Mory J, Le BD, Valone JM, Liang D, Shafie B, Zhang P, Salinda A, Wen C, Gandal MJ, Love MI, de la Torre-Ubieta L, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. Am J Hum Genet 2024; 111:1877-1898. [PMID: 39168119 PMCID: PMC11393701 DOI: 10.1016/j.ajhg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celine Vuong
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beck Shafie
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Salinda
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy Wen
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Pasquini L, Pereira FL, Seddighi S, Zeng Y, Wei Y, Illán-Gala I, Vatsavayai SC, Friedberg A, Lee AJ, Brown JA, Spina S, Grinberg LT, Sirkis DW, Bonham LW, Yokoyama JS, Boxer AL, Kramer JH, Rosen HJ, Humphrey J, Gitler AD, Miller BL, Pollard KS, Ward ME, Seeley WW. Frontotemporal lobar degeneration targets brain regions linked to expression of recently evolved genes. Brain 2024; 147:3032-3047. [PMID: 38940350 PMCID: PMC11370792 DOI: 10.1093/brain/awae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158, USA
| | - Felipe L Pereira
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, Bethesda, MD 20892, USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Ignacio Illán-Gala
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, 94158USA
- Trinity College Dublin, Dublin D02 X9W9, Ireland
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalunya, 08041, Spain
| | - Sarat C Vatsavayai
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Adit Friedberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, 94158USA
- Trinity College Dublin, Dublin D02 X9W9, Ireland
| | - Alex J Lee
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Daniel W Sirkis
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Luke W Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Radiology, University of California, San Francisco, CA 94158, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Radiology, University of California, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics and Bakar Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, Bethesda, MD 20892, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Mazzini L, De Marchi F, Buzanska L, Follenzi A, Glover JC, Gelati M, Lombardi I, Maioli M, Mesa-Herrera F, Mitrečić D, Olgasi C, Pivoriūnas A, Sanchez-Pernaute R, Sgromo C, Zychowicz M, Vescovi A, Ferrari D. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin Biol Ther 2024; 24:933-954. [PMID: 39162129 DOI: 10.1080/14712598.2024.2392307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.
Collapse
Affiliation(s)
- Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
- Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Joel Clinton Glover
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maurizio Gelati
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, University of Sassari, Sassari, Italy
| | - Fatima Mesa-Herrera
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research and Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cristina Olgasi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rosario Sanchez-Pernaute
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Chiara Sgromo
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Angelo Vescovi
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
17
|
Plessis-Belair J, Ravano K, Han E, Janniello A, Molina C, Sher RB. NEMF mutations in mice illustrate how Importin-β specific nuclear transport defects recapitulate neurodegenerative disease hallmarks. PLoS Genet 2024; 20:e1011411. [PMID: 39312574 PMCID: PMC11449308 DOI: 10.1371/journal.pgen.1011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/03/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Pathological disruption of Nucleocytoplasmic Transport (NCT), such as the mis-localization of nuclear pore complex proteins (Nups), nuclear transport receptors, Ran-GTPase, and RanGAP1, are seen in both animal models and in familial and sporadic forms of amyotrophic lateral sclerosis (ALS), frontal temporal dementia and frontal temporal lobar degeneration (FTD\FTLD), and Alzheimer's and Alzheimer's Related Dementias (AD/ADRD). However, the question of whether these alterations represent a primary cause, or a downstream consequence of disease is unclear, and what upstream factors may account for these defects are unknown. Here, we report four key findings that shed light on the upstream causal role of Importin-β-specific nuclear transport defects in disease onset. First, taking advantage of two novel mouse models of NEMF neurodegeneration (NemfR86S and NemfR487G) that recapitulate many cellular and biochemical aspects of neurodegenerative diseases, we find an Importin-β-specific nuclear import block. Second, we observe cytoplasmic mis-localization and aggregation of multiple proteins implicated in the pathogenesis of ALS/FTD and AD/ADRD, including TDP43, Importin-β, RanGap1, and Ran. These findings are further supported by a pathological interaction between Importin-β and the mutant NEMFR86S protein in cytoplasmic accumulations. Third, we identify similar transcriptional dysregulation in key genes associated with neurodegenerative disease. Lastly, we show that even transient pharmaceutical inhibition of Importin-β in both mouse and human neuronal and non-neuronal cells induces key proteinopathies and transcriptional alterations seen in our mouse models and in neurodegeneration. Our convergent results between mouse and human neuronal and non-neuronal cellular biology provide mechanistic evidence that many of the mis-localized proteins and dysregulated transcriptional events seen in multiple neurodegenerative diseases may in fact arise primarily from a primary upstream defect in Importin- β nuclear import. These findings have critical implications for investigating how sporadic forms of neurodegeneration may arise from presently unidentified genetic and environmental perturbations in Importin-β function.
Collapse
Affiliation(s)
- Jonathan Plessis-Belair
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Kathryn Ravano
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Ellen Han
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Aubrey Janniello
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Catalina Molina
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Roger B. Sher
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
18
|
Zare A, Salehi S, Bader J, Schneider C, Fischer U, Veh A, Arampatzi P, Mann M, Briese M, Sendtner M. hnRNP R promotes O-GlcNAcylation of eIF4G and facilitates axonal protein synthesis. Nat Commun 2024; 15:7430. [PMID: 39198412 PMCID: PMC11358521 DOI: 10.1038/s41467-024-51678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Motoneurons critically depend on precise spatial and temporal control of translation for axon growth and the establishment and maintenance of neuromuscular connections. While defects in local translation have been implicated in the pathogenesis of motoneuron disorders, little is known about the mechanisms regulating axonal protein synthesis. Here, we report that motoneurons derived from Hnrnpr knockout mice show reduced axon growth accompanied by lowered synthesis of cytoskeletal and synaptic components in axons. Mutant mice display denervated neuromuscular junctions and impaired motor behavior. In axons, hnRNP R is a component of translation initiation complexes and, through interaction with O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (Ogt), modulates O-GlcNAcylation of eIF4G. Restoring axonal O-GlcNAc levels rescued local protein synthesis and axon growth defects of hnRNP R knockout motoneurons. Together, these findings demonstrate a function of hnRNP R in controlling the local production of key factors required for axon growth and formation of neuromuscular innervations.
