1
|
Xu L, Zhu B, Zhu Z, Tao X, Zhang T, El Manira A, Song J. Separate brainstem circuits for fast steering and slow exploratory turns. Nat Commun 2025; 16:3207. [PMID: 40180933 PMCID: PMC11968878 DOI: 10.1038/s41467-025-58621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
Locomotion requires precise tuning of descending commands to scale turning movements, such as rapid steering during prey pursuit or shallow turns during exploration. We show that these two turn types are governed by distinct brainstem circuits. The rapid steering circuit involves excitatory V2a and inhibitory commissural V0d neurons, distributed across different brainstem nuclei. These neurons are coupled via gap junctions and activated simultaneously, ensuring rapid steering through asymmetrical activation of spinal motor neurons. The recruitment of this circuit correlates more with the degree of direction change than with locomotor frequency. Steering neurons are, in turn, controlled by a subset of V2a neurons in the pretectum, activated by salient visual input. In contrast, slow exploratory turns are governed by a separate set of V2a neurons confined to fewer brainstem nuclei. These findings reveal a modular organization of brainstem circuits that selectively control rapid steering and slow exploratory turning during locomotion.
Collapse
Affiliation(s)
- Lulu Xu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Bing Zhu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Zhiqiang Zhu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Xingyu Tao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Tianrui Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | | | - Jianren Song
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Sun X, Li L, Huang L, Li Y, Wang L, Wei Q. Harnessing spinal circuit reorganization for targeted functional recovery after spinal cord injury. Neurobiol Dis 2025; 207:106854. [PMID: 40010611 DOI: 10.1016/j.nbd.2025.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025] Open
Abstract
Spinal cord injury (SCI) disrupts the communication between the brain and spinal cord, resulting in the loss of motor function below the injury site. However, spontaneous structural and functional plasticity occurs in neural circuits after SCI, with unaffected synaptic inputs forming new connections and detour pathways to support recovery. The review discusses various mechanisms of circuit reorganization post-SCI, including supraspinal pathways, spinal interneurons, and spinal central pattern generators. Functional recovery may rely on maintaining a balance between excitatory and inhibitory neural activity, as well as enhancing proprioceptive input, which plays a key role in limb stability. The review emphasizes the importance of endogenous neuronal regeneration, neuromodulation therapies (such as electrical stimulation) and proprioception in SCI treatment. Future research should integrate advanced technologies such as gene targeting, imaging, and single-cell mapping to better understand the mechanisms underpinning SCI recovery, aiming to identify key neuronal subpopulations for targeted reconstruction and enhanced functional recovery. By harnessing spinal circuit reorganization, these efforts hold the potential to pave the way for more precise and effective strategies for functional recovery after SCI.
Collapse
Affiliation(s)
- Xin Sun
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Lijuan Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Liyi Huang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Yangan Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Lu Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Handa T, Sugiyama T, Islam T, Johansen JP, Yanagawa Y, McHugh TJ, Okamoto H. The neural pathway from the superior subpart of the medial habenula to the interpeduncular nucleus suppresses anxiety. Mol Psychiatry 2025:10.1038/s41380-025-02964-8. [PMID: 40140491 DOI: 10.1038/s41380-025-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
The medial habenula (MHb) and its projection target, the interpeduncular nucleus (IPN), are highly conserved throughout vertebrate evolution. The MHb-IPN pathway connects the limbic system to the brainstem, consisting of subpathways that project in a topographically organized manner, and has been implicated in the regulation of fear and anxiety. Previous studies have revealed subregion-specific functions of the cholinergic ventral MHb and a substance P (SP)-positive (SP+) subpart of the dorsal MHb (dMHb). In contrast, the dMHb also contains another subpart, a SP-negative subpart known as the 'superior part of MHb (MHbS)'. Although the MHbS has been characterized from various aspects, e.g. distinct c-Fos responses to stressful events and electrophysiological properties compared to other subregions, many of its physiological functions remain to be investigated. Here we found that dopamine receptor D3 (DRD3)-Cre mice enable the labeling of the IPN subregion that receives the MHbS projection. The Cre-expressing somata within the lateral subnucleus of the IPN (LIPN) were concentrated in its most lateral area, which we refer to as the 'lateral subregion of the LIPN (lLIPN)'. This region is characterized by the absence of SP+ axons, in contrast to the medial subregion of the LIPN (mLIPN) innervated by the SP+ axons from the dorsal MHb. Chemogenetic activation and genetically induced synaptic silencing of the DRD3-Cre+ cells reduced and enhanced anxiety-like behavior, respectively. Moreover, c-Fos expression was increased in the lLIPN under an anxiogenic environment. These findings suggest that the MHbS-lLIPN pathway is activated under anxiogenic environments to counteract anxiety.
