1
|
Yang L, Huang J, Huang N, Qin S, Chen Z, Xiao G, Shao H, Zi C, Hu JM. Structure-activity relationship of synthesized glucans from Ganoderma lucidum with in vitro hypoglycemic activity. Int J Biol Macromol 2025; 288:138586. [PMID: 39689800 DOI: 10.1016/j.ijbiomac.2024.138586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
The synthetic polysaccharides, which have precise structure, can be used to design new drugs by comparing structure-activity relationships (SAR). Improved protein stability may be due to the interaction between the polysaccharides and protein, which includes covalent and noncovalent interactions. It is critical to investigate the SAR of polysaccharides with a precise structure from the perspective of protein stability. Glucans-insulin interaction may be a useful stratagy to solve this problem. This study reports the SAR of the synthesized glucan GLSWA-1 and its substructures 2-4 on insulin secretion and discusses its mechanism. The results showed that although GLSWA-1 and its substructures 2-4 bind insulin to varying degrees, compound 2 improves insulin secretion in a dose-dependent manner. Further research found that compound 2 maintains the thermal stability of insulin better than GLSWA-1 through stronger hydrogen bonding, and molecular dynamics simulations demonstrated that compound 2 can form a "groove-binding model" with insulin. This study considerably improves the research on the SAR of glucan based on insulin thermostability and indicates that compound 2, its linear structure, appropriate chain flexibility ((1 → 6)-glucoside bonds), low molecular weight, and smaller steric hindrance is a potential hypoglycemic agent.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jia Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; School of life sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Ni Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihui Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhiyuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Huiyan Shao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Chengting Zi
- College of Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
2
|
Wilen RE, Nguyen AW, Qerqez AN, Maynard JA. Display of Native SARS-CoV-2 Spike on Mammalian Cells to Measure Antibody Affinity and ADCC. Bio Protoc 2024; 14:e5119. [PMID: 39600972 PMCID: PMC11588583 DOI: 10.21769/bioprotoc.5119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 11/29/2024] Open
Abstract
The COVID-19 pandemic led to the rapid development of antibody-based therapeutics and vaccines targeting the SARS-CoV-2 spike protein. Several antibodies have been instrumental in protecting vulnerable populations, but their utility was limited by the emergence of spike variants with diminished susceptibility to antibody binding and neutralization. Moreover, these spike variants exhibited reduced neutralization by polyclonal antibodies in vaccinated individuals. Accordingly, the characterization of antibody binding to spike variants is critical to define antibody potency and understand the impact of amino acid changes. A key challenge in this effort is poor spike stability, with most current methods assessing antibody binding using individual domains instead of the intact spike or variants with stabilizing amino acid changes in the ectodomain (e.g., 2P or HexaPro). The use of non-native spike may not accurately predict antibody binding if changes lie within the epitope or alter epitope accessibility by altering spike dynamics. Here, we present methods to characterize antibody affinity for and activity against unmodified SARS-CoV-2 spike protein variants displayed on a mammalian cell membrane that recapitulates the native spike environment on infected cells. These include a flow cytometry-based method to determine the effective antibody binding affinity (KD) and an antibody-dependent cellular cytotoxicity (ADCC) assay to assess Fc-mediated activities. These methods can readily evaluate antibody activity across a panel of spike variants and contribute to our understanding of spike/antibody co-evolution. Key features • Allows rapid characterization of antibody binding to native SARS-CoV-2 spike on the mammalian cell surface. • Describes analysis of antibody binding to multiple native spike variants without stabilizing mutations • Describes analysis of Fc-mediated antibody-dependent cellular cytotoxicity • Requires transient transfection of Expi293F and 293T cells to assess antibody binding and ADCC, a flow cytometer for antibody binding, and a plate reader for ADCC • Protocol is readily adaptable to other viral fusogens and membrane proteins.
Collapse
Affiliation(s)
- Rebecca E. Wilen
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Annalee W. Nguyen
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Ahlam N. Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Herreros D, Mata C, Noddings C, Irene D, Krieger J, Agard D, Tsai MD, Sorzano C, Carazo J. Real-space heterogeneous reconstruction, refinement, and disentanglement of CryoEM conformational states with HetSIREN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613176. [PMID: 39345408 PMCID: PMC11429808 DOI: 10.1101/2024.09.16.613176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Single-particle analysis by Cryo-electron microscopy (CryoEM) provides direct access to the conformation of each macromolecule. However, the image's signal-to-noise ratio is low, and some form of classification is usually performed at the image processing level to allow structural modeling. Classical classification methods imply the existence of a discrete number of structural conformations. However, new heterogeneity algorithms introduce a novel reconstruction paradigm, where every state is represented by a lower number of particles, potentially just one, allowing the estimation of conformational landscapes representing the different structural states a biomolecule explores. In this work, we present a novel deep learning-based method called HetSIREN. HetSIREN can fully reconstruct or refine a CryoEM volume in real space based on the structural information summarized in a conformational latent space. The unique characteristics that set HetSIREN apart start with the definition of the approach as a real space-based only method, a fact that allows spatially focused analysis, but also the introduction of a novel network architecture specifically designed to make use of meta-sinusoidal activations, with proven high analytics capacities. Continuing with innovations, HetSIREN can also refine the pose parameters of the images at the same time that it conditions the network with prior information/constraints on the maps, such as Total Variation andL 1 denoising, ultimately yielding cleaner volumes with high-quality structural features. Finally, but very importantly, HetSIREN addresses one of the most confusing issues in heterogeneity analysis, as it is the fact that real structural heterogeneity estimation is entangled with pose estimation (and to a lesser extent with CTF estimation), in this way, HetSIREN introduces a novel encoding architecture able to decouple pose and CTF information from the conformational landscape, resulting in more accurate and interpretable conformational latent spaces. We present results on computer-simulated data, public data from EMPIAR, and data from experimental systems currently being studied in our laboratories. An important finding is the sensitivity of the structure and dynamics of the SARS-CoV-2 Spike protein on the storage temperature.
Collapse
Affiliation(s)
- D. Herreros
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain
| | - C.P. Mata
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain
| | - C. Noddings
- Altos Labs, 1300 Island Dr., Redwood City, CA 94065, United States
| | - D. Irene
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - J. Krieger
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain
| | - D.A. Agard
- Department of Biochemistry Biophysics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | - M.-D. Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - C.O.S. Sorzano
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain
| | - J.M. Carazo
- Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, 28049, Cantoblanco, Madrid, Spain
| |
Collapse
|
4
|
Yang L, Zi C, Li Y, Huang J, Gu Z, Wang C, Hu JM, Jiang Z, Zhang W. An in-depth investigation of molecular interaction in zeaxanthin/corn silk glycan complexes and its positive role in hypoglycemic activity. Food Chem 2024; 438:137986. [PMID: 38000158 DOI: 10.1016/j.foodchem.2023.137986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Glycans in corn silk could interact with co-existing small molecules during its absorption, digestion, and biological process. In order to understand the exact mechanism of action of zeaxanthin, it is critical to investigate the biomolecular interactions, which were necessary to form a glycan-small molecule complex and yet produce the bioactive effect. So far, the in-depth study of these natural interactions has not been fully elucidated. Here, we probed that the molecular interaction between zeaxanthin (ZEA) and glycans from corn silk (CSGs) was driven by enthalpy. More importantly, it was the first time found that CSGs can bind to lipid-soluble ZEA could be binded with CSGs. It was the first report on the thermostability of insulin structure and natural glycans. This study should facilitate our understanding of the interaction between lipid soluble molecules and glycans, and provide a more comprehensive understanding of the nutrient base in food.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau; State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chengting Zi
- College of Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yanlang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jia Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhijia Gu
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau.
| |
Collapse
|
5
|
Yang L, Huang J, Qin S, Shao H, Li Y, Zhou Y, Zi C, Hu JM. "MD" method for the precise analysis of the O-acetyl-mannan structure and disclosure of the role in the conformational stability of insulin. Int J Biol Macromol 2024; 263:129944. [PMID: 38311142 DOI: 10.1016/j.ijbiomac.2024.129944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Among the diversified glycan modifications, acylation is one of the most abundant. This modification could be responsible for many of the properties of glycans, such as structural stability and specificity for biological activity. To obtain better insight into the effects of acetylation of glycans on the structure and thermostability of insulin, it is critical to investigate glycans with a high degree of acetylation. An in-depth study of three functional glycans named acetyl-mannan from Dendrobium devonianum (DDAM) was conducted herein by efficient enzymatic depolymerization, and the effect of glycosidic bonds on acetylation modification sites was studied through a molecular dynamics (MD) method, as well as its positive effect on insulin secretion, glucose uptake, and the thermal stability of tertiary structures in vitro. Further study indicated that DDAMs play a hypoglycemic role by sparking the thermostability of the insulin conformation. The hypoglycemic activity displayed a positive correlation with the degree of acetylation in DDAMs. In this work, through the MD method, we confirmed the structure characteristics of DDAMs and provided accurate data support for the structure-activity relationship analysis. Thus, these findings demonstrated that DDAMs might be an exceptional leading compound for the stability of insulin drug.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jia Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shihui Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Huiyan Shao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yanlang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying Zhou
- Longling County Institute of Dendrobium, Baoshan, Yunnan 678300, China
| | - Chengting Zi
- College of Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
6
|
Rutten L, Swart M, Koornneef A, Bouchier P, Blokland S, Sadi A, Juraszek J, Vijayan A, Schmit-Tillemans S, Verspuij J, Choi Y, Daal CE, Perkasa A, Torres Morales S, Myeni SK, Kikkert M, Tolboom J, van Manen D, Kuipers H, Schuitemaker H, Zahn R, Langedijk JPM. Impact of SARS-CoV-2 spike stability and RBD exposure on antigenicity and immunogenicity. Sci Rep 2024; 14:5735. [PMID: 38459086 PMCID: PMC10923862 DOI: 10.1038/s41598-024-56293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
The spike protein (S) of SARS-CoV-2 induces neutralizing antibodies and is the key component of current COVID-19 vaccines. The most efficacious COVID-19 vaccines are genetically-encoded spikes with a double proline substitution in the hinge region to stabilize S in the prefusion conformation (S-2P). A subunit vaccine can be a valuable addition to mRNA and viral vector-based vaccines but requires high stability of spike. In addition, further stabilization of the prefusion conformation of spike might improve immunogenicity. To test this, five spike proteins were designed and characterized, ranging from low to high stability. The immunogenicity of these proteins was assessed in mice, demonstrating that a spike (S-closed-2) with a high melting temperature, which still allowed ACE2 binding, induced the highest neutralization titers against homologous and heterologous strains (up to 16-fold higher than the least stabilized spike). In contrast, the most stable spike variant (S-locked), in which the receptor binding domains (RBDs) were locked in a closed conformation and thus not able to breathe, induced relatively low neutralizing antibody titers against heterologous strains. These data demonstrate that S protein stabilization with RBDs exposing highly conserved epitopes may be needed to increase the immunogenicity of spike proteins for future COVID-19 vaccines.