Collapse
Affiliation(s)
- Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cornelius Schneider
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Alexander Veh
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
19
|
Erwin AL, Chang ML, Fernandez MG, Attili D, Russ JE, Sutanto R, Pinarbasi ES, Bekier M, Brant TS, Hahn T, Dykstra M, Thomas D, Li X, Baldridge RD, Tank EMH, Barmada SJ, Mosalaganti S. Molecular Visualization of Neuronal TDP43 Pathology In Situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608477. [PMID: 39229019 PMCID: PMC11370468 DOI: 10.1101/2024.08.19.608477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nuclear exclusion and cytoplasmic accumulation of the RNA-binding protein TDP43 are characteristic of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite this, the origin and ultrastructure of cytosolic TDP43 deposits remain unknown. Accumulating evidence suggests that abnormal RNA homeostasis can drive pathological TDP43 mislocalization, enhancing RNA misprocessing due to loss of nuclear TDP43 and engendering a cycle that ends in cell death. Here, we show that adding small monovalent oligonucleotides successfully recapitulates pathological TDP43 mislocalization and aggregation in iPSC-derived neurons (iNeurons). By employing a multimodal in situ cryo-correlative light and electron microscopy pipeline, we examine how RNA influences the localization and aggregation of TDP43 in near-native conditions. We find that mislocalized TDP43 forms ordered fibrils within lysosomes and autophagosomes in iNeurons as well as in patient tissue, and provide the first high-resolution snapshots of TDP43 aggregates in situ. In so doing, we provide a cellular model for studying initial pathogenic events underlying ALS, FTLD, and related TDP43-proteinopathies.
Collapse
Affiliation(s)
- Amanda L. Erwin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Matthew L. Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Martin G. Fernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, 48109, United States
| | - Durga Attili
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jennifer E. Russ
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Renaldo Sutanto
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Emile S. Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Tyler S. Brant
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Terry Hahn
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Megan Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Dafydd Thomas
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, United States
| | - Elizabeth M. H. Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
20
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
21
|
Zhang N, Westerhaus A, Wilson M, Wang E, Goff L, Sockanathan S. Physiological regulation of neuronal Wnt activity is essential for TDP-43 localization and function. EMBO J 2024; 43:3388-3413. [PMID: 38918634 PMCID: PMC11329687 DOI: 10.1038/s44318-024-00156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization, including disrupted nucleocytoplasmic transport (NCT); however, the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons, which is sufficient to cause NCT deficits, nuclear pore abnormalities, and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further, GDE2 deficits are evident in human neural cell models of ALS, which display erroneous Wnt activation that, when inhibited, increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease.
Collapse
Affiliation(s)
- Nan Zhang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Anna Westerhaus
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Macey Wilson
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- Department of Cellular Biology, University of Georgia, Biological Sciences 302, 120 Cedar St., Athens, GA, 30602, USA
| | - Ethan Wang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
- McKusick-Nathans Department of Genetic Medicine, Kavli Neurodiscovery Institute, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
22
|
Codron P, Millecamps S, Corcia P. EVolution in ALS diagnosis: molecular markers in extracellular vesicles. Trends Mol Med 2024:S1471-4914(24)00192-8. [PMID: 39069396 DOI: 10.1016/j.molmed.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The identification of biomarkers for amyotrophic lateral sclerosis (ALS) is a central issue in disease research. In a recent article, Chatterjee et al. show that blood extracellular vesicles (EVs) with high levels of transactive response DNA-binding protein 43 (TDP-43) accurately discriminate patients with ALS from controls and correlate with disease severity, providing a promising biomarker for early diagnosis and monitoring.
Collapse
Affiliation(s)
- Philippe Codron
- Centre de Référence sur la SLA d'Angers, Centre Hospitalier Universitaire d'Angers, Angers, France; Laboratoire de Neurobiologie et Neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France; University of Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France.
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute , ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Philippe Corcia
- Centre de Référence sur la SLA de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
| |
Collapse
|
23
|
Huang WP, Ellis BCS, Hodgson RE, Sanchez Avila A, Kumar V, Rayment J, Moll T, Shelkovnikova TA. Stress-induced TDP-43 nuclear condensation causes splicing loss of function and STMN2 depletion. Cell Rep 2024; 43:114421. [PMID: 38941189 DOI: 10.1016/j.celrep.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
TDP-43 protein is dysregulated in several neurodegenerative diseases, which often have a multifactorial nature and may have extrinsic stressors as a "second hit." TDP-43 undergoes reversible nuclear condensation in stressed cells including neurons. Here, we demonstrate that stress-inducible nuclear TDP-43 condensates are RNA-depleted, non-liquid assemblies distinct from the known nuclear bodies. Their formation requires TDP-43 oligomerization and ATP and is inhibited by RNA. Using a confocal nanoscanning assay, we find that amyotrophic lateral sclerosis (ALS)-linked mutations alter stress-induced TDP-43 condensation by changing its affinity to liquid-like ribonucleoprotein assemblies. Stress-induced nuclear condensation transiently inactivates TDP-43, leading to loss of interaction with its protein binding partners and loss of function in splicing. Splicing changes are especially prominent and persisting for STMN2 RNA, and STMN2 protein becomes rapidly depleted early during stress. Our results point to early pathological changes to TDP-43 in the nucleus and support therapeutic modulation of stress response in ALS.
