1
|
Wang X, Liang Y, Shu J, Jia C, Li Q, Liu C, Wu Q. Transcription factor StWRKY1 is involved in monoterpene biosynthesis induced by light intensity in Schizonepeta tenuifolia Briq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108871. [PMID: 38945094 DOI: 10.1016/j.plaphy.2024.108871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Menthone-type monoterpenes are the main active ingredients of Schizonepeta tenuifolia Briq. Previous studies have indicated that light intensity influences the synthesis of menthone-type monoterpenes in S. tenuifolia, but the mechanism remains unclear. WRKY transcription factors play a crucial role in plant metabolism, yet their regulatory mechanisms in S. tenuifolia are not well understood. In this study, transcriptome data of S. tenuifolia leaves under different light intensities were analyzed, identifying 57 candidate transcription factors that influence monoterpene synthesis. Among these, 7 members of the StWRKY gene family were identified and mapped onto chromosomes using bioinformatics methods. The physicochemical properties of the proteins encoded by these StWRKY genes, their gene structures, and cis-acting elements were also studied. Comparative genomics and phylogenetic analyses revealed that Sch000013479 is closely related to AaWRKY1, AtWRKY41, and AtWRKY53, and it was designated as StWRKY1. Upon silencing and overexpressing the StWRKY1 transcription factor in S. tenuifolia leaves, changes in the expression of key genes in the menthone-type monoterpene synthesis pathway were observed. Specifically, when StWRKY1 was effectively silenced, the content of (-)-pulegone significantly decreased. These results enhance our understanding of the impact of StWRKYs on monoterpene synthesis in S. tenuifolia and lay the groundwork for further exploration of the regulatory mechanisms involved in the biosynthesis of menthone-type monoterpenes.
Collapse
Affiliation(s)
- Xue Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yafang Liang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Shu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Congling Jia
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiujuan Li
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chanchan Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qinan Wu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
3
|
Yun SE, Choi BBR, Nam SH, Kim GC. Antimicrobial Effects of Edible Mixed Herbal Extracts on Oral Microorganisms: An In Vitro Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1771. [PMID: 37893489 PMCID: PMC10608150 DOI: 10.3390/medicina59101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: The oral cavity is inhabited by pathogenic bacteria, whose growth can be inhibited by synthetic oral drugs, including antibiotics and other chemical compounds. Natural antimicrobial substances that elicit fewer negative side effects may serve as alternatives to synthetic agents for long-term use. Thus, the aim of this study was to evaluate the effects of edible mixed herbal extracts on the growth of oral pathogenic bacteria. Materials and Methods: The yield of each herbal extract was as follows: 5% Schizonepeta tenuifolia Briq (STB), 10.94% Mentha piperascens (MP), 5.47% Acanthopanax sessiliflorus Seem (AS), and 10.66% Glycyrrhiza uralensis (GU). The herbal extracts used included 0.5 mg/mL STB, 1.5 mg/mL MP, 1.5 mg/mL AS, and 2.0 mg/mL GU. Antimicrobial tests, morphological analyses (using scanning electron microscopy), microbial surface hydrophobicity measurements, and oral malodor reduction tests were performed using each extract. Statistical analyses were performed with IBM® SPSS® (version 24), using paired t-tests. Results: The mixed herbal extracts significantly inhibited the growth of Streptococcus mutans, Enterococcus faecalis, Candida albicans, and Porphyromonas gingivalis compared to the control (p < 0.001). Scanning electron microscopy results further revealed altered cellular morphology in the groups treated with the mixed herbal extracts. Additionally, the hydrophobicity assay results showed that the mixed herbal extracts reduced the oral adhesion capacities of bacteria (p < 0.001). Administration of the mixed herbal extracts also reduced the levels of volatile sulfur compounds, the main contributors to oral malodor (p < 0.001). Conclusions: Edible mixed herbal extracts can effectively eliminate oral pathogens and may be useful for improving oral health. The herbal extracts used were effective against all species of oral pathogens studied in this report.
