1
|
Kitajima K, Hara T. Generation of chimeric antigen receptor-macrophages by using human induced pluripotent stem cells. Biochem Biophys Res Commun 2025; 743:151158. [PMID: 39673975 DOI: 10.1016/j.bbrc.2024.151158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Cancer immunotherapy using chimeric antigen receptor (CAR) cells shows high therapeutic efficacy against several types of leukemia. Among acute lymphoblastic leukemias (ALLs), B cell-derived ALL can be cured by CAR-expressing T cells (CAR-Ts); however, CAR-T cells cannot be simply applied for T cell-derived ALL (T-ALL) because antigens expressed by T-ALL cells, but not by CAR-T cells, have not yet been identified. To apply CAR-T therapy for T-ALL, gene editing of CAR-T cells is required to avoid attacking CAR-T cells themselves. Alternatively, CAR-expressing macrophages (CAR-Ms) have proven to be effective against various cancers, suggesting that CAR-Ms may also be effective against T-ALL. Recently, we developed an efficient differentiation induction system to generate a large number of macrophages from human induced pluripotent stem cells (iPSCs). Here, we asked whether these human iPSC-derived macrophages (iPS-MACs) can be used to develop and evaluate CAR-based immunotherapy against T-ALLs. When non-transduced iPS-MACs were co-cultured with human T-ALL-derived cells, the iPS-MACs appeared to phagocytose parts of T-ALL cells; this method of phagocytosis operated mainly through incorporation of small, "bite-sized" vesicles derived from the T-ALL cells into iPS-MACs (similar to trogocytosis). By contrast, when CAR-expressing iPS-MACs were co-cultured with T-ALL cells, iPS-MACs engulfed the whole T-ALL cell. Thus, our differentiation induction system may be a promising tool for building up CAR-M therapy for T-ALLs.
Collapse
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
2
|
Yu ZY, Liu J, Liu ZH, Liu XY, Tuo JM, Li JH, Tu YF, Tan Q, Ma YY, Bai YD, Xin JY, Huang S, Zeng GH, Shi AY, Wang J, Liu YH, Bu XL, Ye LL, Wan Y, Liu TF, Chen XW, Qiu ZL, Gao CY, Wang YJ. Roles of blood monocytes carrying TREM2 R47H mutation in pathogenesis of Alzheimer's disease and its therapeutic potential in APP/PS1 mice. Alzheimers Dement 2024. [PMID: 39740209 DOI: 10.1002/alz.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION The triggering receptor expressed on myeloid cells 2 (TREM2) arginine-47-histidine (R47H) mutation is a significant risk for Alzheimer's disease (AD) with unclear mechanisms. Previous studies focused on microglial amyloid-β (Aβ) phagocytosis with less attention on the impact of TREM2R47H mutation on blood monocytes. METHODS Bone marrow transplantation (BMT) models were used to assess the contribution of blood monocytes carrying TREM2R47H mutation to AD. RESULTS Aβ phagocytosis was compromised in mouse monocytes carrying the TREM2R47H mutation. Transplantation of bone marrow cells (BMCs) carrying TREM2R47H mutation increased cerebral Aβ burden and aggravated AD-type pathologies. Moreover, the replacement of TREM2R47H-BMCs restored monocytic Aβ phagocytosis, lowered Aβ levels in the blood and brain, and improved cognitive function. DISCUSSION Our study reveals that blood monocytes carrying the TREM2R47H mutation substantially contribute to the pathogenesis of AD, and correcting the TREM2R47H mutation in BMCs would be a potential therapeutic approach for those carrying this mutation. HIGHLIGHTS TREM2R47H mutation compromises the Aβ phagocytosis of blood monocytes. Blood monocytes carrying TREM2R47H mutation contribute substantially to AD pathogenesis. Correction of the TREM2R47H mutation in bone marrow cells ameliorates AD pathologies and cognitive impairments.
Collapse
Affiliation(s)
- Zhong-Yuan Yu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Zhi-Hao Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yu Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Department of Neurology, The 991st Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Xiangyang, China
| | - Jin-Mei Tuo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jiang-Hui Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yun-Feng Tu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Qi Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Di Bai
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jia-Yan Xin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - An-Yu Shi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Li-Lin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ying Wan
- Biomedical Analysis Centre, Third Military Medical University, Chongqing, China
| | - Tong-Fei Liu
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Xiao-Wei Chen
- Institute of Brain and Intelligence, Chongqing, China
- Brain Research Centre, Collaborative Innovation Centre for Brain Science, Third Military Medical University, Chongqing, China
| | - Zi-Long Qiu
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-Yue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Desai O, Köster M, Kloos D, Lachmann N, Hauser H, Poortinga A, Wirth D. Ultrasound-triggered drug release in vivo from antibubble-loaded macrophages. J Control Release 2024; 378:365-376. [PMID: 39653149 DOI: 10.1016/j.jconrel.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/22/2024]
Abstract
Nanoparticles have proven to be attractive carriers in therapeutic drug delivery since they can encapsulate, protect and stabilize a plethora of different drugs, thereby improving therapeutic efficacy and reducing side effects. However, specific targeting of drug-loaded nanoparticles to the tissue of interest and a timely and spatially controlled release of drugs on demand still represent a challenge. Recently, gas-filled microparticles, so-called antibubbles, have been developed which can efficiently encapsulate liquid drug droplets. Here, we show that antibubbles are efficiently taken up by macrophages in vitro and are stably maintained for more than 48 h without compromising antibubble integrity and macrophage viability. We show that application of diagnostic ultrasound induces the disintegration of both antibubbles and carrier cells while not affecting non-loaded macrophages. Using 4-hydroxytamoxifen as a model drug, we show ultrasound-mediated drug release upon adoptive transfer of antibubble-loaded macrophages in mice. Together with the ability of macrophages to accumulate in inflamed tissues, antibubble-loaded macrophages represent an attractive tool for targeted delivery of drugs and its ultrasound-mediated spatial and temporal drug release, highlighting the therapeutic perspective of this strategy.
Collapse
Affiliation(s)
- Omkar Desai
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Köster
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Doreen Kloos
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; RESIST, Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany; Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany
| | - Hansjörg Hauser
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany; iBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Albert Poortinga
- Polymer Technology, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Dagmar Wirth
- Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
4
|
Peng D, Li M, Yu Z, Yan T, Yao M, Li S, Liu Z, Li LF, Qiu HJ. Synergy between pluripotent stem cell-derived macrophages and self-renewing macrophages: Envisioning a promising avenue for the modelling and cell therapy of infectious diseases. Cell Prolif 2024:e13770. [PMID: 39537185 DOI: 10.1111/cpr.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
As crucial phagocytes of the innate immune system, macrophages (Mϕs) protect mammalian hosts, maintain tissue homeostasis and influence disease pathogenesis. Nonetheless, Mϕs are susceptible to various pathogens, including bacteria, viruses and parasites, which cause various infectious diseases, necessitating a deeper understanding of pathogen-Mϕ interactions and therapeutic insights. Pluripotent stem cells (PSCs) have been efficiently differentiated into PSC-derived Mϕs (PSCdMϕs) resembling primary Mϕs, advancing the modelling and cell therapy of infectious diseases. However, the mass production of PSCdMϕs, which lack proliferative capacity, relies on large-scale expansions of PSCs, thereby increasing both costs and culture cycles. Notably, Mϕs deficient in the MafB/c-Maf genes have been reported to re-enter the cell cycle with the stimulation of specific growth factor cocktails, turning into self-renewing Mϕs (SRMϕs). This review summarizes the applications of PSCdMϕs in the modelling and cell therapy of infectious diseases and strategies for establishing SRMϕs. Most importantly, we innovatively propose that PSCs can serve as a gene editing platform to creating PSC-derived SRMϕs (termed PSRMϕs), addressing the resistance of Mϕs against genetic manipulation. We discuss the challenges and possible solutions in creating PSRMϕs. In conclusion, this review provides novel insights into the development of physiologically relevant and expandable Mϕ models, highlighting the enormous potential of PSRMϕs as a promising avenue for the modelling and cell therapy of infectious diseases.