Collapse
Affiliation(s)
- Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Brittany C S Ellis
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Rachel E Hodgson
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Anna Sanchez Avila
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Vedanth Kumar
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Jessica Rayment
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
24
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
25
|
Koike Y. Abnormal Splicing Events due to Loss of Nuclear Function of TDP-43: Pathophysiology and Perspectives. JMA J 2024; 7:313-318. [PMID: 39114608 PMCID: PMC11301021 DOI: 10.31662/jmaj.2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 08/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with a progressive and fatal course. They are often comorbid and share the same molecular spectrum. Their key pathological features are the formation of the aggregation of TDP-43, an RNA-binding protein, in the cytoplasm and its depletion from the nucleus in the central nervous system. In the nucleus, TDP-43 regulates several aspects of RNA metabolism, ranging from RNA transcription and alternative splicing to RNA transport. Suppressing the aberrant splicing events during RNA processing is one of the significant functions of TDP-43. This function is impaired when TDP-43 becomes depleted from the nucleus. Several critical cryptic splicing targets of TDP-43 have recently emerged, such as STMN2, UNC13A, and others. UNC13A is an important ALS/FTD risk gene, and the genetic variations, single nucleotide polymorphisms, cause disease via the increased susceptibility for cryptic exon inclusion under the TDP-43 dysfunction. Moreover, TDP-43 has an autoregulatory mechanism that regulates the splicing of its mRNA (TARDBP mRNA) in the healthy state. This study provides recent findings on the splicing regulatory function of TDP-43 and discusses the prospects of using these aberrant splicing events as efficient biomarkers.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Neuroscience, Mayo Clinic Florida, Florida, USA
| |
Collapse
|
26
|
Xie L, Merjane J, Bergmann CA, Xu J, Hurtle B, Donnelly CJ. CUTS RNA Biosensor for the Real-Time Detection of TDP-43 Loss-of-Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603231. [PMID: 39026766 PMCID: PMC11257528 DOI: 10.1101/2024.07.12.603231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Given the mounting evidence implicating TDP-43 dysfunction in several neurodegenerative diseases, there is a pressing need to establish accessible tools to sense and quantify TDP-43 loss-of-function (LOF). These tools are crucial for assessing potential disease contributors and exploring therapeutic candidates in TDP-43 proteinopathies. Here, we develop a sensitive and accurate real-time sensor for TDP-43 LOF: the CUTS (CFTR UNC13A TDP-43 Loss-of-Function) system. This system combines previously reported cryptic exons regulated by TDP-43 with a reporter, enabling the tracking of TDP-43 LOF through live microscopy and RNA/protein-based assays. We demonstrate CUTS' effectiveness in detecting LOF caused by TDP-43 mislocalization and RNA binding dysfunction, and pathological aggregation. Our results highlight the sensitivity and accuracy of the CUTS system in detecting and quantifying TDP-43 LOF, opening avenues to explore unknown TDP-43 interactions that regulate its function. In addition, by replacing the fluorescent tag in the CUTS system with the coding sequence for TDP-43, we show significant recovery of its function under TDP-43 LOF conditions, highlighting CUTS' potential for self-regulating gene therapy applications. In summary, CUTS represents a versatile platform for evaluating TDP-43 LOF in real-time and advancing gene-replacement therapies in neurodegenerative diseases associated with TDP-43 dysfunction.
Collapse
Affiliation(s)
- Longxin Xie
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, China
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica Merjane
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cristian A Bergmann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiazhen Xu
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Interdisciplinary Biomedical Graduate Program Cellular and Molecular Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan Hurtle
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Interdisciplinary Biomedical Graduate Program Cellular and Molecular Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Xiang JS, Schafer DM, Rothamel KL, Yeo GW. Decoding protein-RNA interactions using CLIP-based methodologies. Nat Rev Genet 2024:10.1038/s41576-024-00749-3. [PMID: 38982239 DOI: 10.1038/s41576-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Protein-RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA - in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) - have helped to map the RNA interactome, yielding transcriptome-wide protein-RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein-RNA interactions.
Collapse
Affiliation(s)
- Joy S Xiang
- Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA
| | - Danielle M Schafer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA.
| |
Collapse
|
28
|
Dykstra MM, Weskamp K, Gómez NB, Waksmacki J, Tank E, Glineburg MR, Snyder A, Pinarbasi E, Bekier M, Li X, Bai J, Shahzad S, Nedumaran J, Wieland C, Stewart C, Willey S, Grotewold N, McBride J, Moran JJ, Suryakumar AV, Lucas M, Tessier P, Ward M, Todd P, Barmada SJ. TDP43 autoregulation gives rise to shortened isoforms that are tightly controlled by both transcriptional and post-translational mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601776. [PMID: 39005384 PMCID: PMC11244999 DOI: 10.1101/2024.07.02.601776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, highly prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a byproduct of TDP43 autoregulation and cleared by nonsense mediated RNA decay (NMD). The sTDP43-encoding transcripts that escape NMD can lead to toxicity but are rapidly degraded post-translationally. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration in vitro and in vivo via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and provide insight into the consequences of aberrant sTDP43 accumulation in disease.