Collapse
Affiliation(s)
- Lucy Rutten
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Maarten Swart
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Annemart Koornneef
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Pascale Bouchier
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Sven Blokland
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Ava Sadi
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Jarek Juraszek
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Aneesh Vijayan
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | | | - Johan Verspuij
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Ying Choi
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Chenandly E Daal
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Aditya Perkasa
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Shessy Torres Morales
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebenzile K Myeni
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Tolboom
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Daniëlle van Manen
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Harmjan Kuipers
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands
| | - Johannes P M Langedijk
- Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, Leiden, The Netherlands.
- ForgeBio, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Bruch EM, Zhu S, Szymkowicz L, Blake T, Kiss T, James DA, Rak A, Narayan K, Balmer MT, Chicz RM. Structural and biochemical rationale for Beta variant protein booster vaccine broad cross-neutralization of SARS-CoV-2. Sci Rep 2024; 14:2038. [PMID: 38263191 PMCID: PMC10805794 DOI: 10.1038/s41598-024-52499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, uses a surface expressed trimeric spike glycoprotein for cell entry. This trimer is the primary target for neutralizing antibodies making it a key candidate for vaccine development. During the global pandemic circulating variants of concern (VOC) caused several waves of infection, severe disease, and death. The reduced efficacy of the ancestral trimer-based vaccines against emerging VOC led to the need for booster vaccines. Here we present a detailed characterization of the Sanofi Beta trimer, utilizing cryo-EM for structural elucidation. We investigate the conformational dynamics and stabilizing features using orthogonal SPR, SEC, nanoDSF, and HDX-MS techniques to better understand how this antigen elicits superior broad neutralizing antibodies as a variant booster vaccine. This structural analysis confirms the Beta trimer preference for canonical quaternary structure with two RBD in the up position and the reversible equilibrium between the canonical spike and open trimer conformations. Moreover, this report provides a better understanding of structural differences between spike antigens contributing to differential vaccine efficacy.
Collapse
|
8
|
Thakur S, Planeta Kepp K, Mehra R. Predicting virus Fitness: Towards a structure-based computational model. J Struct Biol 2023; 215:108042. [PMID: 37931730 DOI: 10.1016/j.jsb.2023.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Predicting the impact of new emerging virus mutations is of major interest in surveillance and for understanding the evolutionary forces of the pathogens. The SARS-CoV-2 surface spike-protein (S-protein) binds to human ACE2 receptors as a critical step in host cell infection. At the same time, S-protein binding to human antibodies neutralizes the virus and prevents interaction with ACE2. Here we combine these two binding properties in a simple virus fitness model, using structure-based computation of all possible mutation effects averaged over 10 ACE2 complexes and 10 antibody complexes of the S-protein (∼380,000 computed mutations), and validated the approach against diverse experimental binding/escape data of ACE2 and antibodies. The ACE2-antibody selectivity change caused by mutation (i.e., the differential change in binding to ACE2 vs. immunity-inducing antibodies) is proposed to be a key metric of fitness model, enabling systematic error cancelation when evaluated. In this model, new mutations become fixated if they increase the selective binding to ACE2 relative to circulating antibodies, assuming that both are present in the host in a competitive binding situation. We use this model to categorize viral mutations that may best reach ACE2 before being captured by antibodies. Our model may aid the understanding of variant-specific vaccines and molecular mechanisms of viral evolution in the context of a human host.
Collapse
Affiliation(s)
- Shivani Thakur
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India
| | - Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800 Kongens Lyngby, Denmark
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India; Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India.
| |
Collapse
|
9
|
Martinez DR, Schäfer A, Gavitt TD, Mallory ML, Lee E, Catanzaro NJ, Chen H, Gully K, Scobey T, Korategere P, Brown A, Smith L, Parks R, Barr M, Newman A, Bowman C, Powers JM, Soderblom EJ, Mansouri K, Edwards RJ, Baric RS, Haynes BF, Saunders KO. Vaccine-mediated protection against Merbecovirus and Sarbecovirus challenge in mice. Cell Rep 2023; 42:113248. [PMID: 37858337 PMCID: PMC10842144 DOI: 10.1016/j.celrep.2023.113248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The emergence of three highly pathogenic human coronaviruses-severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle Eastern respiratory syndrome (MERS)-CoV in 2012, and SARS-CoV-2 in 2019-underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines protect against severe COVID-19, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor-binding domains (RBDs), which elicited live-virus neutralizing antibody responses. The trivalent RBD scNP elicited serum neutralizing antibodies against bat zoonotic Wuhan Institute of Virology-1 (WIV-1)-CoV, SARS-CoV, SARS-CoV-2 BA.1, SARS-CoV-2 XBB.1.5, and MERS-CoV live viruses. The monovalent SARS-CoV-2 RBD scNP vaccine only protected against Sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both Merbecovirus and Sarbecovirus challenge in highly pathogenic and lethal mouse models. This study demonstrates proof of concept for a single pan-sarbecovirus/pan-merbecovirus vaccine that protects against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.
Collapse
Affiliation(s)
- David R Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tyler D Gavitt
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pooja Korategere
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alecia Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lena Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Stuible M, Schrag JD, Sheff J, Zoubchenok D, Lord-Dufour S, Cass B, L'Abbé D, Pelletier A, Rossotti MA, Tanha J, Gervais C, Maurice R, El Bakkouri M, Acchione M, Durocher Y. Influence of variant-specific mutations, temperature and pH on conformations of a large set of SARS-CoV-2 spike trimer vaccine antigen candidates. Sci Rep 2023; 13:16498. [PMID: 37779126 PMCID: PMC10543594 DOI: 10.1038/s41598-023-43661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.
Collapse
Affiliation(s)
- Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Joseph D Schrag
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Joey Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Daria Zoubchenok
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Simon Lord-Dufour
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Brian Cass
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Denis L'Abbé
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Christian Gervais
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Roger Maurice
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Majida El Bakkouri
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Mauro Acchione
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
| |
Collapse
|
11
|
Hermet P, Delache B, Herate C, Wolf E, Kivi G, Juronen E, Mumm K, Žusinaite E, Kainov D, Sankovski E, Virumäe K, Planken A, Merits A, Besaw JE, Yee AW, Morizumi T, Kim K, Kuo A, Berriche A, Dereuddre-Bosquet N, Sconosciuti Q, Naninck T, Relouzat F, Cavarelli M, Ustav M, Wilson D, Ernst OP, Männik A, LeGrand R, Ustav M. Broadly neutralizing humanized SARS-CoV-2 antibody binds to a conserved epitope on Spike and provides antiviral protection through inhalation-based delivery in non-human primates. PLoS Pathog 2023; 19:e1011532. [PMID: 37531329 PMCID: PMC10395824 DOI: 10.1371/journal.ppat.1011532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
The COVID-19 pandemic represents a global challenge that has impacted and is expected to continue to impact the lives and health of people across the world for the foreseeable future. The rollout of vaccines has provided highly anticipated relief, but effective therapeutics are required to further reduce the risk and severity of infections. Monoclonal antibodies have been shown to be effective as therapeutics for SARS-CoV-2, but as new variants of concern (VoC) continue to emerge, their utility and use have waned due to limited or no efficacy against these variants. Furthermore, cumbersome systemic administration limits easy and broad access to such drugs. As well, concentrations of systemically administered antibodies in the mucosal epithelium, a primary site of initial infection, are dependent on neonatal Fc receptor mediated transport and require high drug concentrations. To reduce the viral load more effectively in the lung, we developed an inhalable formulation of a SARS-CoV-2 neutralizing antibody binding to a conserved epitope on the Spike protein, ensuring pan-neutralizing properties. Administration of this antibody via a vibrating mesh nebulization device retained antibody integrity and resulted in effective distribution of the antibody in the upper and lower respiratory tract of non-human primates (NHP). In comparison with intravenous administration, significantly higher antibody concentrations can be obtained in the lung, resulting in highly effective reduction in viral load post SARS-CoV-2 challenge. This approach may reduce the barriers of access and uptake of antibody therapeutics in real-world clinical settings and provide a more effective blueprint for targeting existing and potentially emerging respiratory tract viruses.