Collapse
Affiliation(s)
- Dingkun Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhuoran Yu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Diop MP, van der Stegen SJC. The Pluripotent Path to Immunotherapy. Exp Hematol 2024; 139:104648. [PMID: 39251182 DOI: 10.1016/j.exphem.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Adoptive cell therapy (ACT) enhances the patient's own immune cells' ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells' inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
Collapse
Affiliation(s)
- Mame P Diop
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
6
|
Li S, Chen G, Huang X, Zhang Y, Shen S, Feng H, Li Y. c-Myc alone is enough to reprogram fibroblasts into functional macrophages. J Hematol Oncol 2024; 17:83. [PMID: 39267119 PMCID: PMC11396436 DOI: 10.1186/s13045-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Macrophage-based cell therapy is promising in solid tumors, but the efficient acquisition of macrophages remains a challenge. Induced pluripotent stem cell (iPSC)-induced macrophages are a valuable source, but time-consuming and costly. The application of reprogramming technologies allows for the generation of macrophages from somatic cells, thereby facilitating the advancement of cell-based therapies for numerous malignant diseases. METHODS The composition of CD45+ myeloid-like cell complex (MCC) and induced macrophage (iMac) were analyzed by flow cytometry and single-cell RNA sequencing. The engraftment capacity of CD45+ MCC was evaluated by two transplantation assays. Regulation of c-Myc on MafB was evaluated by ChIP-qPCR and promoter reporter and dual luciferase assays. The phenotype and phagocytosis of iMac were explored by flow cytometry and immunofluorescence. Leukemia, breast cancer, and patient-derived tumor xenograft models were used to explore the anti-tumor function of iMac. RESULTS Here we report on the establishment of a novel methodology allowing for reprogramming fibroblasts into functional macrophages with phagocytic activity by c-Myc overexpression. Fibroblasts with ectopic expression of c-Myc in iPSC medium rapidly generated CD45+ MCC intermediates with engraftment capacity as well as the repopulation of distinct hematopoietic compartments. MCC intermediates were stably maintained in iPSC medium and continuously generated functional and highly pure iMac just by M-CSF cytokine stimulation. Single-cell transcriptomic analysis of MCC intermediates revealed that c-Myc up-regulated the expression of MafB, a major regulator of macrophage differentiation, to promote macrophage differentiation. Characterization of the iMac activity showed NF-κB signaling activation and a pro-inflammatory phenotype. iMac cells displayed significantly increased in vivo persistence and inhibition of tumor progression in leukemia, breast cancer, and patient-derived tumor xenograft models. CONCLUSIONS Our findings demonstrate that c-Myc alone is enough to reprogram fibroblasts into functional macrophages, supporting that c-Myc reprogramming strategy of fibroblasts can help circumvent long-standing obstacles to gaining "off-the-shelf" macrophages for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Shanshan Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guoyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xia Huang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yingwen Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
7
|
Arias AA, Neehus AL, Ogishi M, Meynier V, Krebs A, Lazarov T, Lee AM, Arango-Franco CA, Yang R, Orrego J, Corcini Berndt M, Rojas J, Li H, Rinchai D, Erazo-Borrás L, Han JE, Pillay B, Ponsin K, Chaldebas M, Philippot Q, Bohlen J, Rosain J, Le Voyer T, Janotte T, Amarajeeva K, Soudée C, Brollo M, Wiegmann K, Marquant Q, Seeleuthner Y, Lee D, Lainé C, Kloos D, Bailey R, Bastard P, Keating N, Rapaport F, Khan T, Moncada-Vélez M, Carmona MC, Obando C, Alvarez J, Cataño JC, Martínez-Rosado LL, Sanchez JP, Tejada-Giraldo M, L'Honneur AS, Agudelo ML, Perez-Zapata LJ, Arboleda DM, Alzate JF, Cabarcas F, Zuluaga A, Pelham SJ, Ensser A, Schmidt M, Velásquez-Lopera MM, Jouanguy E, Puel A, Krönke M, Ghirardello S, Borghesi A, Pahari S, Boisson B, Pittaluga S, Ma CS, Emile JF, Notarangelo LD, Tangye SG, Marr N, Lachmann N, Salvator H, Schlesinger LS, Zhang P, Glickman MS, Nathan CF, Geissmann F, Abel L, Franco JL, Bustamante J, Casanova JL, Boisson-Dupuis S. Tuberculosis in otherwise healthy adults with inherited TNF deficiency. Nature 2024; 633:417-425. [PMID: 39198650 PMCID: PMC11390478 DOI: 10.1038/s41586-024-07866-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Homozygote
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/cytology
- Inflammation/immunology
- Interferon-gamma/immunology
- Loss of Function Mutation
- Lung/cytology
- Lung/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mycobacterium tuberculosis/immunology
- Phenotype
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Respiratory Burst
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/genetics
- Tumor Necrosis Factor Inhibitors/pharmacology
- Tumor Necrosis Factors/deficiency
- Tumor Necrosis Factors/genetics
- Adolescent
- Young Adult
Collapse
Affiliation(s)
- Andrés A Arias
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellín, Colombia
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Vincent Meynier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Adam Krebs
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Angela M Lee
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carlos A Arango-Franco
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Julio Orrego
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Melissa Corcini Berndt
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Julian Rojas
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Lucia Erazo-Borrás
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Bethany Pillay
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Khoren Ponsin
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Matthieu Chaldebas
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
| | - Till Janotte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Krishnajina Amarajeeva
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Marion Brollo
- Lab VIM Suresnes, UMR 0892, Paris Saclay University, INRAe UVSQ, Suresnes, France
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Quentin Marquant
- Lab VIM Suresnes, UMR 0892, Paris Saclay University, INRAe UVSQ, Suresnes, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Doreen Kloos
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover, Germany
| | - Rasheed Bailey
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Narelle Keating
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Franck Rapaport
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Marcela Moncada-Vélez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - María Camila Carmona
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Catalina Obando
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Jesús Alvarez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Juan Carlos Cataño
- Infectious Diseases Section, Department of Internal Medicine, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Larry Luber Martínez-Rosado
- Latin American Research Team in Infectiology and Public Health (ELISAP), La Maria Hospital, Medellín, Colombia
| | - Juan P Sanchez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Manuela Tejada-Giraldo
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Anne-Sophie L'Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, AP-HP, Paris, France
| | - María L Agudelo
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Lizet J Perez-Zapata
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Diana M Arboleda
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Juan Fernando Alzate
- National Center for Genome Sequencing (CNSG), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Felipe Cabarcas
- National Center for Genome Sequencing (CNSG), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- SISTEMIC Group, Department of Electronic Engineering, Faculty of Engineering, University of Antioquia UdeA, Medellín, Colombia
| | | | - Simon J Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Armin Ensser
- University Hospital Erlangen, Institute of Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Monika Schmidt
- University Hospital Erlangen, Institute of Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Margarita M Velásquez-Lopera
- Dermatology Section, Department of Internal Medicine, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Dermatological Research Center (CIDERM), Medellín, Colombia
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Susanta Pahari
- Host Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stefania Pittaluga
- Center for Cancer Research, Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jean-François Emile
- Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Hélène Salvator
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
- Respiratory Diseases Department, FOCH Hospital, Suresnes, France
- Simone Veil Department of Health Sciences, Versailles Saint Quentin University, Montigny le Bretonneux, France
| | - Larry S Schlesinger
- Host Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Carl F Nathan
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - José Luis Franco
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia.
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France.
