1
|
Avalos-Hernandez A, Juarez-Navarro K, Ruiz-Baca E, Meneses-Morales I, Espino-Saldaña E, Martinez-Torres A, Lopez-Rodriguez A. Unlocking cellular traffic jams: olive oil-mediated rescue of CNG mutant channels. Front Pharmacol 2024; 15:1408156. [PMID: 39119605 PMCID: PMC11306028 DOI: 10.3389/fphar.2024.1408156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
One of the reasons to suggest olive oil consumption for a healthy life is its potential to induce robust lipidomic remodeling through membrane modification by dietary lipids. This remodeling might, in turn, modulate essential lipid-protein interactions while maintaining accurate transmembrane protein/domain orientation. Oleic acid, the primary compound in olive oil, has been suggested as a modulator of ion channel function. In this study, we explored whether this lipid could rescue the trafficking of mutated transmembrane proteins. In our initial approach, we supplemented the cell culture medium of HEK-293 cells expressing cyclic nucleotide channels tagged using green fluorescent protein (CNG-GFP) with olive oil or oleic acid. In addition to wild-type channels, we also expressed R272Q and R278W mutant channels, two non-functional intracellularly retained channels related to retinopathies. We used fluorescence microscopy and patch-clamp in the inside-out configuration to assess changes in the cell localization and function of the tested channels. Our results demonstrated that olive oil and oleic acid facilitated the transport of cyclic nucleotide-gated R272Q mutant channels towards the plasma membrane, rendering them electrophysiologically functional. Thus, our findings reveal a novel property of olive oil as a membrane protein traffic inductor.
Collapse
Affiliation(s)
| | - Karina Juarez-Navarro
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Ivan Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Edith Espino-Saldaña
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Campus Juriquilla, Juriquilla, Mexico
| | - Ataulfo Martinez-Torres
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Campus Juriquilla, Juriquilla, Mexico
| | | |
Collapse
|
2
|
Wang Y, Qiu L, Wang B, Guan Z, Dong Z, Zhang J, Cao S, Yang L, Wang B, Gong Z, Zhang L, Ma W, Liu Z, Zhang D, Wang G, Yin P. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science 2024; 384:1453-1460. [PMID: 38870272 DOI: 10.1126/science.adn6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.
Collapse
Affiliation(s)
- Yidong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lulu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Zhao J, Chen AQ, Ryu J, del Mármol J. Structural basis of odor sensing by insect heteromeric odorant receptors. Science 2024; 384:1460-1467. [PMID: 38870275 PMCID: PMC11235583 DOI: 10.1126/science.adn6384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Most insects, including human-targeting mosquitoes, detect odors through odorant-activated ion channel complexes consisting of a divergent odorant-binding subunit (OR) and a conserved co-receptor subunit (Orco). As a basis for understanding how odorants activate these heteromeric receptors, we report here cryo-electron microscopy structures of two different heteromeric odorant receptor complexes containing ORs from disease-vector mosquitos Aedes aegypti or Anopheles gambiae. These structures reveal an unexpected stoichiometry of one OR to three Orco subunits. Comparison of structures in odorant-bound and unbound states indicates that odorant binding to the sole OR subunit is sufficient to open the channel pore, suggesting a mechanism of OR activation and a conceptual framework for understanding evolution of insect odorant receptor sensitivity.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Andy Q. Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Jaewook Ryu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Josefina del Mármol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
- Howard Hughes Medical Institute; Boston, 02115, USA
| |
Collapse
|
4
|
Brotherton C, Megaw R. Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders. Genes (Basel) 2024; 15:727. [PMID: 38927662 PMCID: PMC11202562 DOI: 10.3390/genes15060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited cone disorders (ICDs) are a heterogeneous sub-group of inherited retinal disorders (IRDs), the leading cause of sight loss in children and working-age adults. ICDs result from the dysfunction of the cone photoreceptors in the macula and manifest as the loss of colour vision and reduced visual acuity. Currently, 37 genes are associated with varying forms of ICD; however, almost half of all patients receive no molecular diagnosis. This review will discuss the known ICD genes, their molecular function, and the diseases they cause, with a focus on the most common forms of ICDs, including achromatopsia, progressive cone dystrophies (CODs), and cone-rod dystrophies (CORDs). It will discuss the gene-specific therapies that have emerged in recent years in order to treat patients with some of the more common ICDs.