Collapse
Affiliation(s)
- Megan M. Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Kaitlin Weskamp
- Chemistry Department, Nebraska Wesleyan University, Lincoln, NE
| | - Nicolás B. Gómez
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - M. Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA
| | | | - Emile Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Neuropathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Jen Bai
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Juno Nedumaran
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Clare Wieland
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Corey Stewart
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Sydney Willey
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Nikolas Grotewold
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jonathon McBride
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - John J. Moran
- Atlanta Pediatric Research Alliance, Emory University, Atlanta, GA
| | | | - Michael Lucas
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Peter Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | | | - Peter Todd
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Veterans Affairs Medical Center, Ann Arbor, MI
| | - Sami J. Barmada
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Baghel MS, Burns GD, Tsapatsis M, Mallika AP, Cruz ALF, Cao T, Chen XK, Rosa IDL, Marx SR, Ye Y, Sun S, Li T, Wong PC. Depletion of TDP-43 exacerbates tauopathy-dependent brain atrophy by sensitizing vulnerable neurons to caspase 3-mediated endoproteolysis of tau in a mouse model of Multiple Etiology Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600814. [PMID: 38979270 PMCID: PMC11230425 DOI: 10.1101/2024.06.26.600814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
TDP-43 proteinopathy, initially disclosed in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), coexists with tauopathy in a variety of neurodegenerative disorders, termed multiple etiology dementias (MEDs), including Alzheimer's Disease (AD). While such co-pathology of TDP-43 is strongly associated with worsened neurodegeneration and steeper cognitive decline, the pathogenic mechanism underlying the exacerbated neuron loss remains elusive. The loss of TDP-43 splicing repression that occurs in presymptomatic ALS-FTD individuals suggests that such early loss could facilitate the pathological conversion of tau to accelerate neuron loss. Here, we report that the loss of TDP-43 repression of cryptic exons in forebrain neurons (CaMKII-CreER;Tardbp f/f mice) is necessary to exacerbate tauopathy-dependent brain atrophy by sensitizing vulnerable neurons to caspase 3-dependent cleavage of endogenous tau to promote tauopathy. Corroborating this finding within the human context, we demonstrate that loss of TDP-43 function in iPSC-derived cortical neurons promotes early cryptic exon inclusion and subsequent caspase 3-mediated endoproteolysis of tau. Using a genetic approach to seed tauopathy in CaMKII-CreER;Tardbp f/f mice by expressing a four-repeat microtubule binding domain of human tau, we show that the amount of tau seed positively correlates with levels of caspase 3-cleaved tau. Importantly, we found that the vulnerability of hippocampal neurons to TDP-43 depletion is dependent on the amount of caspase 3-cleaved tau: from most vulnerable neurons in the CA2/3, followed by those in the dentate gyrus, to the least in CA1. Taken together, our findings strongly support the view that TDP-43 loss-of-function exacerbates tauopathy-dependent brain atrophy by increasing the sensitivity of vulnerable neurons to caspase 3-mediated endoproteolysis of tau, resulting in a greater degree of neurodegeneration in human disorders with co-pathologies of tau and TDP-43. Our work thus discloses novel mechanistic insights and therapeutic targets for human tauopathies harboring co-pathology of TDP-43 and provides a new MED model for testing therapeutic strategies.
Collapse
Affiliation(s)
- Meghraj S Baghel
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Grace D Burns
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Margarita Tsapatsis
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Aswathy Peethambaran Mallika
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Anna Lourdes F Cruz
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Tianyu Cao
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Xiaoke K Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Isabel De La Rosa
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Shaelyn R Marx
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Philip C Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Nebuloni F, Do QB, Cook PR, Walsh EJ, Wade-Martins R. A fluid-walled microfluidic platform for human neuron microcircuits and directed axotomy. LAB ON A CHIP 2024; 24:3252-3264. [PMID: 38841815 PMCID: PMC11198392 DOI: 10.1039/d4lc00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
In our brains, different neurons make appropriate connections; however, there remain few in vitro models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in vitro in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls - interfaces between cell-growth medium and an immiscible fluorocarbon, FC40. Conditions are established that ensure post-mitotic neurons derived from human induced pluripotent stem cells (iPSCs) plated in one chamber of a dumbbell remain where deposited. After seeding cortical neurons on one side, axons grow through the connecting conduit to ramify amongst striatal neurons on the other - an arrangement mimicking unidirectional cortico-striatal connectivity. We also develop a moderate-throughput non-contact axotomy assay. Cortical axons in conduits are severed by a media jet; then, brain-derived neurotrophic factor and striatal neurons in distal chambers promote axon regeneration. As additional conduits and chambers are easily added, this opens up the possibility of mimicking complex neuronal networks, and screening drugs for their effects on connectivity.
Collapse
Affiliation(s)
- Federico Nebuloni
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK.
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Quyen B Do
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Peter R Cook
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Edmond J Walsh
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK.
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
31
|
Keuss MJ, Harley P, Ryadnov E, Jackson RE, Zanovello M, Wilkins OG, Barattucci S, Mehta PR, Oliveira MG, Parkes JE, Sinha A, Correa-Sánchez AF, Oliver PL, Fisher EM, Schiavo G, Shah M, Burrone J, Fratta P. Loss of TDP-43 induces synaptic dysfunction that is rescued by UNC13A splice-switching ASOs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599684. [PMID: 38979232 PMCID: PMC11230273 DOI: 10.1101/2024.06.20.599684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
TDP-43 loss of function induces multiple splicing changes, including a cryptic exon in the amyotrophic lateral sclerosis and fronto-temporal lobar degeneration risk gene UNC13A, leading to nonsense-mediated decay of UNC13A transcripts and loss of protein. UNC13A is an active zone protein with an integral role in coordinating pre-synaptic function. Here, we show TDP-43 depletion induces a severe reduction in synaptic transmission, leading to an asynchronous pattern of network activity. We demonstrate that these deficits are largely driven by a single cryptic exon in UNC13A. Antisense oligonucleotides targeting the UNC13A cryptic exon robustly rescue UNC13A protein levels and restore normal synaptic function, providing a potential new therapeutic approach for ALS and other TDP-43-related disorders.