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
8
|
Wang J, Lu Y, Zhang R, Cai Z, Fan Z, Xu Y, Liu Z, Zhang Z. Modulating and Imaging Macrophage Reprogramming for Cancer Immunotherapy. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:401-414. [PMID: 39583310 PMCID: PMC11584841 DOI: 10.1007/s43657-023-00154-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 11/26/2024]
Abstract
Cancer immunotherapy has made great progress in effectively attacking or eliminating cancer. However, the challenges posed by the low reactivity of some solid tumors still remain. Macrophages, as a key component of the tumor microenvironment (TME), play an important role in determining the progression of solid tumors due to their plasticity and heterogeneity. Targeting and reprogramming macrophages in TME to desired phenotypes offers an innovative and promising approach for cancer immunotherapy. Meanwhile, the rapid development of in vivo molecular imaging techniques provides us with powerful tools to study macrophages. In this review, we summarize the current progress in macrophage reprogramming from conceptual roadmaps to therapeutic approaches, including monoclonal antibody drugs, small molecule drugs, gene therapy, and chimeric antigen receptor-engineered macrophages (CAR-M). More importantly, we highlight the significance of molecular imaging in observing and understanding the process of macrophage reprogramming during cancer immunotherapy. Finally, we introduce the therapeutic applications of imaging and reprogramming macrophages in three solid tumors. In the future, the integration of molecular imaging into the development of novel macrophage reprogramming strategies holds great promise for precise clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Yafang Lu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Ren Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Zhenzhen Cai
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zhan Fan
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Yilun Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zheng Liu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| |
Collapse
|
9
|
Kriedemann N, Manstein F, Hernandez-Bautista CA, Ullmann K, Triebert W, Franke A, Mertens M, Stein ICAP, Leffler A, Witte M, Askurava T, Fricke V, Gruh I, Piep B, Kowalski K, Kraft T, Zweigerdt R. Protein-free media for cardiac differentiation of hPSCs in 2000 mL suspension culture. Stem Cell Res Ther 2024; 15:213. [PMID: 39020441 PMCID: PMC11256493 DOI: 10.1186/s13287-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Commonly used media for the differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CMs) contain high concentrations of proteins, in particular albumin, which is prone to quality variations and presents a substantial cost factor, hampering the clinical translation of in vitro-generated cardiomyocytes for heart repair. To overcome these limitations, we have developed chemically defined, entirely protein-free media based on RPMI, supplemented with L-ascorbic acid 2-phosphate (AA-2P) and either the non-ionic surfactant Pluronic F-68 or a specific polyvinyl alcohol (PVA). METHODS AND RESULTS Both media compositions enable the efficient, directed differentiation of embryonic and induced hPSCs, matching the cell yields and cardiomyocyte purity ranging from 85 to 99% achieved with the widely used protein-based CDM3 medium. The protein-free differentiation approach was readily up-scaled to a 2000 mL process scale in a fully controlled stirred tank bioreactor in suspension culture, producing > 1.3 × 109 cardiomyocytes in a single process run. Transcriptome analysis, flow cytometry, electrophysiology, and contractile force measurements revealed that the mass-produced cardiomyocytes differentiated in protein-free medium exhibit the expected ventricular-like properties equivalent to the well-established characteristics of CDM3-control cells. CONCLUSIONS This study promotes the robustness and upscaling of the cardiomyogenic differentiation process, substantially reduces media costs, and provides an important step toward the clinical translation of hPSC-CMs for heart regeneration.
Collapse
Affiliation(s)
- Nils Kriedemann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
- Evotec SE, Hamburg, Germany
| | - Carlos A Hernandez-Bautista
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kevin Ullmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
- Evotec SE, Hamburg, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mira Mertens
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Merlin Witte
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tamari Askurava
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Veronika Fricke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Kathrin Kowalski
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
10
|
Kriedemann N, Triebert W, Teske J, Mertens M, Franke A, Ullmann K, Manstein F, Drakhlis L, Haase A, Halloin C, Martin U, Zweigerdt R. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat Protoc 2024; 19:1911-1939. [PMID: 38548938 DOI: 10.1038/s41596-024-00976-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 07/10/2024]
Abstract
A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.
Collapse
Affiliation(s)
- Nils Kriedemann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| | - Wiebke Triebert
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Jana Teske
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Mira Mertens
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Annika Franke
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Kevin Ullmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Felix Manstein
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Lika Drakhlis
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Alexandra Haase
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Caroline Halloin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Department of Cell Therapy Process Technology, Novo Nordisk, Måløv, Denmark
| | - Ulrich Martin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
11
|
Ackermann M, Saleh F, Abdin SM, Rafiei Hashtchin A, Gensch I, Golgath J, Carvalho Oliveira M, Nguyen AHH, Gaedcke S, Fenske A, Jang MS, Jirmo AC, Abeln M, Hansen G, Lachmann N. Standardized generation of human iPSC-derived hematopoietic organoids and macrophages utilizing a benchtop bioreactor platform under fully defined conditions. Stem Cell Res Ther 2024; 15:171. [PMID: 38886860 PMCID: PMC11184717 DOI: 10.1186/s13287-024-03785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND There is a significant demand for intermediate-scale bioreactors in academic and industrial institutions to produce cells for various applications in drug screening and/or cell therapy. However, the application of these bioreactors in cultivating hiPSC-derived immune cells and other blood cells is noticeably lacking. To address this gap, we have developed a xeno-free and chemically defined intermediate-scale bioreactor platform, which allows for the generation of standardized human iPSC-derived hematopoietic organoids and subsequent continuous production of macrophages (iPSC-Mac). METHODS We describe a novel method for intermediate-scale immune cell manufacturing, specifically the continuous production of functionally and phenotypically relevant macrophages that are harvested on weekly basis for multiple weeks. RESULTS The continuous production of standardized human iPSC-derived macrophages (iPSC-Mac) from 3D hematopoietic organoids also termed hemanoids, is demonstrated. The hemanoids exhibit successive stage-specific embryonic development, recapitulating embryonic hematopoiesis. iPSC-Mac were efficiently and continuously produced from three different iPSC lines and exhibited a consistent and reproducible phenotype, as well as classical functionality and the ability to adapt towards pro- and anti-inflammatory activation stages. Single-cell transcriptomic analysis revealed high macrophage purity. Additionally, we show the ability to use the produced iPSC-Mac as a model for testing immunomodulatory drugs, exemplified by dexamethasone. CONCLUSIONS The novel method demonstrates an easy-to-use intermediate-scale bioreactor platform that produces prime macrophages from human iPSCs. These macrophages are functionally active and require no downstream maturation steps, rendering them highly desirable for both therapeutic and non-therapeutic applications.
Collapse
Affiliation(s)
- Mania Ackermann
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Fawaz Saleh
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Shifaa M Abdin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Anna Rafiei Hashtchin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
- Stem Cell Modelling of Development and Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ingrid Gensch
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Julia Golgath
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Marco Carvalho Oliveira
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Ariane H H Nguyen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Svenja Gaedcke
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Arno Fenske
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mi-Sun Jang
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Adan C Jirmo
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Markus Abeln
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- RESIST, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.
- RESIST, Cluster of Excellence, Hannover Medical School, Hannover, Germany.
- Regenerative Biology to Reconstructive Therapy (REBIRTH) Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
12
|
Fan Z, Chen Y, Yang Z, Niu Y, Liang K, Zhang Y, Zeng J, Feng Y, Zhang Y, Liu Y, Lv C, Zhao P, Zhou L, Kong W, Li W, Chen H, Han D, Du Y. Superimposed Electric Field Enhanced Electrospray for High-Throughput and Consistent Cell Encapsulation. Adv Healthc Mater 2024:e2400780. [PMID: 38850154 DOI: 10.1002/adhm.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Cell encapsulation technology, crucial for advanced biomedical applications, faces challenges in existing microfluidic and electrospray methods. Microfluidic techniques, while precise, can damage vulnerable cells, and conventional electrospray methods often encounter instability and capsule breakage during high-throughput encapsulation. Inspired by the transformation of the working state from unstable dripping to stable jetting triggered by local electric potential, this study introduces a superimposed electric field (SEF)-enhanced electrospray method for cell encapsulation, with improved stability and biocompatibility. Utilizing stiffness theory, the stability of the electrospray, whose stiffness is five times stronger under conical confinement, is quantitatively analyzed. The SEF technique enables rapid, continuous production of ≈300 core-shell capsules per second in an aqueous environment, significantly improving cell encapsulation efficiency. This method demonstrates remarkable potential as exemplified in two key applications: (1) a 92-fold increase in human-derived induced pluripotent stem cells (iPSCs) expansion over 10 d, outperforming traditional 2D cultures in both growth rate and pluripotency maintenance, and (2) the development of liver capsules for steatosis modeling, exhibiting normal function and biomimetic lipid accumulation. The SEF-enhanced electrospray method presents a significant advancement in cell encapsulation technology. It offers a more efficient, stable, and biocompatible approach for clinical transplantation, drug screening, and cell therapy.
