1
|
Yang F, Zhou H, Luo P, Jia L, Hou M, Huang J, Gao L, Zhang Q, Guan Y, Bao H, Zhang B, Liu L, Zou C, Yang Q, Wang J, Dai L. Celastrol induces DNA damage and cell death in BCR-ABL T315I-mutant CML by targeting YY1 and HMCES. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155937. [PMID: 39255723 DOI: 10.1016/j.phymed.2024.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is driven primarily by the constitutively active BCR-ABL fusion oncoprotein. Although the development of tyrosine kinase inhibitors has markedly improved the prognosis of CML patients, it remains a significant challenge to overcome drug-resistant mutations, such as the T315I mutation of BCR-ABL, and achieve treatment-free remission in the clinic. PURPOSE The identification of new intervention targets beyond BCR-ABL could provide new perspectives for future research and therapeutic intervention. A network pharmacology analysis was conducted to identify the most promising natural product with anti-CML activity. Celastrol was selected for further analysis to gain insights into its mechanism of action (MoA), with the aim of identifying potential new intervention targets for BCR-ABL T315I-mutant CML. METHODS Transcriptomic and proteomic analyses were conducted to systematically investigate the molecular MoA of celastrol in K562T315I cells. To identify the target proteins of celastrol, mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) was carried out, followed by validations with genetic knockdown and overexpression, cell proliferation assay, comet assay, Western blotting, celastrol probe-based in situ labeling and pull-down assay, molecular docking, and biolayer interferometry. RESULTS Our multi-omics analyses revealed that celastrol primarily induces DNA damage accumulation and the unfolded protein response in K562T315I cells. Among the twelve most potential celastrol targets, experimental evidence demonstrated that the direct interaction of celastrol with YY1 and HMCES increases the levels of DNA damage, leading to cell death. CONCLUSION This study represents the first investigation utilizing a proteome-wide label-free target deconvolution approach, MS-CETSA, to identify the protein targets of celastrol. This study also develops a new systems pharmacology strategy. The findings provide new insights into the multifaceted mechanisms of celastrol and, more importantly, highlight the potential of targeting proteins in DNA damage and repair pathways, particularly YY1 and HMCES, to combat drug-resistant CML.
Collapse
Affiliation(s)
- Fan Yang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Hongchao Zhou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Mengyun Hou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jingnan Huang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Lin Gao
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yudong Guan
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Honglei Bao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Baotong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Liping Liu
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Chang Zou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qinhe Yang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jigang Wang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lingyun Dai
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
2
|
Kanai M, Mok S, Yeo T, Shears MJ, Ross LS, Jeon JH, Narwal S, Haile MT, Tripathi AK, Mlambo G, Kim J, Gil-Iturbe E, Okombo J, Fairhurst KJ, Bloxham T, Bridgford JL, Sheth T, Ward KE, Park H, Rozenberg FD, Quick M, Mancia F, Lee MC, Small-Saunders JL, Uhlemann AC, Sinnis P, Fidock DA. Identification of the drug/metabolite transporter 1 as a marker of quinine resistance in a NF54×Cam3.II P. falciparum genetic cross. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615529. [PMID: 39386571 PMCID: PMC11463348 DOI: 10.1101/2024.09.27.615529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The genetic basis of Plasmodium falciparum resistance to quinine (QN), a drug used to treat severe malaria, has long been enigmatic. To gain further insight, we used FRG-NOD human liver-chimeric mice to conduct a P. falciparum genetic cross between QN-sensitive and QN-resistant parasites, which also differ in their susceptibility to chloroquine (CQ). By applying different selective conditions to progeny pools prior to cloning, we recovered 120 unique recombinant progeny. These progeny were subjected to drug profiling and QTL analyses with QN, CQ, and monodesethyl-CQ (md-CQ, the active metabolite of CQ), which revealed predominant peaks on chromosomes 7 and 12, consistent with a multifactorial mechanism of resistance. A shared chromosome 12 region mapped to resistance to all three antimalarials and was preferentially co-inherited with pfcrt. We identified an ATP-dependent zinc metalloprotease (FtsH1) as one of the top candidates and observed using CRISPR/Cas9 SNP-edited lines that ftsh1 is a potential mediator of QN resistance and a modulator of md-CQ resistance. As expected, CQ and md-CQ resistance mapped to a chromosome 7 region harboring pfcrt. However, for QN, high-grade resistance mapped to a chromosome 7 peak centered 295kb downstream of pfcrt. We identified the drug/metabolite transporter 1 (DMT1) as the top candidate due to its structural similarity to PfCRT and proximity to the peak. Deleting DMT1 in QN-resistant Cam3.II parasites significantly sensitized the parasite to QN but not to the other drugs tested, suggesting that DMT1 mediates QN response specifically. We localized DMT1 to structures associated with vesicular trafficking, as well as the parasitophorous vacuolar membrane, lipid bodies, and the digestive vacuole. We also observed that mutant DMT1 transports more QN than the wild-type isoform in vitro. Our study demonstrates that DMT1 is a novel marker of QN resistance and a new chromosome 12 locus associates with CQ and QN response, with ftsh1 is a potential candidate, suggesting these genes should be genotyped in surveillance and clinical settings.
Collapse
Affiliation(s)
- Mariko Kanai
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Leila S. Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Jin H. Jeon
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sunil Narwal
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Meseret T. Haile
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
| | - John Okombo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kate J. Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Talia Bloxham
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Tanaya Sheth
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kurt E. Ward
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Matthias Quick
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Marcus C.S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Jennifer L. Small-Saunders
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|
3
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024:1-14. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
4
|
Chahine Z, Abel S, Hollin T, Barnes GL, Chung JH, Daub ME, Renard I, Choi JY, Vydyam P, Pal A, Alba-Argomaniz M, Banks CAS, Kirkwood J, Saraf A, Camino I, Castaneda P, Cuevas MC, De Mercado-Arnanz J, Fernandez-Alvaro E, Garcia-Perez A, Ibarz N, Viera-Morilla S, Prudhomme J, Joyner CJ, Bei AK, Florens L, Ben Mamoun C, Vanderwal CD, Le Roch KG. A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria. Science 2024; 385:eadm7966. [PMID: 39325875 DOI: 10.1126/science.adm7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024]
Abstract
We report the discovery of MED6-189, an analog of the kalihinol family of isocyanoterpene natural products that is effective against drug-sensitive and drug-resistant Plasmodium falciparum strains, blocking both asexual replication and sexual differentiation. In vivo studies using a humanized mouse model of malaria confirm strong efficacy of the compound in animals with no apparent hemolytic activity or toxicity. Complementary chemical, molecular, and genomics analyses revealed that MED6-189 targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. Its high potency, excellent therapeutic profile, and distinctive mode of action make MED6-189 an excellent addition to the antimalarial drug pipeline.
Collapse
Affiliation(s)
- Z Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - S Abel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - T Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - G L Barnes
- Department of Chemistry, University of California, Irvine, CA, USA
| | - J H Chung
- Department of Chemistry, University of California, Irvine, CA, USA
| | - M E Daub
- Department of Chemistry, University of California, Irvine, CA, USA
| | - I Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - J Y Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - P Vydyam
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - A Pal
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - M Alba-Argomaniz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - C A S Banks
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - J Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA, USA
| | - A Saraf
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Present address: Shankel Structural Biology Center, The University of Kansas, Lawrence, KS, USA
| | - I Camino
- GSK, Tres Cantos (Madrid), Spain
| | | | | | | | | | | | - N Ibarz
- GSK, Tres Cantos (Madrid), Spain
| | | | - J Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - C J Joyner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - A K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - L Florens
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - C Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - C D Vanderwal
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - K G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| |
Collapse
|
5
|
Geng N, Fan M, Kuang B, Zhang F, Xian M, Deng L, Chen C, Pan Y, Chen J, Feng N, Liang L, Ye Y, Liu K, Li X, Du Y, Guo F. 10-hydroxy-2-decenoic acid prevents osteoarthritis by targeting aspartyl β hydroxylase and inhibiting chondrocyte senescence in male mice preclinically. Nat Commun 2024; 15:7712. [PMID: 39231947 PMCID: PMC11375154 DOI: 10.1038/s41467-024-51746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl β-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3β/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl β-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.
Collapse
Affiliation(s)
- Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Li Liang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Lin J, Yan X, Chung Z, Liew CW, El Sahili A, Pechnikova EV, Preiser PR, Bozdech Z, Gao YG, Lescar J. Inhibition of falcilysin from Plasmodium falciparum by interference with its closed-to-open dynamic transition. Commun Biol 2024; 7:1070. [PMID: 39217277 PMCID: PMC11365994 DOI: 10.1038/s42003-024-06774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In the absence of an efficacious vaccine, chemotherapy remains crucial to prevent and treat malaria. Given its key role in haemoglobin degradation, falcilysin constitutes an attractive target. Here, we reveal the mechanism of enzymatic inhibition of falcilysin by MK-4815, an investigational new drug with potent antimalarial activity. Using X-ray crystallography, we determine two binary complexes of falcilysin in a closed state, bound with peptide substrates from the haemoglobin α and β chains respectively. An antiparallel β-sheet is formed between the substrate and enzyme, accounting for sequence-independent recognition at positions P2 and P1. In contrast, numerous contacts favor tyrosine and phenylalanine at the P1' position of the substrate. Cryo-EM studies reveal a majority of unbound falcilysin molecules adopting an open conformation. Addition of MK-4815 shifts about two-thirds of falcilysin molecules to a closed state. These structures give atomic level pictures of the proteolytic cycle, in which falcilysin interconverts between a closed state conducive to proteolysis, and an open conformation amenable to substrate diffusion and products release. MK-4815 and quinolines bind to an allosteric pocket next to a hinge region of falcilysin and hinders this dynamic transition. These data should inform the design of potent inhibitors of falcilysin to combat malaria.
