1
|
Ferrario CR, Münzberg-Gruening H, Rinaman L, Betley JN, Borgland SL, Dus M, Fadool DA, Medler KF, Morton GJ, Sandoval DA, de La Serre CB, Stanley SA, Townsend KL, Watts AG, Maruvada P, Cummings D, Cooke BM. Obesity- and diet-induced plasticity in systems that control eating and energy balance. Obesity (Silver Spring) 2024; 32:1425-1440. [PMID: 39010249 PMCID: PMC11269035 DOI: 10.1002/oby.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024]
Abstract
In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.
Collapse
Grants
- P30 DK048520 NIDDK NIH HHS
- NSF1949989 National Science Foundation
- T32 DC000044 NIDCD NIH HHS
- R01 DK133464 NIDDK NIH HHS
- R01 DK089056 NIDDK NIH HHS
- R01 DK130246 NIDDK NIH HHS
- R01 DK124801 NIDDK NIH HHS
- R01 DK100685 NIDDK NIH HHS
- R01 DK124238 NIDDK NIH HHS
- R01 DK130875 NIDDK NIH HHS
- R01 DK125890 NIDDK NIH HHS
- Z99 DK999999 Intramural NIH HHS
- R01 DK124461 NIDDK NIH HHS
- K26 DK138368 NIDDK NIH HHS
- R01 DK121995 NIDDK NIH HHS
- R01 DK121531 NIDDK NIH HHS
- P30 DK089503 NIDDK NIH HHS
- P01 DK119130 NIDDK NIH HHS
- R01 DK118910 NIDDK NIH HHS
- R01 AT011683 NCCIH NIH HHS
- Reported research was supported by DK130246, DK092587, AT011683, MH059911, DK100685, DK119130, DK124801, DK133399, AG079877, DK133464, T32DC000044, F31DC016817, NSF1949989, DK089056, DK124238, DK138368, DK121995, DK125890, DK118910, DK121531, DK124461, DK130875; Canada Research Chair: 950-232211, CIHRFDN148473, CIHRPJT185886; USDA Predoctoral Fellowship; Endowment from the Robinson Family and Tallahassee Memorial Hospital; Department of Defense W81XWH-20-1-0345 and HT9425-23-1-0244; American Diabetes Association #1-17-ACE-31; W.M. Keck Foundation Award; National Science Foundation CAREER 1941822
- R01 DK133399 NIDDK NIH HHS
- HT9425-23-1-0244 Department of Defense
- R01 DK092587 NIDDK NIH HHS
- W81XWH-20-1-0345 Department of Defense
- 1941822 National Science Foundation
- R01 MH059911 NIMH NIH HHS
- F31 DC016817 NIDCD NIH HHS
- R01 AG079877 NIA NIH HHS
- P30 DK017047 NIDDK NIH HHS
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heike Münzberg-Gruening
- Laboratory of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kathryn F Medler
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute at South Lake Union, Seattle, Washington, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diana Cummings
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Bradley M Cooke
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Yount ST, Wang S, Allen AT, Shapiro LP, Butkovich LM, Gourley SL. A molecularly defined orbitofrontal cortical neuron population controls compulsive-like behavior, but not inflexible choice or habit. Prog Neurobiol 2024; 238:102632. [PMID: 38821345 PMCID: PMC11332912 DOI: 10.1016/j.pneurobio.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Habits are familiar behaviors triggered by cues, not outcome predictability, and are insensitive to changes in the environment. They are adaptive under many circumstances but can be considered antecedent to compulsions and intrusive thoughts that drive persistent, potentially maladaptive behavior. Whether compulsive-like and habit-like behaviors share neural substrates is still being determined. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences. We found that these mice demonstrate habitual response biases and compulsive-like grooming behavior that was reversible by fluoxetine and ketamine. They also suffer dendritic spine attrition on excitatory neurons in the orbitofrontal cortex (OFC). Nevertheless, synaptic melanocortin 4 receptor (MC4R), a factor implicated in compulsive behavior, is preserved, leading to the hypothesis that Mc4r+ OFC neurons may drive aberrant behaviors. Repeated chemogenetic stimulation of Mc4r+ OFC neurons triggered compulsive and not inflexible or habitual response biases in otherwise typical mice. Thus, Mc4r+ neurons within the OFC appear to drive compulsive-like behavior that is dissociable from habitual behavior. Understanding which neuron populations trigger distinct behaviors may advance efforts to mitigate harmful compulsions.