Collapse
Affiliation(s)
- Takehisa Handa
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory of Molecular Neuroscience, Medical Research Institute, Institute of Science Tokyo (formerly Tokyo Medical and Dental University), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taku Sugiyama
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tanvir Islam
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-15 Showacho, Maebashi, Gunma, 371-8511, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- RIKEN CBS-Kao Collaboration Center, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Center for Advanced Biomedical Sciences, Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8489, Japan.
- Institute of Neuropsychiatry, 91 Bentencho, Shinjuku, Tokyo, 162-0851, Japan.
| |
Collapse
|
4
|
Velez-Angel N, Lu S, Fabella B, Reagor CC, Brown HR, Vázquez Y, Jacobo A, Hudspeth AJ. Optogenetic interrogation of the lateral-line sensory system reveals mechanisms of pattern separation in the zebrafish brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637118. [PMID: 39975109 PMCID: PMC11839093 DOI: 10.1101/2025.02.07.637118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The ability of animals to interact with their environment hinges on the brain's capacity to distinguish between patterns of sensory information and accurately attribute them to specific sensory organs. The mechanisms by which neuronal circuits discriminate and encode the source of sensory signals remain elusive. To address this, we utilized as a model the posterior lateral line system of larval zebrafish, which is used to detect water currents. This system comprises a series of mechanosensory organs called neuromasts, which are innervated by neurons from the posterior lateral line ganglion. By combining single-neuromast optogenetic stimulation with whole-brain calcium imaging, we developed a novel approach to investigate how inputs from neuromasts are processed. Upon stimulating individual neuromasts, we observed that neurons in the brain of the zebrafish show diverse selectivity properties despite a lack of topographic organization in second-order circuits. We further demonstrated that complex combinations of neuromast stimulation are represented by sparse ensembles of neurons within the medial octavolateralis nucleus (MON) and found that neuromast input can be integrated nonlinearly. Our approach offers an innovative method for spatiotemporally interrogating the zebrafish lateral line system and presents a valuable model for studying whole-brain sensory encoding.
Collapse
Affiliation(s)
- Nicolas Velez-Angel
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Sihao Lu
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Brian Fabella
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Caleb C. Reagor
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Holland R. Brown
- Sackler Institute of Developmental Psychobiology, Weill Cornell Medicine, New York, NY, USA
| | - Yuriria Vázquez
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | | | - A. J. Hudspeth
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Pazzaglia A, Bicanski A, Ferrario A, Arreguit J, Ryczko D, Ijspeert A. Balancing central control and sensory feedback produces adaptable and robust locomotor patterns in a spiking, neuromechanical model of the salamander spinal cord. PLoS Comput Biol 2025; 21:e1012101. [PMID: 39836708 PMCID: PMC11771899 DOI: 10.1371/journal.pcbi.1012101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/27/2025] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
This study introduces a novel neuromechanical model employing a detailed spiking neural network to explore the role of axial proprioceptive sensory feedback, namely stretch feedback, in salamander locomotion. Unlike previous studies that often oversimplified the dynamics of the locomotor networks, our model includes detailed simulations of the classes of neurons that are considered responsible for generating movement patterns. The locomotor circuits, modeled as a spiking neural network of adaptive leaky integrate-and-fire neurons, are coupled to a three-dimensional mechanical model of a salamander with realistic physical parameters and simulated muscles. In open-loop simulations (i.e., without sensory feedback), the model replicates locomotor patterns observed in-vitro and in-vivo for swimming and trotting gaits. Additionally, a modular descending reticulospinal drive to the central pattern generation network allows to accurately control the activation, frequency and phase relationship of the different sections of the limb and axial circuits. In closed-loop swimming simulations (i.e. including axial stretch feedback), systematic evaluations reveal that intermediate values of feedback strength increase the tail beat frequency and reduce the intersegmental phase lag, contributing to a more coordinated, faster and energy-efficient locomotion. Interestingly, the result is conserved across different feedback topologies (ascending or descending, excitatory or inhibitory), suggesting that it may be an inherent property of axial proprioception. Moreover, intermediate feedback strengths expand the stability region of the network, enhancing its tolerance to a wider range of descending drives, internal parameters' modifications and noise levels. Conversely, high values of feedback strength lead to a loss of controllability of the network and a degradation of its locomotor performance. Overall, this study highlights the beneficial role of proprioception in generating, modulating and stabilizing locomotion patterns, provided that it does not excessively override centrally-generated locomotor rhythms. This work also underscores the critical role of detailed, biologically-realistic neural networks to improve our understanding of vertebrate locomotion.