Collapse
Affiliation(s)
| | - Benoît Delache
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Cecile Herate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | | | - Gaily Kivi
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | - Karl Mumm
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | | | | | | | | | | | - Jessica E Besaw
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Ai Woon Yee
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | | | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Anling Kuo
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Asma Berriche
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Quentin Sconosciuti
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mart Ustav
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | - Oliver P Ernst
- Department of Biochemistry, University of Toronto; Toronto, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, Canada
| | | | - Roger LeGrand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mart Ustav
- Icosagen Cell Factory OÜ; Tartu, Estonia
| |
Collapse
|
12
|
Weidenbacher PAB, Friedland N, Sanyal M, Morris MK, Do J, Hanson C, Kim PS. Decreased efficacy of a COVID-19 vaccine due to mutations present in early SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546764. [PMID: 37425802 PMCID: PMC10326996 DOI: 10.1101/2023.06.27.546764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
With the SARS-CoV-2 virus still circulating and evolving, there remains an outstanding question if variant-specific vaccines represent the optimal path forward, or if other strategies might be more efficacious towards providing broad protection against emerging variants. Here, we examine the efficacy of strain-specific variants of our previously reported, pan-sarbecovirus vaccine candidate, DCFHP-alum, a ferritin nanoparticle functionalized with an engineered form of the SARS-CoV-2 spike protein. In non-human primates, DCFHP-alum elicits neutralizing antibodies against all known VOCs that have emerged to date and SARS-CoV-1. During development of the DCFHP antigen, we investigated the incorporation of strain-specific mutations from the major VOCs that had emerged to date: D614G, Epsilon, Alpha, Beta, and Gamma. Here, we report the biochemical and immunological characterizations that led us to choose the ancestral Wuhan-1 sequence as the basis for the final DCFHP antigen design. Specifically, we show by size exclusion chromatography and differential scanning fluorimetry that mutations in the VOCs adversely alter the antigen's structure and stability. More importantly, we determined that DCFHP without strain-specific mutations elicits the most robust, cross-reactive response in both pseudovirus and live virus neutralization assays. Our data suggest potential limitations to the variant-chasing approach in the development of protein nanoparticle vaccines, but also have implications for other approaches including mRNA-based vaccines.
Collapse
Affiliation(s)
- Payton A.-B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Mrinmoy Sanyal
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Carl Hanson
- California Department of Public Health, Richmond, CA, USA
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
13
|
Williams JA, Biancucci M, Lessen L, Tian S, Balsaraf A, Chen L, Chesterman C, Maruggi G, Vandepaer S, Huang Y, Mallett CP, Steff AM, Bottomley MJ, Malito E, Wahome N, Harshbarger WD. Structural and computational design of a SARS-CoV-2 spike antigen with improved expression and immunogenicity. SCIENCE ADVANCES 2023; 9:eadg0330. [PMID: 37285422 PMCID: PMC10246912 DOI: 10.1126/sciadv.adg0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern challenge the efficacy of approved vaccines, emphasizing the need for updated spike antigens. Here, we use an evolutionary-based design aimed at boosting protein expression levels of S-2P and improving immunogenic outcomes in mice. Thirty-six prototype antigens were generated in silico and 15 were produced for biochemical analysis. S2D14, which contains 20 computationally designed mutations within the S2 domain and a rationally engineered D614G mutation in the SD2 domain, has an ~11-fold increase in protein yield and retains RBD antigenicity. Cryo-electron microscopy structures reveal a mixture of populations in various RBD conformational states. Vaccination of mice with adjuvanted S2D14 elicited higher cross-neutralizing antibody titers than adjuvanted S-2P against the SARS-CoV-2 Wuhan strain and four variants of concern. S2D14 may be a useful scaffold or tool for the design of future coronavirus vaccines, and the approaches used for the design of S2D14 may be broadly applicable to streamline vaccine discovery.
Collapse
|
14
|
Silva RP, Huang Y, Nguyen AW, Hsieh CL, Olaluwoye OS, Kaoud TS, Wilen RE, Qerqez AN, Park JG, Khalil AM, Azouz LR, Le KC, Bohanon AL, DiVenere AM, Liu Y, Lee AG, Amengor DA, Shoemaker SR, Costello SM, Padlan EA, Marqusee S, Martinez-Sobrido L, Dalby KN, D'Arcy S, McLellan JS, Maynard JA. Identification of a conserved S2 epitope present on spike proteins from all highly pathogenic coronaviruses. eLife 2023; 12:e83710. [PMID: 36942851 PMCID: PMC10030117 DOI: 10.7554/elife.83710] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of β-coronaviruses: SARS-CoV-2 S2 apex residues 980-1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro. Hinge epitope mutations that ablate antibody binding compromise pseudovirus infectivity, but changes elsewhere that affect spike opening dynamics, including those found in Omicron BA.1, occlude the epitope and may evade pre-existing serum antibodies targeting the S2 core. This work defines a third class of S2 antibody while providing insights into the potency and limitations of S2 core epitope targeting.
Collapse
Affiliation(s)
- Rui P Silva
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at DallasDallasUnited States
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at AustinAustinUnited States
| | - Rebecca E Wilen
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Jun-Gyu Park
- Texas Biomedical Research InstituteSan AntonioUnited States
- Laboratory of Veterinary Zoonosis, College of Veterinary Medicine, Chonnam National UniversityGwangjuRepublic of Korea
| | - Ahmed M Khalil
- Texas Biomedical Research InstituteSan AntonioUnited States
| | - Laura R Azouz
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Kevin C Le
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Amanda L Bohanon
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Andrea M DiVenere
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Yutong Liu
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
| | - Alison G Lee
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Dzifa A Amengor
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Sophie R Shoemaker
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, BerkeleyBerkeleyUnited States
| | | | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | | | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at AustinAustinUnited States
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at DallasDallasUnited States
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
- LaMontagne Center for Infectious Diseases, The University of Texas at AustinAustinUnited States
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at AustinAustinUnited States
- LaMontagne Center for Infectious Diseases, The University of Texas at AustinAustinUnited States
| |
Collapse
|
15
|
Braet SM, Buckley TSC, Venkatakrishnan V, Dam KMA, Bjorkman PJ, Anand GS. Timeline of changes in spike conformational dynamics in emergent SARS-CoV-2 variants reveal progressive stabilization of trimer stalk with altered NTD dynamics. eLife 2023; 12:e82584. [PMID: 36929749 PMCID: PMC10049203 DOI: 10.7554/elife.82584] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
SARS-CoV-2 emergent variants are characterized by increased viral fitness and each shows multiple mutations predominantly localized to the spike (S) protein. Here, amide hydrogen/deuterium exchange mass spectrometry has been applied to track changes in S dynamics from multiple SARS-CoV-2 variants. Our results highlight large differences across variants at two loci with impacts on S dynamics and stability. A significant enhancement in stabilization first occurred with the emergence of D614G S followed by smaller, progressive stabilization in subsequent variants. Stabilization preceded altered dynamics in the N-terminal domain, wherein Omicron BA.1 S showed the largest magnitude increases relative to other preceding variants. Changes in stabilization and dynamics resulting from S mutations detail the evolutionary trajectory of S in emerging variants. These carry major implications for SARS-CoV-2 viral fitness and offer new insights into variant-specific therapeutic development.
Collapse
Affiliation(s)
- Sean M Braet
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Theresa SC Buckley
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | | | - Kim-Marie A Dam
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Ganesh S Anand
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
- The Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
16
|
Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses 2023; 15:v15020558. [PMID: 36851772 PMCID: PMC9960574 DOI: 10.3390/v15020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.