Collapse
Affiliation(s)
- Zejun Fan
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yihan Chen
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yudi Niu
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yan Zhang
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianan Zeng
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiting Feng
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuying Zhang
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye Liu
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Cheng Lv
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peng Zhao
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lv Zhou
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenyu Kong
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Li
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haoke Chen
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dongbo Han
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- National Key Laboratory of Kidney Diseases, Beijing, 100000, China
| |
Collapse
|
13
|
Paasch D, Lachmann N. CAR macrophages tuning the immune symphony of anti-cancer therapies. Cell Stem Cell 2024; 31:791-793. [PMID: 38848684 DOI: 10.1016/j.stem.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 06/09/2024]
Abstract
Chimeric antigen receptor (CAR) macrophages have broadened the landscape of anti-cancer immunotherapies to combat solid malignancies. Shah et al. introduce CARs to facilitate a CAR macrophage therapy, which aims to recruit and activate T/natural killer cells, further strengthening the overall immune response to decrease pancreatic cancer burden and metastatic spreading.
Collapse
Affiliation(s)
- Daniela Paasch
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; RESIST, Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany; Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany.
| |
Collapse
|
14
|
Li N, Geng S, Dong ZZ, Jin Y, Ying H, Li HW, Shi L. A new era of cancer immunotherapy: combining revolutionary technologies for enhanced CAR-M therapy. Mol Cancer 2024; 23:117. [PMID: 38824567 PMCID: PMC11143597 DOI: 10.1186/s12943-024-02032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.
Collapse
Affiliation(s)
- Na Li
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Shinan Geng
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Zhen-Zhen Dong
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ying Jin
- Hangzhou Institute of Medicine (HIM), Zhejiang Caner Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hangjie Ying
- Hangzhou Institute of Medicine (HIM), Zhejiang Caner Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hung-Wing Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liyun Shi
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
15
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
16
|
Poulis N, Martin M, Hoerstrup SP, Emmert MY, Fioretta ES. Development of an iPSC-derived tissue-resident macrophage-based platform for the in vitro immunocompatibility assessment of human tissue engineered matrices. Sci Rep 2024; 14:12171. [PMID: 38806547 PMCID: PMC11133401 DOI: 10.1038/s41598-024-62745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Upon implanting tissue-engineered heart valves (TEHVs), blood-derived macrophages are believed to orchestrate the remodeling process. They initiate the immune response and mediate the remodeling of the TEHV, essential for the valve's functionality. The exact role of another macrophage type, the tissue-resident macrophages (TRMs), has not been yet elucidated even though they maintain the homeostasis of native tissues. Here, we characterized the response of hTRM-like cells in contact with a human tissue engineered matrix (hTEM). HTEMs comprised intracellular peptides with potentially immunogenic properties in their ECM proteome. Human iPSC-derived macrophages (iMφs) could represent hTRM-like cells in vitro and circumvent the scarcity of human donor material. iMφs were derived and after stimulation they demonstrated polarization towards non-/inflammatory states. Next, they responded with increased IL-6/IL-1β secretion in separate 3/7-day cultures with longer production-time-hTEMs. We demonstrated that iMφs are a potential model for TRM-like cells for the assessment of hTEM immunocompatibility. They adopt distinct pro- and anti-inflammatory phenotypes, and both IL-6 and IL-1β secretion depends on hTEM composition. IL-6 provided the highest sensitivity to measure iMφs pro-inflammatory response. This platform could facilitate the in vitro immunocompatibility assessment of hTEMs and thereby showcase a potential way to achieve safer clinical translation of TEHVs.
Collapse
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland.
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Institut für Regenerative Medizin (IREM), University of Zurich, Moussonstrasse 13, 8044, Zurich, Switzerland.
| | - Emanuela S Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| |
Collapse
|
17
|
Abdin SM, Mansel F, Hashtchin AR, Ackermann M, Hansen G, Becker B, Kick B, Pham N, Dietz H, Schaniel C, Martin U, Spreitzer I, Lachmann N. Sensor macrophages derived from human induced pluripotent stem cells to assess pyrogenic contaminations in parenteral drugs. Biofabrication 2024; 16:035017. [PMID: 38701770 DOI: 10.1088/1758-5090/ad4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Ensuring the safety of parenteral drugs before injection into patients is of utmost importance. New regulations around the globe and the need to refrain from using animals however, have highlighted the need for new cell sources to be used in next-generation bioassays to detect the entire spectrum of possible contaminating pyrogens. Given the current drawbacks of the Monocyte-Activation-Test (MAT) with respect to the use of primary peripheral blood mono-nuclear cells or the use of monocytic cell lines, we here demonstrate the manufacturing of sensor monocytes/macrophages from human induced pluripotent stem cells (iMonoMac), which are fully defined and superior to current cell products. Using a modern and scalable manufacturing platform, iMonoMac showed typical macrophage-like morphology and stained positive for several Toll like receptor (TLRs) such as TLR-2, TLR-5, TLR-4. Furthermore, iMonoMac derived from the same donor were sensitive to endotoxins, non-endotoxins, and process related pyrogens at a high dynamic range and across different cellular densities. Of note, iMonoMac showed increased sensitivity and reactivity to a broad range of pyrogens, demonstrated by the detection of interleukin-6 at low concentrations of LPS and MALP-2 which could not be reached using the current MAT cell sources. To further advance the system, iMonoMac or genetically engineered iMonoMac with NF-κB-luciferase reporter cassette could reveal a specific activation response while correlating to the classical detection method employing enzyme-linked immunosorbent assay to measure cytokine secretion. Thus, we present a valuable cellular tool to assess parenteral drugs safety, facilitating the future acceptance and design of regulatory-approved bioassays.
Collapse
Affiliation(s)
- Shifaa M Abdin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Anna Rafiei Hashtchin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mania Ackermann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Björn Becker
- Microbiological Safety, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Benjamin Kick
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Nhi Pham
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Hendrik Dietz
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christoph Schaniel
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Ulrich Martin
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, Germany
- Regenerative Biology to Reconstructive Therapy (REBIRTH), Centre for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ingo Spreitzer
- Microbiological Safety, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Regenerative Biology to Reconstructive Therapy (REBIRTH), Centre for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Pecksen E, Tkachuk S, Schröder C, Vives Enrich M, Neog A, Johnson CP, Lachmann N, Haller H, Kiyan Y. Monocytes prevent apoptosis of iPSCs and promote differentiation of kidney organoids. Stem Cell Res Ther 2024; 15:132. [PMID: 38702808 PMCID: PMC11069262 DOI: 10.1186/s13287-024-03739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.
Collapse
Affiliation(s)
- Ekaterina Pecksen
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Sergey Tkachuk
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Cristoph Schröder
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Marc Vives Enrich
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Anindita Neog
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Cory P Johnson
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Niko Lachmann
- Department of Pediatric Pneumology Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Hermann Haller
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Yulia Kiyan
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
19
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
20
|
Goecke T, Ius F, Ruhparwar A, Martin U. Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair. Cells 2024; 13:635. [PMID: 38607074 PMCID: PMC11012168 DOI: 10.3390/cells13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.
Collapse
Affiliation(s)
- Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fabio Ius
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
21
|
Wang X, Xu J, Guo Q, Li Z, Cao J, Fu R, Xu M, Zhao X, Wang F, Zhang X, Dong T, Li X, Qian W, Hou S, Ji L, Zhang D, Guo H. Improving product quality and productivity of an antibody-based biotherapeutic using inverted frustoconical shaking bioreactors. Front Bioeng Biotechnol 2024; 12:1352098. [PMID: 38585708 PMCID: PMC10995296 DOI: 10.3389/fbioe.2024.1352098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The Chinese hamster ovarian (CHO) cells serve as a common choice in biopharmaceutical production, traditionally cultivated in stirred tank bioreactors (STRs). Nevertheless, the pursuit of improved protein quality and production output for commercial purposes demand exploration into new bioreactor types. In this context, inverted frustoconical shaking bioreactors (IFSB) present unique physical properties distinct from STRs. This study aims to compare the production processes of an antibody-based biotherapeutic in both bioreactor types, to enhance production flexibility. The findings indicate that, when compared to STRs, IFSB demonstrates the capability to produce an antibody-based biotherapeutic with either comparable or enhanced bioprocess performance and product quality. IFSB reduces shear damage to cells, enhances viable cell density (VCD), and improves cell state at a 5-L scale. Consequently, this leads to increased protein expression (3.70 g/L vs 2.56 g/L) and improved protein quality, as evidenced by a reduction in acidic variants from 27.0% to 21.5%. Scaling up the culture utilizing the Froude constant and superficial gas velocity ensures stable operation, effective mixing, and gas transfer. The IFSB maintains a high VCD and cell viability at both 50-L and 500-L scales. Product expression levels range from 3.0 to 3.6 g/L, accompanied by an improved acidic variants attribute of 20.6%-22.7%. The IFSB exhibits superior productivity and product quality, underscoring its potential for incorporation into the manufacturing process for antibody-based biotherapeutics. These results establish the foundation for IFSB to become a viable option in producing antibody-based biotherapeutics for clinical and manufacturing applications.