Collapse
Affiliation(s)
- Jianqing Lin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, 636921, Singapore, Singapore
| | - Xinfu Yan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, 636921, Singapore, Singapore
| | - Zara Chung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, 636921, Singapore, Singapore
| | - Chong Wai Liew
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, 636921, Singapore, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, 636921, Singapore, Singapore
| | - Evgeniya V Pechnikova
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
- Dens Solutions, Informaticalaan 12, 2628 ZD, Delft, Netherlands
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, 1 CREATE Way, 138602, Singapore, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, 636921, Singapore, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, 636921, Singapore, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, 636921, Singapore, Singapore.
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, 1 CREATE Way, 138602, Singapore, Singapore.
| |
Collapse
|
7
|
Sun JT, Pan CL, Mao YH, Wang Z, Sun JL, Zhang XX, Yang Y, Wei ZT, Xu YD. Exploring the protective effect and mechanism of icariside II on the bladder in a rat model of radiation cystitis based on transcriptome sequencing. Int J Radiat Biol 2024; 100:1493-1504. [PMID: 39166981 DOI: 10.1080/09553002.2024.2386982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Radiation cystitis (RC) is a complex and common complication after radiotherapy for pelvic cancer. Icariside II (ICAII) is a flavonoid compound extracted from Epimedium, a traditional Chinese medicine, with various pharmacological activities. The aim of the present study was to investigate the cysto-protective effects of ICAII in RC rats and its possible mechanisms. MATERIALS AND METHODS A rat model of induced radiation cystitis using pelvic X-ray irradiation was used, and bladder function was assessed by bladder volume and bladder leakage point pressure (LPP) after ICAII treatment. HE and Masson stains were used to assess the histopathological changes in the bladder. IL-6, TNF-α, IL-10, IL-4 and IL-1β were measured by ELISA to assess the level of inflammation. The gene-level changes in ICAII-treated RC were observed by transcriptome sequencing, and then the potential targets of action and biological mechanisms were explored by PPI, GO and KEGG enrichment analysis of the differentially expressed genes. Finally, the predicted targets of action were experimentally validated using immunohistochemistry, RT-qPCR, molecular docking and CETSA. RESULTS ICAII significantly increased bladder volume and the LPP, ameliorated pathological damage to bladder tissues, decreased the levels of IL-6, TNF-α, and IL-1β, and increased the levels of IL-10 and IL-4 in radiation-injured rats. A total of 90 differentially expressed genes were obtained by transcriptome sequencing, and PPI analysis identified H3F3C, ISG15, SPP1, and LCN2 as possible potential targets of action. GO and KEGG analyses revealed that these differentially expressed genes were mainly enriched in the pathways metabolism of xenobiotics by cytochrome P450, arachidonic acid metabolism, Staphylococcus aureus infection and chemical carcinogenesis - reactive oxygen species. Experimental validation showed that ICAII could significantly increase the expression of H3F3C and ISG15 and inhibit the expression of SPP1 and LCN2. ICAII binds well to H3F3C, ISG15, SPP1 and LCN2, with the best binding ability to H3F3C. Furthermore, ICAII inhibited the protein degradation of H3F3C in bladder epithelial cells. CONCLUSIONS ICAII may alleviate the bladder inflammatory response and inhibit the fibrosis process of bladder tissues through the regulation of H3F3C, ISG15, SPP1, and LCN2 targets and has a protective effect on the bladder of radioinjured rats. In particular, H3F3C may be one of the most promising therapeutic targets.
Collapse
Affiliation(s)
- Jun-Tao Sun
- Changchun University of Chinese Medicine, Changchun, China
| | - Chen-Li Pan
- Changchun University of Chinese Medicine, Changchun, China
| | - Yin-Hui Mao
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhuo Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Ji-Lei Sun
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | | | - Yong Yang
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhi-Tao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yong-De Xu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Giannangelo C, Challis MP, Siddiqui G, Edgar R, Malcolm TR, Webb CT, Drinkwater N, Vinh N, Macraild C, Counihan N, Duffy S, Wittlin S, Devine SM, Avery VM, De Koning-Ward T, Scammells P, McGowan S, Creek DJ. Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as an antimalarial strategy. eLife 2024; 13:RP92990. [PMID: 38976500 PMCID: PMC11230628 DOI: 10.7554/elife.92990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.
Collapse
Affiliation(s)
- Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Matthew P Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Rebecca Edgar
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Tess R Malcolm
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Chaille T Webb
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Nyssa Drinkwater
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Natalie Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Christopher Macraild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Natalie Counihan
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Sandra Duffy
- Discovery Biology, Centre for Cellular Phenomics, Griffith UniversityNathanAustralia
| | - Sergio Wittlin
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Shane M Devine
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, The University of MelbourneParkvilleAustralia
| | - Vicky M Avery
- Discovery Biology, Centre for Cellular Phenomics, Griffith UniversityNathanAustralia
- School of Environment and Science, Griffith UniversityNathanAustralia
| | - Tania De Koning-Ward
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Peter Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Sheena McGowan
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| |
Collapse
|
9
|
Müller J, Boubaker G, Müller N, Uldry AC, Braga-Lagache S, Heller M, Hemphill A. Investigating Antiprotozoal Chemotherapies with Novel Proteomic Tools-Chances and Limitations: A Critical Review. Int J Mol Sci 2024; 25:6903. [PMID: 39000012 PMCID: PMC11241152 DOI: 10.3390/ijms25136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Identification of drug targets and biochemical investigations on mechanisms of action are major issues in modern drug development. The present article is a critical review of the classical "one drug"-"one target" paradigm. In fact, novel methods for target deconvolution and for investigation of resistant strains based on protein mass spectrometry have shown that multiple gene products and adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one single gene or gene product. Resistance to drugs may be linked to differential expression of other proteins than those interacting with the drug in protein binding studies and result in complex cell physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however, be extended to chemotherapies against other pathogens or cancer.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Dans MG, Boulet C, Watson GM, Nguyen W, Dziekan JM, Evelyn C, Reaksudsan K, Mehra S, Razook Z, Geoghegan ND, Mlodzianoski MJ, Goodman CD, Ling DB, Jonsdottir TK, Tong J, Famodimu MT, Kristan M, Pollard H, Stewart LB, Brandner-Garrod L, Sutherland CJ, Delves MJ, McFadden GI, Barry AE, Crabb BS, de Koning-Ward TF, Rogers KL, Cowman AF, Tham WH, Sleebs BE, Gilson PR. Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1. Nat Commun 2024; 15:5219. [PMID: 38890312 PMCID: PMC11189555 DOI: 10.1038/s41467-024-49491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.
Collapse
Affiliation(s)
- Madeline G Dans
- Burnet Institute, Melbourne, VIC, 3004, Australia.
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia.
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Coralie Boulet
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, 1206, Switzerland
| | - Gabrielle M Watson
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William Nguyen
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jerzy M Dziekan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cindy Evelyn
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kitsanapong Reaksudsan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Somya Mehra
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Zahra Razook
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Mlodzianoski
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Joshua Tong
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
| | - Mufuliat Toyin Famodimu
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Mojca Kristan
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Harry Pollard
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Lindsay B Stewart
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Luke Brandner-Garrod
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alyssa E Barry
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Monash University, 3800, Melbourne, VIC, Australia
| | - Tania F de Koning-Ward
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alan F Cowman
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, VIC, 3004, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
11
|
Creek D, Giannangelo C, Challis M, Siddiqui G, Edgar R, Malcolm T, Webb C, Drinkwater N, Vinh N, MacRaild C, Counihan N, Duffy S, Wittlin S, Devine S, Avery V, de Koning-Ward T, Scammells P, McGowan S. Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as an antimalarial strategy. RESEARCH SQUARE 2024:rs.3.rs-3251230. [PMID: 38746424 PMCID: PMC11092810 DOI: 10.21203/rs.3.rs-3251230/v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum ( Pf A-M1) and Plasmodium vivax ( Pv A-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets Pf A-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on Pf A-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of Pf A-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.
Collapse
|
12
|
Mansfield CR, Quan B, Chirgwin ME, Eduful B, Hughes PF, Neveu G, Sylvester K, Ryan DH, Kafsack BFC, Haystead TAJ, Leahy JW, Fitzgerald MC, Derbyshire ER. Selective targeting of Plasmodium falciparum Hsp90 disrupts the 26S proteasome. Cell Chem Biol 2024; 31:729-742.e13. [PMID: 38492573 PMCID: PMC11031320 DOI: 10.1016/j.chembiol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) has an essential but largely undefined role in maintaining proteostasis in Plasmodium falciparum, the most lethal malaria parasite. Herein, we identify BX-2819 and XL888 as potent P. falciparum (Pf)Hsp90 inhibitors. Derivatization of XL888's scaffold led to the development of Tropane 1, as a PfHsp90-selective binder with nanomolar affinity. Hsp90 inhibitors exhibit anti-Plasmodium activity against the liver, asexual blood, and early gametocyte life stages. Thermal proteome profiling was implemented to assess PfHsp90-dependent proteome stability, and the proteasome-the main site of cellular protein recycling-was enriched among proteins with perturbed stability upon PfHsp90 inhibition. Subsequent biochemical and cellular studies suggest that PfHsp90 directly promotes proteasome hydrolysis by chaperoning the active 26S complex. These findings expand our knowledge of the PfHsp90-dependent proteome and protein quality control mechanisms in these pathogenic parasites, as well as further characterize this chaperone as a potential antimalarial drug target.
Collapse
Affiliation(s)
- Christopher R Mansfield
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Baiyi Quan
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Benjamin Eduful
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Gaëlle Neveu
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Daniel H Ryan
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - James W Leahy
- Department of Chemistry, University of South Florida, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Wirjanata G, Lin J, Dziekan JM, El Sahili A, Chung Z, Tjia S, Binte Zulkifli NE, Boentoro J, Tham R, Jia LS, Go KD, Yu H, Partridge A, Olsen D, Prabhu N, Sobota RM, Nordlund P, Lescar J, Bozdech Z. Identification of an inhibitory pocket in falcilysin provides a new avenue for malaria drug development. Cell Chem Biol 2024; 31:743-759.e8. [PMID: 38593807 DOI: 10.1016/j.chembiol.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.