Collapse
Affiliation(s)
- Se-Eun Yun
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Byul-Bo ra Choi
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Seoul-Hee Nam
- Department of Dental Hygiene, Kangwon National University, Samcheok 25949, Republic of Korea;
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Lin JG, Huang GJ, Su YC. Efficacy analysis and research progress of complementary and alternative medicines in the adjuvant treatment of COVID-19. J Biomed Sci 2023; 30:30. [PMID: 37138292 PMCID: PMC10155165 DOI: 10.1186/s12929-023-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has impacted human lifestyles around the world, causing huge distress in terms of public health systems, emergency response capacity and economic development. The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with respiratory involvement, cardiovascular-related diseases, and ultimately causes multiple organ failure and death in severely affected individuals. Thus, effective prevention or early treatment of COVID-19 is critical. An effective vaccine offers a way out of the pandemic for governments, the scientific community and people worldwide, but we still lack effective drug therapies, including treatments for the prevention and treatment of COVID-19. This had led to a high global demand for many complementary and alternative medicines (CAMs). Moreover, many healthcare providers are now requesting information about CAMs that prevent, relieve, or treat the symptoms of COVID-19 and even alleviate vaccine-related side effects. Experts and scholars must therefore become familiar with the use of CAMs in COVID-19, current research directions and effectiveness of CAMs for COVID-19. This narrative review updates the current status and research worldwide on the use of CAMs for COVID-19. The review provides reliable evidence on theoretical viewpoints and therapeutic efficacies of CAM combinations, and evidence in support of the therapeutic strategy of Taiwan Chingguan Erhau (NRICM102) against moderate-to-severe novel coronavirus infectious disease in Taiwan.
Collapse
Affiliation(s)
- Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Food Nutrition and Healthy Biotechnology, Asia University, No. 500, Lioufeng Road, Taichung, 41354, Taiwan.
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan
| |
Collapse
|
5
|
Wei Y, Hu D, Li D, Hu K, Zhang Q, Liu H, He Q, Yao C, Li H, Wang J. Antiviral effects and mechanisms against EV71 of the novel 2-Benzoxyl-Phenylpyridine Derivatives. Eur J Pharm Sci 2023; 186:106445. [PMID: 37044201 DOI: 10.1016/j.ejps.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
A series of 2-Benzoxyl-Phenylpyridine derivatives were evaluated for their potential antiviral activities against EV71. The preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on EV71, they could effectively inhibit virus-induced cytopathic effects (CPEs), reduce progeny viral yields, and present similar or better antiviral activities compared to the positive control drug ribavirin. Among these derivatives, compounds WY7, WY13 and WY14 showed the most potency against EV71. Investigation of the underlying mechanism of action revealed that these compounds target EV71 replication in cells post infection, they could profoundly inhibit viral RNA replication and protein synthesis, and inhibit virus-induced cell apoptosis. Further experiments demonstrated that compound WY7 potently inhibited the activity of the EV71 3C protease (3Cpro), and to some extent, it affected the activity of 3D polymerase (3Dpol), thus blocking viral replication, but not the activity of the 2A proteinase (2Apro). Modeling of the molecular binding of the 3Cpro-WY7 complex revealed that compound WY7 was predicted to insert into the substrate-binding pocket of EV71 3Cpro, blocking substrate recognition and thereby inhibiting EV71 3Cpro activity. These results indicate that these compounds might be feasible therapeutic agents against EV71 infection and that these compounds may provide promising lead scaffolds for the further design and synthesis of potential antiviral agents.
