1
|
Burnet JB, Demeter K, Dorner S, Farnleitner AH, Hammes F, Pinto AJ, Prest EI, Prévost M, Stott R, van Bel N. Automation of on-site microbial water quality monitoring from source to tap: Challenges and perspectives. WATER RESEARCH 2025; 274:123121. [PMID: 39827517 DOI: 10.1016/j.watres.2025.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Ensuring the provision of safe drinking water necessitates thorough monitoring of microbial water quality. While traditional culture-based enumeration of bacterial indicators has served as the gold standard in compliance monitoring since the late 19th century, recent advancements in microbial sensor technology, driven by automation and digitalization, are revolutionizing on-site monitoring capabilities. These innovations offer unparalleled potential for automated, high temporal frequency monitoring with remote, real-time data transmission. With regulatory frameworks increasingly favouring risk-based approaches to microbial risk management throughout the drinking water supply chain, we are witnessing a paradigm shift towards the adoption of microbial sensors. This review offers a comprehensive examination of the latest developments and accomplishments in automated on-site monitoring of microbial water quality. Beginning with an elucidation of key terminology and an overview of available sensor technologies, we explore how these cutting-edge tools can enhance our understanding of microbial dynamics in the sourcing, treatment, and distribution of drinking water, and how this knowledge can be translated into operational management. Despite the promise of microbial sensors, significant challenges remain. Drawing from insights gathered from an international online survey targeting drinking water utilities, we discuss the analytical, economic, and legal barriers that must be overcome for the implementation of automated on-site monitoring of microbial water quality. This review serves as a vital resource for researchers, utilities, and policymakers operating in water microbiology and sensor technology. While it is addressing drinking water more specifically, the presented concepts and tools can be extrapolated to recreational waters or wastewater management, with the shared goal to ensure sustainable management of water resources and protection of public health.
Collapse
Affiliation(s)
- J B Burnet
- Polytechnique Montreal, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada; Environmental Research, and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux L-4422, Luxembourg.
| | - K Demeter
- TU Wien, Research Centre ICC Water & Health E057-08 and Research Group Microbiology and Molecular Diagnostics, Vienna 166/5/3, Austria
| | - S Dorner
- Polytechnique Montreal, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - A H Farnleitner
- Department Pharmacology, Physiology and Microbiology, Research Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Krems 3500, Austria; TU Wien, Research Centre ICC Water & Health E057-08 and Research Group Microbiology and Molecular Diagnostics, Vienna 166/5/3, Austria
| | - F Hammes
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überland Str. 133, Dübendorf 8600, Switzerland
| | - A J Pinto
- Georgia Institute of Technology, School of Civil and Environmental Engineering, 790, Atlantic Drive, Atlanta, GA, USA
| | - E I Prest
- PWNT, Nieuwe Hemweg 2, Amsterdam, BG 1013, the Netherlands
| | - M Prévost
- Polytechnique Montreal, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - R Stott
- National Institute of Water and Atmospheric Research (NIWA) PO Box 11115, Hillcrest, Hamilton 3251, New Zealand
| | - N van Bel
- KWR Water Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, the Netherlands
| |
Collapse
|
2
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Fedele E, Wetton JH, Jobling MA. Sequencing the orthologs of human autosomal forensic short tandem repeats provides individual- and species-level identification in African great apes. BMC Ecol Evol 2024; 24:134. [PMID: 39482599 PMCID: PMC11526555 DOI: 10.1186/s12862-024-02324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Great apes are a global conservation concern, with anthropogenic pressures threatening their survival. Genetic analysis can be used to assess the effects of reduced population sizes and the effectiveness of conservation measures. In humans, autosomal short tandem repeats (aSTRs) are widely used in population genetics and for forensic individual identification and kinship testing. Traditionally, genotyping is length-based via capillary electrophoresis (CE), but there is an increasing move to direct analysis by massively parallel sequencing (MPS). An example is the ForenSeq DNA Signature Prep Kit, which amplifies multiple loci including 27 aSTRs, prior to sequencing via Illumina technology. Here we assess the applicability of this human-based kit in African great apes. We ask whether cross-species genotyping of the orthologs of these loci can provide both individual and (sub)species identification. RESULTS The ForenSeq kit was used to amplify and sequence aSTRs in 52 individuals (14 chimpanzees; 4 bonobos; 16 western lowland, 6 eastern lowland, and 12 mountain gorillas). The orthologs of 24/27 human aSTRs amplified across species, and a core set of thirteen loci could be genotyped in all individuals. Genotypes were individually and (sub)species identifying. Both allelic diversity and the power to discriminate (sub)species were greater when considering STR sequences rather than allele lengths. Comparing human and African great-ape STR sequences with an orangutan outgroup showed general conservation of repeat types and allele size ranges. Variation in repeat array structures and a weak relationship with the known phylogeny suggests stochastic origins of mutations giving rise to diverse imperfect repeat arrays. Interruptions within long repeat arrays in African great apes do not appear to reduce allelic diversity. CONCLUSIONS Orthologs of most human aSTRs in the ForenSeq DNA Signature Prep Kit can be analysed in African great apes. Primer redesign would reduce observed variability in amplification across some loci. MPS of the orthologs of human loci provides better resolution for both individual and (sub)species identification in great apes than standard CE-based approaches, and has the further advantage that there is no need to limit the number and size ranges of analysed loci.
