1
|
Du Y, Li J, Suryanarayanan R, Su Y. Probing Chemical Equilibrium in Frozen Sodium Phosphate Buffer Solution by 31P Solid-State NMR. J Phys Chem Lett 2024; 15:5714-5720. [PMID: 38768559 DOI: 10.1021/acs.jpclett.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Phosphate buffers are crucial for cryopreservative stability in pharmaceuticals, food processing, biomedical sciences, and biology. However, their freeze concentrates lack quantitative characterization, especially regarding the physicochemical properties of phosphate salt species in equilibrium at subzero temperatures. This study employs 31P solid-state NMR (ssNMR) to analyze frozen sodium phosphate (NaP) solutions, providing insights into phase composition, ionic strength, and pH. For the first time, we have directly quantified phosphate species in frozen NaP buffer, including crystallized disodium phosphate dodecahydrate (Na2HPO4·12H2O) content and the concentrations of H2PO4- and HPO42- in the freeze concentrate. This enabled the calculation of the pH as well as the ionic strength in the freeze concentrate. Trehalose effectively mitigated pH shifts in buffer solutions by preventing the selective crystallization of salt, a spectroscopic phenomenon not previously observed experimentally.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jinghan Li
- Department of Pharmaceutics College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
2
|
Yi X, Chen W, Xiao Y, Liu F, Yu X, Zheng A. Spectroscopically Visualizing the Evolution of Hydrogen-Bonding Interactions. J Am Chem Soc 2023; 145:27471-27479. [PMID: 37993784 DOI: 10.1021/jacs.3c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Understanding chemical bond variations is the soul of chemistry as it is essential for any chemical process. The evolution of hydrogen bonds is one of the most fundamental and emblematic events during proton transfer; however, its experimental visualization remains a formidable challenge because of the transient timescales. Herein, by subtly regulating the proton-donating ability of distinct proton donors (zeolites or tungstophosphoric acid), a series of different hydrogen-bonding configurations were precisely manipulated. Then, an advanced two-dimensional (2D) heteronuclear correlation nuclear magnetic resonance (NMR) spectroscopic technique was utilized to simultaneously monitor the electronic properties of proton donors and acceptors (2-13C-acetone or trimethylphosphine oxide) through chemical shifts. Parabolic 1H-13C NMR relationships combined with single-well and double-well potential energy surfaces derived from theoretical simulations quantitatively identified the hydrogen bond types and allowed the evolution of hydrogen bonds to be visualized in diverse acid-base interaction complexes during proton transfer. Our findings provide a new perspective to reveal the nature and evolution of hydrogen bonds and confirm the superiority of 2D NMR techniques in identifying the subtle distinctions of various hydrogen-bonding configurations.
Collapse
Affiliation(s)
- Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Trachta M, Bludský O, Vaculík J, Bulánek R, Rubeš M. Investigation of Brønsted acidity in zeolites through adsorbates with diverse proton affinities. Sci Rep 2023; 13:12380. [PMID: 37524787 PMCID: PMC10390515 DOI: 10.1038/s41598-023-39667-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Understanding the adsorption behavior of base probes in aluminosilicates and its relationship to the intrinsic acidity of Brønsted acid sites (BAS) is essential for the catalytic applications of these materials. In this study, we investigated the adsorption properties of base probe molecules with varying proton affinities (acetonitrile, acetone, formamide, and ammonia) within six different aluminosilicate frameworks (FAU, CHA, IFR, MOR, FER, and TON). An important objective was to propose a robust criterion for evaluating the intrinsic BAS acidity (i.e., state of BAS deprotonation). Based on the bond order conservation principle, the changes in the covalent bond between the aluminum and oxygen carrying the proton provide a good description of the BAS deprotonation state. The ammonia and formamide adsorption cause BAS deprotonation and cannot be used to assess intrinsic BAS acidity. The transition from ion-pair formation, specifically conjugated acid/base interaction, in formamide to strong hydrogen bonding in acetone occurs within a narrow range of base proton affinities (812-822 kJ mol-1). The adsorption of acetonitrile results in the formation of hydrogen-bonded complexes, which exhibit a deprotonation state that follows a similar trend to the deprotonation induced by acetone. This allows for a semi-quantitative comparison of the acidity strengths of BAS within and between the different aluminosilicate frameworks.