Collapse
Affiliation(s)
- Sophie T Yount
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Silu Wang
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Aylet T Allen
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Lauren P Shapiro
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Laura M Butkovich
- Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Shannon L Gourley
- Graduate Program in Molecular and Systems Pharmacology, USA; Emory National Primate Research Center, USA; Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
3
|
Villalobos N. Disinhibition Is an Essential Network Motif Coordinated by GABA Levels and GABA B Receptors. Int J Mol Sci 2024; 25:1340. [PMID: 38279339 PMCID: PMC10816949 DOI: 10.3390/ijms25021340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Network dynamics are crucial for action and sensation. Changes in synaptic physiology lead to the reorganization of local microcircuits. Consequently, the functional state of the network impacts the output signal depending on the firing patterns of its units. Networks exhibit steady states in which neurons show various activities, producing many networks with diverse properties. Transitions between network states determine the output signal generated and its functional results. The temporal dynamics of excitation/inhibition allow a shift between states in an operational network. Therefore, a process capable of modulating the dynamics of excitation/inhibition may be functionally important. This process is known as disinhibition. In this review, we describe the effect of GABA levels and GABAB receptors on tonic inhibition, which causes changes (due to disinhibition) in network dynamics, leading to synchronous functional oscillations.
Collapse
Affiliation(s)
- Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México 11340, Mexico;
- Sección de Estudios Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
4
|
Wang L, Sesachalam PV, Chua R, Ghosh S. Interactome Analysis of Visceral Adipose Tissue Elucidates Gene Regulatory Networks and Novel Gene Candidates in Obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572734. [PMID: 38187694 PMCID: PMC10769441 DOI: 10.1101/2023.12.21.572734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Objective Visceral adiposity is associated with increased proinflammatory activity, insulin resistance, diabetes risk and mortality rate. Numerous individual genes have been associated with obesity, but studies investigating gene-regulatory networks in human visceral obesity are lacking. Methods We analyzed gene-regulatory networks in human visceral adipose tissue (VAT) from 48 obese and 11 non-obese Chinese subjects using gene co-expression and network construction with RNA-sequencing data. We also conducted RNA interference-based tests on selected genes for adipocyte differentiation effects. Results A scale-free gene co-expression network was constructed from 360 differentially expressed genes between obese and non-obese VAT (absolute log fold-change >1, FDR<0.05) with edge probability >0.8. Gene regulatory network analysis identified candidate transcription factors associated with differentially expressed genes. Fifteen subnetworks (communities) displayed altered connectivity patterns between obese and non-obese networks. Genes in pro-inflammatory pathways showed increased network connectivities in obese VAT whereas the oxidative phosphorylation pathway displayed reduced connections (enrichment FDR<0.05). Functional screening via RNA interference identified SOX30 and OSBPL3 as potential network-derived gene candidates influencing adipocyte differentiation. Conclusions This interactome-based approach highlights the network architecture, identifies novel candidate genes, and leads to new hypotheses regarding network-assisted gene regulation in obese vs. non-obese VAT.What is already known about this subject?: Visceral adipose tissue (VAT) is associated with increased levels of proinflammatory activity, insulin resistance, diabetes risk and mortality rate.Gene expression studies have identified candidate genes associated with proinflammatory function in VAT.What are the new findings in your manuscript?: Using integrative network-science, we identified co-expression and gene regulatory networks that are differentially regulated in VAT samples from subjects with and without obesityWe used functional testing (adipocyte differentiation) to validate a subset of novel candidate genes with minimal prior reported associations to obesityHow might your results change the direction of research or the focus of clinical practice: Network biology-based investigation provides a new avenue to our understanding of gene function in visceral adiposityFunctional validation screen allows for the identification of novel gene candidates that may be targeted for the treatment of adipose tissue dysfunction in obesity.