Collapse
Affiliation(s)
- Ettore Fedele
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
- Current address: Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Jon H Wetton
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Mark A Jobling
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
4
|
Velasquez-Restrepo S, Corrales Orozco M, Franco-Sierra ND, Martínez-Cerón JM, Díaz-Nieto JF. Identification of non-model mammal species using the MinION DNA sequencer from Oxford Nanopore. PeerJ 2024; 12:e17887. [PMID: 39346050 PMCID: PMC11438440 DOI: 10.7717/peerj.17887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background The Neotropics harbors the largest species richness of the planet; however, even in well-studied groups, there are potentially hundreds of species that lack a formal description, and likewise, many already described taxa are difficult to identify using morphology. Specifically in small mammals, complex morphological diagnoses have been facilitated by the use of molecular data, particularly from mitochondrial sequences, to obtain accurate species identifications. Obtaining mitochondrial markers implies the use of PCR and specific primers, which are largely absent for non-model organisms. Oxford Nanopore Technologies (ONT) is a new alternative for sequencing the entire mitochondrial genome without the need for specific primers. Only a limited number of studies have employed exclusively ONT long-reads to assemble mitochondrial genomes, and few studies have yet evaluated the usefulness of such reads in multiple non-model organisms. Methods We implemented fieldwork to collect small mammals, including rodents, bats, and marsupials, in five localities in the northern extreme of the Cordillera Central of Colombia. DNA samples were sequenced using the MinION device and Flongle flow cells. Shotgun-sequenced data was used to reconstruct the mitochondrial genome of all the samples. In parallel, using a customized computational pipeline, species-level identifications were obtained based on sequencing raw reads (Whole Genome Sequencing). ONT-based identifications were corroborated using traditional morphological characters and phylogenetic analyses. Results A total of 24 individuals from 18 species were collected, morphologically identified, and deposited in the biological collection of Universidad EAFIT. Our different computational pipelines were able to reconstruct mitochondrial genomes from exclusively ONT reads. We obtained three new mitochondrial genomes and eight new molecular mitochondrial sequences for six species. Our species identification pipeline was able to obtain accurate species identifications for up to 75% of the individuals in as little as 5 s. Finally, our phylogenetic analyses corroborated the identifications from our automated species identification pipeline and revealed important contributions to the knowledge of the diversity of Neotropical small mammals. Discussion This study was able to evaluate different pipelines to reconstruct mitochondrial genomes from non-model organisms, using exclusively ONT reads, benchmarking these protocols on a multi-species dataset. The proposed methodology can be applied by non-expert taxonomists and has the potential to be implemented in real-time, without the need to euthanize the organisms and under field conditions. Therefore, it stands as a relevant tool to help increase the available data for non-model organisms, and the rate at which researchers can characterize life specially in highly biodiverse places as the Neotropics.
Collapse
Affiliation(s)
| | | | - Nicolás D Franco-Sierra
- Syndesis Health, Palm Beach Gardens, Florida, United States
- Corporación de Investigación e Innovación (VEDAS CII), VEDAS, Medellín, Antioquia, Colombia
| | - Juan M Martínez-Cerón
- Natural Systems and Sustainability Area, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Juan F Díaz-Nieto
- Natural Systems and Sustainability Area, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
5
|
Vass M, Székely AJ, Carlsson-Graner U, Wikner J, Andersson A. Microeukaryote community coalescence strengthens community stability and elevates diversity. FEMS Microbiol Ecol 2024; 100:fiae100. [PMID: 39003240 PMCID: PMC11287207 DOI: 10.1093/femsec/fiae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.
Collapse
Affiliation(s)
- Máté Vass
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Division of Systems and Synthetic Biology, Department of Life Sciences, Science for Life Laboratory, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anna J Székely
- Division of Microbial Ecology, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Ulla Carlsson-Graner
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, SE-90571 Hörnefors, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, SE-90571 Hörnefors, Sweden
| |
Collapse
|
6
|
Lu S, Zeng H, Xiong F, Yao M, He S. Advances in environmental DNA monitoring: standardization, automation, and emerging technologies in aquatic ecosystems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1368-1384. [PMID: 38512561 DOI: 10.1007/s11427-023-2493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 03/23/2024]
Abstract
Environmental DNA (eDNA) monitoring, a rapidly advancing technique for assessing biodiversity and ecosystem health, offers a noninvasive approach for detecting and quantifying species from various environmental samples. In this review, a comprehensive overview of current eDNA collection and detection technologies is provided, emphasizing the necessity for standardization and automation in aquatic ecological monitoring. Furthermore, the intricacies of water bodies, from streams to the deep sea, and the associated challenges they pose for eDNA capture and analysis are explored. The paper delineates three primary eDNA survey methods, namely, bringing back water, bringing back filters, and bringing back data, each with specific advantages and constraints in terms of labor, transport, and data acquisition. Additionally, innovations in eDNA sampling equipment, including autonomous drones, subsurface samplers, and in-situ filtration devices, and their applications in monitoring diverse taxa are discussed. Moreover, recent advancements in species-specific detection and eDNA metabarcoding are addressed, highlighting the integration of novel techniques such as CRISPR-Cas and nanopore sequencing that enable precise and rapid detection of biodiversity. The implications of environmental RNA and epigenetic modifications are considered for future applications in providing nuanced ecological data. Lastly, the review stresses the critical role of standardization and automation in enhancing data consistency and comparability for robust long-term biomonitoring. We propose that the amalgamation of these technologies represents a paradigm shift in ecological monitoring, aligning with the urgent call for biodiversity conservation and sustainable management of aquatic ecosystems.