Collapse
Affiliation(s)
- Chloe Brotherton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU1, UK;
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Chalmers St., Edinburgh EH3 9HA, UK
| |
Collapse
|
5
|
Pliushcheuskaya P, Kesh S, Kaufmann E, Wucherpfennig S, Schwede F, Künze G, Nache V. Similar Binding Modes of cGMP Analogues Limit Selectivity in Modulating Retinal CNG Channels via the Cyclic Nucleotide-Binding Domain. ACS Chem Neurosci 2024; 15:1652-1668. [PMID: 38579109 PMCID: PMC11027099 DOI: 10.1021/acschemneuro.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
In treating retinitis pigmentosa, a genetic disorder causing progressive vision loss, selective inhibition of rod cyclic nucleotide-gated (CNG) channels holds promise. Blocking the increased Ca2+-influx in rod photoreceptors through CNG channels can potentially delay disease progression and improve the quality of life for patients. To find inhibitors for rod CNG channels, we investigated the impact of 16 cGMP analogues on both rod and cone CNG channels using the patch-clamp technique. Although modifications at the C8 position of the guanine ring did not change the ligand efficacy, modifications at the N1 and N2 positions rendered cGMP largely ineffective in activating retinal CNG channels. Notably, PET-cGMP displayed selective potential, favoring rod over cone, whereas Rp-cGMPS showed greater efficiency in activating cone over rod CNG channels. Ligand docking and molecular dynamics simulations on cyclic nucleotide-binding domains showed comparable binding energies and binding modes for cGMP and its analogues in both rod and cone CNG channels (CNGA1 vs CNGA3 subunits). Computational experiments on CNGB1a vs CNGB3 subunits showed similar binding modes albeit with fewer amino acid interactions with cGMP due to an inactivated conformation of their C-helix. In addition, no clear correlation could be observed between the computational scores and the CNG channel efficacy values, suggesting additional factors beyond binding strength determining ligand selectivity and potency. This study highlights the importance of looking beyond the cyclic nucleotide-binding domain and toward the gating mechanism when searching for selective modulators. Future efforts in developing selective modulators for CNG channels should prioritize targeting alternative channel domains.
Collapse
Affiliation(s)
- Palina Pliushcheuskaya
- Institute
for Drug Discovery, Medical Faculty, University
of Leipzig, Leipzig 04103, Germany
| | - Sandeep Kesh
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Emma Kaufmann
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Sophie Wucherpfennig
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Frank Schwede
- BIOLOG
Life Science Institute GmbH & Co KG, Bremen 28199, Germany
| | - Georg Künze
- Institute
for Drug Discovery, Medical Faculty, University
of Leipzig, Leipzig 04103, Germany
- Interdisciplinary
Center for Bioinformatics, University of
Leipzig, Leipzig 04107, Germany
- Center
for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig 04105, Germany
| | - Vasilica Nache
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| |
Collapse
|
6
|
Liu J, Lu J, Ji W, Lu G, Wang J, Ye T, Jiang Y, Zheng J, Yu P, Liu N, Jiang Y, Mao L. Ion-Selective Micropipette Sensor for In Vivo Monitoring of Sodium Ion with Crown Ether-Encapsulated Metal-Organic Framework Subnanopores. Anal Chem 2024; 96:2651-2657. [PMID: 38306178 DOI: 10.1021/acs.analchem.3c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.