Collapse
Affiliation(s)
- Grennady Wirjanata
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Infectious Diseases Labs & Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore, Singapore
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore
| | - Zara Chung
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Roy Tham
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Lai Si Jia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - David Olsen
- Merck & Co., Inc., West Point, PA 19486, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 637551, Singapore.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore.
| |
Collapse
|
14
|
Wu Q, Zheng J, Sui X, Fu C, Cui X, Liao B, Ji H, Luo Y, He A, Lu X, Xue X, Tan CSH, Tian R. High-throughput drug target discovery using a fully automated proteomics sample preparation platform. Chem Sci 2024; 15:2833-2847. [PMID: 38404368 PMCID: PMC10882491 DOI: 10.1039/d3sc05937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024] Open
Abstract
Drug development is plagued by inefficiency and high costs due to issues such as inadequate drug efficacy and unexpected toxicity. Mass spectrometry (MS)-based proteomics, particularly isobaric quantitative proteomics, offers a solution to unveil resistance mechanisms and unforeseen side effects related to off-targeting pathways. Thermal proteome profiling (TPP) has gained popularity for drug target identification at the proteome scale. However, it involves experiments with multiple temperature points, resulting in numerous samples and considerable variability in large-scale TPP analysis. We propose a high-throughput drug target discovery workflow that integrates single-temperature TPP, a fully automated proteomics sample preparation platform (autoSISPROT), and data independent acquisition (DIA) quantification. The autoSISPROT platform enables the simultaneous processing of 96 samples in less than 2.5 hours, achieving protein digestion, desalting, and optional TMT labeling (requires an additional 1 hour) with 96-channel all-in-tip operations. The results demonstrated excellent sample preparation performance with >94% digestion efficiency, >98% TMT labeling efficiency, and >0.9 intra- and inter-batch Pearson correlation coefficients. By automatically processing 87 samples, we identified both known targets and potential off-targets of 20 kinase inhibitors, affording over a 10-fold improvement in throughput compared to classical TPP. This fully automated workflow offers a high-throughput solution for proteomics sample preparation and drug target/off-target identification.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
- Southern University of Science and Technology, Guangming Advanced Research Institute Shenzhen 518055 China
| | - Xintong Sui
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Changying Fu
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xiaozhen Cui
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Bin Liao
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Hongchao Ji
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Yang Luo
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - An He
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xue Lu
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyue Xue
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
- Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Southern University of Science and Technology, Guangming Advanced Research Institute Shenzhen 518055 China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
- Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Southern University of Science and Technology, Guangming Advanced Research Institute Shenzhen 518055 China
| |
Collapse
|
15
|
Zhao S, Yang X, Zeng Z, Qian P, Zhao Z, Dai L, Prabhu N, Nordlund P, Tam WL. Deep learning based CETSA feature prediction cross multiple cell lines with latent space representation. Sci Rep 2024; 14:1878. [PMID: 38253642 PMCID: PMC10810365 DOI: 10.1038/s41598-024-51193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Mass spectrometry-coupled cellular thermal shift assay (MS-CETSA), a biophysical principle-based technique that measures the thermal stability of proteins at the proteome level inside the cell, has contributed significantly to the understanding of drug mechanisms of action and the dissection of protein interaction dynamics in different cellular states. One of the barriers to the wide applications of MS-CETSA is that MS-CETSA experiments must be performed on the specific cell lines of interest, which is typically time-consuming and costly in terms of labeling reagents and mass spectrometry time. In this study, we aim to predict CETSA features in various cell lines by introducing a computational framework called CycleDNN based on deep neural network technology. For a given set of n cell lines, CycleDNN comprises n auto-encoders. Each auto-encoder includes an encoder to convert CETSA features from one cell line into latent features in a latent space [Formula: see text]. It also features a decoder that transforms the latent features back into CETSA features for another cell line. In such a way, the proposed CycleDNN creates a cyclic prediction of CETSA features across different cell lines. The prediction loss, cycle-consistency loss, and latent space regularization loss are used to guide the model training. Experimental results on a public CETSA dataset demonstrate the effectiveness of our proposed approach. Furthermore, we confirm the validity of the predicted MS-CETSA data from our proposed CycleDNN through validation in protein-protein interaction prediction.
Collapse
Affiliation(s)
- Shenghao Zhao
- Institute for Infocomm Research (I2R), A*STAR, Singapore, 138632, Singapore
- National University of Singapore (NUS), Singapore, 119077, Singapore
| | - Xulei Yang
- Institute for Infocomm Research (I2R), A*STAR, Singapore, 138632, Singapore.
| | - Zeng Zeng
- Institute for Infocomm Research (I2R), A*STAR, Singapore, 138632, Singapore
| | - Peisheng Qian
- Institute for Infocomm Research (I2R), A*STAR, Singapore, 138632, Singapore
| | - Ziyuan Zhao
- Institute for Infocomm Research (I2R), A*STAR, Singapore, 138632, Singapore
| | - Lingyun Dai
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138632, Singapore
- The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138632, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138632, Singapore
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), A*STAR, Singapore, 138632, Singapore.
| |
Collapse
|
16
|
Chung Z, Lin J, Wirjanata G, Dziekan JM, El Sahili A, Preiser PR, Bozdech Z, Lescar J. Identification and structural validation of purine nucleoside phosphorylase from Plasmodium falciparum as a target of MMV000848. J Biol Chem 2024; 300:105586. [PMID: 38141766 PMCID: PMC10911062 DOI: 10.1016/j.jbc.2023.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
About 247 million cases of malaria occurred in 2021 with Plasmodium falciparum accounting for the majority of 619,000 deaths. In the absence of a widely available vaccine, chemotherapy remains crucial to prevent, treat, and contain the disease. The efficacy of several drugs currently used in the clinic is likely to suffer from the emergence of resistant parasites. A global effort to identify lead compounds led to several initiatives such as the Medicine for Malaria Ventures (MMV), a repository of compounds showing promising efficacy in killing the parasite in cell-based assays. Here, we used mass spectrometry coupled with cellular thermal shift assay to identify putative protein targets of MMV000848, a compound with an in vitro EC50 of 0.5 μM against the parasite. Thermal shift assays showed a strong increase of P. falciparum purine nucleoside phosphorylase (PfPNP) melting temperature by up to 15 °C upon incubation with MMV000848. Binding and enzymatic assays returned a KD of 1.52 ± 0.495 μM and an IC50 value of 21.5 ± 2.36 μM. The inhibition is competitive with respect to the substrate, as confirmed by a cocrystal structure of PfPNP bound with MMV000848 at the active site, determined at 1.85 Å resolution. In contrast to transition states inhibitors, MMV000848 specifically inhibits the parasite enzyme but not the human ortholog. An isobologram analysis shows subadditivity with immucillin H and with quinine respectively, suggesting overlapping modes of action between these compounds. These results point to PfPNP as a promising antimalarial target and suggest avenues to improve inhibitor potency.
Collapse
Affiliation(s)
- Zara Chung
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jerzy M Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), Nanyang Technological University, Singapore, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
| |
Collapse
|
17
|
Kuang Z, Guo K, Cao Y, Jiang M, Wang C, Wu Q, Hu G, Ao M, Huang M, Qin J, Zhao T, Lu S, Sun C, Li M, Wu T, Liu W, Fang M. The novel CDK9 inhibitor, XPW1, alone and in combination with BRD4 inhibitor JQ1, for the treatment of clear cell renal cell carcinoma. Br J Cancer 2023; 129:1915-1929. [PMID: 37884683 PMCID: PMC10703862 DOI: 10.1038/s41416-023-02464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a highly lethal malignancy with few therapeutic options. Cyclin‑dependent kinase 9 (CDK9), a potential therapeutic target of many cancers, has been recently observed to be upregulated in ccRCC patients. Therefore, we aimed to investigate the therapeutic potential of CDK9 in ccRCC and develop a novel CDK9 inhibitor with low toxicity for ccRCC treatment. METHODS The expression of CDK9 in ccRCC was checked using the online database and tissue microarray analysis. shRNA-mediated CDK9 knockdown and CDK inhibitor were applied to evaluate the effect of CDK9 on ccRCC. Medicinal chemistry methods were used to develop a new CDK9 inhibitor with drugability. RNA-seq and ChIP-seq experiments were conducted to explore the mechanism of action. MTS, western blotting, and colony formation assays were performed to evaluate the anti-ccRCC effects of CDK9 knockdown and inhibition in vitro. The in vivo anti-tumour efficacy was evaluated in a xenograft model. RESULTS CDK9 is overexpressed and associated with poor survival in ccRCC. Knockdown or inhibition of CDK9 significantly suppressed ccRCC cells. XPW1 was identified as a new potent and selective CDK9 inhibitor with excellent anti-ccRCC activity and low toxicity. In mechanism, XPW1 transcriptionally inhibited DNA repair programmes in ccRCC cells, resulting in an excellent anti-tumour effect. CDK9 and BRD4 were two highly correlated transcriptional regulators in ccRCC patients, and the BRD4 inhibitor JQ1 enhanced XPW1's anti-ccRCC effects in vitro and in vivo. CONCLUSIONS This work provides valuable insights into the therapeutic potential of CDK9 in ccRCC. The CDK9 inhibitor XPW1 would be a novel therapeutic agent for targeting ccRCC, alone or in rational combinations.
Collapse
Affiliation(s)
- Zhijian Kuang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
- College of Arts, Sichuan University, 610207, Chengdu, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Mengxue Jiang
- School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Chaojie Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
- Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical Colloge), 519 East Beijing Rd, 330029, Nanchang, Jiangxi, China
| | - Qiaoqiong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Guosheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Mingfeng Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Jingbo Qin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Taige Zhao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Sheng Lu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Cuiling Sun
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China
| | - Tong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China.