Collapse
Affiliation(s)
- Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
7
|
Ji CM, Feng XY, Huang YW, Chen RA. The Applications of Nanopore Sequencing Technology in Animal and Human Virus Research. Viruses 2024; 16:798. [PMID: 38793679 PMCID: PMC11125791 DOI: 10.3390/v16050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014. This technology offers several advantages over traditional methods and next-generation sequencing (NGS), such as the ability to generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability and flexibility in virus research, including viral detection and surveillance, genome assembly, the discovery of new variants and novel viruses, and the identification of chemical modifications. In this paper, we provide a comprehensive review of the development, principles, advantages, and applications of nanopore sequencing technology in animal and human virus research, aiming to offer fresh perspectives for future studies in this field.
Collapse
Affiliation(s)
- Chun-Miao Ji
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
| | - Xiao-Yin Feng
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
| | - Yao-Wei Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rui-Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
8
|
Kang S, Choi P, Maile-Moskowitz A, Brown CL, Gonzalez RA, Pruden A, Vikesland PJ. Highly Multiplexed Reverse-Transcription Loop-Mediated Isothermal Amplification and Nanopore Sequencing (LAMPore) for Wastewater-Based Surveillance. ACS ES&T WATER 2024; 4:1629-1636. [PMID: 38633369 PMCID: PMC11019537 DOI: 10.1021/acsestwater.3c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
Wastewater-based surveillance (WBS) has gained attention as a strategy to monitor and provide an early warning for disease outbreaks. Here, we applied an isothermal gene amplification technique, reverse-transcription loop-mediated isothermal amplification (RT-LAMP), coupled with nanopore sequencing (LAMPore) as a means to detect SARS-CoV-2. Specifically, we combined barcoding using both an RT-LAMP primer and the nanopore rapid barcoding kit to achieve highly multiplexed detection of SARS-CoV-2 in wastewater. RT-LAMP targeting the SARS-CoV-2 N region was conducted on 96 reactions including wastewater RNA extracts and positive and no-target controls. The resulting amplicons were pooled and subjected to nanopore sequencing, followed by demultiplexing based on barcodes that differentiate the source of each SARS-CoV-2 N amplicon derived from the 96 RT-LAMP products. The criteria developed and applied to establish whether SARS-CoV-2 was detected by the LAMPore assay indicated high consistency with polymerase chain reaction-based detection of the SARS-CoV-2 N gene, with a sensitivity of 89% and a specificity of 83%. We further profiled sequence variations on the SARS-CoV-2 N amplicons, revealing a number of mutations on a sample collected after viral variants had emerged. The results demonstrate the potential of the LAMPore assay to facilitate WBS for SARS-CoV-2 and the emergence of viral variants in wastewater.
Collapse
Affiliation(s)
- Seju Kang
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS),
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Petra Choi
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS),
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Ayella Maile-Moskowitz
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS),
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Connor L. Brown
- Department
of Genetics, Bioinformatics, and Computational Biology, Blacksburg, Virginia 24061, United States
| | - Raul A. Gonzalez
- Hampton
Roads Sanitation District, Virginia Beach ,Virginia23455, United States
| | - Amy Pruden
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS),
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Peter J. Vikesland
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS),
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Vasilita C, Feng V, Hansen AK, Hartop E, Srivathsan A, Struijk R, Meier R. Express barcoding with NextGenPCR and MinION for species-level sorting of ecological samples. Mol Ecol Resour 2024; 24:e13922. [PMID: 38240168 DOI: 10.1111/1755-0998.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 03/06/2024]
Abstract
The use of DNA barcoding is well established for specimen identification and large-scale biodiversity discovery, but remains underutilized for time-sensitive applications such as rapid species discovery in field stations, identifying pests, citizen science projects, and authenticating food. The main reason is that existing express barcoding workflows are either too expensive or can only be used in very well-equipped laboratories by highly-trained staff. We here show an alternative workflow combining rapid DNA extraction with HotSHOT, amplicon production with NextGenPCR thermocyclers, and sequencing with low-cost MinION sequencers. We demonstrate the power of the approach by generating 250 barcodes for 285 specimens within 6 h including specimen identification through BLAST. The workflow required only the following major equipment that easily fits onto a lab bench: Thermocycler, NextGenPCR, microplate sealer, Qubit, and MinION. Based on our results, we argue that simplified barcoding workflows for species-level sorting are now faster, more accurate, and sufficiently cost-effective to replace traditional morpho-species sorting in many projects.