Collapse
|
17
|
Shrivastava AK, Sahu PK, Cecchi T, Shrestha L, Shah SK, Gupta A, Palikhey A, Joshi B, Gupta PP, Upadhyaya J, Paudel M, Koirala N. An emerging natural antioxidant therapy for COVID‐19 infection patients: Current and future directions. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Amit Kumar Shrivastava
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Prafulla Kumar Sahu
- School of Pharmacy Centurion University of Technology and Management Bhubaneswar Odisha India
| | | | - Laxmi Shrestha
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Sanjay Kumar Shah
- Department of Reproductive MedicineJoint Inter‐national Research Laboratory of Reproduction and DevelopmentChongquing Medical University ChongqingPeople's Republic of China
| | - Anamika Gupta
- Sharjah Institute for Medical Sciences University of Sharjah Sharjah United Arab Emirates
| | - Anjan Palikhey
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Bishal Joshi
- Department of Physiology, Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Pramodkumar P. Gupta
- School of Biotechnology and Bioinformatics D. Y. Patil Deemed to be University, CBD Belapur Navi Mumbai India
| | - Jitendra Upadhyaya
- Institute of Agriculture and Animal Science Tribhuvan University Chitwan Nepal
| | - Mahendra Paudel
- Department of Agri‐Botany and Ecology Institute of Agriculture and Animal Science Tribhuvan University Mahendranagar Nepal
| | - Niranjan Koirala
- Natural Products Research FacilityGandaki Province Academy of Science and Technology Pokhara, Gandaki Province Nepal
| |
Collapse
|
18
|
Butani N, Xu Y, Pan S, Durocher Y, Ghosh R. A fast, efficient, and scalable method for purifying recombinant SARS-CoV-2 spike protein. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123579. [PMID: 36603473 PMCID: PMC9810479 DOI: 10.1016/j.jchromb.2022.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Recombinant SARS-CoV-2 trimeric spike protein produced by mammalian cell culture is a potential candidate for a COVID-19 vaccine. However, this protein is much larger than most typical biopharmaceutical proteins and its large-scale manufacture is therefore challenging. Particularly, its purification using resin-based chromatography is difficult as the diffusive transport of this protein to and from its binding site within the pores of the stationary phase particles is slow. Therefore, very low flow rates need to be used during binding and elution, and this slows down the purification process. Also, due to its large size, the binding capacity of this protein on resin-based media is low. Membrane chromatography is an efficient and scalable technique for purifying biopharmaceuticals. The predominant mode of solute transport in a membrane is convective and hence it is considered better than resin-based chromatography for purifying large proteins. In this paper, we propose a membrane chromatography-based purification method for fast and scalable manufacture of recombinant SARS-CoV-2 trimeric spike protein. A combination of cation exchange z2 laterally-fed membrane chromatography and size exclusion chromatography was found to be suitable for obtaining a homogeneous spike protein sample from mammalian cell culture supernatant. The proposed method is both fast and scalable and could be explored as a method for manufacturing vaccine grade spike protein.
Collapse
Affiliation(s)
- Nikhila Butani
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Yating Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Si Pan
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Yves Durocher
- National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada.
| |
Collapse
|
19
|
Li ZL, Buck M. Computational analysis of interior mutations of SARS-CoV-2 Spike protein suggest a balance of protein stability and S2: S1 separation propensity. Comput Struct Biotechnol J 2022; 20:6078-6086. [PMID: 36373151 PMCID: PMC9638846 DOI: 10.1016/j.csbj.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2 variants often include surface mutations in the Spike protein that are important for viruses to recognize host receptors and evade antibody neutralization. The Spike protein also has mutations in the interior of the protein likely to affect the Spike protein S1 - S2 subunit's separation propensity, the most important of which is the D614G mutation. Remarkably, the Omicron variant contains a large number of internal mutations at the S2: S1 interface, which have not been investigated yet. In this study, we examined the effects of such interfacial mutations on the S2: S1 and subunit domain interactions and on the subunit's dissociation process. We found that the interaction with S2 is mainly contributed by the three encapsulation domains, named INT, ED1 and ED2 of S1, which are sandwiched between the S1 RBD and N-terminal NTD domain. We found that D614 is the strongest contributor for the S2: S1 interaction which is greatly weakened by the D614G mutation. Surprisingly, we found that, mutations T547K, H655Y, N764K, N856K, N969K, L981F in the Omicron variant largely enhance the S2: ED1 interaction, partially compensating the loss of S2: ED2 interaction due to the D614G mutation. Lastly, these results, together with biological considerations, allow us to suggest that in addition to the binding strength of between the RBD and ACE2, the stability of the Spike protein and the propensity of Spike protein S2: S1 separation are critical factors which likely exist in a balance for a particular infectivity and pathogenicity of the virus.
Collapse
Affiliation(s)
- Zhen-lu Li
- School of Life Science, Tianjin University, Tianjin 300072, China
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Pharmacology, Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Stability and expression of SARS-CoV-2 spike-protein mutations. Mol Cell Biochem 2022; 478:1269-1280. [PMID: 36302994 PMCID: PMC9612610 DOI: 10.1007/s11010-022-04588-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022]
Abstract
Protein fold stability likely plays a role in SARS-CoV-2 S-protein evolution, together with ACE2 binding and antibody evasion. While few thermodynamic stability data are available for S-protein mutants, many systematic experimental data exist for their expression. In this paper, we explore whether such expression levels relate to the thermodynamic stability of the mutants. We studied mutation-induced SARS-CoV-2 S-protein fold stability, as computed by three very distinct methods and eight different protein structures to account for method- and structure-dependencies. For all methods and structures used (24 comparisons), computed stability changes correlate significantly (99% confidence level) with experimental yeast expression from the literature, such that higher expression is associated with relatively higher fold stability. Also significant, albeit weaker, correlations were seen between stability and ACE2 binding effects. The effect of thermodynamic fold stability may be direct or a correlate of amino acid or site properties, notably the solvent exposure of the site. Correlation between computed stability and experimental expression and ACE2 binding suggests that functional properties of the SARS-CoV-2 S-protein mutant space are largely determined by a few simple features, due to underlying correlations. Our study lends promise to the development of computational tools that may ideally aid in understanding and predicting SARS-CoV-2 S-protein evolution.
Collapse
|
21
|
Stalls V, Janowska K, Acharya P. Transient transfection and purification of SARS-CoV-2 spike protein from mammalian cells. STAR Protoc 2022; 3:101603. [PMID: 35983170 PMCID: PMC9283606 DOI: 10.1016/j.xpro.2022.101603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SARS-CoV-2 spike (S) protein ectodomain purification can be challenging, with engineered and natural variations often resulting in lower yields. Here, we present a detailed transfection and purification protocol for the SARS-CoV-2 S ectodomain. We describe how to trace protein yields during purification using highly sensitive and characteristic changes in S ectodomain intrinsic fluorescence upon thermal denaturation. Additionally, we detail several optimized aspects of the purification including timing and temperature. This protocol facilitates consistent, high-quality preparations of the SARS-CoV-2 S ectodomain. For complete details on the use and execution of this protocol, please refer to Stalls et al. (2022), Gobeil et al. (2022), Edwards et al. (2021), and Henderson et al. (2020).
Collapse
Affiliation(s)
| | | | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Ginex T, Marco-Marín C, Wieczór M, Mata CP, Krieger J, Ruiz-Rodriguez P, López-Redondo ML, Francés-Gómez C, Melero R, Sánchez-Sorzano CÓ, Martínez M, Gougeard N, Forcada-Nadal A, Zamora-Caballero S, Gozalbo-Rovira R, Sanz-Frasquet C, Arranz R, Bravo J, Rubio V, Marina A, Geller R, Comas I, Gil C, Coscolla M, Orozco M, Llácer JL, Carazo JM. The structural role of SARS-CoV-2 genetic background in the emergence and success of spike mutations: The case of the spike A222V mutation. PLoS Pathog 2022; 18:e1010631. [PMID: 35816514 PMCID: PMC9302720 DOI: 10.1371/journal.ppat.1010631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/21/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.
Collapse
Affiliation(s)
- Tiziana Ginex
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miłosz Wieczór
- Molecular Modeling and Bioinformatics, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos P. Mata
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Centro Nacional de Microbiología (CNM-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - James Krieger
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Paula Ruiz-Rodriguez
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | | | - Clara Francés-Gómez
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Roberto Melero
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Marta Martínez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nadine Gougeard
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | - Rocío Arranz
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jeronimo Bravo
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Ron Geller
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Epidemiología y Salud Pública (CIBERESP), Valencia, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Mireia Coscolla
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Modesto Orozco
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - José Luis Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
23
|
Stalls V, Lindenberger J, Gobeil SMC, Henderson R, Parks R, Barr M, Deyton M, Martin M, Janowska K, Huang X, May A, Speakman M, Beaudoin E, Kraft B, Lu X, Edwards RJ, Eaton A, Montefiori DC, Williams WB, Saunders KO, Wiehe K, Haynes BF, Acharya P. Cryo-EM structures of SARS-CoV-2 Omicron BA.2 spike. Cell Rep 2022; 39:111009. [PMID: 35732171 PMCID: PMC9174147 DOI: 10.1016/j.celrep.2022.111009] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sub-lineage has gained in proportion relative to BA.1. Because spike (S) protein variations may underlie differences in their pathobiology, here we determine cryoelectron microscopy (cryo-EM) structures of the BA.2 S ectodomain and compare these with previously determined BA.1 S structures. BA.2 receptor-binding domain (RBD) mutations induce remodeling of the RBD structure, resulting in tighter packing and improved thermostability. Interprotomer RBD interactions are enhanced in the closed (or 3-RBD-down) BA.2 S, while the fusion peptide is less accessible to antibodies than in BA.1. Binding and pseudovirus neutralization assays reveal extensive immune evasion while defining epitopes of two outer RBD face-binding antibodies, DH1044 and DH1193, that neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the closed state through interprotomer RBD-RBD packing is a hallmark of the Omicron variant and show differences in key functional regions in the BA.1 and BA.2 S proteins.
Collapse
Affiliation(s)
| | | | | | - Rory Henderson
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | | | | | - Xiao Huang
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | | | - Bryan Kraft
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA.
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Gobeil SMC, Henderson R, Stalls V, Janowska K, Huang X, May A, Speakman M, Beaudoin E, Manne K, Li D, Parks R, Barr M, Deyton M, Martin M, Mansouri K, Edwards RJ, Eaton A, Montefiori DC, Sempowski GD, Saunders KO, Wiehe K, Williams W, Korber B, Haynes BF, Acharya P. Structural diversity of the SARS-CoV-2 Omicron spike. Mol Cell 2022; 82:2050-2068.e6. [PMID: 35447081 PMCID: PMC8947964 DOI: 10.1016/j.molcel.2022.03.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor-binding domain (RBD) and neutralizing antibody epitope presentation, affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.