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
18
|
Chahine Z, Abel S, Hollin T, Chung JH, Barnes GL, Daub ME, Renard I, Choi JY, Pratap V, Pal A, Alba-Argomaniz M, Banks CAS, Kirkwood J, Saraf A, Camino I, Castaneda P, Cuevas MC, De Mercado-Arnanz J, Fernandez-Alvaro E, Garcia-Perez A, Ibarz N, Viera-Morilla S, Prudhomme J, Joyner CJ, Bei AK, Florens L, Ben Mamoun C, Vanderwal CD, Le Roch KG. A Potent Kalihinol Analogue Disrupts Apicoplast Function and Vesicular Trafficking in P. falciparum Malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568162. [PMID: 38045341 PMCID: PMC10690269 DOI: 10.1101/2023.11.21.568162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Here we report the discovery of MED6-189, a new analogue of the kalihinol family of isocyanoterpene (ICT) natural products. MED6-189 is effective against drug-sensitive and -resistant P. falciparum strains blocking both intraerythrocytic asexual replication and sexual differentiation. This compound was also effective against P. knowlesi and P. cynomolgi. In vivo efficacy studies using a humanized mouse model of malaria confirms strong efficacy of the compound in animals with no apparent hemolytic activity or apparent toxicity. Complementary chemical biology, molecular biology, genomics and cell biological analyses revealed that MED6-189 primarily targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses in P. falciparum revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. The high potency of MED6-189 in vitro and in vivo, its broad range of efficacy, excellent therapeutic profile, and unique mode of action make it an excellent addition to the antimalarial drug pipeline.
Collapse
Affiliation(s)
- Z Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - S Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - T Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - JH Chung
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - GL Barnes
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - ME Daub
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - I Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - JY Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - V Pratap
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - A Pal
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - M Alba-Argomaniz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - CAS Banks
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - J Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA 92521, USA
| | - A Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - I Camino
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - P Castaneda
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - MC Cuevas
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | | | | | - A Garcia-Perez
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - N Ibarz
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - S Viera-Morilla
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - J Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - CJ Joyner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - AK Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - L Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - C Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - CD Vanderwal
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - KG Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| |
Collapse
|
19
|
Thommen BT, Dziekan JM, Achcar F, Tjia S, Passecker A, Buczak K, Gumpp C, Schmidt A, Rottmann M, Grüring C, Marti M, Bozdech Z, Brancucci NMB. Genetic validation of PfFKBP35 as an antimalarial drug target. eLife 2023; 12:RP86975. [PMID: 37934560 PMCID: PMC10629825 DOI: 10.7554/elife.86975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Plasmodium falciparum accounts for the majority of over 600,000 malaria-associated deaths annually. Parasites resistant to nearly all antimalarials have emerged and the need for drugs with alternative modes of action is thus undoubted. The FK506-binding protein PfFKBP35 has gained attention as a promising drug target due to its high affinity to the macrolide compound FK506 (tacrolimus). Whilst there is considerable interest in targeting PfFKBP35 with small molecules, a genetic validation of this factor as a drug target is missing and its function in parasite biology remains elusive. Here, we show that limiting PfFKBP35 levels are lethal to P. falciparum and result in a delayed death-like phenotype that is characterized by defective ribosome homeostasis and stalled protein synthesis. Our data furthermore suggest that FK506, unlike the action of this drug in model organisms, exerts its antiproliferative activity in a PfFKBP35-independent manner and, using cellular thermal shift assays, we identify putative FK506-targets beyond PfFKBP35. In addition to revealing first insights into the function of PfFKBP35, our results show that FKBP-binding drugs can adopt non-canonical modes of action - with major implications for the development of FK506-derived molecules active against Plasmodium parasites and other eukaryotic pathogens.
Collapse
Affiliation(s)
- Basil T Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Jerzy M Dziekan
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Fiona Achcar
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
- Institute for Parasitology, University of ZurichZurichSwitzerland
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | | | - Christin Gumpp
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | | | - Matthias Rottmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Christof Grüring
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
- Institute for Parasitology, University of ZurichZurichSwitzerland
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Nicolas MB Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
20
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
21
|
Lyu HN, Fu C, Chai X, Gong Z, Zhang J, Wang J, Wang J, Dai L, Xu C. Systematic thermal analysis of the Arabidopsis proteome: Thermal tolerance, organization, and evolution. Cell Syst 2023; 14:883-894.e4. [PMID: 37734376 DOI: 10.1016/j.cels.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Understanding the thermal stability of the plant proteome in the context of the native cellular environment would aid the design of crops with high thermal tolerance, but only limited such data are available. Here, we applied quantitative mass spectrometry to profile the thermal stability of the Arabidopsis proteome and identify thermo-sensitive and thermo-resilient protein networks in Arabidopsis, providing a basis for understanding heat-induced damage. We also show that the similarities of the protein-melting curves can be used as a proxy to evaluate system-wide protein-protein interactions in non-engineered plants and enable the identification of transient interactions exhibited by metabolons in the context of the cellular environment. Finally, we report a systematic comparison of the thermal stability of paralogs in Arabidopsis to aid the investigation and understanding of gene duplication and protein evolution. Taken together, our results could have broad implications for the fields of plant thermal tolerance, plant protein assemblies, and evolution.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunjin Fu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiaqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China; School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lingyun Dai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
22
|
Zhang L, Wu M, Guo W, Zhu S, Li S, Lv S, Li Y, Liu L, Xing Y, Chen H, Liu M, Peng S, Chen Y, Yi Z. A small molecule BCL6 inhibitor as chemosensitizers in acute myeloid leukemia. Biomed Pharmacother 2023; 166:115358. [PMID: 37634473 DOI: 10.1016/j.biopha.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 08/29/2023] Open
Abstract
BCL6 is a transcriptional repressor that regulates multiple genes involved in immune cell differentiation, DNA damage repair, cell cycle, and apoptosis, and is a carcinogenic factor in acute myeloid leukemia (AML). AML is one of the four major types of leukemia with the 5-year survival rate of patients is less than 20% and chemotherapy resistance remains the major obstacle to the treatment failure of AML. We identified WK499, a small molecule compound that can bind to BCL6BTB structure. Treatment with WK499 hinders the interactions between BCL6 with its corepressor proteins, resulting in a remarkable change of BCL6 downstream genes and anti-proliferative effects in AML cells, and inducing cell cycle arrest and apoptosis. We verified that AraC and DOXo could induce BCL6 expression in AML cells, and found that WK499 had a synergistic effect when combined with chemotherapeutic drugs. We further proved that WK499 and AraC could achieve a better result of inhibiting the growth of AML in vivo. These findings indicate that WK499, a small molecule inhibitor of BCL6, not only inhibits the proliferation of AML, but also provides an effective therapeutic strategy for increasing AML sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Lin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Min Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shuangshuang Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shiyi Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Yan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Layang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Yajing Xing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China; Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China.
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China.
| |
Collapse
|
23
|
Mao Y, Sun J, Wang Z, Liu Y, Sun J, Wei Z, Wang M, Yang Y. Combining transcriptomic analysis and network pharmacology to explore the mechanism by which Shaofu Zhuyu decoction improves diabetes mellitus erectile dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155006. [PMID: 37567007 DOI: 10.1016/j.phymed.2023.155006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Erectile dysfunction is common among the complications of diabetes mellitus. Shaofu Zhuyu decoction (SFZYD) is commonly used to treat diabetic mellitus erectile dysfunction (DMED). However, its main active components and specific mechanism are still unknown. PURPOSE To confirm the activity of SFZYD in improving DMED, explore the main active components of SFZYD, and clarify the underlying mechanism. METHODS A diabetic rat model was induced with streptozotocin (STZ). After intragastric administration, erectile function was assessed by the maximum intracavernous pressure (ICPmax)/mean arterial pressure (MAP). Corpus cavernosum fibrosis was evaluated by Masson staining, and ELISA methods were used to determine the serum levels of IL-6, TNF-α, IL-10, IL-4 and IL-1β to evaluate inflammation. Then, the main active components of SFZYD were identified by UPLC‒MS/MS. Finally, the target and biological mechanism of SFZYD in improving DMED were predicted by combined network pharmacology and transcriptomics, which was also validated by molecular docking and cellular thermal shift assay (CETSA) experiments. RESULTS SFZYD significantly improved erectile dysfunction and inhibited inflammatory responses and local tissue fibrosis in diabetic rats. A total of 1846 active components were identified by UPLC‒MS/MS, and isorhamnetin was the main active component. The transcriptomic results were used to identify differentially expressed genes among the control, DM and SFZYD groups, and 1264 differentially expressed genes were obtained from the intersection. The network pharmacology results showed that SFZYD acts on core targets such as AKT1, ALB, HSP90AA1 and ESR1 through core components such as isorhamnetin, quercetin and chrysophanic acid. Further combined analysis revealed that multiple targets, such as CYP1B1, DPP4, NOS2 and LCN2, as well as the regulation of the PI3K-AKT signaling pathway, may be important mechanisms by which SFZYD improves DMED. Molecular docking verification showed that isorhamnetin, the key component of SFZYD, has good binding ability with several core targets, and its binding ability with CYP1B1 was the strongest. The CETSA results showed that isorhamnetin binds to CYP1B1 in CCECs. CONCLUSION SFZYD improves DMED, inhibits the inflammatory response and alleviates local tissue fibrosis. The combined application of transcriptomic, network pharmacology, molecular docking and CETSA approaches was helpful for revealing the mechanism by which SFZYD improves DMED, which may be related to the regulation of CYP1B1 and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yinhui Mao
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Juntao Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhuo Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Liu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jilei Sun
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingxing Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Yong Yang
- Changchun University of Chinese Medicine, Changchun 130117, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
24
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
25
|
Lu X, Liao B, Sun S, Mao Y, Wu Q, Tian R, Tan CSH. Scaled-Down Thermal Profiling and Coaggregation Analysis of the Proteome for Drug Target and Protein Interaction Analysis. Anal Chem 2023; 95:13844-13854. [PMID: 37656141 DOI: 10.1021/acs.analchem.3c01941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Thermal proteome profiling (TPP), an experimental technique combining the cellular thermal shift assay (CETSA) with quantitative protein mass spectrometry (MS), identifies interactions of drugs and chemicals with endogenous proteins. Thermal proximity coaggregation (TPCA) profiling extended TPP to study the intracellular dynamics of protein complexes. In TPP and TPCA, samples are subjected to multiple denaturing temperatures, each requiring over 100 μg of proteins, which restricts their applications for rare cells and precious clinical samples. We developed a workflow termed STASIS (scaled-down thermal profiling and coaggregation analysis with SISPROT) that scales down the required protein to as low as 1 μg per temperature. This is achieved by heating and centrifugation using the same PCR tube, processing samples with the SISPROT technology (simple and integrated spintip-based proteomics technology), and tip-based manual fractionation of TMT-labeled peptides. We evaluate the STASIS workflow with starting protein quantities of 10, 5, and 1 μg per temperature prior to heating, identifying between 4000 and 5000 proteins with 6 h of acquisition time. Importantly, we observed a high correlation in the Tm of proteins with minimal difference in TPCA performance for predicting protein complexes. Moreover, STASIS could identify the targets of methotrexate and panobinostat with high precision with 1 μg of proteins per temperature. In conclusion, STASIS is a robust cost-effective technique for target deconvolution and extended TPCA to rare primary cells and precious clinical samples for the analysis of protein complexes.