Collapse
Affiliation(s)
| | - Vivian Feng
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| | - Aslak Kappel Hansen
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany
| | - Emily Hartop
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany
| | - Amrita Srivathsan
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany
| | - Robin Struijk
- Molecular Biology Systems B.V., Goes, The Netherlands
| | - Rudolf Meier
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| |
Collapse
|
10
|
Srivathsan A, Feng V, Suárez D, Emerson B, Meier R. ONTbarcoder 2.0: rapid species discovery and identification with real-time barcoding facilitated by Oxford Nanopore R10.4. Cladistics 2024; 40:192-203. [PMID: 38041646 DOI: 10.1111/cla.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023] Open
Abstract
Most arthropod species are undescribed and hidden in specimen-rich samples that are difficult to sort to species using morphological characters. For such samples, sorting to putative species with DNA barcodes is an attractive alternative, but needs cost-effective techniques that are suitable for use in many laboratories around the world. Barcoding using the portable and inexpensive MinION sequencer produced by Oxford Nanopore Technologies (ONT) could be useful for presorting specimen-rich samples with DNA barcodes because it requires little space and is inexpensive. However, similarly important is user-friendly and reliable software for analysis of the ONT data. It is here provided in the form of ONTbarcoder 2.0 that is suitable for all commonly used operating systems and includes a Graphical User Interface (GUI). Compared with an earlier version, ONTbarcoder 2.0 has three key improvements related to the higher read quality obtained with ONT's latest flow cells (R10.4), chemistry (V14 kits) and basecalling model (super-accuracy model). First, the improved read quality of ONT's latest flow cells (R10.4) allows for the use of primers with shorter indices than those previously needed (9 bp vs. 12-13 bp). This decreases the primer cost and can potentially improve PCR success rates. Second, ONTbarcoder now delivers real-time barcoding to complement ONT's real-time sequencing. This means that the first barcodes are obtained within minutes of starting a sequencing run; i.e. flow cell use can be optimized by terminating sequencing runs when most barcodes have already been obtained. The only input needed by ONTbarcoder 2.0 is a demultiplexing sheet and sequencing data (raw or basecalled) generated by either a Mk1B or a Mk1C. Thirdly, we demonstrate that the availability of R10.4 chemistry for the low-cost Flongle flow cell is an attractive option for users who require only 200-250 barcodes at a time.
Collapse
Affiliation(s)
- Amrita Srivathsan
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Invalidenstraße 43, 10115, Berlin, Germany
| | - Vivian Feng
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Invalidenstraße 43, 10115, Berlin, Germany
| | - Daniel Suárez
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands, 38206, Spain
- School of Doctoral and Postgraduate Studies, University of La Laguna, 38200 La Laguna, Tenerife, Canary Islands, 38200, Spain
| | - Brent Emerson
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands, 38206, Spain
| | - Rudolf Meier
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Invalidenstraße 43, 10115, Berlin, Germany
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
11
|
Vass M, Ramasamy KP, Andersson A. Microbial hitchhikers on microplastics: The exchange of aquatic microbes across distinct aquatic habitats. Environ Microbiol 2024; 26:e16618. [PMID: 38561820 DOI: 10.1111/1462-2920.16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of 'hitchhiking' microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%-4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.
Collapse
Affiliation(s)
- Máté Vass
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Division of Systems and Synthetic Biology, Department of Life Sciences, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Kesava Priyan Ramasamy
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Gajski D, Wolff JO, Melcher A, Weber S, Prost S, Krehenwinkel H, Kennedy SR. Facilitating taxonomy and phylogenetics: An informative and cost-effective protocol integrating long amplicon PCRs and third-generation sequencing. Mol Phylogenet Evol 2024; 192:107988. [PMID: 38072140 DOI: 10.1016/j.ympev.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/22/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
Phylogenetic inference has become a standard technique in integrative taxonomy and systematics, as well as in biogeography and ecology. DNA barcodes are often used for phylogenetic inference, despite being strongly limited due to their low number of informative sites. Also, because current DNA barcodes are based on a fraction of a single, fast-evolving gene, they are highly unsuitable for resolving deeper phylogenetic relationships due to saturation. In recent years, methods that analyse hundreds and thousands of loci at once have improved the resolution of the Tree of Life, but these methods require resources, experience and molecular laboratories that most taxonomists do not have. This paper introduces a PCR-based protocol that produces long amplicons of both slow- and fast-evolving unlinked mitochondrial and nuclear gene regions, which can be sequenced by the affordable and portable ONT MinION platform with low infrastructure or funding requirements. As a proof of concept, we inferred a phylogeny of a sample of 63 spider species from 20 families using our proposed protocol. The results were overall consistent with the results from approaches based on hundreds and thousands of loci, while requiring just a fraction of the cost and labour of such approaches, making our protocol accessible to taxonomists worldwide.