Collapse
Affiliation(s)
- Xuekun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Jin Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingcheng Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Taizhou Mabtech Pharmaceuticals Co., Ltd., Taizhou, China
| | - Zhenhua Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| | - Jiawei Cao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| | - Rongrong Fu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Mengjiao Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Xiang Zhao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Fugui Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Xinmeng Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Taimin Dong
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Xu Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Weizhu Qian
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shen Hou
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lusha Ji
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dapeng Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huaizu Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
22
|
Yang Q, Barbachano-Guerrero A, Fairchild LM, Rowland TJ, Dowell RD, Allen MA, Warren CJ, Sawyer SL. Macrophages derived from human induced pluripotent stem cells (iPSCs) serve as a high-fidelity cellular model for investigating HIV-1, dengue, and influenza viruses. J Virol 2024; 98:e0156323. [PMID: 38323811 PMCID: PMC10949493 DOI: 10.1128/jvi.01563-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.
Collapse
Affiliation(s)
- Qing Yang
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Laurence M. Fairchild
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robin D. Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mary A. Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
| | - Cody J. Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sara L. Sawyer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
23
|
Rodriguez Gonzalez C, Schevel H, Hansen G, Schwerk N, Lachmann N. Pulmonary Alveolar Proteinosis and new therapeutic concepts. KLINISCHE PADIATRIE 2024; 236:73-79. [PMID: 38286410 PMCID: PMC10883756 DOI: 10.1055/a-2233-1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
Pulmonary alveolar proteinosis (PAP) is an umbrella term used to refer to a pulmonary syndrome which is characterized by excessive accumulation of surfactant in the lungs of affected individuals. In general, PAP is a rare lung disease affecting children and adults, although its prevalence and incidence is variable among different countries. Even though PAP is a rare disease, it is a prime example on how modern medicine can lead to new therapeutic concepts, changing ways and techniques of (genetic) diagnosis which ultimately led into personalized treatments, all dedicated to improve the function of the impaired lung and thus life expectancy and quality of life in PAP patients. In fact, new technologies, such as new sequencing technologies, gene therapy approaches, new kind and sources of stem cells and completely new insights into the ontogeny of immune cells such as macrophages have increased our understanding in the onset and progression of PAP, which have paved the way for novel therapeutic concepts for PAP and beyond. As of today, classical monocyte-derived macrophages are known as important immune mediator and immune sentinels within the innate immunity. Furthermore, macrophages (known as tissue resident macrophages (TRMs)) can also be found in various tissues, introducing e. g. alveolar macrophages in the broncho-alveolar space as crucial cellular determinants in the onset of PAP and other lung disorders. Given recent insights into the onset of alveolar macrophages and knowledge about factors which impede their function, has led to the development of new therapies, which are applied in the context of PAP, with promising implications also for other diseases in which macrophages play an important role. Thus, we here summarize the latest insights into the various forms of PAP and introduce new pre-clinical work which is currently conducted in the framework of PAP, introducing new therapies for children and adults who still suffer from this severe, potentially life-threatening disease.
Collapse
Affiliation(s)
- Claudio Rodriguez Gonzalez
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Hannah Schevel
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
| | - Nicolaus Schwerk
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine,
Hannover, Germany
| |
Collapse
|
24
|
Cao H, Xiang Y, Zhang S, Chao Y, Guo J, Aurich T, Ho JW, Huang Y, Liu P, Sugimura R. PD-L1 regulates inflammatory programs of macrophages from human pluripotent stem cells. Life Sci Alliance 2024; 7:e202302461. [PMID: 37949473 PMCID: PMC10638094 DOI: 10.26508/lsa.202302461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) serves as a pivotal immune checkpoint in both the innate and adaptive immune systems. PD-L1 is expressed in macrophages in response to IFNγ. We examined whether PD-L1 might regulate macrophage development. We established PD-L1 KO (CD274 -/- ) human pluripotent stem cells and differentiated them into macrophages and observed a 60% reduction in CD11B+CD45+ macrophages in CD274 -/- ; this was orthogonally verified, with the PD-L1 inhibitor BMS-1166 reducing macrophages to the same fold. Single-cell RNA sequencing further confirmed the down-regulation of the macrophage-defining transcription factors SPI1 and MAFB Furthermore, CD274 -/- macrophages reduced the level of inflammatory signals such as NF-κB and TNF, and chemokine secretion of the CXCL and CCL families. Anti-inflammatory TGF-β was up-regulated. Finally, we identified that CD274 -/- macrophages significantly down-regulated interferon-stimulated genes despite the presence of IFNγ in the differentiation media. These data suggest that PD-L1 regulates inflammatory programs of macrophages from human pluripotent stem cells.
Collapse
Affiliation(s)
- Handi Cao
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Yang Xiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Yiming Chao
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Jilong Guo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Theo Aurich
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joshua Wk Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China
| | - Yuanhua Huang
- Centre for Translational Stem Cell Biology, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pentao Liu
- Centre for Translational Stem Cell Biology, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Abdin SM, Paasch D, Lachmann N. CAR macrophages on a fast track to solid tumor therapy. Nat Immunol 2024; 25:11-12. [PMID: 38168956 DOI: 10.1038/s41590-023-01696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Shifaa M Abdin
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Daniela Paasch
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- RESIST, Cluster of Excellence, Hannover Medical School, Hannover, Germany.
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
| |
Collapse
|
26
|
Hetzel M, Gensch I, Ackermann M, Lachmann N. Adaptation of Human iPSC-Derived Macrophages Toward an Alveolar Macrophage-Like Phenotype Post-Intra-Pulmonary Transfer into Murine Models. Methods Mol Biol 2024; 2713:463-479. [PMID: 37639142 DOI: 10.1007/978-1-0716-3437-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Alveolar macrophages (AMs) represent crucial immune cells in the bronchioalveolar space of the lung. Given the important role in the host defense machinery and lung tissue homeostasis, AMs have been linked to a variety of diseases and thus represent a promising target cell type for novel therapies. The emerging importance of AM underlines the necessity to isolate and/or generate proper cellular models, which facilitate basic biology and translational science. As of yet, most studies focus on the derivation of AM from the murine system. This chapter introduces the use of human-induced pluripotent stem cell (iPSC)-derived primitive macrophages, which can be further matured towards an AM-like phenotype upon intra-pulmonary transfer into mice. We will give a brief overview on the generation of primitive iPSC-derived macrophages, which is followed by a detailed, step-by-step description of the intra-pulmonary transfer of cells and the follow-up procedures needed to isolate the iPSC-derived, AM-like cells from the lungs post-transfer. The chapter provides an alternative approach to derive human AM-like cells, which can be used to study human AM biology and to investigate novel therapeutic interventions using primitive macrophages from iPSC.
Collapse
Affiliation(s)
- Miriam Hetzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover, Germany
| | - Ingrid Gensch
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Mania Ackermann
- Hannover Medical School, Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Nico Lachmann
- Hannover Medical School, Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany.
- Hannover Medical School, Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover, Germany.