Collapse
Affiliation(s)
- Xue Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Liao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiheng Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiong Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chris Soon Heng Tan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
28
|
Dobrescu I, Hammam E, Dziekan JM, Claës A, Halby L, Preiser P, Bozdech Z, Arimondo PB, Scherf A, Nardella F. Plasmodium falciparum Eukaryotic Translation Initiation Factor 3 is Stabilized by Quinazoline-Quinoline Bisubstrate Inhibitors. ACS Infect Dis 2023; 9:1257-1266. [PMID: 37216290 PMCID: PMC10262199 DOI: 10.1021/acsinfecdis.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 05/24/2023]
Abstract
Malaria drug resistance is hampering the fight against the deadliest parasitic disease affecting over 200 million people worldwide. We recently developed quinoline-quinazoline-based inhibitors (as compound 70) as promising new antimalarials. Here, we aimed to investigate their mode of action by using thermal proteome profiling (TPP). The eukaryotic translation initiation factor 3 (EIF3i) subunit I was identified as the main target protein stabilized by compound 70 in Plasmodium falciparum. This protein has never been characterized in malaria parasites. P. falciparum parasite lines were generated expressing either a HA tag or an inducible knockdown of the PfEIF3i gene to further characterize the target protein. PfEIF3i was stabilized in the presence of compound 70 in a cellular thermal shift Western blot assay, pointing that PfEIF3i indeed interacts with quinoline-quinazoline-based inhibitors. In addition, PfEIF3i-inducible knockdown blocks intra-erythrocytic development in the trophozoite stage, indicating that it has a vital function. We show that PfEIF3i is mostly expressed in late intra-erythrocytic stages and localizes in the cytoplasm. Previous mass spectrometry reports show that PfEIF3i is expressed in all parasite life cycle stages. Further studies will explore the potential of PfEIF3i as a target for the design of new antimalarial drugs active all along the life cycle of the parasite.
Collapse
Affiliation(s)
- Irina Dobrescu
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Elie Hammam
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Jerzy M. Dziekan
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Aurélie Claës
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry,
Institut Pasteur, Université de Paris-Cité,
UMR n3523 Chem4Life, CNRS, 28 Rue Du Dr Roux, Paris 75015, France
| | - Peter Preiser
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Zbynek Bozdech
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Paola B. Arimondo
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry,
Institut Pasteur, Université de Paris-Cité,
UMR n3523 Chem4Life, CNRS, 28 Rue Du Dr Roux, Paris 75015, France
| | - Artur Scherf
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Flore Nardella
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| |
Collapse
|
29
|
Tu Y, Tan L, Tao H, Li Y, Liu H. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154862. [PMID: 37216761 DOI: 10.1016/j.phymed.2023.154862] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Monitoring target engagement at various stages of drug development is essential for natural product (NP)-based drug discovery and development. The cellular thermal shift assay (CETSA) developed in 2013 is a novel, broadly applicable, label-free biophysical assay based on the principle of ligand-induced thermal stabilization of target proteins, which enables direct assessment of drug-target engagement in physiologically relevant contexts, including intact cells, cell lysates and tissues. This review aims to provide an overview of the work principles of CETSA and its derivative strategies and their recent progress in protein target validation, target identification and drug lead discovery of NPs. METHODS A literature-based survey was conducted using the Web of Science and PubMed databases. The required information was reviewed and discussed to highlight the important role of CETSA-derived strategies in NP studies. RESULTS After nearly ten years of upgrading and evolution, CETSA has been mainly developed into three formats: classic Western blotting (WB)-CETSA for target validation, thermal proteome profiling (TPP, also known as MS-CETSA) for unbiased proteome-wide target identification, and high-throughput (HT)-CETSA for drug hit discovery and lead optimization. Importantly, the application possibilities of a variety of TPP approaches for the target discovery of bioactive NPs are highlighted and discussed, including TPP-temperature range (TPP-TR), TPP-compound concentration range (TPP-CCR), two-dimensional TPP (2D-TPP), cell surface-TPP (CS-TPP), simplified TPP (STPP), thermal stability shift-based fluorescence difference in 2D gel electrophoresis (TS-FITGE) and precipitate supported TPP (PSTPP). In addition, the key advantages, limitations and future outlook of CETSA strategies for NP studies are discussed. CONCLUSION The accumulation of CETSA-based data can significantly accelerate the elucidation of the mechanism of action and drug lead discovery of NPs, and provide strong evidence for NP treatment against certain diseases. The CETSA strategy will certainly bring a great return far beyond the initial investment and open up more possibilities for future NP-based drug research and development.
Collapse
Affiliation(s)
- Yanbei Tu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
30
|
Zhang G, Lan B, Zhang X, Lin M, Liu Y, Chen J, Guo F. AR-A014418 regulates intronic polyadenylation and transcription of PD-L1 through inhibiting CDK12 and CDK13 in tumor cells. J Immunother Cancer 2023; 11:jitc-2022-006483. [PMID: 37164450 PMCID: PMC10174041 DOI: 10.1136/jitc-2022-006483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Immune checkpoint molecules, especially programmed death 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1), protect tumor cells from T cell-mediated killing. Immune checkpoint inhibitors, designed to restore the antitumor immunosurveillance, have exhibited significant clinical benefits for patients with certain cancer types. Nevertheless, the relatively low response rate and acquisition of resistance greatly limit their clinical applications. A deeper understanding of the regulatory mechanisms of PD-L1 protein expression and activity will help to develop more effective therapeutic strategies. METHODS The effects of AR-A014418 and THZ531 on PD-L1 expression were detected by western blot, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and flow cytometry. In vitro kinase assays with recombinant proteins were performed to confirm that AR-A014418 functioned as a CDK12 and CDK13 dual inhibitor. The roles of CDK12 and CDK13 in intronic polyadenylation (IPA) and transcription of PD-L1 were determined via RNA interference or protein overexpression. T-cell cytotoxicity assays were used to validate the activation of antitumor immunity by AR-A014418 and THZ531. RESULTS AR-A014418 inhibits CDK12 to enhance the IPA, and inhibits CDK13 to repress the transcription of PD-L1. IPA generates a secreted PD-L1 isoform (PD-L1-v4). The extent of IPA was not enough to reduce full-length PD-L1 expression obviously. Only the superposition of enhancing IPA and repressing transcription (dual inhibition of CDK12 and CDK13) dramatically suppresses full-length PD-L1 induction by interferon-γ. AR-A014418 and THZ531 could potentiate T-cell cytotoxicity against tumor cells. CONCLUSIONS Our work identifies a new regulatory pathway for PD-L1 expression and discovers CDK12 and CDK13 as promising drug targets for immune modulation and combined therapeutic strategies.
Collapse
Affiliation(s)
- Ganggang Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Lan
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xin Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyao Lin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Bopp S, Pasaje CFA, Summers RL, Magistrado-Coxen P, Schindler KA, Corpas-Lopez V, Yeo T, Mok S, Dey S, Smick S, Nasamu AS, Demas AR, Milne R, Wiedemar N, Corey V, Gomez-Lorenzo MDG, Franco V, Early AM, Lukens AK, Milner D, Furtado J, Gamo FJ, Winzeler EA, Volkman SK, Duffey M, Laleu B, Fidock DA, Wyllie S, Niles JC, Wirth DF. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Nat Commun 2023; 14:1455. [PMID: 36927839 PMCID: PMC10020447 DOI: 10.1038/s41467-023-36921-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.
Collapse
Affiliation(s)
- Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | | | - Robert L Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Pamela Magistrado-Coxen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Victoriano Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Smick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Armiyaw S Nasamu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison R Demas
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Rachel Milne
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Natalie Wiedemar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria Corey
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Maria De Gracia Gomez-Lorenzo
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Virginia Franco
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Angela M Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Danny Milner
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Jeremy Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francisco-Javier Gamo
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Elizabeth A Winzeler
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA
| | | | - Benoît Laleu
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
32
|
Han QT, Yang WQ, Zang C, Zhou L, Zhang CJ, Bao X, Cai J, Li F, Shi Q, Wang XL, Qu J, Zhang D, Yu SS. The toxic natural product tutin causes epileptic seizures in mice by activating calcineurin. Signal Transduct Target Ther 2023; 8:101. [PMID: 36894540 PMCID: PMC9998865 DOI: 10.1038/s41392-023-01312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tutin, an established toxic natural product that causes epilepsy in rodents, is often used as a tool to develop animal model of acute epileptic seizures. However, the molecular target and toxic mechanism of tutin were unclear. In this study, for the first time, we conducted experiments to clarify the targets in tutin-induced epilepsy using thermal proteome profiling. Our studies showed that calcineurin (CN) was a target of tutin, and that tutin activated CN, leading to seizures. Binding site studies further established that tutin bound within the active site of CN catalytic subunit. CN inhibitor and calcineurin A (CNA) knockdown experiments in vivo proved that tutin induced epilepsy by activating CN, and produced obvious nerve damage. Together, these findings revealed that tutin caused epileptic seizures by activating CN. Moreover, further mechanism studies found that N-methyl-D-aspartate (NMDA) receptors, gamma-aminobutyric acid (GABA) receptors and voltage- and Ca2+- activated K+ (BK) channels might be involved in related signaling pathways. Our study fully explains the convulsive mechanism of tutin, which provides new ideas for epilepsy treatment and drug development.