Collapse
Affiliation(s)
- Michal Trachta
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 162 10, Prague, Czech Republic
| | - Ota Bludský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 162 10, Prague, Czech Republic
| | - Jan Vaculík
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Roman Bulánek
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Miroslav Rubeš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 162 10, Prague, Czech Republic.
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
4
|
Wang R, Shi K, Liu J, Snurr RQ, Hupp JT. Water-Accelerated Transport: Vapor-Phase Nerve Agent Simulant Delivery within a Catalytic Zirconium Metal-Organic Framework as a Function of Relative Humidity. J Am Chem Soc 2023. [PMID: 37314841 DOI: 10.1021/jacs.3c03708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zirconium-based metal-organic frameworks (MOFs) are candidate materials for effective nerve agent detoxification due to their thermo- and water stability as well as high density of catalytic Zr sites. However, as high-porosity materials, most of the active sites of Zr-MOFs can only be accessed by diffusion into the crystal interior. Therefore, the transport of nerve agents in nanopores is an important factor in the catalytic performance of Zr-MOFs. Here, we investigated the transport process and mechanism of a vapor-phase nerve agent simulant, dimethyl methyl phosphonate (DMMP), through a representative Zr-MOF, NU-1008, under practical conditions of varying humidity. Confocal Raman microscopy was used to monitor the transport of DMMP vapor through individual NU-1008 crystallites, where the relative humidity (RH) of the environment was tuned to understand the impact of water. Counterintuitively, water in the MOF channels, instead of blocking DMMP transport, assists DMMP diffusion; indeed, the transport diffusivity (Dt) of DMMP in NU-1008 is one order of magnitude higher at 70% than 0% RH. To understand the mechanism, magic angle spinning NMR and molecular dynamics simulations were performed and suggested that high water content in the channels prevents DMMP from hydrogen-bonding with the nodes, allowing for faster diffusion of DMMP in the channels. The simulated self-diffusivity (Ds) of DMMP is observed to be concentration-dependent. At low loading of DMMP, Ds is higher at 70% RH than 0% RH, while at high loadings the trend reverses due to the DMMP aggregation in water and the reduction of free volume in channels.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaihang Shi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Wang Z, Xiao D, Chen K, Lou C, Liang L, Xu S, Hou G. Identity, Evolution, and Acidity of Partially Framework-Coordinated Al Species in Zeolites Probed by TMP 31P-NMR and FTIR. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Yi X, Xiao Y, Xia C, Liu F, Liu Y, Hui Y, Yu X, Qin Y, Chen W, Liu Z, Song L, Zheng A. Adsorbate-driven dynamic active sites in stannosilicate zeolites. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
7
|
Vanlommel S, Hoffman AEJ, Smet S, Radhakrishnan S, Asselman K, Chandran CV, Breynaert E, Kirschhock CEA, Martens JA, Van Speybroeck V. How Water and Ion Mobility Affect the NMR Fingerprints of the Hydrated JBW Zeolite: A Combined Computational-Experimental Investigation. Chemistry 2022; 28:e202202621. [PMID: 36005885 PMCID: PMC10092413 DOI: 10.1002/chem.202202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/08/2022]
Abstract
An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.