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
27
|
Abdin SM, Paasch D, Kloos A, Oliveira MC, Jang MS, Ackermann M, Stamopoulou A, Mroch PJ, Falk CS, von Kaisenberg CS, Schambach A, Heuser M, Moritz T, Hansen G, Morgan M, Lachmann N. Scalable generation of functional human iPSC-derived CAR-macrophages that efficiently eradicate CD19-positive leukemia. J Immunother Cancer 2023; 11:e007705. [PMID: 38135346 DOI: 10.1136/jitc-2023-007705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Macrophages have recently become attractive therapeutics in cancer immunotherapy. The potential of macrophages to infiltrate and influence solid malignancies makes them promising targets for the chimeric antigen receptor (CAR) technology to redirect their stage of polarization, thus enhancing their anticancer capacities. Given the emerging interest for CAR-macrophages, generation of such cells so far mainly depends on peripheral blood monocytes, which are isolated from the respective donor prior to genetic manipulation. This procedure is time-intensive and cost-intensive, while, in some cases, insufficient monocyte amounts can be recovered from the donor, thus hampering the broad applicability of this technology. Hence, we demonstrate the generation and effectiveness of CAR-macrophages from various stem cell sources using also modern upscaling technologies for next generation immune cell farming. METHODS Primary human hematopoietic stem and progenitor cells and induced pluripotent stem cells were used to derive anti-CD19 CAR-macrophages. Anticancer activity of the cells was demonstrated in co-culture systems, including primary material from patients with leukemia. Generation of CAR-macrophages was facilitated by bioreactor technologies and single-cell RNA (scRNA) sequencing was used to characterize in-depth response and behavior of CAR-macrophages. RESULTS Irrespective of the stem-cell source, CAR-macrophages exhibited enhanced and antigen-dependent phagocytosis of CD19+ target cancer cells with increased pro-inflammatory responses. Phagocytic capacity of CAR-macrophages was dependent on target cell CD19 expression levels with superior function of CAR-macrophages against CD19+ cancer cell lines and patient-derived acute lymphocytic leukemia cancer cells. scRNA sequencing revealed CAR-macrophages to be distinct from eGFP control cells after co-culture with target cells, which includes the activation of pro-inflammatory pathways and upregulation of chemokines and cytokines associated with adaptive immune cell recruitment, favoring the repolarization of CAR-macrophages to a pro-inflammatory state. Taken together, the data highlight the unique features of CAR-macrophages in combination with the successful upscaling of the production pipeline using a three-dimensional differentiation protocol and intermediate scale bioreactors. CONCLUSION In summary, our work provides insights into the seminal use and behavior of CAR-macrophages which are derived from various sources of stem cells, while introducing a unique technology for CAR-macrophage manufacturing, all dedicated to the clinical translation of CAR-macrophages within the field of anticancer immunotherapies.
Collapse
Affiliation(s)
- Shifaa M Abdin
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Daniela Paasch
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Arnold Kloos
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Marco Carvalho Oliveira
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Mi-Sun Jang
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Mania Ackermann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Andriana Stamopoulou
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Philipp J Mroch
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Axel Schambach
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- RESIST, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- RESIST, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Schweikert A, Kenny S, Oglesby I, Glasgow A, de Santi C, Gensch I, Lachmann N, Desroziers T, Fletcher C, Snijders D, Nathan N, Hurley K. An evaluation of an open access iPSC training course: "How to model interstitial lung disease using patient-derived iPSCs". Stem Cell Res Ther 2023; 14:377. [PMID: 38124115 PMCID: PMC10734099 DOI: 10.1186/s13287-023-03598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Interstitial lung diseases (ILD) are a group of rare lung diseases with severe outcomes. The COST Innovator Grant aims to establish a first-of-a-kind open-access Biorepository of patient-derived induced pluripotent stem cells (iPSC) and to train researchers in the skills required to generate a robust preclinical model of ILD using these cells. This study aims to describe and evaluate the effectiveness of a training course designed to train researchers in iPSC techniques to model ILD. METHODS 74 researchers, physicians and stakeholders attended the training course in Dublin in May 2022 with 31 trainees receiving teaching in practical iPSC culturing skills. The training course learners were divided into the Hands-on (16 trainees) and Observer groups (15 trainees), with the Observers attending a supervised live-streamed experience of the laboratories skills directly delivered to the Hands-on group. All participants were asked to participate in an evaluation to analyse their satisfaction and knowledge gained during the Training Course, with means compared using t-tests. RESULTS The gender balance in both groups was predominantly females (77.4%). The Hands-on group consisted mainly of researchers (75%), whereas all participants of the Observer group described themselves as clinicians. All participants in the Hands-on group were at least very satisfied with the training course compared to 70% of the participants in the Observer group. The knowledge assessment showed that the Hands-on group retained significantly more knowledge of iPSC characteristics and culturing techniques compared to the Observers (* < 0.05; p = 0.0457). A comprehensive learning video detailing iPSC culturing techniques was produced and is included with this manuscript. CONCLUSIONS The majority of participants were highly or very satisfied with the training course and retained significant knowledge about iPSC characteristics and culturing techniques after attending the training course. Overall, our findings demonstrate the feasibility of running hybrid Hands-on and Observer teaching events and underscore the importance of this type of training programme to appeal to a broad spectrum of interested clinicians and researchers particularly in rare disease. The long-term implications of this type of training event requires further study to determine its efficacy and impact on adoption of iPSC disease modelling techniques in participants' laboratories.
Collapse
Affiliation(s)
- Anja Schweikert
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Irene Oglesby
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Arlene Glasgow
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Chiara de Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ingrid Gensch
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
- Regenerative Biology to Reconstructive Therapy (REBIRTH) Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
- Regenerative Biology to Reconstructive Therapy (REBIRTH) Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Tifenn Desroziers
- Laboratory of Childhood Genetic Disorders Inserm UMR_S933, Armand Trousseau Hospital, Sorbonne University, Paris, France
| | - Camille Fletcher
- Laboratory of Childhood Genetic Disorders Inserm UMR_S933, Armand Trousseau Hospital, Sorbonne University, Paris, France
| | - Deborah Snijders
- Department of Woman and Child Health (SDB), Primary Ciliary Dyskinesia Centre, University of Padova, Padua, Italy
| | - Nadia Nathan
- Laboratory of Childhood Genetic Disorders Inserm UMR_S933, Armand Trousseau Hospital, Sorbonne University, Paris, France
- Pediatric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, APHP Sorbonne University, Paris, France
| | - Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
29
|
Shimasaki N, Shimizu E, Nakamura Y, Iguchi H, Ueda A, Umekage M, Haneda S, Mazda O. Size control of induced pluripotent stem cells colonies in two-dimensional culture for differentiation into functional monocyte-like cells. Cytotherapy 2023; 25:1338-1348. [PMID: 37676216 DOI: 10.1016/j.jcyt.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AIMS Monocytes, derived from hematopoietic stem cells (HSCs), play a pivotal role in the immune response to cancer. Although they are an attractive source of cell therapy for cancer, a method for ex vivo expansion has not yet been established. Monocytes differentiated from pluripotent stem cells (PSCs), including induced pluripotent stem cells (iPSCs), can be an alternative source of HSC-derived monocytes because of their self-renewal and pluripotency. To develop a standardized method for the generation of iPSC-derived monocytes for future clinical applications, we aim to control the size of the iPSC colony. METHODS To this end, we developed a plate with multiple dots containing a chemical substrate for the iPSC scaffold. iPSCs placed in the plate expanded only on the dots and created colonies of the same size. The cells were then differentiated into monocytes by adding cytokines to the colonies. RESULTS The dot plate substantially reduced variability in monocyte-like cell generation when compared with cultivating cells on a plate with the substrate covering the entire surface area. Furthermore, more monocyte-like cells were obtained by adjusting the dot size and the distance between the dots. The iPSC-derived monocyte-like cells phagocytosed cancer cells and secreted proinflammatory cytokines. The cells also expressed Fc receptors and exerted immunoglobulin G-mediated killing of cancer cells with the corresponding antibodies. CONCLUSIONS The dot plate enabled the control of iPSC colony size in two-dimensional culture, which resulted in a reduction in the generation-variation of functional monocyte-like cells. This standardized method for generating iPSC-derived monocyte-like cells using the dot plate could also facilitate the development of an automated closed system on a large scale for clinical applications.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Center for iPS Cell Research and Application Foundation, Kyoto University, Kyoto, Japan; Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Center for Pediatric Cancer Treatment, Nagoya University Hospital, Nagoya, Japan.
| | - Eiko Shimizu
- Center for iPS Cell Research and Application Foundation, Kyoto University, Kyoto, Japan
| | - Yuta Nakamura
- R&D Center Corporate, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Hiroki Iguchi
- R&D Center Corporate, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Anna Ueda
- Center for iPS Cell Research and Application Foundation, Kyoto University, Kyoto, Japan
| | - Masafumi Umekage
- Center for iPS Cell Research and Application Foundation, Kyoto University, Kyoto, Japan
| | - Satoshi Haneda
- R&D Center Corporate, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133:e170501. [PMID: 37781922 PMCID: PMC10541196 DOI: 10.1172/jci170501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.