Collapse
Affiliation(s)
- Qing-Tong Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Wan-Qi Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Linchao Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jie Cai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Fangfei Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Qinyan Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiao-Liang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jing Qu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
33
|
9-Butyl-Harmol Exerts Antiviral Activity against Newcastle Disease Virus through Targeting GSK-3β and HSP90β. J Virol 2023; 97:e0198422. [PMID: 36877059 PMCID: PMC10062145 DOI: 10.1128/jvi.01984-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The paramyxoviruses represent a large family of human and animal pathogens that cause significant health and economic burdens worldwide. However, there are no available drugs against the virus. β-carboline alkaloids are a family of naturally occurring and synthetic products with outstanding antiviral activities. Here, we examined the antiviral effect of a series of β-carboline derivatives against several paramyxoviruses, including Newcastle disease virus (NDV), peste des petits ruminants virus (PPRV), and canine distemper virus (CDV). Among these derivatives, 9-butyl-harmol was identified as an effective antiviral agent against these paramyxoviruses. Further, a genome-wide transcriptome analysis in combination with target validation strategies reveals a unique antiviral mechanism of 9-butyl-harmol through the targeting of GSK-3β and HSP90β. On one hand, NDV infection blocks the Wnt/β-catenin pathway to suppress the host immune response. 9-butyl-harmol targeting GSK-3β dramatically activates the Wnt/β-catenin pathway, which results in the boosting of a robust immune response. On the other hand, NDV proliferation depends on the activity of HSP90. The L protein, but not the NP protein or the P protein, is proven to be a client protein of HSP90β, rather than HSP90α. 9-butyl-harmol targeting HSP90β decreases the stability of the NDV L protein. Our findings identify 9-butyl-harmol as a potential antiviral agent, provide mechanistic insights into the antiviral mechanism of 9-butyl-harmol, and illustrate the role of β-catenin and HSP90 during NDV infection. IMPORTANCE Paramyxoviruses cause devastating impacts on health and the economy worldwide. However, there are no suitable drugs with which to counteract the viruses. We determined that 9-butyl-harmol could serve as a potential antiviral agent against paramyxoviruses. Until now, the antiviral mechanism of β-carboline derivatives against RNA viruses has rarely been studied. Here, we found that 9-butyl-harmol exerts dual mechanisms of antiviral action, with its antiviral activities being mediated by two targets: GSK-3β and HSP90β. Correspondingly, the interaction between NDV infection and the Wnt/β-catenin pathway or HSP90 is demonstrated in this study. Taken together, our findings shed light on the development of antiviral agents against paramyxoviruses, based on the β-carboline scaffold. These results present mechanistic insights into the polypharmacology of 9-butyl-harmol. Understanding this mechanism also deepens the host-virus interaction and reveals new drug targets for anti-paramyxoviruses.
Collapse
|
34
|
Julca I, Mutwil-Anderwald D, Manoj V, Khan Z, Lai SK, Yang LK, Beh IT, Dziekan J, Lim YP, Lim SK, Low YW, Lam YI, Tjia S, Mu Y, Tan QW, Nuc P, Choo LM, Khew G, Shining L, Kam A, Tam JP, Bozdech Z, Schmidt M, Usadel B, Kanagasundaram Y, Alseekh S, Fernie A, Li HY, Mutwil M. Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36807520 DOI: 10.1111/jipb.13469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Vaishnervi Manoj
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zahra Khan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lay K Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Ing T Beh
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jerzy Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yoon P Lim
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Shen K Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yee W Low
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Yuen I Lam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiao W Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Le M Choo
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Gillian Khew
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Loo Shining
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Bjoern Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Hoi Y Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
35
|
Yahiya S, Saunders CN, Hassan S, Straschil U, Fischer OJ, Rueda-Zubiaurre A, Haase S, Vizcay-Barrena G, Famodimu MT, Jordan S, Delves MJ, Tate EW, Barnard A, Fuchter MJ, Baum J. A novel class of sulphonamides potently block malaria transmission by targeting a Plasmodium vacuole membrane protein. Dis Model Mech 2023; 16:dmm049950. [PMID: 36715290 PMCID: PMC9934914 DOI: 10.1242/dmm.049950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
Phenotypic cell-based screens are critical tools for discovering candidate drugs for development, yet identification of the cellular target and mode of action of a candidate drug is often lacking. Using an imaging-based screen, we recently discovered an N-[(4-hydroxychroman-4-yl)methyl]-sulphonamide (N-4HCS) compound, DDD01035881, that blocks male gamete formation in the malaria parasite life cycle and subsequent transmission of the parasite to the mosquito with nanomolar activity. To identify the target(s) of DDD01035881, and of the N-4HCS class of compounds more broadly, we synthesised a photoactivatable derivative, probe 2. Photoaffinity labelling of probe 2 coupled with mass spectrometry identified the 16 kDa Plasmodium falciparum parasitophorous vacuole membrane protein Pfs16 as a potential parasite target. Complementary methods including cellular thermal shift assays confirmed that the parent molecule DDD01035881 stabilised Pfs16 in lysates from activated mature gametocytes. Combined with high-resolution, fluorescence and electron microscopy data, which demonstrated that parasites inhibited with N-4HCS compounds phenocopy the targeted deletion of Pfs16 in gametocytes, these data implicate Pfs16 as a likely target of DDD01035881. This finding establishes N-4HCS compounds as being flexible and effective starting candidates from which transmission-blocking antimalarials can be developed in the future.
Collapse
Affiliation(s)
- Sabrina Yahiya
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Charlie N. Saunders
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Sarah Hassan
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Ursula Straschil
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Oliver J. Fischer
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Ainoa Rueda-Zubiaurre
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Mufuliat Toyin Famodimu
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Sarah Jordan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Michael J. Delves
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Anna Barnard
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Matthew J. Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
36
|
Kucharski M, Wirjanata G, Nayak S, Boentoro J, Dziekan JM, Assisi C, van der Pluijm RW, Miotto O, Mok S, Dondorp AM, Bozdech Z. Short tandem repeat polymorphism in the promoter region of cyclophilin 19B drives its transcriptional upregulation and contributes to drug resistance in the malaria parasite Plasmodium falciparum. PLoS Pathog 2023; 19:e1011118. [PMID: 36696458 PMCID: PMC9901795 DOI: 10.1371/journal.ppat.1011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/06/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Christina Assisi
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Rob W. van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
37
|
Challis MP, Devine SM, Creek DJ. Current and emerging target identification methods for novel antimalarials. Int J Parasitol Drugs Drug Resist 2022; 20:135-144. [PMID: 36410177 PMCID: PMC9771836 DOI: 10.1016/j.ijpddr.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.
Collapse
Affiliation(s)
- Matthew P. Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia,Corresponding author. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
38
|
Lowe M, Cardenas A, Valentin JP, Zhu Z, Abendroth J, Castro JL, Class R, Delaunois A, Fleurance R, Gerets H, Gryshkova V, King L, Lorimer DD, MacCoss M, Rowley JH, Rosseels ML, Royer L, Taylor RD, Wong M, Zaccheo O, Chavan VP, Ghule GA, Tapkir BK, Burrows JN, Duffey M, Rottmann M, Wittlin S, Angulo-Barturen I, Jiménez-Díaz MB, Striepen J, Fairhurst KJ, Yeo T, Fidock DA, Cowman AF, Favuzza P, Crespo-Fernandez B, Gamo FJ, Goldberg DE, Soldati-Favre D, Laleu B, de Haro T. Discovery and Characterization of Potent, Efficacious, Orally Available Antimalarial Plasmepsin X Inhibitors and Preclinical Safety Assessment of UCB7362. J Med Chem 2022; 65:14121-14143. [PMID: 36216349 PMCID: PMC9620073 DOI: 10.1021/acs.jmedchem.2c01336] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 01/18/2023]
Abstract
Plasmepsin X (PMX) is an essential aspartyl protease controlling malaria parasite egress and invasion of erythrocytes, development of functional liver merozoites (prophylactic activity), and blocking transmission to mosquitoes, making it a potential multistage drug target. We report the optimization of an aspartyl protease binding scaffold and the discovery of potent, orally active PMX inhibitors with in vivo antimalarial efficacy. Incorporation of safety evaluation early in the characterization of PMX inhibitors precluded compounds with a long human half-life (t1/2) to be developed. Optimization focused on improving the off-target safety profile led to the identification of UCB7362 that had an improved in vitro and in vivo safety profile but a shorter predicted human t1/2. UCB7362 is estimated to achieve 9 log 10 unit reduction in asexual blood-stage parasites with once-daily dosing of 50 mg for 7 days. This work demonstrates the potential to deliver PMX inhibitors with in vivo efficacy to treat malaria.