Collapse
Affiliation(s)
- Siebe Vanlommel
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 469052ZwijnaardeBelgium
| | | | - Sam Smet
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Karel Asselman
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - C. Vinod Chandran
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Eric Breynaert
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- National High Magnetic Field Laboratory 1800 E. Paul Dirac Dr.TallahasseeFL32310United States
| | | | - Johan A. Martens
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | | |
Collapse
|
8
|
Yang W, Duk Kim K, O'Dell LA, Wang L, Xu H, Ruan M, Wang W, Ryoo R, Jiang Y, Huang J. Brønsted acid sites formation through penta-coordinated aluminum species on alumina-boria for phenylglyoxal conversion. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Peng WL, Liu F, Yi X, Sun S, Shi H, Hui Y, Chen W, Yu X, Liu Z, Qin Y, Song L, Zheng A. Structural and Acidic Characteristics of Multiple Zr Defect Sites in UiO-66 Metal-Organic Frameworks. J Phys Chem Lett 2022; 13:9295-9302. [PMID: 36173737 DOI: 10.1021/acs.jpclett.2c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although defects are prevalent in metal-organic frameworks (MOFs) and usually play a crucial role in modulating their performance in various applications, detailed structural characterizations of various defects remain a challenging task mainly due to their disordered, heterogeneous, and local nature. In this work, by using solid-state nuclear magnetic resonance spectroscopy (SSNMR) techniques in conjunction with density functional theory (DFT) calculations, it is clearly elucidated that the trimethylphosphine (TMP)-assisted 31P NMR strategy is capable of greatly facilitating the qualitative and quantitative description of the detailed structural and acidic characteristics as well as the evolution process of various Zr defects with subtle distinctions in UiO-66 upon moderate thermal treatment, hence surpassing most conventional analytical techniques. These results offer a fundamental understanding of the defect chemistry in MOFs.
Collapse
Affiliation(s)
- Wen-Li Peng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Shugang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xin Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
10
|
Yin J, Kang Z, Fu Y, Cao W, Wang Y, Guan H, Yin Y, Chen B, Yi X, Chen W, Shao W, Zhu Y, Zheng A, Wang Q, Kong X. Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules. Nat Commun 2022; 13:5112. [PMID: 36042242 PMCID: PMC9427814 DOI: 10.1038/s41467-022-32809-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023] Open
Abstract
The defects in metal-organic frameworks (MOFs) can dramatically alter their pore structure and chemical properties. However, it has been a great challenge to characterize the molecular structure of defects, especially when the defects are distributed irregularly in the lattice. In this work, we applied a characterization strategy based on solid-state nuclear magnetic resonance (NMR) to assess the chemistry of defects. This strategy takes advantage of the coordination-sensitive phosphorus probe molecules, e.g., trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO), that can distinguish the subtle differences in the acidity of defects. A variety of local chemical environments have been identified in defective and ideal MOF lattices. The geometric dimension of defects can also be evaluated by using the homologs of probe molecules with different sizes. In addition, our method provides a reliable way to quantify the density of defect sites, which comes together with the molecular details of local pore environments. The comprehensive solid-state NMR strategy can be of great value for a better understanding of MOF structures and for guiding the design of MOFs with desired catalytic or adsorption properties. Defects in porous materials can alter the pore structure and chemical properties. Here authors demonstrate an approach for studying defects in metal-organic frameworks using 31P NMR and probe molecules.
Collapse
Affiliation(s)
- Jinglin Yin
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Zhengzhong Kang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Yao Fu
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Weicheng Cao
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Yiran Wang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Yu Yin
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Binbin Chen
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Wei Shao
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Yihan Zhu
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China. .,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, 310027, Hangzhou, P. R. China.
| |
Collapse
|
11
|
Pires E, Fraile JM. New insights into the interaction of triethylphosphine oxide with silica surface: exchange between different surface species. Phys Chem Chem Phys 2022; 24:16755-16761. [PMID: 35771049 DOI: 10.1039/d2cp01621d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although chemical shift values of triethylphosphine oxide (TEPO) adsorbed on acidic solids have been considered as an indication of acid strength, in this work we demonstrate that the chemical shift depends also on the adsorbed amount of TEPO. On silica, the presence of three different adsorbed species, physisorbed on non-acidic surface, chemisorbed through a single H bond and chemisorbed through two H bonds, can be detected by the correlation of the 31P chemical shift with the TEPO adsorbed amount. TEPO chemical exchange between the different sites is demonstrated by the single NMR signal obtained in all the cases, and also by the variation of the line width, which is broader at low surface coverage due to the slower chemical exchange because of the longer average distance between surface sites.