Collapse
Affiliation(s)
| | - Rory Henderson
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Xiao Huang
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | | | - Kartik Manne
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | | | | | - Robert J Edwards
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Wilton Williams
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA.
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Abstract
SARS-CoV-2 infection is associated with a surprising number of morbidities. Uncanny similarities with amyloid-disease associated blood coagulation and fibrinolytic disturbances together with neurologic and cardiac problems led us to investigate the amyloidogenicity of the SARS-CoV-2 spike protein (S-protein). Amyloid fibril assays of peptide library mixtures and theoretical predictions identified seven amyloidogenic sequences within the S-protein. All seven peptides in isolation formed aggregates during incubation at 37 °C. Three 20-amino acid long synthetic spike peptides (sequence 192-211, 601-620, 1166-1185) fulfilled three amyloid fibril criteria: nucleation dependent polymerization kinetics by ThT, Congo red positivity, and ultrastructural fibrillar morphology. Full-length folded S-protein did not form amyloid fibrils, but amyloid-like fibrils with evident branching were formed during 24 h of S-protein coincubation with the protease neutrophil elastase (NE) in vitro. NE efficiently cleaved S-protein, rendering exposure of amyloidogenic segments and accumulation of the amyloidogenic peptide 194-203, part of the most amyloidogenic synthetic spike peptide. NE is overexpressed at inflamed sites of viral infection. Our data propose a molecular mechanism for potential amyloidogenesis of SARS-CoV-2 S-protein in humans facilitated by endoproteolysis. The prospective of S-protein amyloidogenesis in COVID-19 disease associated pathogenesis can be important in understanding the disease and long COVID-19.
Collapse
|
26
|
Struble LR, Smith AL, Lutz WE, Grubbs G, Sagar S, Bayles KW, Radhakrishnan P, Khurana S, El‐Gamal D, Borgstahl GEO. Insect cell expression and purification of recombinant SARS-COV-2 spike proteins that demonstrate ACE2 binding. Protein Sci 2022; 31:e4300. [PMID: 35481636 PMCID: PMC8996471 DOI: 10.1002/pro.4300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection has led to socio-economic shutdowns and the loss of over 5 million lives worldwide. There is a need for the identification of therapeutic targets to treat COVID-19. SARS-CoV-2 spike is a target of interest for the development of therapeutic targets. We developed a robust SARS-CoV-2 S spike expression and purification protocol from insect cells and studied four recombinant SARS-CoV-2 spike protein constructs based on the original SARS-CoV-2 sequence using a baculovirus expression system: a spike protein receptor-binding domain that includes the SD1 domain (RBD) coupled to a fluorescent tag (S-RBD-eGFP), spike ectodomain coupled to a fluorescent tag (S-Ecto-eGFP), spike ectodomain with six proline mutations and a foldon domain (S-Ecto-HexaPro(+F)), and spike ectodomain with six proline mutations without the foldon domain (S-Ecto-HexaPro(-F)). We tested the yield of purified protein expressed from the insect cell lines Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tni) and compared it to previous research using mammalian cell lines to determine changes in protein yield. We demonstrated quick and inexpensive production of functional glycosylated spike protein of high purity capable of recognizing and binding to the angiotensin converting enzyme 2 (ACE2) receptor. To further confirm functionality, we demonstrate binding of eGFP fused construct of the spike ectodomain (S-Ecto-eGFP) to surface ACE2 receptors on lung epithelial cells by flow cytometry analysis and show that it can be decreased by means of receptor manipulation (blockade or downregulation).
Collapse
Affiliation(s)
- Lucas R. Struble
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
| | - Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
| | - William E. Lutz
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER)FDASilver SpringMarylandUSA
| | - Satish Sagar
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
| | - Kenneth W. Bayles
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred and Pamela Buffet Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER)FDASilver SpringMarylandUSA
| | - Dalia El‐Gamal
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
- Fred and Pamela Buffet Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
- Fred and Pamela Buffet Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
27
|
McMillan CLD, Azuar A, Choo JJY, Modhiran N, Amarilla AA, Isaacs A, Honeyman KE, Cheung STM, Liang B, Wurm MJ, Pino P, Kint J, Fernando GJP, Landsberg MJ, Khromykh AA, Hobson-Peters J, Watterson D, Young PR, Muller DA. Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines (Basel) 2022; 10:578. [PMID: 35455326 PMCID: PMC9030474 DOI: 10.3390/vaccines10040578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/02/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Kate E. Honeyman
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Maria J. Wurm
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Translational Research Institute, Vaxxas Pty Ltd., Brisbane, QLD 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| |
Collapse
|
28
|
Ellis D, Lederhofer J, Acton OJ, Tsybovsky Y, Kephart S, Yap C, Gillespie RA, Creanga A, Olshefsky A, Stephens T, Pettie D, Murphy M, Sydeman C, Ahlrichs M, Chan S, Borst AJ, Park YJ, Lee KK, Graham BS, Veesler D, King NP, Kanekiyo M. Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nat Commun 2022; 13:1825. [PMID: 35383176 PMCID: PMC8983682 DOI: 10.1038/s41467-022-29416-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza virus neuraminidase (NA) is a major antiviral drug target and has recently reemerged as a key target of antibody-mediated protective immunity. Here we show that recombinant NAs across non-bat subtypes adopt various tetrameric conformations, including an "open" state that may help explain poorly understood variations in NA stability across viral strains and subtypes. We use homology-directed protein design to uncover the structural principles underlying these distinct tetrameric conformations and stabilize multiple recombinant NAs in the "closed" state, yielding two near-atomic resolution structures of NA by cryo-EM. In addition to enhancing thermal stability, conformational stabilization improves affinity to protective antibodies elicited by viral infection, including antibodies targeting a quaternary epitope and the broadly conserved catalytic site. Stabilized NAs can also be integrated into viruses without affecting fitness. Our findings provide a deeper understanding of NA structure, stability, and antigenicity, and establish design strategies for reinforcing the conformational integrity of recombinant NA proteins.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
- Icosavax Inc., Seattle, WA, 98102, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oliver J Acton
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Sally Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Audrey Olshefsky
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Claire Sydeman
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Andrew J Borst
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Khan FI, Lobb KA, Lai D. The Molecular Basis of the Effect of Temperature on the Structure and Function of SARS-CoV-2 Spike Protein. Front Mol Biosci 2022; 9:794960. [PMID: 35463957 PMCID: PMC9019816 DOI: 10.3389/fmolb.2022.794960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
The remarkable rise of the current COVID-19 pandemic to every part of the globe has raised key concerns for the current public healthcare system. The spike (S) protein of SARS-CoV-2 shows an important part in the cell membrane fusion and receptor recognition. It is a key target for vaccine production. Several researchers studied the nature of this protein under various environmental conditions. In this work, we applied molecular modeling and extensive molecular dynamics simulation approaches at 0°C (273.15 K), 20°C (293.15 K), 40°C (313.15 K), and 60°C (333.15 K) to study the detailed conformational alterations in the SARS-CoV-2 S protein. Our aim is to understand the influence of temperatures on the structure, function, and dynamics of the S protein of SARS-CoV-2. The structural deviations, and atomic and residual fluctuations were least at low (0°C) and high (60°C) temperature. Even the internal residues of the SARS-CoV-2 S protein are not accessible to solvent at high temperature. Furthermore, there was no unfolding of SARS-CoV-2 spike S reported at higher temperature. The most stable conformations of the SARS-CoV-2 S protein were reported at 20°C, but the free energy minimum region of the SARS-CoV-2 S protein was sharper at 40°C than other temperatures. Our findings revealed that higher temperatures have little or no influence on the stability and folding of the SARS-CoV-2 S protein.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Kevin A. Lobb
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
- *Correspondence: Dakun Lai, ; Kevin A. Lobb,
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Dakun Lai, ; Kevin A. Lobb,
| |
Collapse
|
30
|
Dokainish HM, Re S, Mori T, Kobayashi C, Jung J, Sugita Y. The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein. eLife 2022; 11:e75720. [PMID: 35323112 PMCID: PMC8963885 DOI: 10.7554/elife.75720] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/15/2022] [Indexed: 12/17/2022] Open
Abstract
Spike (S) protein is the primary antigenic target for neutralization and vaccine development for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It decorates the virus surface and undergoes large motions of its receptor binding domains (RBDs) to enter the host cell. Here, we observe Down, one-Up, one-Open, and two-Up-like structures in enhanced molecular dynamics simulations, and characterize the transition pathways via inter-domain interactions. Transient salt-bridges between RBDA and RBDC and the interaction with glycan at N343B support RBDA motions from Down to one-Up. Reduced interactions between RBDA and RBDB in one-Up induce RBDB motions toward two-Up. The simulations overall agree with cryo-electron microscopy structure distributions and FRET experiments and provide hidden functional structures, namely, intermediates along Down-to-one-Up transition with druggable cryptic pockets as well as one-Open with a maximum exposed RBD. The inherent flexibility of S-protein thus provides essential information for antiviral drug rational design or vaccine development.