Collapse
Affiliation(s)
- Alessandro Pazzaglia
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrej Bicanski
- Neural Computation Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andrea Ferrario
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Arreguit
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dimitri Ryczko
- Ryczko Laboratory, Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Canada
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Mizuno-Iijima S, Kawamoto S, Asano M, Mashimo T, Wakana S, Nakamura K, Nishijima KI, Okamoto H, Saito K, Yoshina S, Miwa Y, Nakamura Y, Ohkuma M, Yoshiki A. Mammalian genome research resources available from the National BioResource Project in Japan. Mamm Genome 2024; 35:497-523. [PMID: 39261329 PMCID: PMC11522087 DOI: 10.1007/s00335-024-10063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Mammalian genome research has conventionally involved mice and rats as model organisms for humans. Given the recent advances in life science research, to understand complex and higher-order biological phenomena and to elucidate pathologies and develop therapies to promote human health and overcome diseases, it is necessary to utilize not only mice and rats but also other bioresources such as standardized genetic materials and appropriate cell lines in order to gain deeper molecular and cellular insights. The Japanese bioresource infrastructure program called the National BioResource Project (NBRP) systematically collects, preserves, controls the quality, and provides bioresources for use in life science research worldwide. In this review, based on information from a database of papers related to NBRP bioresources, we present the bioresources that have proved useful for mammalian genome research, including mice, rats, other animal resources; DNA-related materials; and human/animal cells and microbes.
Collapse
Affiliation(s)
- Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Shoko Kawamoto
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Shigeharu Wakana
- Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, 650-0047, Japan
| | - Katsuki Nakamura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Ken-Ichi Nishijima
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hitoshi Okamoto
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshihiro Miwa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan.
| |
Collapse
|
7
|
Sridhar G, Vergassola M, Marques JC, Orger MB, Costa AC, Wyart C. Uncovering multiscale structure in the variability of larval zebrafish navigation. Proc Natl Acad Sci U S A 2024; 121:e2410254121. [PMID: 39546569 PMCID: PMC11588111 DOI: 10.1073/pnas.2410254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Animals chain movements into long-lived motor strategies, exhibiting variability across scales that reflects the interplay between internal states and environmental cues. To reveal structure in such variability, we build Markov models of movement sequences that bridge across timescales and enable a quantitative comparison of behavioral phenotypes among individuals. Applied to larval zebrafish responding to diverse sensory cues, we uncover a hierarchy of long-lived motor strategies, dominated by changes in orientation distinguishing cruising versus wandering strategies. Environmental cues induce preferences along these modes at the population level: while fish cruise in the light, they wander in response to aversive stimuli, or in search for appetitive prey. As our method encodes the behavioral dynamics of each individual fish in the transitions among coarse-grained motor strategies, we use it to uncover a hierarchical structure in the phenotypic variability that reflects exploration-exploitation trade-offs. Across a wide range of sensory cues, a major source of variation among fish is driven by prior and/or immediate exposure to prey that induces exploitation phenotypes. A large degree of variability that is not explained by environmental cues unravels hidden states that override the sensory context to induce contrasting exploration-exploitation phenotypes. Altogether, by extracting the timescales of motor strategies deployed during navigation, our approach exposes structure among individuals and reveals internal states tuned by prior experience.