Collapse
Affiliation(s)
- Domagoj Gajski
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic
| | - Jonas O Wolff
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, Greifswald 17489, Germany; School of Natural Sciences, Macquarie University, NSW 2109, Sydney, Australia
| | - Anja Melcher
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany
| | - Sven Weber
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany
| | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, Linnanmaa, Finland
| | - Henrik Krehenwinkel
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany
| | - Susan R Kennedy
- Department of Biogeography, Faculty of Spatial and Environmental Sciences, University of Trier, Universitätsring 15, Trier 54296, Germany.
| |
Collapse
|
13
|
Srivathsan A, Loh RK, Ong EJ, Lee L, Ang Y, Kutty SN, Meier R. Network analysis with either Illumina or MinION reveals that detecting vertebrate species requires metabarcoding of iDNA from a diverse fly community. Mol Ecol 2023; 32:6418-6435. [PMID: 36326295 DOI: 10.1111/mec.16767] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
DNA obtained from invertebrates (iDNA) can be metabarcoded in order to survey vertebrate communities. However, little attention has been paid to the interaction between the invertebrate and vertebrate species. Here, we tested for specialization by sampling the dung and carrion fly community of a swamp forest remnant along a disturbance gradient (10 sites: 80-310 m from a road). Approximately, 60% of the baited 407 flies yielded 294 vertebrate identifications based on two COI fragments and 16S. A bipartite network analysis found no statistically significant specialization in the interactions between fly and vertebrate species, but uncommon fly species can carry the signal for vertebrate species that are otherwise difficult to detect with iDNA. A spatial analysis revealed that most of the 20 vertebrate species reported in this study could be detected within 150 m of the road (18 spp.) and that the fly community sourced for iDNA was unexpectedly rich (24 species, 3 families). They carried DNA for rare and common species inhabiting different layers of the forest (ground-dwelling: wild boar, Sunda pangolin, skinks, rats; arboreal: long-tailed macaque, Raffles' banded langur; flying: pin-striped tit-babbler, olive-winged bulbul). All our results were obtained with a new, greatly simplified iDNA protocol that eliminates DNA extraction by obtaining template directly through dissolving fly faeces and regurgitates with water. Lastly, we show that MinION- and Illumina-based metabarcoding yield similar results. We conclude by urging more studies that use different baits and involve experiments that are capable of revealing the dispersal capabilities of the flies carrying the iDNA.
Collapse
Affiliation(s)
- Amrita Srivathsan
- Centre for Integrative Biodiversity Discovery, Museum für Naturkunde, Berlin, Germany
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Rebecca Ker Loh
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Elliott James Ong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Leshon Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yuchen Ang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
| | | | - Rudolf Meier
- Centre for Integrative Biodiversity Discovery, Museum für Naturkunde, Berlin, Germany
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Garnier N, Berghout J, Zygmunt A, Singh D, Huang KA, Kantz W, Blankart CR, Gillner S, Zhao J, Roettger R, Saier C, Kirschner J, Schenk J, Atkins L, Ryan N, Zarakowska K, Zschüntzsch J, Zuccolo M, Müllenborn M, Man YS, Goodman L, Trad M, Chalandon AS, Sansen S, Martinez-Fresno M, Badger S, Walther van Olden R, Rothmann R, Lehner P, Tschohl C, Baillon L, Gumus G, Gross E, Stefanov R, Iskrov G, Raycheva R, Kostadinov K, Mitova E, Einhorn M, Einhorn Y, Schepers J, Hübner M, Alves F, Iskandar R, Mayer R, Renieri A, Piperkova A, Gut I, Beltran S, Matthiesen ME, Poetz M, Hansson M, Trollmann R, Agolini E, Ottombrino S, Novelli A, Bertini E, Selvatici R, Farnè M, Fortunato F, Ferlini A. Genetic newborn screening and digital technologies: A project protocol based on a dual approach to shorten the rare diseases diagnostic path in Europe. PLoS One 2023; 18:e0293503. [PMID: 37992053 PMCID: PMC10664952 DOI: 10.1371/journal.pone.0293503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/24/2023] Open
Abstract
Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems.