Collapse
Grants
- FLAGSHIP 2020 project Ministry of Education, Culture, Sports, Science and Technology
- 19K06532 Ministry of Education, Culture, Sports, Science and Technology
- Dynamic Structural Biology/Glycolipidologue Initiative/Biology of Intracellular Environments RIKEN
- Priority Issue on Post-K computer Ministry of Education, Culture, Sports, Science and Technology
- Program for Promoting Researches on the Supercomputer Fugaku Ministry of Education, Culture, Sports, Science and Technology
- JPMXP1020200101 Ministry of Education, Culture, Sports, Science and Technology
- JPMXP1020200201 Ministry of Education, Culture, Sports, Science and Technology
- 19H05645 Ministry of Education, Culture, Sports, Science and Technology
- 21H05249 Ministry of Education, Culture, Sports, Science and Technology
- 20K15737 Ministry of Education, Culture, Sports, Science and Technology
- 19K12229 Ministry of Education, Culture, Sports, Science and Technology
- 21H05157 Ministry of Education, Culture, Sports, Science and Technology
- hp200135 HPCI System Research project
- hp200153 HPCI System Research project
- hp200028 HPCI System Research project
- hp210107 HPCI System Research project
- hp210177 HPCI System Research project
Collapse
Affiliation(s)
- Hisham M Dokainish
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Suyong Re
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational ScienceKobeJapan
| | - Jaewoon Jung
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Computational Biophysics Research Team, RIKEN Center for Computational ScienceKobeJapan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Computational Biophysics Research Team, RIKEN Center for Computational ScienceKobeJapan
| |
Collapse
|
31
|
Costello SM, Shoemaker SR, Hobbs HT, Nguyen AW, Hsieh CL, Maynard JA, McLellan JS, Pak JE, Marqusee S. The SARS-CoV-2 spike reversibly samples an open-trimer conformation exposing novel epitopes. Nat Struct Mol Biol 2022; 29:229-238. [PMID: 35236990 PMCID: PMC9007726 DOI: 10.1038/s41594-022-00735-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Current COVID-19 vaccines and many clinical diagnostics are based on the structure and function of the SARS-CoV-2 spike ectodomain. Using hydrogen-deuterium exchange monitored by mass spectrometry, we have uncovered that, in addition to the prefusion structure determined by cryo-electron microscopy, this protein adopts an alternative conformation that interconverts slowly with the canonical prefusion structure. This new conformation-an open trimer-contains easily accessible receptor-binding domains. It exposes the conserved trimer interface buried in the prefusion conformation, thus exposing potential epitopes for pan-coronavirus antibody and ligand recognition. The population of this state and kinetics of interconversion are modulated by temperature, receptor binding, antibody binding, and sequence variants observed in the natural population. Knowledge of the structure and populations of this conformation will help improve existing diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Shawn M Costello
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Sophie R Shoemaker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Helen T Hobbs
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
| |
Collapse
|
32
|
Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Rep Med 2022; 3:100528. [PMID: 35233549 PMCID: PMC8784613 DOI: 10.1016/j.xcrm.2022.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the “down” conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing. S glycoprotein formaldehyde cross-linking stabilizes S in the prefusion conformation Vaccination of cynomolgus macaques with S lipid particles induces neutralization Vaccination protects macaques against a SARS-CoV-2 challenge Sterilizing protection correlates with nasopharyngeal anti-S IgG and IgA titers
Collapse
|
33
|
Pulavarti SVSRK, Maguire JB, Yuen S, Harrison JS, Griffin J, Premkumar L, Esposito EA, Makhatadze GI, Garcia AE, Weiss TM, Snell EH, Kuhlman B, Szyperski T. From Protein Design to the Energy Landscape of a Cold Unfolding Protein. J Phys Chem B 2022; 126:1212-1231. [PMID: 35128921 PMCID: PMC9281400 DOI: 10.1021/acs.jpcb.1c10750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein-water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ∼0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that cold unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.
Collapse
Affiliation(s)
- Surya V S R K Pulavarti
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jack B Maguire
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shirley Yuen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jermel Griffin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward A Esposito
- Malvern Panalytical Inc, Northhampton, Massachsetts 01060, United States
| | - George I Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 08544, United States
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center, Stanford University, Menlo Park, California 94025, United States
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, United States.,Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas Szyperski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
34
|
Gobeil SMC, Henderson R, Stalls V, Janowska K, Huang X, May A, Speakman M, Beaudoin E, Manne K, Li D, Parks R, Barr M, Deyton M, Martin M, Mansouri K, Edwards RJ, Sempowski GD, Saunders KO, Wiehe K, Williams W, Korber B, Haynes BF, Acharya P. Structural diversity of the SARS-CoV-2 Omicron spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.25.477784. [PMID: 35118469 PMCID: PMC8811902 DOI: 10.1101/2022.01.25.477784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor binding domain (RBD) and neutralizing antibody epitope presentation affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.
Collapse
|
35
|
Abstract
The spike protein (S-protein) of SARS-CoV-2, the protein that enables the virus to infect human cells, is the basis for many vaccines and a hotspot of concerning virus evolution. Here, we discuss the outstanding progress in structural characterization of the S-protein and how these structures facilitate analysis of virus function and evolution. We emphasize the differences in reported structures and that analysis of structure-function relationships is sensitive to the structure used. We show that the average residue solvent exposure in nearly complete structures is a good descriptor of open vs closed conformation states. Because of structural heterogeneity of functionally important surface-exposed residues, we recommend using averages of a group of high-quality protein structures rather than a single structure before reaching conclusions on specific structure-function relationships. To illustrate these points, we analyze some significant chemical tendencies of prominent S-protein mutations in the context of the available structures. In the discussion of new variants, we emphasize the selectivity of binding to ACE2 vs prominent antibodies rather than simply the antibody escape or ACE2 affinity separately. We note that larger chemical changes, in particular increased electrostatic charge or side-chain volume of exposed surface residues, are recurring in mutations of concern, plausibly related to adaptation to the negative surface potential of human ACE2. We also find indications that the fixated mutations of the S-protein in the main variants are less destabilizing than would be expected on average, possibly pointing toward a selection pressure on the S-protein. The richness of available structures for all of these situations provides an enormously valuable basis for future research into these structure-function relationships.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Department of Chemistry, Indian Institute
of Technology Bhilai, Sejbahar, Raipur 492015, Chhattisgarh,
India
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of
Denmark, Building 206, 2800 Kongens Lyngby,
Denmark
| |
Collapse
|
36
|
Tcheou J, Raskin A, Singh G, Kawabata H, Bielak D, Sun W, González-Domínguez I, Sather DN, García-Sastre A, Palese P, Krammer F, Carreño JM. Safety and Immunogenicity Analysis of a Newcastle Disease Virus (NDV-HXP-S) Expressing the Spike Protein of SARS-CoV-2 in Sprague Dawley Rats. Front Immunol 2021; 12:791764. [PMID: 34868082 PMCID: PMC8637447 DOI: 10.3389/fimmu.2021.791764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/14/2023] Open
Abstract
Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Relatively high vaccination rates have been achieved in most regions of the United States and several countries worldwide. However, access to vaccines in low- and mid-income countries (LMICs) is still suboptimal. Second generation vaccines that are universally affordable and induce systemic and mucosal immunity are needed. Here we performed an extended safety and immunogenicity analysis of a second-generation SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing a pre-fusion stabilized version of the spike protein (NDV-HXP-S) administered intranasally (IN), intramuscularly (IM), or IN followed by IM in Sprague Dawley rats. Local reactogenicity, systemic toxicity, and post-mortem histopathology were assessed after the vaccine administration, with no indication of severe local or systemic reactions. Immunogenicity studies showed that the three vaccination regimens tested elicited high antibody titers against the wild type SARS-CoV-2 spike protein and the NDV vector. Moreover, high antibody titers were induced against the spike of B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants of concern (VOCs). Importantly, robust levels of serum antibodies with neutralizing activity against the authentic SARS-CoV-2 USA-WA1/2020 isolate were detected after the boost. Overall, our study expands the pre-clinical safety and immunogenicity characterization of NDV-HXP-S and reinforces previous findings in other animal models about its high immunogenicity. Clinical testing of this vaccination approach is ongoing in different countries including Thailand, Vietnam, Brazil and Mexico.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- COVID-19 Vaccines/immunology
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Newcastle disease virus/genetics
- Newcastle disease virus/immunology
- Rats
- Rats, Sprague-Dawley
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Safety
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccination
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hisaaki Kawabata
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dominika Bielak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Irene González-Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
37
|
Martinez DR, Schäfer A, Gobeil S, Li D, De la Cruz G, Parks R, Lu X, Barr M, Stalls V, Janowska K, Beaudoin E, Manne K, Mansouri K, Edwards RJ, Cronin K, Yount B, Anasti K, Montgomery SA, Tang J, Golding H, Shen S, Zhou T, Kwong PD, Graham BS, Mascola JR, Montefiori DC, Alam SM, Sempowski GD, Khurana S, Wiehe K, Saunders KO, Acharya P, Haynes BF, Baric RS. A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Sci Transl Med 2021; 14:eabj7125. [PMID: 34726473 DOI: 10.1126/scitranslmed.abj7125] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophie Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Esther Beaudoin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie A Montgomery
- Department of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Shaunna Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Schaub JM, Chou CW, Kuo HC, Javanmardi K, Hsieh CL, Goldsmith J, DiVenere AM, Le KC, Wrapp D, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Wang N, Lavinder JJ, Ippolito GC, Maynard JA, McLellan JS, Finkelstein IJ. Expression and characterization of SARS-CoV-2 spike proteins. Nat Protoc 2021; 16:5339-5356. [PMID: 34611365 PMCID: PMC9665560 DOI: 10.1038/s41596-021-00623-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 spike protein is a critical component of coronavirus disease 2019 vaccines and diagnostics and is also a therapeutic target. However, the spike protein is difficult to produce recombinantly because it is a large trimeric class I fusion membrane protein that is metastable and heavily glycosylated. We recently developed a prefusion-stabilized spike variant, termed HexaPro for six stabilizing proline substitutions, that can be expressed with a yield of >30 mg/L in ExpiCHO cells. This protocol describes an optimized workflow for expressing and biophysically characterizing rationally engineered spike proteins in Freestyle 293 and ExpiCHO cell lines. Although we focus on HexaPro, this protocol has been used to purify over a hundred different spike variants in our laboratories. We also provide guidance on expression quality control, long-term storage, and uses in enzyme-linked immunosorbent assays. The entire protocol, from transfection to biophysical characterization, can be completed in 7 d by researchers with basic tissue cell culture and protein purification expertise.