Collapse
Affiliation(s)
- Yanhong Wei
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Da Hu
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Dong Li
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Kanghong Hu
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Qian Zhang
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Huihui Liu
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Qun He
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Chenguang Yao
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Hanluo Li
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Huang X, Li J, Hong Y, Jiang C, Wu J, Wu M, Sheng R, Liu H, Sun J, Xin Y, Su W. Antiviral effects of the petroleum ether extract of Tournefortia sibirica L. against enterovirus 71 infection in vitro and in vivo. Front Pharmacol 2022; 13:999798. [PMID: 36523495 PMCID: PMC9744809 DOI: 10.3389/fphar.2022.999798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/16/2022] [Indexed: 09/22/2023] Open
Abstract
Enterovirus 71 (EV71) is the major cause of severe hand, foot, and mouth disease (HFMD). Compared to other HFMD pathogens, like coxsackievirus A16 (CVA16), EV71 can invade the central nervous system and cause permanent damage. At present, there are no available antivirals against EV71 for clinical treatment. Herein, multiple Chinese botanical drugs were collected, and 47 types of botanical extracts were extracted using aqueous solutions and organic solvents. Based on the cytopathic effect inhibition assay, petroleum ether extract of Tournefortia sibirica L. (PE-TS) demonstrated 97.25% and 94.75% inhibition rates for EV71 infection (at 250 μg/ml) and CVA16 infection (at 125 μg/ml), respectively, with low cytotoxicity. Preliminary mechanistic studies showed that PE-TS inhibits replication of EV71 genomic RNA and synthesis of the EV71 protein. The released extracellular EV71 progeny virus titer decreased by 3.75 lg under PE-TS treatment. Furthermore, using a newborn mouse model, PE-TS treatment protected 70% and 66.7% of mice from lethal dose EV71 intracranial challenge via administration of intraperitoneal injection at 0.4 mg/g and direct lavage at 0.8 mg/g, respectively. The chemical constituents of the PE-TS were analyzed by Gas Chromatography-Mass Spectrometer (GC-MS), and a total of 60 compounds were identified. Compound-target network analysis and molecular docking implied potential bioactive compounds and their protein targets against EV71 associated pathology. The present study identified antiviral effects of PE-TS against EV71/CVA16 infection in vitro and EV71 infection in vivo, providing a potential antiviral botanical drug extract candidate for HFMD drug development.
Collapse
Affiliation(s)
- Xinyu Huang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiemin Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Hong
- Key Laboratory for Mongolian Medicine R&D Engineering of the Ministry of Education, School of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao, China
| | - Chenghan Jiang
- College of Agriculture, Yanbian University, Yanji, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Min Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Rui Sheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hongtao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory for Mongolian Medicine R&D Engineering of the Ministry of Education, School of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Review on Chemical Constituents of Schizonepeta tenuifolia Briq. and Their Pharmacological Effects. Molecules 2022; 27:molecules27165249. [PMID: 36014489 PMCID: PMC9415675 DOI: 10.3390/molecules27165249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Schizonepeta tenuifolia Briq. is a famous Chinese traditional medicine with antipyretic, anti-inflammatory, analgesic and hemostatic effects. Many chemical components can be isolated and detected by using various analysis methods, including monoterpenes, sesquiterpenes, aldehydes, ketones, quinones, alcohols, phenols, carboxylic acids and esters, etc., in which volatile oil was considered to be the main chemical component. In this paper, the chemical constituents and their pharmacological effects were reviewed by summarizing the recent literature, revealing the relationship between them.
Collapse
|
8
|
Cheng ML, Wu CH, Chien KY, Lai CH, Li GJ, Liu YY, Lin G, Ho HY. Enteroviral 2B Interacts with VDAC3 to Regulate Reactive Oxygen Species Generation That Is Essential to Viral Replication. Viruses 2022; 14:v14081717. [PMID: 36016340 PMCID: PMC9416218 DOI: 10.3390/v14081717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Enterovirus (EV) 71 caused episodes of outbreaks in China and Southeast Asia during the last few decades. We have previously reported that EV71 induces reactive oxygen species (ROS). However, the underlying mechanism remains elusive. Co-immunoprecipitation-proteomic analysis revealed that enteroviral 2B protein interacted with mitochondrial voltage-dependent anion channel 3 (VDAC3). Knockdown (KD) of VDAC3 expression specifically inhibited enteroviral replication. Single-round viral replication was also inhibited in KD cells, suggesting that VDAC3 plays an essential role in replication. Consistent with this, VDAC3 gene KD significantly reduced the EV71-induced mitochondrial ROS generation. Exogenous 2B expression could induce the mitochondrial ROS generation that was significantly reduced in VDAC3-KD cells or in the Mito-TEMPO-treated cells. Moreover, VDAC3 appears to be necessary for regulation of antioxidant metabolism. VDAC3 gene KD led to the enhancement of such pathways as hypotaurine/taurine synthesis in the infected cells. Taken together, these findings suggest that 2B and VDAC3 interact to enhance mitochondrial ROS generation, which promotes viral replication.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chien-Hsiang Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chien-Hsueh Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Guan-Jie Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yuan-Yu Liu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung University, Taoyuan City 33302, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan City 33302, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 3318)