Collapse
Affiliation(s)
- Elisabet Pires
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Facultad de Ciencias, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| | - José M Fraile
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Facultad de Ciencias, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.
| |
Collapse
|
12
|
Fan B, Zhang W, Gao P, Hou G, Liu R, Xu S, Wei Y, Liu Z. Quantitatively Mapping the Distribution of Intrinsic Acid Sites in Mordenite Zeolite by High-Field 23Na Solid-State Nuclear Magnetic Resonance. J Phys Chem Lett 2022; 13:5186-5194. [PMID: 35666100 DOI: 10.1021/acs.jpclett.2c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is of great significance to accurately quantify the Brønsted acid sites (BASs) at different positions of mordenite (MOR) zeolite. However, H-MOR obtained from Na-MOR can hardly avoid dealumination under hydrothermal conditions, which causes difficulty in the acid characterization. Herein, 23Na-27Al D-HMQC was performed combined with high-field 23Na MQ MAS NMR and DFT calculation, which provided an unambiguous attribution of the 23Na chemical shifts and further helped to improve the resolution of 27Al MAS NMR. By fitting the 23Na and 1H MAS NMR spectra of Na/H-MOR, the intrinsic BAS contents in different T-sites were measured by characterizing the location and content of sodium ions. These Na/H-MOR zeolites with various acid distributions were used for DME carbonylation and showed that the amount of BASs in the T3 site was proportional to the activity of carbonylation. This study provides a new method for investigating the intrinsic acid properties of zeolites.
Collapse
Affiliation(s)
- Benhan Fan
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenna Zhang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Rongsheng Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Xu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yingxu Wei
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Ding GR, Wang YF, Duan GY, Guo T, Xu XF, Li CS, Xu BH. Chemoselective nitrilation of dimethyl adipate with ammonia over carbon encapsulated WO x catalysts under continuous flow conditions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00733a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adiponitrile (ADN) is a key intermediate for the industrial production of polyamide represented by nylon 66.
Collapse
Affiliation(s)
- Guang-Rong Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry and Chemical Engineering, School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao-Feng Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guo-Yi Duan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Guo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiao-Feng Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun-Shan Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry and Chemical Engineering, School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry and Chemical Engineering, School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Barakov R, Shcherban N, Petrov O, Lang J, Shamzhy M, Opanasenko M, Cejka J. MWW-type zeolite nanostructures for a one-pot three-component Prins–Friedel–Crafts reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01497h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot Prins–Friedel–Crafts reaction of aldehydes, homoallylic alcohol and aromatics catalyzed by large-pore zeolites is an attractive environmentally friendly route towards valuable heterocyclic compounds containing 4 aryltetrahydropyran moiety. Herein, a catalytic...
Collapse
|
15
|
|
16
|
Li H, Guo D, Ulumuddin N, Jaegers NR, Sun J, Peng B, McEwen JS, Hu J, Wang Y. Elucidating the Cooperative Roles of Water and Lewis Acid-Base Pairs in Cascade C-C Coupling and Self-Deoxygenation Reactions. JACS AU 2021; 1:1471-1487. [PMID: 34604856 PMCID: PMC8479772 DOI: 10.1021/jacsau.1c00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Water plays pivotal roles in tailoring reaction pathways in many important reactions, including cascade C-C bond formation and oxygen elimination. Herein, a kinetic study combined with complementary analyses (DRIFTS, isotopic study, 1H solid-state magic angle spinning nuclear magnetic resonance) and density functional theory (DFT) calculations are performed to elucidate the roles of water in cascade acetone-to-isobutene reactions on a Zn x Zr y O z mixed metal oxide with balanced Lewis acid-base pairs. Our results reveal that the reaction follows the acetone-diacetone alcohol-isobutene pathway. Isobutene is produced through an intramolecular rearrangement of the eight-membered ring intermediate formed via the adsorption of diacetone alcohol on the Lewis acid-base pairs in the presence of cofed water. OH adspecies, formed by the dissociative adsorption of water on the catalyst surface, were found to distort diacetone alcohol's hydroxyl functional group toward its carbonyl functional group and facilitate the intramolecular rearrangement of diacetone alcohol to form isobutene. In the absence of water, diacetone alcohol binds strongly to the Lewis acid site, e.g., at a Zr4+ site, via its carbonyl functional group, leading to its dramatic structural distortion and further dehydration reaction to form mesityl oxide as well as subsequent polymerization reactions and the formation of coke. The present results provide insights into the cooperative roles of water and Lewis acid-base pairs in catalytic upgrading of biomass to fuels and chemicals.