Collapse
Affiliation(s)
- Jeffrey M Schaub
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jory Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andrea M DiVenere
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kevin C Le
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Christy K Hjorth
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John Ludes-Meyers
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jason J Lavinder
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
39
|
McMillan CLD, Choo JJY, Idris A, Supramaniam A, Modhiran N, Amarilla AA, Isaacs A, Cheung STM, Liang B, Bielefeldt-Ohmann H, Azuar A, Acharya D, Kelly G, Fernando GJP, Landsberg MJ, Khromykh AA, Watterson D, Young PR, McMillan NAJ, Muller DA. Complete protection by a single-dose skin patch-delivered SARS-CoV-2 spike vaccine. SCIENCE ADVANCES 2021; 7:eabj8065. [PMID: 34714668 PMCID: PMC8555896 DOI: 10.1126/sciadv.abj8065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 160 million people and resulted in more than 3.3 million deaths, and despite the availability of multiple vaccines, the world still faces many challenges with their rollout. Here, we use the high-density microarray patch (HD-MAP) to deliver a SARS-CoV-2 spike subunit vaccine directly to the skin. We show that the vaccine is thermostable on the patches, with patch delivery enhancing both cellular and antibody immune responses. Elicited antibodies potently neutralize clinically relevant isolates including the Alpha and Beta variants. Last, a single dose of HD-MAP–delivered spike provided complete protection from a lethal virus challenge in an ACE2-transgenic mouse model. Collectively, these data show that HD-MAP delivery of a SARS-CoV-2 vaccine was superior to traditional needle-and-syringe vaccination and may be a significant addition to the ongoing COVID-19 (coronavirus disease 2019) pandemic.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
- School of Veterinary Science, University of Queensland Gatton Campus, Gatton, Queensland 4343, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dhruba Acharya
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gabrielle Kelly
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, Queensland 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
40
|
Olia AS, Tsybovsky Y, Chen SJ, Liu C, Nazzari AF, Ou L, Wang L, Kong WP, Leung K, Liu T, Stephens T, Teng IT, Wang S, Yang ES, Zhang B, Zhang Y, Zhou T, Mascola JR, Kwong PD. SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. J Biol Chem 2021; 297:101127. [PMID: 34461095 PMCID: PMC8393506 DOI: 10.1016/j.jbc.2021.101127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 spike is the primary target of virus-neutralizing antibodies and critical to the development of effective vaccines against COVID-19. Here, we demonstrate that the prefusion-stabilized two-proline "S2P" spike-widely employed for laboratory work and clinical studies-unfolds when stored at 4 °C, physiological pH, as observed by electron microscopy (EM) and differential scanning calorimetry, but that its trimeric, native-like conformation can be reacquired by low pH treatment. When stored for approximately 1 week, this unfolding does not significantly alter antigenic characteristics; however, longer storage diminishes antibody binding, and month-old spike elicits virtually no neutralization in mice despite inducing high ELISA-binding titers. Cryo-EM structures reveal the folded fraction of spike to decrease with aging; however, its structure remains largely similar, although with varying mobility of the receptor-binding domain. Thus, the SARS-CoV-2 spike is susceptible to unfolding, which affects immunogenicity, highlighting the need to monitor its integrity.
Collapse
Affiliation(s)
- Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Steven J Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwan Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
41
|
Barreiro K, Dwivedi OP, Valkonen S, Groop P, Tuomi T, Holthofer H, Rannikko A, Yliperttula M, Siljander P, Laitinen S, Serkkola E, af Hällström T, Forsblom C, Groop L, Puhka M. Urinary extracellular vesicles: Assessment of pre-analytical variables and development of a quality control with focus on transcriptomic biomarker research. J Extracell Vesicles 2021; 10:e12158. [PMID: 34651466 PMCID: PMC8517090 DOI: 10.1002/jev2.12158] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Sami Valkonen
- EV Group, Molecular and Integrative Biosciences Research ProgramFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Research and DevelopmentFinnish Red Cross Blood ServiceHelsinkiFinland
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | - Per‐Henrik Groop
- Folkhälsan Institute of GeneticsFolkhälsan Research CenterHelsinkiFinland
- Department of NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneAustralia
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical SciencesLund University Diabetes CenterMalmöSweden
- Skåne University HospitalLund UniversityMalmöSweden
- Abdominal Center, EndocrinologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Harry Holthofer
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Antti Rannikko
- Department of UrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program in Systems OncologyFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Marjo Yliperttula
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFinland
| | - Pia Siljander
- EV Group, Molecular and Integrative Biosciences Research ProgramFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- CURED, Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFinland
- EV‐coreFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Saara Laitinen
- Research and DevelopmentFinnish Red Cross Blood ServiceHelsinkiFinland
| | | | | | - Carol Forsblom
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Institute of GeneticsFolkhälsan Research CenterHelsinkiFinland
- Department of NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Leif Groop
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- Department of Clinical SciencesLund University Diabetes CenterMalmöSweden
- Skåne University HospitalLund UniversityMalmöSweden
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- HiPrep and EV CoreInstitute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
42
|
Prévost J, Richard J, Gasser R, Ding S, Fage C, Anand SP, Adam D, Gupta Vergara N, Tauzin A, Benlarbi M, Gong SY, Goyette G, Privé A, Moreira S, Charest H, Roger M, Mothes W, Pazgier M, Brochiero E, Boivin G, Abrams CF, Schön A, Finzi A. Impact of temperature on the affinity of SARS-CoV-2 Spike glycoprotein for host ACE2. J Biol Chem 2021; 297:101151. [PMID: 34478710 PMCID: PMC8406544 DOI: 10.1016/j.jbc.2021.101151] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
The seasonal nature of outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. Accordingly, temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The receptor-binding domain (RBD) of the Spike glycoprotein is known to bind to its host receptor angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Using biochemical, biophysical, and functional assays to dissect the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike glycoprotein with the ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide (including the B.1.1.7 (α) lineage), bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada
| | - Clément Fage
- Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Damien Adam
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Médicine, Université de Montréal, Montréal, Quebec, Canada
| | - Natasha Gupta Vergara
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Guillaume Goyette
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada
| | - Anik Privé
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Hugues Charest
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Michel Roger
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Emmanuelle Brochiero
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Médicine, Université de Montréal, Montréal, Quebec, Canada
| | - Guy Boivin
- Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, axe Immunopathologie, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
43
|
Yang TJ, Yu PY, Chang YC, Hsu STD. D614G mutation in the SARS-CoV-2 spike protein enhances viral fitness by desensitizing it to temperature-dependent denaturation. J Biol Chem 2021; 297:101238. [PMID: 34563540 PMCID: PMC8460419 DOI: 10.1016/j.jbc.2021.101238] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022] Open
Abstract
The D614G mutation in the spike protein of SARS-CoV-2 alters the fitness of the virus, leading to the dominant form observed in the COVID-19 pandemic. However, the molecular basis of the mechanism by which this mutation enhances fitness is not clear. Here we demonstrated by cryo-electron microscopy that the D614G mutation resulted in increased propensity of multiple receptor-binding domains (RBDs) in an upward conformation poised for host receptor binding. Multiple substates within the one RBD-up or two RBD-up conformational space were determined. According to negative staining electron microscopy, differential scanning calorimetry, and differential scanning fluorimetry, the most significant impact of the mutation lies in its ability to eliminate the unusual cold-induced unfolding characteristics and to significantly increase the thermal stability under physiological pH. The D614G spike variant also exhibited exceptional long-term stability when stored at 37 °C for up to 2 months. Our findings shed light on how the D614G mutation enhances the infectivity of SARS-CoV-2 through a stabilizing mutation and suggest an approach for better design of spike protein-based conjugates for vaccine development.
Collapse
Affiliation(s)
- Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Academia Sinica Cryo-EM Center, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
44
|
Gobeil SMC, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, Kopp MF, Manne K, Li D, Wiehe K, Saunders KO, Edwards RJ, Korber B, Haynes BF, Henderson R, Acharya P. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science 2021; 373:eabi6226. [PMID: 34168071 PMCID: PMC8611377 DOI: 10.1126/science.abi6226] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with multiple spike mutations enable increased transmission and antibody resistance. We combined cryo-electron microscopy (cryo-EM), binding, and computational analyses to study variant spikes, including one that was involved in transmission between minks and humans, and others that originated and spread in human populations. All variants showed increased angiotensin-converting enzyme 2 (ACE2) receptor binding and increased propensity for receptor binding domain (RBD)-up states. While adaptation to mink resulted in spike destabilization, the B.1.1.7 (UK) spike balanced stabilizing and destabilizing mutations. A local destabilizing effect of the RBD E484K mutation was implicated in resistance of the B.1.1.28/P.1 (Brazil) and B.1.351 (South Africa) variants to neutralizing antibodies. Our studies revealed allosteric effects of mutations and mechanistic differences that drive either interspecies transmission or escape from antibody neutralization.