Collapse
Affiliation(s)
- Gautam Sridhar
- Sorbonne University, Paris Brain Institute (Institut du Cerveau), Inserm U1127, CNRS UMR 7225, Paris75013, France
| | - Massimo Vergassola
- Laboratoire de Physique de l’Ecole normale supérieure, École Normale Supérieure, Université Paris Sciences & Lettres, CNRS, Sorbonne Université, Université de Paris, ParisF-75005, France
| | - João C. Marques
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisboa1400-038, Portugal
| | - Michael B. Orger
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisboa1400-038, Portugal
| | - Antonio Carlos Costa
- Sorbonne University, Paris Brain Institute (Institut du Cerveau), Inserm U1127, CNRS UMR 7225, Paris75013, France
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisboa1400-038, Portugal
| | - Claire Wyart
- Sorbonne University, Paris Brain Institute (Institut du Cerveau), Inserm U1127, CNRS UMR 7225, Paris75013, France
| |
Collapse
|
8
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje Cells Control Posture in Larval Zebrafish ( Danio rerio). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557469. [PMID: 37745506 PMCID: PMC10515840 DOI: 10.1101/2023.09.12.557469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
- Lead Contact
| |
Collapse
|
9
|
Zhu Y, Gelnaw H, Auer F, Hamling KR, Ehrlich DE, Schoppik D. Evolutionarily conserved brainstem architecture enables gravity-guided vertical navigation. PLoS Biol 2024; 22:e3002902. [PMID: 39531487 PMCID: PMC11584107 DOI: 10.1371/journal.pbio.3002902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/22/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The sensation of gravity anchors our perception of the environment and is important for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to less effective vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move effectively through their environment.
Collapse
Affiliation(s)
- Yunlu Zhu
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Hannah Gelnaw
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Franziska Auer
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - David E Ehrlich
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
10
|
Sapkal N, Mancini N, Kumar DS, Spiller N, Murakami K, Vitelli G, Bargeron B, Maier K, Eichler K, Jefferis GSXE, Shiu PK, Sterne GR, Bidaye SS. Neural circuit mechanisms underlying context-specific halting in Drosophila. Nature 2024; 634:191-200. [PMID: 39358520 PMCID: PMC11446846 DOI: 10.1038/s41586-024-07854-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/19/2024] [Indexed: 10/04/2024]
Abstract
Walking is a complex motor programme involving coordinated and distributed activity across the brain and the spinal cord. Halting appropriately at the correct time is a critical component of walking control. Despite progress in identifying neurons driving halting1-6, the underlying neural circuit mechanisms responsible for overruling the competing walking state remain unclear. Here, using connectome-informed models7-9 and functional studies, we explain two fundamental mechanisms by which Drosophila implement context-appropriate halting. The first mechanism ('walk-OFF') relies on GABAergic neurons that inhibit specific descending walking commands in the brain, whereas the second mechanism ('brake') relies on excitatory cholinergic neurons in the nerve cord that lead to an active arrest of stepping movements. We show that two neurons that deploy the walk-OFF mechanism inhibit distinct populations of walking-promotion neurons, leading to differential halting of forward walking or turning. The brake neurons, by constrast, override all walking commands by simultaneously inhibiting descending walking-promotion neurons and increasing the resistance at the leg joints. We characterized two behavioural contexts in which the distinct halting mechanisms were used by the animal in a mutually exclusive manner: the walk-OFF mechanism was engaged for halting during feeding and the brake mechanism was engaged for halting and stability during grooming.