Collapse
Affiliation(s)
- Nicolas Garnier
- Pfizer Inc., Collegeville, Pennsylvania, United States of America
| | - Joanne Berghout
- Pfizer Inc., Collegeville, Pennsylvania, United States of America
| | - Aldona Zygmunt
- Pfizer Inc., Collegeville, Pennsylvania, United States of America
| | - Deependra Singh
- Pfizer Inc., Collegeville, Pennsylvania, United States of America
| | - Kui A. Huang
- Pfizer Inc., Collegeville, Pennsylvania, United States of America
| | - Waltraud Kantz
- Pfizer Inc., Collegeville, Pennsylvania, United States of America
| | - Carl Rudolf Blankart
- KPM Center for Public Management and Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
| | - Sandra Gillner
- KPM Center for Public Management and Swiss Institute for Translational and Entrepreneurial Medicine, University of Bern, Bern, Switzerland
| | - Jiawei Zhao
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Richard Roettger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Christina Saier
- Department of Neuropediatric and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Kirschner
- Department of Neuropediatric and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joern Schenk
- Takeda Pharmaceuticals International AG, Opfikon, Switzerland
| | - Leon Atkins
- Takeda Pharmaceuticals International AG, Opfikon, Switzerland
| | - Nuala Ryan
- Takeda Pharmaceuticals International AG, Opfikon, Switzerland
| | - Kaja Zarakowska
- Takeda Pharmaceuticals International AG, Opfikon, Switzerland
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany
| | | | | | - Yuen-Sum Man
- Novo Nordisk Health Care AG, Switzerland &Novo Nordisk A/S, Kloten, Denmark
| | - Liz Goodman
- University College Dublin, National University of Ireland, Dublin, Ireland
| | | | | | | | | | | | | | - Robert Rothmann
- Research Institute AG & Co KG, Digital Human Rights Center, Wien, Austria
| | - Patrick Lehner
- Research Institute AG & Co KG, Digital Human Rights Center, Wien, Austria
| | - Christof Tschohl
- Research Institute AG & Co KG, Digital Human Rights Center, Wien, Austria
| | | | | | | | - Rumen Stefanov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria
- Bulgarian Association for Promotion of Education and Science, Institute for Rare Disease, Plovdiv, Bulgaria
| | - Georgi Iskrov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria
- Bulgarian Association for Promotion of Education and Science, Institute for Rare Disease, Plovdiv, Bulgaria
| | - Ralitsa Raycheva
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria
- Bulgarian Association for Promotion of Education and Science, Institute for Rare Disease, Plovdiv, Bulgaria
| | - Kostadin Kostadinov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria
- Bulgarian Association for Promotion of Education and Science, Institute for Rare Disease, Plovdiv, Bulgaria
| | - Elena Mitova
- Bulgarian Association for Promotion of Education and Science, Institute for Rare Disease, Plovdiv, Bulgaria
| | | | | | - Josef Schepers
- Berlin Institute of Health (at) Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam Hübner
- Berlin Institute of Health (at) Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Hematology and Medical Oncology, University Medical Center, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Rowan Iskandar
- Swiss Institute for Translational and Entrepreneurial Medicine (sitem-insel), Bern, Switzerland
| | | | | | - Aneta Piperkova
- Bulgarian Association for Personalized Medicine, Sofia, Bulgaria
| | - Ivo Gut
- Centro Nacional de Analisis Genomico, CNAG, Barcelona, Spain
| | - Sergi Beltran
- Centro Nacional de Analisis Genomico, CNAG, Barcelona, Spain
| | | | - Marion Poetz
- Department of Strategy and Innovation, Copenhagen Business School, Copenhagen, Denmark
| | | | | | | | | | | | | | - Rita Selvatici
- Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marianna Farnè
- Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Fortunato
- Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Boehm JT, Bovee E, Harris SE, Eddins K, Akahoho I, Foster M, Pell SK, Hickerson MJ, Amato G, DeSalle R, Waldman J. The United States dried seahorse trade: A comparison of traditional Chinese medicine and ecommerce-curio markets using molecular identification. PLoS One 2023; 18:e0291874. [PMID: 37788253 PMCID: PMC10547177 DOI: 10.1371/journal.pone.0291874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Tens of millions of dried seahorses (genus Hippocampus) are traded annually, and the pressure from this trade along with their life history traits (involved parental care and small migration distances and home ranges) has led to near global population declines. This and other forms of overexploitation have led to all seahorse species being listed in Appendix II under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The signatory nations of CITES recommended a 10-cm size limit of seahorses to ensure harvested individuals have reached reproductive maturity, and have thus had the chance to produce offspring, to maintain a more sustainable global seahorse fishery. We assessed adherence to CITES recommendations using DNA barcoding and size measurements to compare two prominent U.S. dried seahorse markets: (1) traditional Chinese medicine (TCM), and (2) non-medicinal ecommerce and coastal curio (ECC). We also estimated U.S. import abundance from CITES records. Of the nine species identified among all samples (n = 532), eight were found in the TCM trade (n = 168); composed mostly (75%) of the Indo-Pacific species Hippocampus trimaculatus, and Hippocampus spinosissimus, and the Latin American Hippocampus ingens. In contrast, ECC samples (n = 344) included 5 species, primarily juvenile Indo-Pacific Hippocampus kuda (51.5%) and the western Atlantic Hippocampus zosterae (40.7). The majority of TCM samples (85.7%) met the CITES size recommendation, in contrast to 4.8% of ECC samples. These results suggest non-size discriminatory bycatch is the most likely source of imported ECC specimens. In addition, CITES records indicate that approximately 602,275 dried specimens were imported into the U.S. from 2004-2020, but the exact species composition remains unknown as many U.S. imports records list one species or Hippocampus spp. from confiscated shipments due to difficulties in morphological identification and large numbers of individuals per shipment. Molecular identification was used to identify the species composition of confiscated shipment imports containing undesignated species, and similar to TCM, found H. trimaculatus and H. spinosissimus the most abundant. By combining DNA barcoding, size comparisons, and CITES database records, these results provide an important glimpse into the two primary dried U.S. seahorse end-markets, and may further inform the conservation status of several Hippocampus species.