Collapse
Affiliation(s)
- Matthew J. Keuss
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Eugeni Ryadnov
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Rachel E. Jackson
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King’s College London; London SE1 1UL, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Simone Barattucci
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Marcio G. Oliveira
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King’s College London; London SE1 1UL, UK
| | | | - Aparna Sinha
- Nucleic Acid Therapy Accelerator; Harwell, Didcot OX11 0FA, UK
| | | | - Peter L. Oliver
- Nucleic Acid Therapy Accelerator; Harwell, Didcot OX11 0FA, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London; London, WC1N 3BG, UK
| | - Mala Shah
- Department of Pharmacology, School of Pharmacy, University College London; London, WC1N 4AX, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King’s College London; London SE1 1UL, UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre and Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
- The Francis Crick Institute; London, NW1 1AT, UK
| |
Collapse
|
32
|
Zhang X, Das T, Chao TF, Trinh V, Carmen-Orozco RP, Ling JP, Kalab P, Hayes LR. Multivalent GU-rich oligonucleotides sequester TDP-43 in the nucleus by inducing high molecular weight RNP complexes. iScience 2024; 27:110109. [PMID: 38989321 PMCID: PMC11233918 DOI: 10.1016/j.isci.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
TDP-43 nuclear clearance and cytoplasmic aggregation are hallmarks of TDP-43 proteinopathies. We recently demonstrated that binding to endogenous nuclear GU-rich RNAs sequesters TDP-43 in the nucleus by restricting its passive nuclear export. Here, we tested the feasibility of synthetic RNA oligonucleotide-mediated augmentation of TDP-43 nuclear localization. Using biochemical assays, we compared the ability of GU-rich oligonucleotides to engage in multivalent, RRM-dependent binding with TDP-43. When transfected into cells, (GU)16 attenuated TDP-43 mislocalization induced by transcriptional blockade or RanGAP1 ablation. Clip34nt and (GU)16 accelerated TDP-43 nuclear re-import after cytoplasmic mislocalization. RNA pulldowns confirmed that multivalent GU-oligonucleotides induced high molecular weight RNP complexes, incorporating TDP-43 and possibly other GU-binding proteins. Transfected GU-repeat oligos disrupted TDP-43 cryptic exon repression, likely by diverting TDP-43 from endogenous RNAs, except for Clip34nt that contains interspersed A and C. Thus, exogenous multivalent GU-RNAs can promote TDP-43 nuclear localization, though pure GU-repeat motifs impair TDP-43 function.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tanuza Das
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tiffany F. Chao
- Johns Hopkins University Whiting School of Engineering, Baltiomre, MD 21218, USA
| | - Vickie Trinh
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Petr Kalab
- Johns Hopkins University Whiting School of Engineering, Baltiomre, MD 21218, USA
| | - Lindsey R. Hayes
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Brain Science Institute, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Hu Y, Hruscha A, Pan C, Schifferer M, Schmidt MK, Nuscher B, Giera M, Kostidis S, Burhan Ö, van Bebber F, Edbauer D, Arzberger T, Haass C, Schmid B. Mis-localization of endogenous TDP-43 leads to ALS-like early-stage metabolic dysfunction and progressive motor deficits. Mol Neurodegener 2024; 19:50. [PMID: 38902734 PMCID: PMC11188230 DOI: 10.1186/s13024-024-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The key pathological signature of ALS/ FTLD is the mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm. However, TDP-43 gain of function in the cytoplasm is still poorly understood since TDP-43 animal models recapitulating mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm are missing. METHODS CRISPR/Cas9 technology was used to generate a zebrafish line (called CytoTDP), that mis-locates endogenous TDP-43 from the nucleus to the cytoplasm. Phenotypic characterization of motor neurons and the neuromuscular junction was performed by immunostaining, microglia were immunohistochemically localized by whole-mount tissue clearing and muscle ultrastructure was analyzed by scanning electron microscopy. Behavior was investigated by video tracking and quantitative analysis of swimming parameters. RNA sequencing was used to identify mis-regulated pathways with validation by molecular analysis. RESULTS CytoTDP fish have early larval phenotypes resembling clinical features of ALS such as progressive motor defects, neurodegeneration and muscle atrophy. Taking advantage of zebrafish's embryonic development that solely relys on yolk usage until 5 days post fertilization, we demonstrated that microglia proliferation and activation in the hypothalamus is independent from food intake. By comparing CytoTDP to a previously generated TDP-43 knockout line, transcriptomic analyses revealed that mis-localization of endogenous TDP-43, rather than TDP-43 nuclear loss of function, leads to early onset metabolic dysfunction. CONCLUSIONS The new TDP-43 model mimics the ALS/FTLD hallmark of progressive motor dysfunction. Our results suggest that functional deficits of the hypothalamus, the metabolic regulatory center, might be the primary cause of weight loss in ALS patients. Cytoplasmic gain of function of endogenous TDP-43 leads to metabolic dysfunction in vivo that are reminiscent of early ALS clinical non-motor metabolic alterations. Thus, the CytoTDP zebrafish model offers a unique opportunity to identify mis-regulated targets for therapeutic intervention early in disease progression.