Collapse
Affiliation(s)
- Jiahao Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiahao Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangwen Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiao Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Daich Varela M, Schiff E, Malka S, Wright G, Mahroo OA, Webster AR, Michaelides M, Arno G. PHYH c.678+5G>T Leads to In-Frame Exon Skipping and Is Associated With Attenuated Refsum Disease. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 38411969 PMCID: PMC10910431 DOI: 10.1167/iovs.65.2.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose To investigate the molecular effect of the variant PHYH:c.678+5G>T. This variant has conflicting interpretations in the ClinVar database and a maximum allele frequency of 0.0045 in the South Asian population in gnomAD. Methods We recruited patients from Moorfields Eye Hospital (London, UK) and Buenos Aires, Argentina, who were diagnosed with retinitis pigmentosa and found to have biallelic variants in PHYH, with at least one being c.678+5G>T. Total RNA was purified from PaxGene RNA-stabilized whole-blood samples, followed by reverse transcription to cDNA, PCR amplification of the canonical PHYH transcript, Oxford Nanopore Technologies library preparation, and single-molecule amplicon sequencing. Results Four patients provided a blood sample. One patient had isolated retinitis pigmentosa and three had mild extraocular findings. Blood phytanic acid levels were normal in two patients, mildly elevated in one, and markedly high in the fourth. Retinal evaluation showed an intact ellipsoid zone as well as preserved autofluorescence in the macular region in three of the four patients. In all patients, we observed in-frame skipping of exons 5 and 6 in 31.1% to 88.4% of the amplicons and a smaller proportion (0% to 11.3% of amplicons) skipping exon 6 only. Conclusions We demonstrate a significant effect of PHYH:c.678+5G>T on splicing of the canonical transcript. The in-frame nature of this may be in keeping with a mild presentation and higher prevalence in the general population. These data support the classification of the variant as pathogenic, and patients harboring a biallelic genotype should undergo phytanic acid testing.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | | - Omar A. Mahroo
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R. Webster
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Gavin Arno
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
8
|
Hu Z, Yang J. Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels. Channels (Austin) 2023; 17:2273165. [PMID: 37905307 PMCID: PMC10761061 DOI: 10.1080/19336950.2023.2273165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Recent years have seen an outpouring of atomic or near atomic resolution structures of cyclic nucleotide-gated (CNG) channels, captured in closed, transition, pre-open, partially open, and fully open states. These structures provide unprecedented molecular insights into the activation, assembly, architecture, regulation, and channelopathy of CNG channels, as well as mechanistic explanations for CNG channel biophysical and pharmacological properties. This article summarizes recent advances in CNG channel structural biology, describes key structural features and elements, and illuminates a detailed conformational landscape of activation by cyclic nucleotides. The review also correlates structures with findings and properties delineated in functional studies, including nonselective monovalent cation selectivity, Ca2+ permeation and block, block by L-cis-diltiazem, location of the activation gate, lack of voltage-dependent gating, and modulation by lipids and calmodulin. A perspective on future research is also offered.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Solaki M, Wissinger B, Kohl S, Reuter P. Functional evaluation allows ACMG/AMP-based re-classification of CNGA3 variants associated with achromatopsia. Genet Med 2023; 25:100979. [PMID: 37689994 DOI: 10.1016/j.gim.2023.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
PURPOSE CNGA3 encoding the main subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is one of the major disease-associated genes for achromatopsia. Most CNGA3 variants are missense variants with the majority being functionally uncharacterized and therefore hampering genetic diagnosis. In light of potential gene therapy, objective variant pathogenicity assessment is essential. METHODS We established a medium-throughput aequorin-based luminescence bioassay allowing mutant CNGA3 channel function assessment via quantification of CNGA3 channel-mediated calcium influx in a cell culture system, thereby enabling American College of Medical Genetics and Genomics/Association for Molecular Pathology-based variant re-classification. RESULTS We provide functional read-out obtained for 150 yet uncharacterized CNGA3 missense substitutions of which 55 were previously categorized as variants of uncertain significance (VUS) identifying 25 as functionally normal and 125 as functionally abnormal. These data enabled the American College of Medical Genetics and Genomics/ Association for Molecular Pathology-based variant re-classification of 52/55 VUS as either benign, likely benign, or likely pathogenic reaching a VUS re-classification rate of 94.5%. CONCLUSION Our aequorin-based bioassay allows functionally ensured clinical variant interpretation for 150 CNGA3 missense variants enabling and supporting VUS re-classification and assuring molecular diagnosis to patients affected by CNGA3-associated achromatopsia, hereby identifying patients eligible for future gene therapy trials on this disease.