Collapse
Affiliation(s)
| | | | | | - Zhaoning Zhu
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Jan Abendroth
- UCB, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | | | - Reiner Class
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | | | - Helga Gerets
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | - Lloyd King
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Donald D. Lorimer
- UCB, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Malcolm MacCoss
- Bohicket
Pharma Consulting LLC, 2556 Seabrook Island Road, Seabrook Island, South Carolina 29455, United States
| | | | | | - Leandro Royer
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | - Melanie Wong
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | | | - Vishal P. Chavan
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Gokul A. Ghule
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Bapusaheb K. Tapkir
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Jeremy N. Burrows
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Maëlle Duffey
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Matthias Rottmann
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University
of Basel, 4002 Basel, Switzerland
| | - Sergio Wittlin
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University
of Basel, 4002 Basel, Switzerland
| | - Iñigo Angulo-Barturen
- The
Art of Discovery, SL
Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Building,
no. 612, Derio 48160, Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The
Art of Discovery, SL
Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Building,
no. 612, Derio 48160, Bizkaia, Basque Country, Spain
| | - Josefine Striepen
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - Kate J. Fairhurst
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - David A. Fidock
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
- Center
for Malaria Therapeutics and Antimicrobial Resistance, Division of
Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Alan F. Cowman
- The Walter
and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Paola Favuzza
- The Walter
and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | | | | | - Daniel E. Goldberg
- Division
of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8051, St. Louis, Missouri 63110, United States
| | - Dominique Soldati-Favre
- Department
of Microbiology and Molecular Medicine, Faculty of Medicine, CMU, 1 rue Michel-Servet, CH-1211 Genève 4, Switzerland
| | - Benoît Laleu
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | | |
Collapse
|
39
|
Zhao J, Tang Z, Selvaraju M, Johnson KA, Douglas JT, Gao PF, Petrassi HM, Wang MZ, Wang J. Cellular Target Deconvolution of Small Molecules Using a Selection-Based Genetic Screening Platform. ACS CENTRAL SCIENCE 2022; 8:1424-1434. [PMID: 36313155 PMCID: PMC9615120 DOI: 10.1021/acscentsci.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 05/04/2023]
Abstract
Small-molecule drug target identification is an essential and often rate-limiting step in phenotypic drug discovery and remains a major challenge. Here, we report a novel platform for target identification of activators of signaling pathways by leveraging the power of a clustered regularly interspaced short palindromic repeats (CRISPR) knockout library. This platform links the expression of a suicide gene to the small-molecule-activated signaling pathway to create a selection system. With this system, loss-of-function screening using a CRISPR single-guide (sg) RNA library positively enriches cells in which the target has been knocked out. The identities of the drug targets and other essential genes required for the activity of small molecules of interest are then uncovered by sequencing. We tested this platform on BDW568, a newly discovered type-I interferon signaling activator, and identified stimulator of interferon genes (STING) as its target and carboxylesterase 1 (CES1) to be a key metabolizing enzyme required to activate BDW568 for target engagement. The platform we present here can be a general method applicable for target identification for a wide range of small molecules that activate different signaling pathways.
Collapse
Affiliation(s)
- Junxing Zhao
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Zhichao Tang
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Manikandan Selvaraju
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Kristen A. Johnson
- Calibr,
Scripps Research Institute, La Jolla, California 92037, United States
| | - Justin T. Douglas
- Nuclear
Magnetic Resonance Laboratory, University
of Kansas, Lawrence, Kansas 66047, United States
| | - Philip F. Gao
- Protein
Production Group, University of Kansas, Lawrence, Kansas 66047, United States
| | - H. Michael Petrassi
- Calibr,
Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael Zhuo Wang
- Department
of Pharmaceutical Chemistry, University
of Kansas, Lawrence, Kansas 66047, United States
| | - Jingxin Wang
- Department
of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
40
|
Sivanich MK, Gu T, Tabang DN, Li L. Recent advances in isobaric labeling and applications in quantitative proteomics. Proteomics 2022; 22:e2100256. [PMID: 35687565 PMCID: PMC9787039 DOI: 10.1002/pmic.202100256] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Mass spectrometry (MS) has emerged at the forefront of quantitative proteomic techniques. Liquid chromatography-mass spectrometry (LC-MS) can be used to determine abundances of proteins and peptides in complex biological samples. Several methods have been developed and adapted for accurate quantification based on chemical isotopic labeling. Among various chemical isotopic labeling techniques, isobaric tagging approaches rely on the analysis of peptides from MS2-based quantification rather than MS1-based quantification. In this review, we will provide an overview of several isobaric tags along with some recent developments including complementary ion tags, improvements in sensitive quantitation of analytes with lower abundance, strategies to increase multiplexing capabilities, and targeted analysis strategies. We will also discuss limitations of isobaric tags and approaches to alleviate these restrictions through bioinformatic tools and data acquisition methods. This review will highlight several applications of isobaric tags, including biomarker discovery and validation, thermal proteome profiling, cross-linking for structural investigations, single-cell analysis, top-down proteomics, along with applications to different molecules including neuropeptides, glycans, metabolites, and lipids, while providing considerations and evaluations to each application.
Collapse
Affiliation(s)
| | - Ting‐Jia Gu
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Lingjun Li
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
41
|
Milne R, Wiedemar N, Corpas-Lopez V, Moynihan E, Wall RJ, Dawson A, Robinson DA, Shepherd SM, Smith RJ, Hallyburton I, Post JM, Dowers K, Torrie LS, Gilbert IH, Baragaña B, Patterson S, Wyllie S. Toolkit of Approaches To Support Target-Focused Drug Discovery for Plasmodium falciparum Lysyl tRNA Synthetase. ACS Infect Dis 2022; 8:1962-1974. [PMID: 36037410 PMCID: PMC9469095 DOI: 10.1021/acsinfecdis.2c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is a pressing need for new medicines to prevent and treat malaria. Most antimalarial drug discovery is reliant upon phenotypic screening. However, with the development of improved target validation strategies, target-focused approaches are now being utilized. Here, we describe the development of a toolkit to support the therapeutic exploitation of a promising target, lysyl tRNA synthetase (PfKRS). The toolkit includes resistant mutants to probe resistance mechanisms and on-target engagement for specific chemotypes; a hybrid KRS protein capable of producing crystals suitable for ligand soaking, thus providing high-resolution structural information to guide compound optimization; chemical probes to facilitate pulldown studies aimed at revealing the full range of specifically interacting proteins and thermal proteome profiling (TPP); as well as streamlined isothermal TPP methods to provide unbiased confirmation of on-target engagement within a biologically relevant milieu. This combination of tools and methodologies acts as a template for the development of future target-enabling packages.
Collapse
|
42
|
Kanai M, Hagenah LM, Ashley EA, Chibale K, Fidock DA. Keystone Malaria Symposium 2022: a vibrant discussion of progress made and challenges ahead from drug discovery to treatment. Trends Parasitol 2022; 38:711-718. [PMID: 35864072 PMCID: PMC9631389 DOI: 10.1016/j.pt.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
In recent years, the field of malaria research has made substantial progress in the areas of antimalarial drug resistance and discovery. These efforts are essential to combatting the devastating impact of malaria, which, in 2020, resulted in an estimated 241 million cases and 627 000 deaths. Recent advances in this area were presented at a Keystone Symposium entitled ‘Malaria: Confronting Challenges from Drug Discovery to Treatment’, held in person in Breckenridge, Colorado, in April 2022. Herein, we present a summary of the proceedings of this vibrant scientific exchange, which brought together a superb group of faculty, postdocs, and students from around the globe.
Collapse
Affiliation(s)
- Mariko Kanai
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos.
| | - Kelly Chibale
- Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa; Department of Chemistry, University of Cape Town, Rondebosch, South Africa.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
43
|
Herneisen AL, Li ZH, Chan AW, Moreno SNJ, Lourido S. Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca 2+-responsive pathways. eLife 2022; 11:e80336. [PMID: 35976251 PMCID: PMC9436416 DOI: 10.7554/elife.80336] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites cause persistent mortality and morbidity worldwide through diseases including malaria, toxoplasmosis, and cryptosporidiosis. Ca2+ signaling pathways have been repurposed in these eukaryotic pathogens to regulate parasite-specific cellular processes governing the replicative and lytic phases of the infectious cycle, as well as the transition between them. Despite the presence of conserved Ca2+-responsive proteins, little is known about how specific signaling elements interact to impact pathogenesis. We mapped the Ca2+-responsive proteome of the model apicomplexan Taxoplasma gondii via time-resolved phosphoproteomics and thermal proteome profiling. The waves of phosphoregulation following PKG activation and stimulated Ca2+ release corroborate known physiological changes but identify specific proteins operating in these pathways. Thermal profiling of parasite extracts identified many expected Ca2+-responsive proteins, such as parasite Ca2+-dependent protein kinases. Our approach also identified numerous Ca2+-responsive proteins that are not predicted to bind Ca2+, yet are critical components of the parasite signaling network. We characterized protein phosphatase 1 (PP1) as a Ca2+-responsive enzyme that relocalized to the parasite apex upon Ca2+ store release. Conditional depletion of PP1 revealed that the phosphatase regulates Ca2+ uptake to promote parasite motility. PP1 may thus be partly responsible for Ca2+-regulated serine/threonine phosphatase activity in apicomplexan parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
44
|
Li GX, Zhao T, Wang LC, Choi H, Lim YT, Sobota RM. KOPI: Kinase inhibitOr Proteome Impact analysis. Sci Rep 2022; 12:13015. [PMID: 35906361 PMCID: PMC9338059 DOI: 10.1038/s41598-022-16557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Kinase inhibitors often exert on/off-target effects, and efficient data analysis is essential for assessing these effects on the proteome. We developed a workflow for rapidly performing such a proteomic assessment, termed as kinase inhibitor proteome impact analysis (KOPI). We demonstrate KOPI’s utility with staurosporine (STS) on the leukemic K562 cell proteome. We identified systematically staurosporine’s non-kinome interactors, and showed for the first time that it caused paradoxical hyper- and biphasic phosphorylation.