Collapse
Affiliation(s)
- Houqian Li
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Dezhou Guo
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Nisa Ulumuddin
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Nicholas R. Jaegers
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
| | - Junming Sun
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Bo Peng
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
| | - Jean-Sabin McEwen
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
- Department
of Physics and Astronomy, Washington State
University, Pullman, Washington 99164, United States
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Department
of Biological Systems Engineering, Washington
State University, Pullman, Washington 99164, United States
| | - Jianzhi Hu
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
| | - Yong Wang
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
17
|
Zhang W, Lin Z, Li H, Wang F, Wen Y, Xu M, Wang Y, Ke X, Xia X, Chen J, Peng L. Surface acidity of tin dioxide nanomaterials revealed with 31P solid-state NMR spectroscopy and DFT calculations. RSC Adv 2021; 11:25004-25009. [PMID: 35481043 PMCID: PMC9037001 DOI: 10.1039/d1ra02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Tin dioxide (SnO2) nanomaterials are important acid catalysts. It is therefore crucial to obtain details about the surface acidic properties in order to develop structure–property relationships. Herein, we apply 31P solid-state NMR spectroscopy combined with a trimethylphosphine (TMP) probe molecule, to study the facet-dependent acidity of SnO2 nanosheets and nanoshuttles. With the help of density functional theory calculations, we show that the tin cations exposed on the surfaces are Lewis acid sites and their acid strengths rely on surface geometries. As a result, the (001), (101), (110), and (100) facets can be differentiated by the 31P NMR shifts of adsorbed TMP molecules, and their fractions in different nanomaterials can be extracted according to deconvoluted 31P NMR resonances. The results provide new insights on nanosized oxide acid catalysts. Facet-dependent acidity of SnO2 nanosheets and nanoshuttles is revealed with TMP-assisted 31P solid-state NMR spectroscopy and DFT calculations.![]()
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Zhiye Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Hanxiao Li
- Chinesisch-Deutsche Technische Fakultät, Qingdao University of Science and Technology 99 Songling Road Qingdao 266061 China
| | - Fang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Meng Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Yang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Xiaokang Ke
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Xifeng Xia
- Analysis and Testing Center, Nanjing University of Science and Technology Nanjing 210094 China
| | - Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| |
Collapse
|
18
|
Wang Q, Yi X, Chen Y, Xiao Y, Zheng A, Chen JL, Peng Y. Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO
2
Near Room Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Quan Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Yu‐Cheng Chen
- Department of Mechanical Engineering City University of Hong Kong Hong Kong SAR China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Jian Lin Chen
- Department of Science School of Science and Technology The Open University of Hong Kong Hong Kong SAR China
| | - Yung‐Kang Peng
- Department of Chemistry City University of Hong Kong Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| |
Collapse
|
19
|
Wang Q, Yi X, Chen YC, Xiao Y, Zheng A, Chen JL, Peng YK. Electronic-State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO 2 Near Room Temperature. Angew Chem Int Ed Engl 2021; 60:16149-16155. [PMID: 33977664 DOI: 10.1002/anie.202104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Indexed: 11/10/2022]
Abstract
Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para-nitrophenyl phosphate (p-NPP) as a model compound, we demonstrate that TiO2 with a F-modified (001) surface can activate p-NPP dephosphorylation at temperatures as low as 40 °C. By probe-assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron-withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p-NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol-1 lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).