Collapse
Affiliation(s)
- Maria Solaki
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | - Peggy Reuter
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Friebe A, Kraehling JR, Russwurm M, Sandner P, Schmidtko A. The 10th International Conference on cGMP 2022: recent trends in cGMP research and development-meeting report. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1669-1686. [PMID: 37079081 PMCID: PMC10338386 DOI: 10.1007/s00210-023-02484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
Increasing cGMP is a unique therapeutic principle, and drugs inhibiting cGMP-degrading enzymes or stimulating cGMP production are approved for the treatment of various diseases such as erectile dysfunction, coronary artery disease, pulmonary hypertension, chronic heart failure, irritable bowel syndrome, or achondroplasia. In addition, cGMP-increasing therapies are preclinically profiled or in clinical development for quite a broad set of additional indications, e.g., neurodegenerative diseases or different forms of dementias, bone formation disorders, underlining the pivotal role of cGMP signaling pathways. The fundamental understanding of the signaling mediated by nitric oxide-sensitive (soluble) guanylyl cyclase and membrane-associated receptor (particulate) guanylyl cyclase at the molecular and cellular levels, as well as in vivo, especially in disease models, is a key prerequisite to fully exploit treatment opportunities and potential risks that could be associated with an excessive increase in cGMP. Furthermore, human genetic data and the clinical effects of cGMP-increasing drugs allow back-translation into basic research to further learn about signaling and treatment opportunities. The biannual international cGMP conference, launched nearly 20 years ago, brings all these aspects together as an established and important forum for all topics from basic science to clinical research and pivotal clinical trials. This review summarizes the contributions to the "10th cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications," which was held in Augsburg in 2022 but will also provide an overview of recent key achievements and activities in the field of cGMP research.
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany
| | - Jan R. Kraehling
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | - Michael Russwurm
- Institute of Pharmacology, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Peter Sandner
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Max-Von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| |
Collapse
|
11
|
Hu Z, Zheng X, Yang J. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun 2023; 14:4284. [PMID: 37463923 DOI: 10.1038/s41467-023-39971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels transduce chemical signals into electrical signals in sensory receptors and neurons. They are activated by cGMP or cAMP, which bind to the cyclic nucleotide-binding domain (CNBD) to open a gate located 50-60 Å away in the central cavity. Structures of closed and open vertebrate CNG channels have been solved, but the conformational landscape of this allosteric gating remains to be elucidated and enriched. Here, we report structures of the cGMP-activated human cone photoreceptor CNGA3/CNGB3 channel in closed, intermediate, pre-open and open states in detergent or lipid nanodisc, all with fully bound cGMP. The pre-open and open states are obtained only in the lipid nanodisc, suggesting a critical role of lipids in tuning the energetic landscape of CNGA3/CNGB3 activation. The different states exhibit subunit-unique, incremental and distinct conformational rearrangements that originate in the CNBD, propagate through the gating ring to the transmembrane domain, and gradually open the S6 cavity gate. Our work illustrates a spatial conformational-change wave of allosteric gating of a vertebrate CNG channel by its natural ligand and provides an expanded framework for studying CNG properties and channelopathy.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
12
|
Li S, Ma H, Yang F, Ding X. cGMP Signaling in Photoreceptor Degeneration. Int J Mol Sci 2023; 24:11200. [PMID: 37446378 PMCID: PMC10342299 DOI: 10.3390/ijms241311200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity. Photoreceptors undergo progressive degeneration over time in many hereditary and age-related retinal diseases. Despite the remarkable heterogeneity of disease-causing genes, environmental factors, and pathogenesis, the progressive death of rod and cone photoreceptors ultimately leads to loss of vision/blindness. There are currently no treatments available for retinal degeneration. Cyclic guanosine 3', 5'-monophosphate (cGMP) plays a pivotal role in phototransduction. cGMP governs the cyclic nucleotide-gated (CNG) channels on the plasma membrane of the photoreceptor outer segments, thereby regulating membrane potential and signal transmission. By gating the CNG channels, cGMP regulates cellular Ca2+ homeostasis and signal transduction. As a second messenger, cGMP activates the cGMP-dependent protein kinase G (PKG), which regulates numerous targets/cellular events. The dysregulation of cGMP signaling is observed in varieties of photoreceptor/retinal degenerative diseases. Abnormally elevated cGMP signaling interferes with various cellular events, which ultimately leads to photoreceptor degeneration. In line with this, strategies to reduce cellular cGMP signaling result in photoreceptor protection in mouse models of retinal degeneration. The potential mechanisms underlying cGMP signaling-induced photoreceptor degeneration involve the activation of PKG and impaired Ca2+ homeostasis/Ca2+ overload, resulting from overactivation of the CNG channels, as well as the subsequent activation of the downstream cellular stress/death pathways. Thus, targeting the cellular cGMP/PKG signaling and the Ca2+-regulating pathways represents a significant strategy for photoreceptor protection in retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiqin Ding
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.); (F.Y.)