Collapse
Affiliation(s)
- Yiying Hu
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
| | - Alexander Hruscha
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Chenchen Pan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael K Schmidt
- Zentrum Für Neuropathologie, Ludwig-Maximilians University, Munich, Germany
| | - Brigitte Nuscher
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Martin Giera
- Leiden University Medical Center, Leiden, Netherlands
| | | | - Özge Burhan
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Frauke van Bebber
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- Zentrum Für Neuropathologie, Ludwig-Maximilians University, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
34
|
Huang X, Lee S, Chen K, Kawaguchi R, Wiskow O, Ghosh S, Frost D, Perrault L, Pandey R, Klim JR, Boivin B, Hermawan C, Livak KJ, Geschwind DH, Wainger BJ, Eggan KC, Bean BP, Woolf CJ. Downregulation of the silent potassium channel Kv8.1 increases motor neuron vulnerability in amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae202. [PMID: 38911266 PMCID: PMC11191651 DOI: 10.1093/braincomms/fcae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
While voltage-gated potassium channels have critical roles in controlling neuronal excitability, they also have non-ion-conducting functions. Kv8.1, encoded by the KCNV1 gene, is a 'silent' ion channel subunit whose biological role is complex since Kv8.1 subunits do not form functional homotetramers but assemble with Kv2 to modify its ion channel properties. We profiled changes in ion channel expression in amyotrophic lateral sclerosis patient-derived motor neurons carrying a superoxide dismutase 1(A4V) mutation to identify what drives their hyperexcitability. A major change identified was a substantial reduction of KCNV1/Kv8.1 expression, which was also observed in patient-derived neurons with C9orf72 expansion. We then studied the effect of reducing KCNV1/Kv8.1 expression in healthy motor neurons and found it did not change neuronal firing but increased vulnerability to cell death. A transcriptomic analysis revealed dysregulated metabolism and lipid/protein transport pathways in KCNV1/Kv8.1-deficient motor neurons. The increased neuronal vulnerability produced by the loss of KCNV1/Kv8.1 was rescued by knocking down Kv2.2, suggesting a potential Kv2.2-dependent downstream mechanism in cell death. Our study reveals, therefore, unsuspected and distinct roles of Kv8.1 and Kv2.2 in amyotrophic lateral sclerosis-related neurodegeneration.
Collapse
Affiliation(s)
- Xuan Huang
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ole Wiskow
- Department of Stem Cell and Regenerative Biology and Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sulagna Ghosh
- Department of Stem Cell and Regenerative Biology and Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Devlin Frost
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Laura Perrault
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Roshan Pandey
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology and Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Bruno Boivin
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Crystal Hermawan
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kenneth J Livak
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel H Geschwind
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian J Wainger
- Department of Neurology, Mass General Brigham and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin C Eggan
- Department of Stem Cell and Regenerative Biology and Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Carmen-Orozco RP, Tsao W, Ye Y, Sinha IR, Chang K, Trinh VT, Chung W, Bowden K, Troncoso JC, Blackshaw S, Hayes LR, Sun S, Wong PC, Ling JP. Elevated nuclear TDP-43 induces constitutive exon skipping. Mol Neurodegener 2024; 19:45. [PMID: 38853250 PMCID: PMC11163724 DOI: 10.1186/s13024-024-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. METHODS We analyzed RNA-seq datasets from mouse and human neurons overexpressing TDP-43 to explore species specific splicing patterns. We explored the dynamics between TDP-43 levels and exon repression in vitro. Furthermore we analyzed human brain samples and publicly available RNA datasets to explore the relationship between exon repression and disease. RESULTS Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. CONCLUSIONS Our findings emphasize the need for caution in interpreting TDP-43 overexpression data and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Rogger P Carmen-Orozco
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Tsao
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Irika R Sinha
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Vickie T Trinh
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Chung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kyra Bowden
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lindsey R Hayes
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Caldi Gomes L, Hänzelmann S, Hausmann F, Khatri R, Oller S, Parvaz M, Tzeplaeff L, Pasetto L, Gebelin M, Ebbing M, Holzapfel C, Columbro SF, Scozzari S, Knöferle J, Cordts I, Demleitner AF, Deschauer M, Dufke C, Sturm M, Zhou Q, Zelina P, Sudria-Lopez E, Haack TB, Streb S, Kuzma-Kozakiewicz M, Edbauer D, Pasterkamp RJ, Laczko E, Rehrauer H, Schlapbach R, Carapito C, Bonetto V, Bonn S, Lingor P. Multiomic ALS signatures highlight subclusters and sex differences suggesting the MAPK pathway as therapeutic target. Nat Commun 2024; 15:4893. [PMID: 38849340 PMCID: PMC11161513 DOI: 10.1038/s41467-024-49196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.
Collapse
Affiliation(s)
- Lucas Caldi Gomes
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Sonja Hänzelmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergio Oller
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mojan Parvaz
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Tzeplaeff
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Pasetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marie Gebelin
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Melanie Ebbing
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Holzapfel
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Serena Scozzari
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Johanna Knöferle
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Isabell Cordts
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Antonia F Demleitner
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Marcus Deschauer
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emma Sudria-Lopez
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Sebastian Streb
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Endre Laczko
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Valentina Bonetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stefan Bonn
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Paul Lingor
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), München, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
37
|
Park S, Park SK, Liebman SW. Expression of Wild-Type and Mutant Human TDP-43 in Yeast Inhibits TOROID (TORC1 Organized in Inhibited Domain) Formation and Autophagy Proportionally to the Levels of TDP-43 Toxicity. Int J Mol Sci 2024; 25:6258. [PMID: 38892445 PMCID: PMC11172667 DOI: 10.3390/ijms25116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
TDP-43 forms aggregates in the neurons of patients with several neurodegenerative diseases. Human TDP-43 also aggregates and is toxic in yeast. Here, we used a yeast model to investigate (1) the nature of TDP-43 aggregates and (2) the mechanism of TDP-43 toxicity. Thioflavin T, which stains amyloid but not wild-type TDP-43 aggregates, also did not stain mutant TDP-43 aggregates made from TDP-43 with intragenic mutations that increase or decrease its toxicity. However, 1,6-hexanediol, which dissolves liquid droplets, dissolved wild-type or mutant TDP-43 aggregates. To investigate the mechanism of TDP-43 toxicity, the effects of TDP-43 mutations on the autophagy of the GFP-ATG8 reporter were examined. Mutations in TDP-43 that enhance its toxicity, but not mutations that reduce its toxicity, caused a larger reduction in autophagy. TOROID formation, which enhances autophagy, was scored as GFP-TOR1 aggregation. TDP-43 inhibited TOROID formation. TORC1 bound to both toxic and non-toxic TDP-43, and to TDP-43, with reduced toxicity due to pbp1Δ. However, extragenic modifiers and TDP-43 mutants that reduced TDP-43 toxicity, but not TDP-43 mutants that enhanced toxicity, restored TOROID formation. This is consistent with the hypothesis that TDP-43 is toxic in yeast because it reduces TOROID formation, causing the inhibition of autophagy. Whether TDP-43 exerts a similar effect in higher cells remains to be determined.