Collapse
|
5
|
Seabrook LT, Peterson CS, Noble D, Sobey M, Tayyab T, Kenney T, Judge AK, Armstrong M, Lin S, Borgland SL. Short- and Long-Term High-Fat Diet Exposure Differentially Alters Phasic and Tonic GABAergic Signaling onto Lateral Orbitofrontal Pyramidal Neurons. J Neurosci 2023; 43:8582-8595. [PMID: 37793910 PMCID: PMC10727176 DOI: 10.1523/jneurosci.0831-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
The chronic consumption of caloric dense high-fat foods is a major contributor to increased body weight, obesity, and other chronic health conditions. The orbitofrontal cortex (OFC) is critical in guiding decisions about food intake and is altered with diet-induced obesity. Obese rodents have altered morphologic and synaptic electrophysiological properties in the lateral orbitofrontal cortex (lOFC). Yet the time course by which exposure to a high-fat diet (HFD) induces these changes is poorly understood. Here, male mice are exposed to either short-term (7 d) or long-term (90 d) HFD. Long-term HFD exposure increases body weight, and glucose signaling compared with short-term HFD or a standard control diet (SCD). Both short and long-term HFD exposure increased the excitability of lOFC pyramidal neurons. However, phasic and tonic GABAergic signaling was differentially altered depending on HFD exposure length, such that tonic GABAergic signaling was decreased with early exposure to the HFD and phasic signaling was changed with long-term diet exposure. Furthermore, alterations in the short-term diet exposure were transient, as removal of the diet restored electrophysiological characteristics similar to mice fed SCD, whereas long-term HFD electrophysiological changes were persistent and remained after HFD removal. Finally, we demonstrate that changes in reward devaluation occur early with diet exposure. Together, these results suggest that the duration of HFD exposure differentially alters lOFC function and provides mechanistic insights into the susceptibility of the OFC to impairments in outcome devaluation.SIGNIFICANCE STATEMENT This study provides mechanistic insight on the impact of short-term and long-term high-fat diet (HFD) exposure on GABAergic function in the lateral orbitofrontal cortex (lOFC), a region known to guide decision-making. We find short-term HFD exposure induces transient changes in firing and tonic GABA action on lOFC pyramidal neurons, whereas long-term HFD induces obesity and has lasting changes on firing, tonic GABA and inhibitory synaptic transmission onto lOFC neurons. Given that GABAergic signaling in the lOFC can influence decision-making around food, these results have important implications in present society as palatable energy dense foods are abundantly available.
Collapse
Affiliation(s)
- Lauren T Seabrook
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Colleen S Peterson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Duncan Noble
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Marissa Sobey
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Temoor Tayyab
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tyra Kenney
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Allap K Judge
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Mataea Armstrong
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shihao Lin
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
6
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
7
|
Brown RM, James MH. Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110717. [PMID: 36623582 PMCID: PMC10162020 DOI: 10.1016/j.pnpbp.2023.110717] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Overeating ranges in severity from casual overindulgence to an overwhelming drive to consume certain foods. At its most extreme, overeating can manifest as clinical diagnoses such as binge eating disorder or bulimia nervosa, yet subclinical forms of overeating such as emotional eating or uncontrolled eating can still have a profoundly negative impact on health and wellbeing. Although rodent models cannot possibly capture the full spectrum of disordered overeating, studies in laboratory rodents have substantially progressed our understanding of the neurobiology of overconsumption. These experimental approaches range from simple food-exposure protocols that promote binge-like eating and the development of obesity, to more complex operant procedures designed to examine distinct 'addiction-like' endophenotypes for food. This review provides an overview of these experimental approaches, with the view to providing a comprehensive resource for preclinical investigators seeking to utilize behavioural models for studying the neural systems involved in food overconsumption.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, NJ, USA; Brain Health Institute, Rutgers University, NJ, USA.
| |
Collapse
|