| |
Collapse
|
13
|
Gerhardt MJ, Petersen-Jones SM, Michalakis S. CNG channel-related retinitis pigmentosa. Vision Res 2023; 208:108232. [PMID: 37054604 PMCID: PMC10373105 DOI: 10.1016/j.visres.2023.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
The genes CNGA1 and CNGB1 encode the alpha and beta subunits of the rod CNG channel, a ligand-gated cation channel whose activity is controlled by cyclic guanosine monophosphate (cGMP). Autosomal inherited mutations in either of the genes lead to a progressive rod-cone retinopathy known as retinitis pigmentosa (RP). The rod CNG channel is expressed in the plasma membrane of the outer segment and functions as a molecular switch that converts light-mediated changes in cGMP into a voltage and Ca2+ signal. Here, we will first review the molecular properties and physiological role of the rod CNG channel and then discuss the characteristics of CNG-related RP. Finally, we will summarize recent activities in the field of gene therapy aimed at developing therapies for CNG-related RP.
Collapse
Affiliation(s)
- Maximilian J Gerhardt
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstraße 8, 80336 München, Germany
| | - Simon M Petersen-Jones
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, United States
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstraße 8, 80336 München, Germany.
| |
Collapse
|
14
|
Tipper E, Leitão N, Dangeville P, Lawson DM, Charpentier M. A novel mutant allele of AtCNGC15 reveals a dual function of nuclear calcium release in the root meristem. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2572-2584. [PMID: 36715622 PMCID: PMC10112680 DOI: 10.1093/jxb/erad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 06/06/2023]
Abstract
Calcium release to the nucleoplasm of root meristem cells was demonstrated to modulate root development. The calcium channel encoded by cyclic nucleotide-gated channel (CNGC) 15 localizes at the nuclear envelope in young Arabidopsis seedlings. In contrast, at later stages of root growth, overexpression analysis showed that AtCNGC15 can relocalize to the plasma membrane to mediate primary nitrate-induced gene expression. This raises the question as to whether nuclear localized AtCNGC15 is required for root apical meristem development in young Arabidopsis seedlings, and whether nitrate signalling occurs independently of nuclear localized AtCNGC15 at this developmental stage. In this study, we characterize a novel mutant allele of AtCNGC15 and demonstrate that the mutation of a highly conserved aspartic acid in the C-linker domain is sufficient to impair the gating of AtCNCG15. We demonstrate that AtCNGC15 mediates the nuclear calcium release that modulates root apical meristem development and nitrate-induced LBD39 expression. We also show that, in the presence of nitrate, the relocalization of AtCNGC15 at the plasma membrane occurs specifically in the columella cells. Our results further suggest that the induction of LBD37, LBD38, and LBD39 in the presence of nitrate is modulated by different inputs of cytoplasmic or nuclear calcium release.