Collapse
Affiliation(s)
- J T Boehm
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
- Department of Biology, City College of New York, New York, New York, United States of America
- Subprogram in Ecology, Evolution Biology and Behavior, The Graduate Center of the City University of New York, New York, New York, United States of America
| | - Eric Bovee
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Stephen E Harris
- Subprogram in Ecology, Evolution Biology and Behavior, The Graduate Center of the City University of New York, New York, New York, United States of America
- School of Natural and Social Science, SUNY Purchase College, Purchase, New York, United States of America
| | - Kathryn Eddins
- The New School, New York, New York, United States of America
| | - Ishmael Akahoho
- Brooklyn Academy of Science and the Environment High School, Brooklyn, New York, United States of America
| | - Marcia Foster
- Brooklyn Academy of Science and the Environment High School, Brooklyn, New York, United States of America
| | - Susan K Pell
- Brooklyn Botanic Garden, Brooklyn, New York, United States of America
| | - Michael J Hickerson
- Department of Biology, City College of New York, New York, New York, United States of America
- Subprogram in Ecology, Evolution Biology and Behavior, The Graduate Center of the City University of New York, New York, New York, United States of America
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - George Amato
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - John Waldman
- Subprogram in Ecology, Evolution Biology and Behavior, The Graduate Center of the City University of New York, New York, New York, United States of America
- Biology Department, Queens College, City University of New York, New York, United States of America
| |
Collapse
|
16
|
Urban L, Perlas A, Francino O, Martí‐Carreras J, Muga BA, Mwangi JW, Boykin Okalebo L, Stanton JL, Black A, Waipara N, Fontsere C, Eccles D, Urel H, Reska T, Morales HE, Palmada‐Flores M, Marques‐Bonet T, Watsa M, Libke Z, Erkenswick G, van Oosterhout C. Real-time genomics for One Health. Mol Syst Biol 2023; 19:e11686. [PMID: 37325891 PMCID: PMC10407731 DOI: 10.15252/msb.202311686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.
Collapse
Affiliation(s)
- Lara Urban
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Albert Perlas
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
| | - Olga Francino
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Martí‐Carreras
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Brenda A Muga
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | | | | | | | - Amanda Black
- Bioprotection AotearoaLincoln UniversityLincolnNew Zealand
| | | | - Claudia Fontsere
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
| | - David Eccles
- Hugh Green Cytometry CentreMalaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Harika Urel
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Tim Reska
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Hernán E Morales
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
- Department of Biology, Ecology BuildingLund UniversityLundSweden
| | - Marc Palmada‐Flores
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
| | - Tomas Marques‐Bonet
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAGCentre of Genomic AnalysisBarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Zane Libke
- Instituto Nacional de BiodiversidadQuitoEcuador
- Fundación Sumak Kawsay In SituCantón MeraEcuador
| | | | | |
Collapse
|
17
|
Corlett RT. Achieving zero extinction for land plants. TRENDS IN PLANT SCIENCE 2023; 28:913-923. [PMID: 37142532 DOI: 10.1016/j.tplants.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/06/2023]
Abstract
Despite the importance of plants for humans and the threats to their future, plant conservation receives far less support compared with vertebrate conservation. Plants are much cheaper and easier to conserve than are animals, but, although there are no technical reasons why any plant species should become extinct, inadequate funding and the shortage of skilled people has created barriers to their conservation. These barriers include the incomplete inventory, the low proportion of species with conservation status assessments, partial online data accessibility, varied data quality, and insufficient investment in both in and ex situ conservation. Machine learning, citizen science (CS), and new technologies could mitigate these problems, but we need to set national and global targets of zero plant extinction to attract greater support.
Collapse
Affiliation(s)
- Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China; Center of Conservation Biology, Core Botanical Gardens, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China.