Collapse
Affiliation(s)
| | | | - Susan W. Liebman
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
38
|
König LE, Rodriguez S, Hug C, Daneshvari S, Chung A, Bradshaw GA, Sahin A, Zhou G, Eisert RJ, Piccioni F, Das S, Kalocsay M, Sokolov A, Sorger P, Root DE, Albers MW. TYK2 as a novel therapeutic target in Alzheimer's Disease with TDP-43 inclusions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.595773. [PMID: 38895380 PMCID: PMC11185596 DOI: 10.1101/2024.06.04.595773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Neuroinflammation is a pathological feature of many neurodegenerative diseases, including Alzheimer's disease (AD)1,2 and amyotrophic lateral sclerosis (ALS)3, raising the possibility of common therapeutic targets. We previously established that cytoplasmic double-stranded RNA (cdsRNA) is spatially coincident with cytoplasmic pTDP-43 inclusions in neurons of patients with C9ORF72-mediated ALS4. CdsRNA triggers a type-I interferon (IFN-I)-based innate immune response in human neural cells, resulting in their death4. Here, we report that cdsRNA is also spatially coincident with pTDP-43 cytoplasmic inclusions in brain cells of patients with AD pathology and that type-I interferon response genes are significantly upregulated in brain regions affected by AD. We updated our machine-learning pipeline DRIAD-SP (Drug Repurposing In Alzheimer's Disease with Systems Pharmacology) to incorporate cryptic exon (CE) detection as a proxy of pTDP-43 inclusions and demonstrated that the FDA-approved JAK inhibitors baricitinib and ruxolitinib that block interferon signaling show a protective signal only in cortical brain regions expressing multiple CEs. Furthermore, the JAK family member TYK2 was a top hit in a CRISPR screen of cdsRNA-mediated death in differentiated human neural cells. The selective TYK2 inhibitor deucravacitinib, an FDA-approved drug for psoriasis, rescued toxicity elicited by cdsRNA. Finally, we identified CCL2, CXCL10, and IL-6 as candidate predictive biomarkers for cdsRNA-related neurodegenerative diseases. Together, we find parallel neuroinflammatory mechanisms between TDP-43 associated-AD and ALS and nominate TYK2 as a possible disease-modifying target of these incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Laura E. König
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Steve Rodriguez
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Shayda Daneshvari
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Alexander Chung
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Gary A. Bradshaw
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Asli Sahin
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - George Zhou
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Robyn J. Eisert
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Federica Piccioni
- Broad Institute of MIT and Harvard, 75 Ames Street,
Cambridge, MA 02142, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Peter Sorger
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - David E. Root
- Broad Institute of MIT and Harvard, 75 Ames Street,
Cambridge, MA 02142, USA
| | - Mark W. Albers
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
Deng X, Seguinot BO, Bradshaw G, Lee JS, Coy S, Kalocsay M, Santagata S, Mitchison T. STMND1 is a phylogenetically ancient stathmin which localizes to motile cilia and exhibits nuclear translocation that is inhibited when soluble tubulin concentration increases. Mol Biol Cell 2024; 35:ar82. [PMID: 38630521 PMCID: PMC11238091 DOI: 10.1091/mbc.e23-12-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Stathmins are small, unstructured proteins that bind tubulin dimers and are implicated in several human diseases, but whose function remains unknown. We characterized a new stathmin, STMND1 (Stathmin Domain Containing 1) as the human representative of an ancient subfamily. STMND1 features a N-terminal myristoylated and palmitoylated motif which directs it to membranes and a tubulin-binding stathmin-like domain (SLD) that contains an internal nuclear localization signal. Biochemistry and proximity labeling showed that STMND1 binds tubulin, and live imaging showed that tubulin binding inhibits translocation from cellular membranes to the nucleus. STMND1 is highly expressed in multiciliated epithelial cells, where it localizes to motile cilia. Overexpression in a model system increased the length of primary cilia. Our study suggests that the most ancient stathmins have cilium-related functions that involve sensing soluble tubulin.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Bryan O. Seguinot
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jong Suk Lee
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Shannon Coy
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sandro Santagata
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Timothy Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Costantino I, Meng A, Ravits J. Alternatively spliced ELAVL3 cryptic exon 4a causes ELAVL3 downregulation in ALS TDP-43 proteinopathy. Acta Neuropathol 2024; 147:93. [PMID: 38814471 PMCID: PMC11139733 DOI: 10.1007/s00401-024-02732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Isabel Costantino
- Department of Neurosciences, ALS Translational Research, University of California San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alex Meng
- Department of Neurosciences, ALS Translational Research, University of California San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Bradford D, Rodgers KE. Advancements and challenges in amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1401706. [PMID: 38846716 PMCID: PMC11155303 DOI: 10.3389/fnins.2024.1401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) continues to pose a significant challenge due to the disease complexity and heterogeneous manifestations. Despite recent drug approvals, there remains a critical need for the development of more effective therapies. This review explores the underlying mechanisms involved; including neuroinflammation, glutamate mediated excitotoxicity, mitochondrial dysfunction, and hypermetabolism, and how researchers are trying to develop novel drugs to target these pathways. While progress has been made, the unmet need of ALS patients highlights the urgency for continued research and resource allocation in the pursuit of effective treatments.