Collapse
Affiliation(s)
- Quan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu-Cheng Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jian Lin Chen
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong SAR, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
20
|
Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Yi X, Peng YK, Chen W, Liu Z, Zheng A. Surface Fingerprinting of Faceted Metal Oxides and Porous Zeolite Catalysts by Probe-Assisted Solid-State NMR Approaches. Acc Chem Res 2021; 54:2421-2433. [PMID: 33856775 DOI: 10.1021/acs.accounts.1c00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acid catalysis in heterogeneous systems such as metal oxides and porous zeolites has been widely involved in various catalytic processes for chemical and petrochemical industries. In acid-catalyzed reactions, the performance (e.g., activity and selectivity) is closely associated with the acidic features of the catalysts, viz., type (Lewis vs Brønsted acidity), distribution (external vs internal surface), strength (strong vs weak), concentration (amount), and spatial interactions of acidic sites. The characterization of local structure and acidic properties of these active sites has important implications for understanding the reaction mechanism and the practical catalytic applications of acidic catalysts. Among diverse acidity characterization approaches, the solid-state nuclear magnetic resonance (SSNMR) technique with suitable probe molecules has been recognized as a reliable and versatile tool. Such a probe-assisted SSNMR approach could provide qualitative (type, distribution, and spatial interactions) and quantitative (strength and concentration) information on each acidic site. This Account aims to integrate our recent important findings in determining the structures and acidic characteristics of some typical metal oxide and zeolite catalysts by using the probe-assisted SSNMR technique, as well as clarifying the continuously evolving process of each discrete acidic site under hydrothermal or chemical treatments even at the molecular level with multiscale theoretical simulations.More specifically, we will describe herein the development and applications of the probe-assisted SSNMR methods, such as trimethylphosphine (TMP) and acetonitrile-d3 (CD3CN) in conjunction with advanced two-dimensional (2D) homo- and heteronuclear correlation spectroscopy, for characterizing the structures and properties of acidic sites in varied solid catalysts. Moreover, relevant information regarding the surface fingerprinting of various facets on crystalline metal oxide nanoparticles and active centers inside porous zeolites, the mapping of relevant spatial interactions, and the verification of structure-activity correlation were investigated as well. Relevant discussions are mainly based on the recent NMR experiments of our collaborating research groups, including (i) determining the acidic characterization with probe-assisted SSNMR approaches, (ii) mapping various active centers (or crystalline facets), and (iii) revealing their influence on catalytic performance of solid acid catalyst systems. It is anticipated that this information may provide more in-depth insights toward our fundamental understanding of solid acid catalysis.
Collapse
Affiliation(s)
- Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH
3
OH Selectivity and Formation Rates on Cu‐Based CO
2
Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gina Noh
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Daniel T. Bregante
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jordan Meyet
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Petr Šot
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
23
|
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH 3 OH Selectivity and Formation Rates on Cu-Based CO 2 Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021; 60:9650-9659. [PMID: 33559910 DOI: 10.1002/anie.202100672] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Indexed: 01/03/2023]
Abstract
CH3 OH formation rates in CO2 hydrogenation on Cu-based catalysts sensitively depend on the nature of the support and the presence of promoters. In this context, Cu nanoparticles supported on tailored supports (highly dispersed M on SiO2 ; M=Ti, Zr, Hf, Nb, Ta) were prepared via surface organometallic chemistry, and their catalytic performance was systematically investigated for CO2 hydrogenation to CH3 OH. The presence of Lewis acid sites enhances CH3 OH formation rate, likely originating from stabilization of formate and methoxy surface intermediates at the periphery of Cu nanoparticles, as evidenced by metrics of Lewis acid strength and detection of surface intermediates. The stabilization of surface intermediates depends on the strength of Lewis acid M sites, described by pyridine adsorption enthalpies and 13 C chemical shifts of -OCH3 coordinated to M; these chemical shifts are demonstrated here to be a molecular descriptor for Lewis acid strength and reactivity in CO2 hydrogenation.
Collapse
Affiliation(s)
- Gina Noh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jordan Meyet
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Petr Šot
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| |
Collapse
|
24
|
Han L, Wang R, Wang P, Zheng A, Guo Y, Chen Y, Jiang Q, Lin W. Hierarchical hollow Al-rich nano ZSM-5 crystals for highly selective production of light olefins from naphthenes. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00772f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An Al-distribution regulated one-step desilication approach is developed to fabricate hierarchical hollow Al-rich nano ZSM-5 crystals (Si/Al molar ratio = 12.5) for highly selective production of light olefins from naphthenes.
Collapse
Affiliation(s)
- Lei Han
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Ruoyu Wang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Peng Wang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Aiguo Zheng
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Yaoqing Guo
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Yan Chen
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Qiuqiao Jiang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Wei Lin
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|