Collapse
Affiliation(s)
- Neha Sapkal
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- International Max Planck Research School for Synapses and Circuits, Jupiter, FL, USA
- Florida Atlantic University, Boca Raton, FL, USA
| | - Nino Mancini
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Divya Sthanu Kumar
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- International Max Planck Research School for Synapses and Circuits, Jupiter, FL, USA
- Florida Atlantic University, Boca Raton, FL, USA
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kazuma Murakami
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Gianna Vitelli
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Benjamin Bargeron
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Florida Atlantic University, Boca Raton, FL, USA
| | - Kate Maier
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Florida Atlantic University, Boca Raton, FL, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S X E Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Philip K Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Gabriella R Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Salil S Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
11
|
Zhao Q, Li X, Wen J, He Y, Zheng N, Li W, Cardona A, Gong Z. A two-layer neural circuit controls fast forward locomotion in Drosophila. Curr Biol 2024; 34:3439-3453.e5. [PMID: 39053465 DOI: 10.1016/j.cub.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Fast forward locomotion is critical for animal hunting and escaping behaviors. However, how the underlying neural circuit is wired at synaptic resolution to decide locomotion direction and speed remains poorly understood. Here, we identified in the ventral nerve cord (VNC) a set of ascending cholinergic neurons (AcNs) to be command neurons capable of initiating fast forward peristaltic locomotion in Drosophila larvae. Targeted manipulations revealed that AcNs are necessary and sufficient for fast forward locomotion. AcNs can activate their postsynaptic partners, A01j and A02j; both are interneurons with locomotory rhythmicity. Activated A01j neurons form a posterior-anteriorly descendent gradient in output activity along the VNC to launch forward locomotion from the tail. Activated A02j neurons exhibit quicker intersegmental transmission in activity that enables fast propagation of motor waves. Our work revealed a global neural mechanism that coordinately controls the launch direction and propagation speed of Drosophila locomotion, furthering the understanding of the strategy for locomotion control.
Collapse
Affiliation(s)
- Qianhui Zhao
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Xinhang Li
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Jun Wen
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Yinhui He
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Lab, Hangzhou 311121, China
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Albert Cardona
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| | - Zhefeng Gong
- Department of neurology of the fourth Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Lab, Hangzhou 311121, China.
| |
Collapse
|
12
|
Sridhar G, Vergassola M, Marques JC, Orger MB, Costa AC, Wyart C. Uncovering multiscale structure in the variability of larval zebrafish navigation. ARXIV 2024:arXiv:2405.17143v1. [PMID: 38855549 PMCID: PMC11160889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Animals chain movements into long-lived motor strategies, exhibiting variability across scales that reflects the interplay between internal states and environmental cues. To reveal structure in such variability, we build Markov models of movement sequences that bridges across time scales and enables a quantitative comparison of behavioral phenotypes among individuals. Applied to larval zebrafish responding to diverse sensory cues, we uncover a hierarchy of long-lived motor strategies, dominated by changes in orientation distinguishing cruising versus wandering strategies. Environmental cues induce preferences along these modes at the population level: while fish cruise in the light, they wander in response to aversive stimuli, or in search for appetitive prey. As our method encodes the behavioral dynamics of each individual fish in the transitions among coarse-grained motor strategies, we use it to uncover a hierarchical structure in the phenotypic variability that reflects exploration-exploitation trade-offs. Across a wide range of sensory cues, a major source of variation among fish is driven by prior and/or immediate exposure to prey that induces exploitation phenotypes. A large degree of variability that is not explained by environmental cues unravels motivational states that override the sensory context to induce contrasting exploration-exploitation phenotypes. Altogether, by extracting the timescales of motor strategies deployed during navigation, our approach exposes structure among individuals and reveals internal states tuned by prior experience.