Collapse
Affiliation(s)
- Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Shifaa M. Abdin
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- RESIST (Resolving Infection Susceptibility), Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
31
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
32
|
Tang F, Wang Y, Zeng Y, Xiao A, Tong A, Xu J. Tumor-associated macrophage-related strategies for glioma immunotherapy. NPJ Precis Oncol 2023; 7:78. [PMID: 37598273 PMCID: PMC10439959 DOI: 10.1038/s41698-023-00431-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
High-grade glioma is one of the deadliest primary tumors of the central nervous system. Despite the many novel immunotherapies currently in development, it has been difficult to achieve breakthrough results in clinical studies. The reason may be due to the suppressive tumor microenvironment of gliomas that limits the function of specific immune cells (e.g., T cells) which are currently the primary targets of immunotherapy. However, tumor-associated macrophage, which are enriched in tumors, plays an important role in the development of GBM and is becoming a research hotspot for immunotherapy. This review focuses on current research advances in the use of macrophages as therapeutic targets or therapeutic tools for gliomas, and provides some potential research directions.
Collapse
Affiliation(s)
- Fansong Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yunhui Zeng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
33
|
Aderinto N, Abdulbasit MO, Olatunji D. Stem cell-based combinatorial therapies for spinal cord injury: a narrative review of current research and future directions. Ann Med Surg (Lond) 2023; 85:3943-3954. [PMID: 37554849 PMCID: PMC10406006 DOI: 10.1097/ms9.0000000000001034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that can result in lifelong disability. Despite significant progress in SCI research, current treatments only offer limited functional recovery. Stem cell-based combinatorial therapies have emerged promising to enhance neural repair and regeneration after SCI. Combining stem cells with growth factors, biomaterials, and other therapeutic agents can improve outcomes by providing a multifaceted approach to neural repair. However, several challenges must be addressed before these therapies can be widely adopted in clinical practice. Standardisation of stem cell isolation, characterisation, and production protocols ensures consistency and safety in clinical trials. Developing appropriate animal models that accurately mimic human SCI is crucial for successfully translating these therapies. Additionally, optimal delivery methods and biomaterials that support the survival and integration of stem cells into injured tissue must be identified. Despite these challenges, stem cell-based combinatorial therapies for SCI hold great promise. Innovative approaches such as gene editing and the use of neural tissue engineering may further enhance the efficacy of these therapies. Further research and development in this area are critical to advancing the field and providing effective therapies for SCI patients. This paper discusses the current evidence and challenges from the literature on the potential of stem cell-based combinatorial therapies for SCI.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | | | - Deji Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
34
|
Guo T, Wei Q. Cell Reprogramming Techniques: Contributions to Cancer Therapy. Cell Reprogram 2023; 25:142-153. [PMID: 37530737 DOI: 10.1089/cell.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
The reprogramming of terminally differentiated cells over the past few years has become important for induced pluripotent stem cells (iPSCs) in the field of regenerative medicine and disease drug modeling. At the same time, iPSCs have also played an important role in human cancer research. iPSCs derived from cancer patients can be used to simulate the early progression of cancer, for drug testing, and to study the molecular mechanism of cancer occurrence. In recent years, with the application of cellular immunotherapy in cancer therapy, patient-derived iPSC-induced immune cells (T, natural killer, and macrophage cells) solve the problem of immune rejection and have higher immunogenicity, which greatly improves the therapeutic efficiency of immune cell therapy. With the continuous progress of cancer differentiation therapy, iPSC technology can reprogram cancer cells to a more primitive pluripotent undifferentiated state, and successfully reverse cancer cells to a benign phenotype by changing the epigenetic inheritance of cancer cells. This article reviews the recent progress of cell reprogramming technology in human cancer research, focuses on the application of reprogramming technology in cancer immunotherapy and the problems solved, and summarizes the malignant phenotype changes of cancer cells in the process of reprogramming and subsequent differentiation.
Collapse
Affiliation(s)
- Tongtong Guo
- College of Life Science, Northwest University, Xi'an, China
| | - Qi Wei
- Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
35
|
Park S, Gwon Y, Khan SA, Jang KJ, Kim J. Engineering considerations of iPSC-based personalized medicine. Biomater Res 2023; 27:67. [PMID: 37420273 DOI: 10.1186/s40824-023-00382-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 07/09/2023] Open
Abstract
Personalized medicine aims to provide tailored medical treatment that considers the clinical, genetic, and environmental characteristics of patients. iPSCs have attracted considerable attention in the field of personalized medicine; however, the inherent limitations of iPSCs prevent their widespread use in clinical applications. That is, it would be important to develop notable engineering strategies to overcome the current limitations of iPSCs. Such engineering approaches could lead to significant advances in iPSC-based personalized therapy by offering innovative solutions to existing challenges, from iPSC preparation to clinical applications. In this review, we summarize how engineering strategies have been used to advance iPSC-based personalized medicine by categorizing the development process into three distinctive steps: 1) the production of therapeutic iPSCs; 2) engineering of therapeutic iPSCs; and 3) clinical applications of engineered iPSCs. Specifically, we focus on engineering strategies and their implications for each step in the development of iPSC-based personalized medicine.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co, Ltd, Gwangju, 61011, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Shahidul Ahmed Khan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co, Ltd, Gwangju, 61011, Republic of Korea.
| |
Collapse
|
36
|
Sung S, Steele LA, Risser GE, Spiller KL. Biomaterial-Assisted Macrophage Cell Therapy for Regenerative Medicine. Adv Drug Deliv Rev 2023:114979. [PMID: 37394101 DOI: 10.1016/j.addr.2023.114979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Although most tissue types are capable of some form of self-repair and regeneration, injuries that are larger than a critical threshold or those occurring in the setting of certain diseases can lead to impaired healing and ultimately loss of structure and function. The immune system plays an important role in tissue repair and must be considered in the design of therapies in regenerative medicine. In particular, macrophage cell therapy has emerged as a promising strategy that leverages the reparative roles of these cells. Macrophages are critical for successful tissue repair and accomplish diverse functions throughout all phases of the process by dramatically shifting in phenotypes in response to microenvironmental cues. Depending on their response to various stimuli, they may release growth factors, support angiogenesis, and facilitate extracellular matrix remodeling. However, this ability to rapidly shift phenotype is also problematic for macrophage cell therapy strategies, because adoptively transferred macrophages fail to maintain therapeutic phenotypes following their administration to sites of injury or inflammation. Biomaterials are a potential way to control macrophage phenotype in situ while also enhancing their retention at sites of injury. Cell delivery systems incorporated with appropriately designed immunomodulatory signals have potential to achieve tissue regeneration in intractable injuries where traditional therapies have failed. Here we explorecurrent challenges in macrophage cell therapy, especially retention and phenotype control, how biomaterials may overcome them, and opportunities for next generation strategies. Biomaterials will be an essential tool to advance macrophage cell therapy for widespread clinical applications.
Collapse
Affiliation(s)
- Samuel Sung
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lindsay A Steele
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Gregory E Risser
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Kao CY, Mills JA, Burke CJ, Morse B, Marques BF. Role of Cytokines and Growth Factors in the Manufacturing of iPSC-Derived Allogeneic Cell Therapy Products. BIOLOGY 2023; 12:biology12050677. [PMID: 37237491 DOI: 10.3390/biology12050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Cytokines and other growth factors are essential for cell expansion, health, function, and immune stimulation. Stem cells have the additional reliance on these factors to direct differentiation to the appropriate terminal cell type. Successful manufacturing of allogeneic cell therapies from induced pluripotent stem cells (iPSCs) requires close attention to the selection and control of cytokines and factors used throughout the manufacturing process, as well as after administration to the patient. This paper employs iPSC-derived natural killer cell/T cell therapeutics to illustrate the use of cytokines, growth factors, and transcription factors at different stages of the manufacturing process, ranging from the generation of iPSCs to controlling of iPSC differentiation into immune-effector cells through the support of cell therapy after patient administration.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Carl J Burke
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Barry Morse
- Research and Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Bruno F Marques
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Wang C, Liu J, Li W. 'Off the shelf' immunotherapies: Generation and application of pluripotent stem cell-derived immune cells. Cell Prolif 2023; 56:e13425. [PMID: 36855955 PMCID: PMC10068955 DOI: 10.1111/cpr.13425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years, great strides have been made toward the development of immune cell-based therapies in the treatment of refractory malignancies. Primary T cells and NK cells armed with chimeric antigen receptors have achieved tremendous clinical success especially in patients with leukaemia and lymphoma. However, the autologous origin of these effector cells means that a single batch of laboriously engineered cells treats only a certain patient, leading to high cost, ununiform product quality, and risk of delay in treatment, and therefore results in restricted accessibility of these therapies to the overwhelming majority of the patients. Addressing these tricky obstacles calls for the development of universal immune cell products that can be provided 'off the shelf' in a large amount. Pluripotent stem cells (PSCs), owing to their unique capacity of self-renewal and the potential of multi-lineage differentiation, offer an unlimited cell source to generate uniform and scalable engineered immune cells. This review discusses the major advances in the development of PSC-derived immune cell differentiation approaches and their therapeutic potential in treating both hematologic malignancies and solid tumours. We also consider the potency of PSC-derived immune cells as an alternative therapeutic strategy for other diseases, such as autoimmune diseases, fibrosis, infections, et al.