Collapse
Affiliation(s)
| | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
42
|
Al-Chalabi A, Andrews J, Farhan S. Recent advances in the genetics of familial and sporadic ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:49-74. [PMID: 38802182 DOI: 10.1016/bs.irn.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ALS shows complex genetic inheritance patterns. In about 5% to 10% of cases, there is a family history of ALS or a related condition such as frontotemporal dementia in a first or second degree relative, and for about 80% of such people a pathogenic gene variant can be identified. Such variants are also seen in people with no family history because of factor influencing the expression of genes, such as age. Genetic susceptibility factors also contribute to risk, and the heritability of ALS is between 40% and 60%. The genetic variants influencing ALS risk include single base changes, repeat expansions, copy number variants, and others. Here we review what is known of the genetic landscape and architecture of ALS.
Collapse
Affiliation(s)
- Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom.
| | - Jinsy Andrews
- Department of Neurology, Columbia University, New York, NY, United States
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, QC, Canada; Department of Human Genetics, Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| |
Collapse
|
43
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
44
|
Xin J, Huang S, Wen J, Li Y, Li A, Satyanarayanan SK, Yao X, Su H. Drug Screening and Validation Targeting TDP-43 Proteinopathy for Amyotrophic Lateral Sclerosis. Aging Dis 2024:AD.2024.0440. [PMID: 38739934 DOI: 10.14336/ad.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as a rare, yet severely debilitating disorder marked by the deterioration of motor neurons (MNs) within the brain and spinal cord, which is accompanied by degenerated corticobulbar/corticospinal tracts and denervation in skeletal muscles. Despite ongoing research efforts, ALS remains incurable, attributed to its intricate pathogenic mechanisms. A notable feature in the pathology of ALS is the prevalence of TAR DNA-binding protein 43 (TDP-43) proteinopathy, detected in approximately 97% of ALS cases, underscoring its significance in the disease's progression. As a result, strategies targeting the aberrant TDP-43 protein have garnered attention as a potential avenue for ALS therapy. This review delves into the existing drug screening systems aimed at TDP-43 proteinopathy and the models employed for drug efficacy validation. It also explores the hurdles encountered in the quest to develop potent medications against TDP-43 proteinopathy, offering insights into the intricacies of drug discovery and development for ALS. Through this comprehensive analysis, the review sheds light on the critical aspects of identifying and advancing therapeutic solutions for ALS.
Collapse
Affiliation(s)
- Jiaqi Xin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yunhao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
45
|
Salzinger A, Ramesh V, Das Sharma S, Chandran S, Thangaraj Selvaraj B. Neuronal Circuit Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2024; 13:792. [PMID: 38786016 PMCID: PMC11120636 DOI: 10.3390/cells13100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In this review, we document the current research from patient studies, rodent models, and human stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight the advances in human stem cell technology to model the complex neural circuitry and how these can aid in future studies to better understand the mechanisms of neural circuit dysfunction underpinning ALS.
Collapse
Affiliation(s)
- Andrea Salzinger
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Vidya Ramesh
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Shreya Das Sharma
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bhuvaneish Thangaraj Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
46
|
Udine E, DeJesus-Hernandez M, Tian S, das Neves SP, Crook R, Finch NA, Baker MC, Pottier C, Graff-Radford NR, Boeve BF, Petersen RC, Knopman DS, Josephs KA, Oskarsson B, Da Mesquita S, Petrucelli L, Gendron TF, Dickson DW, Rademakers R, van Blitterswijk M. Abundant transcriptomic alterations in the human cerebellum of patients with a C9orf72 repeat expansion. Acta Neuropathol 2024; 147:73. [PMID: 38641715 PMCID: PMC11031479 DOI: 10.1007/s00401-024-02720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.
Collapse
Affiliation(s)
- Evan Udine
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Shulan Tian
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Richard Crook
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Cyril Pottier
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | | | | | | | | | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
47
|
Ke YD, van Hummel A, Au C, Chan G, Lee WS, van der Hoven J, Przybyla M, Deng Y, Sabale M, Morey N, Bertz J, Feiten A, Ippati S, Stevens CH, Yang S, Gladbach A, Haass NK, Kril JJ, Blair IP, Delerue F, Ittner LM. Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice. Neuron 2024; 112:1249-1264.e8. [PMID: 38366598 DOI: 10.1016/j.neuron.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.
Collapse
Affiliation(s)
- Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol Au
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Siang Lee
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuanyuan Deng
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Miheer Sabale
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle Morey
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josefine Bertz
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Astrid Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Stefania Ippati
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Shu Yang
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amadeus Gladbach
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jillian J Kril
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Ian P Blair
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
48
|
Liu Y, Yan D, Yang L, Chen X, Hu C, Chen M. Stathmin 2 is a potential treatment target for TDP-43 proteinopathy in amyotrophic lateral sclerosis. Transl Neurodegener 2024; 13:20. [PMID: 38600555 PMCID: PMC11007978 DOI: 10.1186/s40035-024-00413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Yunqing Liu
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Dejun Yan
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Lin Yang
- Department of Anesthesiology, the Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, 511499, China
| | - Xian Chen
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Meilan Chen
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
49
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
50
|
Lai JD, Berlind JE, Fricklas G, Lie C, Urenda JP, Lam K, Sta Maria N, Jacobs R, Yu V, Zhao Z, Ichida JK. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell 2024; 31:519-536.e8. [PMID: 38579683 DOI: 10.1016/j.stem.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.
Collapse
Affiliation(s)
- Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA.
| | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Gabriella Fricklas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Cecilia Lie
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kelsey Lam
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naomi Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Russell Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Violeta Yu
- Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|