Collapse
Affiliation(s)
- Emily Tipper
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | - Pierre Dangeville
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
15
|
Barret D, Schuster D, Rodrigues M, Leitner A, Picotti P, Schertler G, Kaupp U, Korkhov V, Marino J. Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel. Proc Natl Acad Sci U S A 2023; 120:e2300309120. [PMID: 37011209 PMCID: PMC10104587 DOI: 10.1073/pnas.2300309120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.
Collapse
Affiliation(s)
- Diane C. A. Barret
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
| | - Dina Schuster
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8049Zürich, Switzerland
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8049Zurich, Switzerland
| | - Matthew J. Rodrigues
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8049Zürich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8049Zürich, Switzerland
| | | | - U. Benjamin Kaupp
- Life and Medical Sciences Institute, University of Bonn, 53115Bonn, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077Göttingen, Germany
| | - Volodymyr M. Korkhov
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8049Zurich, Switzerland
| | - Jacopo Marino
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232Villigen, Switzerland
| |
Collapse
|
16
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
17
|
Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin. Int J Mol Sci 2022; 23:ijms232214143. [PMID: 36430626 PMCID: PMC9694239 DOI: 10.3390/ijms232214143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal cyclic nucleotide-gated (CNG) ion channels bind to intracellular cGMP and mediate visual phototransduction in photoreceptor rod and cone cells. Retinal rod CNG channels form hetero-tetramers comprised of three CNGA1 and one CNGB1 protein subunits. Cone CNG channels are similar tetramers consisting of three CNGA3 and one CNGB3 subunits. Calmodulin (CaM) binds to two distinct sites (CaM1: residues 565-587 and CaM2: residues 1120-1147) within the cytosolic domains of rod CNGB1. The binding of Ca2+-bound CaM to CNGB1 promotes the Ca2+-induced desensitization of CNG channels in retinal rods that may be important for photoreceptor light adaptation. Mutations that affect Ca2+-dependent CNG channel function are responsible for inherited forms of blindness. In this review, we propose structural models of the rod CNG channel bound to CaM that suggest how CaM might cause channel desensitization and how dysregulation of the channel may lead to retinal disease.
Collapse
|
18
|
cGMP Analogues with Opposing Actions on CNG Channels Selectively Modulate Rod or Cone Photoreceptor Function. Pharmaceutics 2022; 14:pharmaceutics14102102. [PMID: 36297537 PMCID: PMC9612005 DOI: 10.3390/pharmaceutics14102102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
The vertebrate retina harbors rod and cone photoreceptors. Human vision critically depends on cone photoreceptor function. In the phototransduction cascade, cGMP activates distinct rod and cone isoforms of the cyclic nucleotide-gated (CNG) channel. Excessive cGMP levels initiate a pathophysiological rollercoaster, which starts with CNG channel over-activation, typically in rod photoreceptors. This triggers cell death of rods first, and then cones, and is the root cause of many blinding retinal diseases, including Retinitis pigmentosa. While targeting of CNG channels has been proposed for therapeutic purposes, thus far, it has not been possible to inhibit rod CNG channels without compromising cone function. Here, we present a novel strategy, based on cGMP analogues with opposing actions on CNG channels, which enables the selective modulation of either rod or cone photoreceptor activity. The combined treatment with the weak rod-selective CNG-channel inhibitor (Rp-8-Br-PET-cGMPS) and the cone-selective CNG-channel activator (8-pCPT-cGMP) essentially normalized rod CNG-channel function while preserving cone functionality at physiological and pathological cGMP levels. Hence, combinations of cGMP analogues with desired properties may elegantly address the isoform-specificity problem in future pharmacological therapies. Moreover, this strategy may allow for improvements in visual performance in certain light environments.
Collapse
|
19
|
SARS-CoV-2 variants of concern: spike protein mutational analysis and epitope for broad neutralization. Nat Commun 2022; 13:4696. [PMID: 35982054 PMCID: PMC9388680 DOI: 10.1038/s41467-022-32262-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we describe an antibody fragment (VH ab6) that neutralizes all major variants including the recently emerged BA.1 and BA.2 Omicron subvariants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within previously emerged variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants. SARS-CoV-2 variants have accumulated multiple defining mutations within their spike glycoproteins. Here, the authors report a structural basis for broad neutralization of several variants by a heavy chain antibody fragment and provide a mutational analysis focusing on antibody evasion, receptor engagement, and spike protein structure.