Collapse
Affiliation(s)
- Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jingjing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Jin G, Chang Y, Harris J, Bao X. Adoptive Immunotherapy: A Human Pluripotent Stem Cell Perspective. Cells Tissues Organs 2023; 212:439-467. [PMID: 36599319 PMCID: PMC10318121 DOI: 10.1159/000528838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
The past decade has witnessed significant advances in cancer immunotherapy, particularly through the adoptive transfer of engineered T cells in treating advanced leukemias and lymphomas. Despite these excitements, challenges remain with scale, cost, and ensuring quality control of engineered immune cells, including chimeric antigen receptor T, natural killer cells, and macrophages. The advent of human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, has transformed immunotherapy by providing a scalable, off-the-shelf source of any desired immune cells for basic research, translational studies, and clinical interventions. The tractability of hPSCs for gene editing could also generate homogenous, universal cellular products with custom functionality for individual or combinatory therapeutic applications. This review will explore various immune cell types whose directed differentiation from hPSCs has been achieved and recently adapted for translational immunotherapy and feature forward-looking bioengineering techniques shaping the future of the stem cell field.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jackson Harris
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
40
|
Aylan B, Botella L, Gutierrez MG, Santucci P. High content quantitative imaging of Mycobacterium tuberculosis responses to acidic microenvironments within human macrophages. FEBS Open Bio 2022. [PMID: 36520007 DOI: 10.1002/2211-5463.13537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Intracellular pathogens such as Mycobacterium tuberculosis (Mtb) have evolved diverse strategies to counteract macrophage defence mechanisms including phagolysosomal biogenesis. Within macrophages, Mtb initially resides inside membrane-bound phagosomes that interact with lysosomes and become acidified. The ability of Mtb to control and subvert the fusion between phagosomes and lysosomes plays a key role in the pathogenesis of tuberculosis. Therefore, understanding how pathogens interact with the endolysosomal network and cope with intracellular acidification is important to better understand the disease. Here, we describe in detail the use of fluorescence microscopy-based approaches to investigate Mtb responses to acidic environments in cellulo. We report high-content imaging modalities to probe Mtb sensing of external pH or visualise in real-time Mtb intrabacterial pH within infected human macrophages. We discuss various methodologies with step-by-step analyses that enable robust image-based quantifications. Finally, we highlight the advantages and limitations of these different approaches and discuss potential alternatives that can be applied to further investigate Mtb-host cell interactions. These methods can be adapted to study host-pathogen interactions in different biological systems and experimental settings. Altogether, these approaches represent a valuable tool to further broaden our understanding of the cellular and molecular mechanisms underlying intracellular pathogen survival.
Collapse
Affiliation(s)
- Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
41
|
Hong J, Zheng W, Wang X, Hao Y, Cheng G. Biomedical polymer scaffolds mimicking bone marrow niches to advance in vitro expansion of hematopoietic stem cells. J Mater Chem B 2022; 10:9755-9769. [PMID: 36444902 DOI: 10.1039/d2tb01211a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation provides an effective platform for the treatment of hematological disorders. However, the donor shortage of HSCs and immune responses severely restrict the clinical applications of HSCs. Compared to allogeneic transplantation, autogenous transplantation poses less risk to the immune system, but the problem associated with insufficient HSCs remains a substantial challenge. A significant strategy for obtaining sufficient HSCs is to promote the expansion of HSCs. In vivo, a bone marrow microenvironment supports the survival and hematopoiesis of HSCs. Therefore, it is crucial to establish a platform that mimics the features of a bone marrow microenvironment for the in vitro expansion of HSCs. Three-dimensional (3D) scaffolds have emerged as the most powerful tools to mimic cellular microenvironments for the growth and proliferation of stem cells. Biomedical polymers have been widely utilized as cell scaffolds due to their advantageous features including favorable biocompatibility, biodegradability, as well as adjustable physical and chemical properties. This review focuses on recent advances in the study of biomedical polymer scaffolds that mimic bone marrow microenvironments for the in vitro expansion of HSCs. Bone marrow transplantation and microenvironments are first introduced. Then, biomedical polymer scaffolds for the expansion of HSCs and future prospects are summarized and discussed.
Collapse
Affiliation(s)
- Jing Hong
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, China. .,School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Anhui 230026, China
| | - Wenlong Zheng
- Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Jiangsu 215021, China
| | | | - Ying Hao
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, China. .,School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Anhui 230026, China
| | - Guosheng Cheng
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, China. .,School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
42
|
Nikolouli E, Reichstein J, Hansen G, Lachmann N. In vitro systems to study inborn errors of immunity using human induced pluripotent stem cells. Front Immunol 2022; 13:1024935. [DOI: 10.3389/fimmu.2022.1024935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
In the last two decades, the exponential progress in the field of genetics could reveal the genetic impact on the onset and progression of several diseases affecting the immune system. This knowledge has led to the discovery of more than 400 monogenic germline mutations, also known as “inborn errors of immunity (IEI)”. Given the rarity of various IEI and the clinical diversity as well as the limited available patients’ material, the continuous development of novel cell-based in vitro models to elucidate the cellular and molecular mechanisms involved in the pathogenesis of these diseases is imperative. Focusing on stem cell technologies, this review aims to provide an overview of the current available in vitro models used to study IEI and which could lay the foundation for new therapeutic approaches. We elaborate in particular on the use of induced pluripotent stem cell-based systems and their broad application in studying IEI by establishing also novel infection culture models. The review will critically discuss the current limitations or gaps in the field of stem cell technology as well as the future perspectives from the use of these cell culture systems.
Collapse
|
43
|
Engineering-Induced Pluripotent Stem Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14092266. [PMID: 35565395 PMCID: PMC9100203 DOI: 10.3390/cancers14092266] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Induced pluripotent stem cells (iPSCs) that can be genetically engineered and differentiated into different types of immune cells, providing an unlimited resource for developing off-the-shelf cell therapies. Here, we present a comprehensive review that describes the current stages of iPSC-based cell therapies, including iPSC-derived T, nature killer (NK), invariant natural killer T (iNKT), gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). Abstract Cell-based immunotherapy, such as chimeric antigen receptor (CAR) T cell therapy, has revolutionized the treatment of hematological malignancies, especially in patients who are refractory to other therapies. However, there are critical obstacles that hinder the widespread clinical applications of current autologous therapies, such as high cost, challenging large-scale manufacturing, and inaccessibility to the therapy for lymphopenia patients. Therefore, it is in great demand to generate the universal off-the-shelf cell products with significant scalability. Human induced pluripotent stem cells (iPSCs) provide an “unlimited supply” for cell therapy because of their unique self-renewal properties and the capacity to be genetically engineered. iPSCs can be differentiated into different immune cells, such as T cells, natural killer (NK) cells, invariant natural killer T (iNKT) cells, gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). In this review, we describe iPSC-based allogeneic cell therapy, the different culture methods of generating iPSC-derived immune cells (e.g., iPSC-T, iPSC-NK, iPSC-iNKT, iPSC-γδT, iPSC-MAIT and iPSC-Mφ), as well as the recent advances in iPSC-T and iPSC-NK cell therapies, particularly in combinations with CAR-engineering. We also discuss the current challenges and the future perspectives in this field towards the foreseeable applications of iPSC-based immune therapy.
Collapse
|