| |
Collapse
|
9
|
Chang KW, Lin TY, Fu SL, Ping YH, Chen FP, Kung YY. A Houttuynia cordata-based Chinese herbal formula improved symptoms of allergic rhinitis during the COVID-19 pandemic. J Chin Med Assoc 2022; 85:717-722. [PMID: 35421875 DOI: 10.1097/jcma.0000000000000732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The symptoms of coronavirus disease 2019 (COVID-19) such as hyposmia, rhinorrhea, nasal obstruction, and cough are similar to those of chronic allergic rhinitis (AR). Such symptoms can easily lead AR patients to unnecessary anxiety, misdiagnosis, and invasive diagnostic tests in the COVID-19 pandemic. Interleukin-6 (IL-6) is an important mediator for chronic AR and plays a crucial role in the inflammation of COVID-19. Houttuynia cordata (HC) has been shown to reduce nasal congestion and swelling by suppressing the activation of IL-6 and is used to fight COVID-19. A novel HC-based Chinese herbal formula, Zheng-Yi-Fang (ZYF), was developed to test effects on nasal symptoms of patients with AR in the COVID-19 pandemic. METHODS Participants aged between 20 and 60 years with at least a 2-year history of moderate to severe perennial AR were enrolled. Eligible participants were randomly allocated to either the intervention group (taking ZYF) or the control group (using regular western medicine) for 4 weeks. The Chinese version of the Rhinosinusitis Outcome Measures was used to evaluate impacts on quality of life and nasal symptoms of participants with AR. In addition, the effect of ZYF on lipopolysaccharide (LPS)-induced IL-6 was investigated. RESULTS Participants with AR taking ZYF improved their symptoms of nasal obstruction, nasal secretion, hyposmia, and postnasal drip in comparison with those of the control group. Meanwhile, ZYF exhibited inhibition of IL-6 secretion in the LPS-induced inflammatory model. CONCLUSION ZYF has potential effects to relieve nasal symptoms for AR during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tung-Yi Lin
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shu-Ling Fu
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh-Hsin Ping
- Department of Pharmacology, School of Medicine and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Ying Kung
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
10
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
11
|
Liu X, Zhang Y, Wu M, Ma Z, Cao H. Colorimetric Parameters Correlated with the Variation in the Marker Constituent Contents During the Stir-fry Processing of Schizonepetae Spica. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Liu C, Gao Q, Shang Z, Liu J, Zhou S, Dang J, Liu L, Lange I, Srividya N, Lange BM, Wu Q, Lin W. Functional Characterization and Structural Insights Into Stereoselectivity of Pulegone Reductase in Menthol Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:780970. [PMID: 34917113 PMCID: PMC8670242 DOI: 10.3389/fpls.2021.780970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 05/29/2023]
Abstract
Monoterpenoids are the main components of plant essential oils and the active components of some traditional Chinese medicinal herbs like Mentha haplocalyx Briq., Nepeta tenuifolia Briq., Perilla frutescens (L.) Britt and Pogostemin cablin (Blanco) Benth. Pulegone reductase is the key enzyme in the biosynthesis of menthol and is required for the stereoselective reduction of the Δ2,8 double bond of pulegone to produce the major intermediate menthone, thus determining the stereochemistry of menthol. However, the structural basis and mechanism underlying the stereoselectivity of pulegone reductase remain poorly understood. In this study, we characterized a novel (-)-pulegone reductase from Nepeta tenuifolia (NtPR), which can catalyze (-)-pulegone to (+)-menthone and (-)-isomenthone through our RNA-seq, bioinformatic analysis in combination with in vitro enzyme activity assay, and determined the structure of (+)-pulegone reductase from M. piperita (MpPR) by using X-ray crystallography, molecular modeling and docking, site-directed mutagenesis, molecular dynamics simulations, and biochemical analysis. We identified and validated the critical residues in the crystal structure of MpPR involved in the binding of the substrate pulegone. We also further identified that residues Leu56, Val282, and Val284 determine the stereoselectivity of the substrate pulegone, and mainly contributes to the product stereoselectivity. This work not only provides a starting point for the understanding of stereoselectivity of pulegone reductases, but also offers a basis for the engineering of menthone/menthol biosynthetic enzymes to achieve high-titer, industrial-scale production of enantiomerically pure products.