Collapse
|
20
|
Barret DC, Kaupp UB, Marino J. The structure of cyclic nucleotide-gated channels in rod and cone photoreceptors. Trends Neurosci 2022; 45:763-776. [DOI: 10.1016/j.tins.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
21
|
Solaki M, Baumann B, Reuter P, Andreasson S, Audo I, Ayuso C, Balousha G, Benedicenti F, Birch D, Bitoun P, Blain D, Bocquet B, Branham K, Català-Mora J, De Baere E, Dollfus H, Falana M, Giorda R, Golovleva I, Gottlob I, Heckenlively JR, Jacobson SG, Jones K, Jägle H, Janecke AR, Kellner U, Liskova P, Lorenz B, Martorell-Sampol L, Messias A, Meunier I, Belga Ottoni Porto F, Papageorgiou E, Plomp AS, de Ravel TJL, Reiff CM, Renner AB, Rosenberg T, Rudolph G, Salati R, Sener EC, Sieving PA, Stanzial F, Traboulsi EI, Tsang SH, Varsanyi B, Weleber RG, Zobor D, Stingl K, Wissinger B, Kohl S. Comprehensive variant spectrum of the CNGA3 gene in patients affected by achromatopsia. Hum Mutat 2022; 43:832-858. [PMID: 35332618 DOI: 10.1002/humu.24371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.
Collapse
Affiliation(s)
- Maria Solaki
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Britta Baumann
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sten Andreasson
- Department of Ophthalmology, University Hospital Lund, Lund, Sweden
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET, and INSERM-DGOS CIC1423, Paris, France
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ghassan Balousha
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Francesco Benedicenti
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - David Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Pierre Bitoun
- Genetique Medicale, CHU Paris Nord, Hopital Jean Verdier, Bondy Cedex, France
| | | | - Beatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaume Català-Mora
- Unitat de Distròfies Hereditàries de Retina Hospital Sant Joan de Déu, Barcelona, Esplugues de Llobregat, Spain
| | - Elfride De Baere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Helene Dollfus
- CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- U-1112, Inserm, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mohammed Falana
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Irina Golovleva
- Department of Medical Biosciences/Medical and Clinical Genetics, University of Umea, Umea, Sweden
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, UK
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaylie Jones
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Andreas R Janecke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrich Kellner
- Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany
- RetinaScience, Bonn, 53192, Germany
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Ophthalmology, Universitaetsklinikum Bonn, Bonn, Germany
| | | | - André Messias
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Sensgene Care Network, France
| | | | - Eleni Papageorgiou
- Department of Ophthalmology, University Hospital of Larissa, Mezourlo, Larissa, Greece
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomy J L de Ravel
- Centre for Medical Genetics, University Hospital Brussels, Brussels, Belgium
| | | | | | - Thomas Rosenberg
- Department of Ophthalmology, National Eye Clinic, Glostrup Hospital, Glostrup, Denmark
| | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Roberto Salati
- Scientific Institute, IRCCS Eugenio Medea, Pediatric Ophthalmology Unit, Bosisio Parini, Lecco, Italy
| | - E Cumhur Sener
- Strabismus and Pediatric Ophthalmology, Private Practice, Ankara, Turkey
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, School of Medicine, University of California Davis, Sacramento, USA
| | - Franco Stanzial
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York City, New York, USA
| | - Balázs Varsanyi
- Department of Ophthalmology, Medical School, University of Pécs and Ganglion Medical Center, Pécs, Pécs, Hungary
| | - Richard G Weleber
- Oregon Health & Science University, Ophthalmic Genetics Service of the Casey Eye Institute, 515 SW Campus Drive, 97239, Portland, Oregon, USA
| | - Ditta Zobor
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
- Department of Ophthalmology, Semmelweis University Budapest, Budapest, Hungary
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Affiliation(s)
- Gucan Dai
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|