Collapse
Affiliation(s)
- Ginny Xiaohe Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tianyun Zhao
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Loo Chien Wang
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
45
|
Kumari G, Jain R, Kumar Sah R, Kalia I, Vashistha M, Singh P, Prasad Singh A, Samby K, Burrows J, Singh S. Multistage and transmission-blocking tubulin targeting potent antimalarial discovered from the open access MMV pathogen box. Biochem Pharmacol 2022; 203:115154. [PMID: 35798201 DOI: 10.1016/j.bcp.2022.115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The development of resistance to current antimalarial therapies remains a significant source of concern. To address this risk,newdrugswithnoveltargetsin distinct developmental stages ofPlasmodiumparasites are required. In the current study,we have targetedP. falciparumTubulin(PfTubulin)proteins which represent some of thepotentialdrug targetsfor malaria chemotherapy. PlasmodialMicrotubules (MTs) play a crucial role during parasite proliferation, growth, and transmission, which render them highlydesirabletargets for the development ofnext-generation chemotherapeutics. Towards this,we have evaluated the antimalarial activity ofTubulintargetingcompounds received from theMedicines for Malaria Venture (MMV)"Pathogen Box"against the human malaria parasite,P. falciparumincluding 3D7 (chloroquine and artemisinin sensitive strain), RKL-9 (chloroquine-resistant strain), and R539T (artemisinin-resistant strain). At nanomolar concentrations, the filtered-out compounds exhibitedpronouncedmultistage antimalarialeffects across the parasite life cycle, including intra-erythrocytic blood stages, liver stage parasites, gametocytes, and ookinetes. Concomitantly, these compoundswere found toimpedemale gamete ex-flagellation, thus showingtheir transmission-blocking potential. Target mining of these potent compounds, by combining in silico, biochemical and biophysical assays,implicatedPfTubulinas their moleculartarget, which may possibly act bydisruptingMT assembly dynamics by binding at the interface of α-βTubulin-dimer.Further, the promising ADME profile of the parent scaffold supported its consideration as a lead compound for further development.Thus, our work highlights the potential of targetingPfTubulin proteins in discovering and developing next-generation, multistage antimalarial agents against Multi-Drug Resistant (MDR) malaria parasites.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manu Vashistha
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pooja Singh
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
46
|
Gao P, Liu YQ, Xiao W, Xia F, Chen JY, Gu LW, Yang F, Zheng LH, Zhang JZ, Zhang Q, Li ZJ, Meng YQ, Zhu YP, Tang H, Shi QL, Guo QY, Zhang Y, Xu CC, Dai LY, Wang JG. Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA. Mil Med Res 2022; 9:30. [PMID: 35698214 PMCID: PMC9195458 DOI: 10.1186/s40779-022-00390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a devastating infectious disease that disproportionally threatens hundreds of millions of people in developing countries. In the history of anti-malaria campaign, chloroquine (CQ) has played an indispensable role, however, its mechanism of action (MoA) is not fully understood. METHODS We used the principle of photo-affinity labeling and click chemistry-based functionalization in the design of a CQ probe and developed a combined deconvolution strategy of activity-based protein profiling (ABPP) and mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) that identified the protein targets of CQ in an unbiased manner in this study. The interactions between CQ and these identified potential protein hits were confirmed by biophysical and enzymatic assays. RESULTS We developed a novel clickable, photo-affinity chloroquine analog probe (CQP) which retains the antimalarial activity in the nanomole range, and identified a total of 40 proteins that specifically interacted and photo-crosslinked with CQP which was inhibited in the presence of excess CQ. Using MS-CETSA, we identified 83 candidate interacting proteins out of a total of 3375 measured parasite proteins. At the same time, we identified 8 proteins as the most potential hits which were commonly identified by both methods. CONCLUSIONS We found that CQ could disrupt glycolysis and energy metabolism of malarial parasites through direct binding with some of the key enzymes, a new mechanism that is different from its well-known inhibitory effect of hemozoin formation. This is the first report of identifying CQ antimalarial targets by a parallel usage of labeled (ABPP) and label-free (MS-CETSA) methods.
Collapse
Affiliation(s)
- Peng Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan-Qing Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiao
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xia
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia-Yun Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Wei Gu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fan Yang
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Liu-Hai Zheng
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Jun-Zhe Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Jie Li
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yu-Qing Meng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong-Ping Zhu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiao-Li Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu-Yan Guo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng-Chao Xu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ling-Yun Dai
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| | - Ji-Gang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
47
|
Wagner MP, Formaglio P, Gorgette O, Dziekan JM, Huon C, Berneburg I, Rahlfs S, Barale JC, Feinstein SI, Fisher AB, Ménard D, Bozdech Z, Amino R, Touqui L, Chitnis CE. Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. Cell Rep 2022; 39:110923. [PMID: 35705035 DOI: 10.1016/j.celrep.2022.110923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The uptake and digestion of host hemoglobin by malaria parasites during blood-stage growth leads to significant oxidative damage of membrane lipids. Repair of lipid peroxidation damage is crucial for parasite survival. Here, we demonstrate that Plasmodium falciparum imports a host antioxidant enzyme, peroxiredoxin 6 (PRDX6), during hemoglobin uptake from the red blood cell cytosol. PRDX6 is a lipid-peroxidation repair enzyme with phospholipase A2 (PLA2) activity. Inhibition of PRDX6 with a PLA2 inhibitor, Darapladib, increases lipid-peroxidation damage in the parasite and disrupts transport of hemoglobin-containing vesicles to the food vacuole, causing parasite death. Furthermore, inhibition of PRDX6 synergistically reduces the survival of artemisinin-resistant parasites following co-treatment of parasite cultures with artemisinin and Darapladib. Thus, PRDX6 is a host-derived drug target for development of antimalarial drugs that could help overcome artemisinin resistance.
Collapse
Affiliation(s)
- Matthias Paulus Wagner
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Pauline Formaglio
- Institut Pasteur, Université de Paris, Malaria Infection and Immunity Unit, Paris, France
| | - Olivier Gorgette
- Institut Pasteur, Department of Cell Biology and Infection, Centre for Innovation and Technological Research, Ultrastructural Bioimaging Unit, Paris, France
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christèle Huon
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Isabell Berneburg
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University Giessen, Giessen, Germany
| | - Jean-Christophe Barale
- Institut Pasteur, Université de Paris, CNRS UMR 3528, Structural Microbiology Unit, Paris, France; Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France
| | | | - Aron B Fisher
- Peroxitech, Inc., Philadelphia, PA, USA; Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Didier Ménard
- Institut Pasteur, Université de Paris, INSERM U1201, Malaria Genetics and Resistance Unit, Paris, France; Dynamics of Host-Pathogen Interactions, EA 7292, IPPTS, Strasbourg University, Strasbourg, France
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rogerio Amino
- Institut Pasteur, Université de Paris, Malaria Infection and Immunity Unit, Paris, France
| | - Lhousseine Touqui
- Cystic Fibrosis, Physiopathology and Phenogenomics, INSERM Unit 938, Saint-Antoine, Paris, France; Institut Pasteur, Université de Paris, Laboratory of Cystic Fibrosis and Chronic Bronchopathies, Paris, France
| | - Chetan E Chitnis
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France.
| |
Collapse
|
48
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
49
|
High-Throughput Screening Platform To Identify Inhibitors of Protein Synthesis with Potential for the Treatment of Malaria. Antimicrob Agents Chemother 2022; 66:e0023722. [PMID: 35647647 PMCID: PMC9211397 DOI: 10.1128/aac.00237-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Artemisinin-based combination therapies have been crucial in driving down the global burden of malaria, the world’s largest parasitic killer. However, their efficacy is now threatened by the emergence of resistance in Southeast Asia and sub-Saharan Africa. Thus, there is a pressing need to develop new antimalarials with diverse mechanisms of action. One area of Plasmodium metabolism that has recently proven rich in exploitable antimalarial targets is protein synthesis, with a compound targeting elongation factor 2 now in clinical development and inhibitors of several aminoacyl-tRNA synthetases in lead optimization. Given the promise of these components of translation as viable drug targets, we rationalized that an assay containing all functional components of translation would be a valuable tool for antimalarial screening and drug discovery. Here, we report the development and validation of an assay platform that enables specific inhibitors of Plasmodium falciparum translation (PfIVT) to be identified. The primary assay in this platform monitors the translation of a luciferase reporter in a P. falciparum lysate-based expression system. Hits identified in this primary assay are assessed in a counterscreen assay that enables false positives that directly interfere with the luciferase to be triaged. The remaining hit compounds are then assessed in an equivalent human IVT assay. This platform of assays was used to screen MMV’s Pandemic and Pathogen Box libraries, identifying several selective inhibitors of protein synthesis. We believe this new high-throughput screening platform has the potential to greatly expedite the discovery of antimalarials that act via this highly desirable mechanism of action.
Collapse
|
50
|
Novel quinoline-based derivatives: A new class of PDE4B inhibitors for adjuvant-induced arthritis. Eur J Med Chem 2022; 238:114497. [PMID: 35660249 DOI: 10.1016/j.ejmech.2022.114497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
A total of 31 quinoline-based derivatives were designed and synthesized to develop novel anti-inflammatory drugs. After the toxicity of synthetic compounds to RAW264.7 cells were evaluated in vitro, their anti-inflammatory activity was assessed by inhibiting lipopolysaccharide (LPS)-induced NO production levels in the RAW264.7 cells. Among the derivatives, compound f4 had the best anti-inflammatory activity, which could reduce the production of pro-inflammatory cytokines NO, IL-1β, and TNF-α with corresponding IC50 values of 20.40 ± 0.94, 18.98 ± 0.21 and 23.48 ± 0.46 μM. Western blot showed that f4 could inhibit the expression of LPS-induced inflammatory mediators iNOS and COX-2. Molecular docking showed that f4 could also enter the PDE4B receptor binding pocket, and the cellular thermal shift assay method indicated that the PDE4B protein bound to f4 had increased stability. Meanwhile, the inhibitory effect of this compound on the PDE4B enzyme (IC50 = 0.94 ± 0.36 μM) was comparable to that of the positive drug rolipram (IC50 = 1.04 ± 0.28 μM). Finally, in vivo studies showed that f4 could improve the degree of foot swelling and knee joint pathology in adjuvant-induced arthritic rats and decrease the levels of serum inflammatory factors TNF-α and IL-1β in a dose-dependent manner. Therefore, the development and design of quinoline-based derivatives for anti-inflammatory applications could be considered opportunities and challenges.
Collapse
|