Collapse
MESH Headings
- Amino Acid Substitution
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- COVID-19/transmission
- COVID-19/veterinary
- COVID-19/virology
- Cryoelectron Microscopy
- Host Adaptation
- Humans
- Immune Evasion
- Mink/virology
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation
- Protein Interaction Domains and Motifs
- Protein Structure, Quaternary
- Protein Subunits/chemistry
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
| | | | | | | | - Robert Parks
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | - Megan F Kopp
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Durham, NC 27710, USA.
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA.
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| |
Collapse
|
45
|
Li D, Edwards RJ, Manne K, Martinez DR, Schäfer A, Alam SM, Wiehe K, Lu X, Parks R, Sutherland LL, Oguin TH, McDanal C, Perez LG, Mansouri K, Gobeil SMC, Janowska K, Stalls V, Kopp M, Cai F, Lee E, Foulger A, Hernandez GE, Sanzone A, Tilahun K, Jiang C, Tse LV, Bock KW, Minai M, Nagata BM, Cronin K, Gee-Lai V, Deyton M, Barr M, Von Holle T, Macintyre AN, Stover E, Feldman J, Hauser BM, Caradonna TM, Scobey TD, Rountree W, Wang Y, Moody MA, Cain DW, DeMarco CT, Denny TN, Woods CW, Petzold EW, Schmidt AG, Teng IT, Zhou T, Kwong PD, Mascola JR, Graham BS, Moore IN, Seder R, Andersen H, Lewis MG, Montefiori DC, Sempowski GD, Baric RS, Acharya P, Haynes BF, Saunders KO. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 2021; 184:4203-4219.e32. [PMID: 34242577 PMCID: PMC8232969 DOI: 10.1016/j.cell.2021.06.021] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Lautaro G Perez
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sophie M C Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Megan Kopp
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Giovanna E Hernandez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aja Sanzone
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chuancang Jiang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Gee-Lai
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Margaret Deyton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Erica Stover
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Trevor D Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christopher W Woods
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth W Petzold
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | | | | | | | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
46
|
Prévost J, Richard J, Gasser R, Ding S, Fage C, Anand SP, Adam D, Vergara NG, Tauzin A, Benlarbi M, Gong SY, Goyette G, Privé A, Moreira S, Charest H, Roger M, Mothes W, Pazgier M, Brochiero E, Boivin G, Abrams CF, Schön A, Finzi A. Impact of temperature on the affinity of SARS-CoV-2 Spike for ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.09.451812. [PMID: 34268505 PMCID: PMC8282093 DOI: 10.1101/2021.07.09.451812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The seasonal nature in the outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. The current COVID-19 pandemic makes no exception, and temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2. The receptor binding domain (RBD) of the Spike glycoprotein binds to the angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Studying the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike to ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide, bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.
Collapse
|
47
|
Ellis D, Brunette N, Crawford KHD, Walls AC, Pham MN, Chen C, Herpoldt KL, Fiala B, Murphy M, Pettie D, Kraft JC, Malone KD, Navarro MJ, Ogohara C, Kepl E, Ravichandran R, Sydeman C, Ahlrichs M, Johnson M, Blackstone A, Carter L, Starr TN, Greaney AJ, Lee KK, Veesler D, Bloom JD, King NP. Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Front Immunol 2021; 12:710263. [PMID: 34267764 PMCID: PMC8276696 DOI: 10.3389/fimmu.2021.710263] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States
| | - Natalie Brunette
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Katharine H. D. Crawford
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Minh N. Pham
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| | - Karla-Luise Herpoldt
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Brooke Fiala
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - John C. Kraft
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Keara D. Malone
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Cassandra Ogohara
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Elizabeth Kepl
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Claire Sydeman
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Max Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Alyssa Blackstone
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Tyler N. Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Allison J. Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
48
|
Williams WB, Meyerhoff RR, Edwards RJ, Li H, Manne K, Nicely NI, Henderson R, Zhou Y, Janowska K, Mansouri K, Gobeil S, Evangelous T, Hora B, Berry M, Abuahmad AY, Sprenz J, Deyton M, Stalls V, Kopp M, Hsu AL, Borgnia MJ, Stewart-Jones GBE, Lee MS, Bronkema N, Moody MA, Wiehe K, Bradley T, Alam SM, Parks RJ, Foulger A, Oguin T, Sempowski GD, Bonsignori M, LaBranche CC, Montefiori DC, Seaman M, Santra S, Perfect J, Francica JR, Lynn GM, Aussedat B, Walkowicz WE, Laga R, Kelsoe G, Saunders KO, Fera D, Kwong PD, Seder RA, Bartesaghi A, Shaw GM, Acharya P, Haynes BF. Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell 2021; 184:2955-2972.e25. [PMID: 34019795 PMCID: PMC8135257 DOI: 10.1016/j.cell.2021.04.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023]
Abstract
Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.
Collapse
Affiliation(s)
- Wilton B Williams
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| | - R Ryan Meyerhoff
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - R J Edwards
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | - Rory Henderson
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | | | | | | | | | - Bhavna Hora
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | | | | | | | | | - Megan Kopp
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | - Matthew S Lee
- Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Naomi Bronkema
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Thomas Oguin
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - David C Montefiori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Michael Seaman
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - John Perfect
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Geoffrey M Lynn
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA; Avidea Technologies, Inc., Baltimore, MD, USA
| | | | | | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - Peter D Kwong
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Biochemistry, Duke University, Durham, NC 27705, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
49
|
Mice Immunized with the Vaccine Candidate HexaPro Spike Produce Neutralizing Antibodies against SARS-CoV-2. Vaccines (Basel) 2021; 9:vaccines9050498. [PMID: 34066016 PMCID: PMC8151071 DOI: 10.3390/vaccines9050498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 05/05/2021] [Indexed: 01/09/2023] Open
Abstract
Updated and revised versions of COVID-19 vaccines are vital due to genetic variations of the SARS-CoV-2 spike antigen. Furthermore, vaccines that are safe, cost-effective, and logistic-friendly are critically needed for global equity, especially for middle- to low-income countries. Recombinant protein-based subunit vaccines against SARS-CoV-2 have been reported using the receptor-binding domain (RBD) and the prefusion spike trimers (S-2P). Recently, a new version of prefusion spike trimers, named HexaPro, has been shown to possess two RBD in the “up” conformation, due to its physical property, as opposed to just one exposed RBD found in S-2P. Importantly, this HexaPro spike antigen is more stable than S-2P, raising its feasibility for global logistics and supply chain. Here, we report that the spike protein HexaPro offers a promising candidate for the SARS-CoV-2 vaccine. Mice immunized by the recombinant HexaPro adjuvanted with aluminum hydroxide using a prime-boost regimen produced high-titer neutralizing antibodies for up to 56 days after initial immunization against live SARS-CoV-2 infection. Also, the level of neutralization activity is comparable to that of convalescence sera. Our results indicate that the HexaPro subunit vaccine confers neutralization activity in sera collected from mice receiving the prime-boost regimen.
Collapse
|
50
|
Martinez DR, Schaefer A, Gobeil S, Li D, De la Cruz G, Parks R, Lu X, Barr M, Manne K, Mansouri K, Edwards RJ, Yount B, Anasti K, Montgomery SA, Shen S, Zhou T, Kwong PD, Graham BS, Mascola JR, Montefiori DC, Alam M, Sempowski GD, Wiehe K, Saunders KO, Acharya P, Haynes BF, Baric RS. A broadly neutralizing antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2 variants in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.27.441655. [PMID: 33948590 PMCID: PMC8095197 DOI: 10.1101/2021.04.27.441655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV in 2003, SARS-CoV-2 in 2019, and SARS-CoV-2 variants of concern (VOC) can cause deadly infections, underlining the importance of developing broadly effective countermeasures against Group 2B Sarbecoviruses, which could be key in the rapid prevention and mitigation of future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV, bat CoVs WIV-1 and RsSHC014, and SARS-CoV-2 variants D614G, B.1.1.7, B.1.429, B1.351 by a receptor-binding domain (RBD)-specific antibody DH1047. Prophylactic and therapeutic treatment with DH1047 demonstrated protection against SARS-CoV, WIV-1, RsSHC014, and SARS-CoV-2 B1.351infection in mice. Binding and structural analysis showed high affinity binding of DH1047 to an epitope that is highly conserved among Sarbecoviruses. We conclude that DH1047 is a broadly neutralizing and protective antibody that can prevent infection and mitigate outbreaks caused by SARS-like strains and SARS-CoV-2 variants. Our results argue that the RBD conserved epitope bound by DH1047 is a rational target for pan Group 2B coronavirus vaccines.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- These authors contributed equally
| | - Alexandra Schaefer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- These authors contributed equally
| | - Sophie Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- These authors contributed equally
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- These authors contributed equally
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie A. Montgomery
- Department of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shaunna Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | | | - Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|