Collapse
Affiliation(s)
- Gautam Sridhar
- Sorbonne University, Paris Brain Institute (ICM), Inserm U1127, CNRS UMR 7225, Paris, France
| | - Massimo Vergassola
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - João C. Marques
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisboa 1400-038, Portugal
| | - Michael B. Orger
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisboa 1400-038, Portugal
| | - Antonio Carlos Costa
- Sorbonne University, Paris Brain Institute (ICM), Inserm U1127, CNRS UMR 7225, Paris, France
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Claire Wyart
- Sorbonne University, Paris Brain Institute (ICM), Inserm U1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
13
|
Sridhar G, Vergassola M, Marques JC, Orger MB, Costa AC, Wyart C. Uncovering multiscale structure in the variability of larval zebrafish navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594521. [PMID: 38798455 PMCID: PMC11118365 DOI: 10.1101/2024.05.16.594521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Animals chain movements into long-lived motor strategies, resulting in variability that ultimately reflects the interplay between internal states and environmental cues. To reveal structure in such variability, we build models that bridges across time scales that enable a quantitative comparison of behavioral phenotypes among individuals. Applied to larval zebrafish exposed to diverse sensory cues, we uncover a hierarchy of long-lived motor strategies, dominated by changes in orientation distinguishing cruising and wandering strategies. Environmental cues induce preferences along these modes at the population level: while fish cruise in the light, they wander in response to aversive (dark) stimuli or in search for prey. Our method enables us to encode the behavioral dynamics of each individual fish in the transitions among coarse-grained motor strategies. By doing so, we uncover a hierarchical structure to the phenotypic variability that corresponds to exploration-exploitation trade-offs. Within a wide range of sensory cues, a major source of variation among fish is driven by prior and immediate exposure to prey that induces exploitation phenotypes. However, a large degree of variability is unexplained by environmental cues, pointing to hidden states that override the sensory context to induce contrasting exploration-exploitation phenotypes. Altogether, our approach extracts the timescales of motor strategies deployed during navigation, exposing undiscovered structure among individuals and pointing to internal states tuned by prior experience.
Collapse
|
14
|
Piarulli S, Riedel JA, Fossum FN, Kermen F, Hansen BH, Kvæstad B, Olsvik PA, Farkas J. Effects of gadolinium (Gd) and a Gd-based contrast agent (GBCA) on early life stages of zebrafish (Danio rerio). CHEMOSPHERE 2024; 350:140950. [PMID: 38114019 DOI: 10.1016/j.chemosphere.2023.140950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Gadolinium (Gd) is one of the rare earth elements (REY) and is widely used in magnetic resonance imaging (MRI) contrast agents. Anthropogenic Gd enrichment has frequently been found in wastewater treatment plant effluents in industrialised countries, rising concerns regarding effects on aquatic biota. This study investigates the acute toxicity and sublethal effects of Gd in two forms, as inorganic salt (GdCl3) and as Gd-based contrast agent (GBCA), on early life stages of zebrafish (Danio rerio). Nominal exposure concentrations ranged from 3 to 3000 μg L-1, with an exposure duration of 96 h. None of the two tested compounds were acutely toxic to embryos and larvae. Similarly, we did not observe any effects on larval development and locomotive behaviour. However, we found significant changes in the brain activity of larvae exposed to the highest concentrations of GdCl3 and the GBCA. Our findings show that Gd can have sublethal effects on developing fish at lower concentrations than reported previously, highlighting the necessity of investigating the long-term fate and effects of GBCAs released into the aquatic environment.
Collapse
Affiliation(s)
- Stefania Piarulli
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway.
| | - Juliane A Riedel
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026, Bodø, Norway
| | - Frida N Fossum
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Florence Kermen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway; Department of Neuroscience, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Bjarne Kvæstad
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026, Bodø, Norway
| | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway.
| |
Collapse
|
15
|
Ryczko D, Dubuc R. Dopamine control of downstream motor centers. Curr Opin Neurobiol 2023; 83:102785. [PMID: 37774481 DOI: 10.1016/j.conb.2023.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 10/01/2023]
Abstract
The role of dopamine in the control of movement is traditionally associated with ascending projections to the basal ganglia. However, more recently descending dopaminergic pathways projecting to downstream brainstem motor circuits were discovered. In lampreys, salamanders, and rodents, these include projections to the downstream Mesencephalic Locomotor Region (MLR), a brainstem region controlling locomotion. Such descending dopaminergic projections could prime brainstem networks controlling movement. Other descending dopaminergic projections have been shown to reach reticulospinal cells involved in the control of locomotion. In addition, dopamine directly modulates the activity of interneurons and motoneurons. Beyond locomotion, dopaminergic inputs modulate visuomotor transformations within the optic tectum (mammalian superior colliculus). Loss of descending dopaminergic inputs will likely contribute to pathological conditions such as in Parkinson's disease.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada; Neurosciences Sherbrooke, Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Canada.
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada; Groupe de recherche sur la Signalisation Neurale et la Circuiterie, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|