| |
Collapse
|
18
|
Karin BR, Arellano S, Wang L, Walzer K, Pomerantz A, Vasquez JM, Chatla K, Sudmant PH, Bach BH, Smith LL, McGuire JA. Highly-multiplexed and efficient long-amplicon PacBio and Nanopore sequencing of hundreds of full mitochondrial genomes. BMC Genomics 2023; 24:229. [PMID: 37131128 PMCID: PMC10155392 DOI: 10.1186/s12864-023-09277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Mitochondrial genome sequences have become critical to the study of biodiversity. Genome skimming and other short-read based methods are the most common approaches, but they are not well-suited to scale up to multiplexing hundreds of samples. Here, we report on a new approach to sequence hundreds to thousands of complete mitochondrial genomes in parallel using long-amplicon sequencing. We amplified the mitochondrial genome of 677 specimens in two partially overlapping amplicons and implemented an asymmetric PCR-based indexing approach to multiplex 1,159 long amplicons together on a single PacBio SMRT Sequel II cell. We also tested this method on Oxford Nanopore Technologies (ONT) MinION R9.4 to assess if this method could be applied to other long-read technologies. We implemented several optimizations that make this method significantly more efficient than alternative mitochondrial genome sequencing methods. RESULTS With the PacBio sequencing data we recovered at least one of the two fragments for 96% of samples (~ 80-90%) with mean coverage ~ 1,500x. The ONT data recovered less than 50% of input fragments likely due to low throughput and the design of the Barcoded Universal Primers which were optimized for PacBio sequencing. We compared a single mitochondrial gene alignment to half and full mitochondrial genomes and found, as expected, increased tree support with longer alignments, though whole mitochondrial genomes were not significantly better than half mitochondrial genomes. CONCLUSIONS This method can effectively capture thousands of long amplicons in a single run and be used to build more robust phylogenies quickly and effectively. We provide several recommendations for future users depending on the evolutionary scale of their system. A natural extension of this method is to collect multi-locus datasets consisting of mitochondrial genomes and several long nuclear loci at once.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA.
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.
| | - Selene Arellano
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Laura Wang
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Kayla Walzer
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Aaron Pomerantz
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Juan Manuel Vasquez
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
| | - Peter H Sudmant
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Bryan H Bach
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Lydia L Smith
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Jimmy A McGuire
- Department of Integrative Biology, Valley Life Sciences Building, University of California, Berkeley, CA, 94708, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
19
|
Bass D, Christison KW, Stentiford GD, Cook LSJ, Hartikainen H. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends Parasitol 2023; 39:285-304. [PMID: 36759269 DOI: 10.1016/j.pt.2022.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023]
Abstract
Detection of pathogens, parasites, and other symbionts in environmental samples via eDNA/eRNA (collectively eNA) is an increasingly important source of information about their occurrence and activity. There is great potential for using such detections as a proxy for infection of host organisms in connected habitats, for pathogen monitoring and surveillance, and for early warning systems for disease. However, many factors require consideration, and appropriate methods developed and verified, in order that eNA detections can be reliably interpreted and adopted for surveillance and assessment of disease risk, and potentially inclusion in international standards, such as the World Organisation for Animal Health guidelines. Disease manifestation results from host-symbiont-environment interactions between hosts, demanding a multifactorial approach to interpretation of eNA signals.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
| | - Kevin W Christison
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa; Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012, South Africa
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
| | - Lauren S J Cook
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK
| | - Hanna Hartikainen
- University of Nottingham, School of Life Sciences, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
20
|
De León LF, Silva B, Avilés-Rodríguez KJ, Buitrago-Rosas D. Harnessing the omics revolution to address the global biodiversity crisis. Curr Opin Biotechnol 2023; 80:102901. [PMID: 36773576 DOI: 10.1016/j.copbio.2023.102901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Human disturbances are altering global biodiversity in unprecedented ways. We identify three fundamental challenges underpinning our understanding of global biodiversity (namely discovery, loss, and preservation), and discuss how the omics revolution (e.g. genomics, transcriptomics, proteomics, metabolomics, and meta-omics) can help address these challenges. We also discuss how omics tools can illuminate the major drivers of biodiversity loss, including invasive species, pollution, urbanization, overexploitation, and climate change, with a special focus on highly diverse tropical environments. Although omics tools are transforming the traditional toolkit of biodiversity research, their application to addressing the current biodiversity crisis remains limited and may not suffice to offset current rates of biodiversity loss. Despite technical and logistical challenges, omics tools need to be fully integrated into global biodiversity research, and better strategies are needed to improve their translation into biodiversity policy and practice. It is also important to recognize that although the omics revolution can be considered the biologist's dream, socioeconomic disparity limits their application in biodiversity research.
Collapse
Affiliation(s)
- Luis F De León
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Bruna Silva
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kevin J Avilés-Rodríguez
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; Department of Biology, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
21
|
Democratizing plant genomics to accelerate global food production. Nat Genet 2022; 54:911-913. [PMID: 35817968 DOI: 10.1038/s41588-022-01122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Edwards A, Soares A, Debbonaire A, Edwards Rassner SM. Before you go: a packing list for portable DNA sequencing of microbiomes and metagenomes. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35802409 DOI: 10.1099/mic.0.001220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Arwyn Edwards
- Institute of Biology, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, UK.,Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| | - André Soares
- Institute of Biology, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, UK.,Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK.,Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK.,Present address: Group for Aquatic Microbial Ecology (GAME), University of Duisburg-Essen, Campus Essen - Environmental Microbiology and Biotechnology, Universitätsstr. 5, 45141 Essen, Germany
| | - Aliyah Debbonaire
- Institute of Biology, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, UK.,Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| | - Sara Maria Edwards Rassner
- Institute of Biology, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, UK.,Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| |
Collapse
|