Collapse
Affiliation(s)
- Chanchan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Qiyu Gao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuo Shang
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siwei Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, China
| | - Jingjie Dang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Licheng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
| | - B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Wei Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Xue Z, Wang Y, Yu W, Zhang Z, Kou X. Research Advancement of Natural Active Components in Alleviating Lung Damage Induced by PM2.5. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Wang S, Yang X, Wang W, Zhang Y, Li T, Zhao L, Bao Y, Meng X. Interpretation of the absorbed constituents and pharmacological effect of Spica Schizonepetae extract on non-small cell lung cancer. PLoS One 2021; 16:e0248700. [PMID: 33730076 PMCID: PMC7968677 DOI: 10.1371/journal.pone.0248700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 12/09/2022] Open
Abstract
As a traditional Chinese medicine (TCM) with a usage history of over 2,000 years in China, Spica Schizonepetae possesses definite clinical activity in the treatment of non-small cell lung cancer (NSCLC). However, its active ingredients and mechanism of action remain unclear at present. The further exploration of its active components and underlying mechanism will provide a basis for the development of candidate anti-tumor drugs. Our previous study explored the chemical constituents of Spica Schizonepetae extract (SSE). On this basis, molecular networking technology was applied in analyzing the QTOF-MS/MS data of rat plasma after intragastric administration of SSE using the GNPS database platform. A total of 26 components were found, including 9 proterotype components and 17 metabolites, which revealed the potential active ingredients of SSE. Later, the Lewis lung cancer mouse model was established, and the inhibition rate and histopathological sections were used as the indicators to investigate the anti-tumor effect of SSE, whereas the body weight, survival rate, thymus index and spleen index served as the indicators to explore the pharmacological effects of SSE on improving mouse immunity. The results showed that SSE had comparable anti-tumor efficacy to cisplatin, which enhanced the immunity, improved the quality of life, and extended the survival time of lung cancer mice. Furthermore, human A549 lung tumor cells were selected to explore the mechanism of SSE in treating NSCLC based on cell metabonomics. After data mining by the MPP software, 23 differential endogenous metabolites were identified between SSE and tumor groups. Moreover, results of pathway enrichment analysis using the MetaboAnalyst 4.0 software indicated that these metabolites were mainly enriched in four metabolic pathways (p < 0.1). By adopting the network pharmacology method, the metabolic pathways discovered by cell metabolomics were verified against the ChEMBL, STITCH, UniProt and TCGA databases, and differences in the underlying mechanism between cells and humans were found. It was proved that SSE affected the metabolism of purine, arachidonic acid and histidine to exert the anti-tumor efficacy. Furthermore, the multi-target, multi-pathway, and immunoenhancement mechanism of SSE in anti-tumor treatment was revealed, which provided a scientific basis for new drug development and the rational application of Spica Schizonepetae in clinic.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
| | - Xinxin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
| | - Wei Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yunkun Zhang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
| | - Lin Zhao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- * E-mail: (YB); (XM)
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- * E-mail: (YB); (XM)
| |
Collapse
|
15
|
Bai X, Liu L, Zhang J, Chen L, Wu T, Aisa HA, Maiwulanjiang M. Spectrum-effect relationship between GC-QTOF-MS fingerprint and antioxidant, anti-inflammatory activities of Schizonepeta tenuifolia essential oil. Biomed Chromatogr 2021; 35:e5106. [PMID: 33638568 DOI: 10.1002/bmc.5106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Schizonepeta tenuifolia (Benth.) Briq, a traditional Chinese medicine, is an annual herbaceous plant that is widely distributed in China, Japan, and Korea. The essential oil (EO) of S. tenuifolia has antioxidant and anti-inflammatory properties. However, the components contributing to its antioxidant and anti-inflammatory activities remain unclear. This study was aimed at investigating the spectrum-effect relationship between GC-MS fingerprint and the antioxidant and anti-inflammatory effects of S. tenuifolia EO. Here, the fingerprints of EO from 10 batches of S. tenuifolia from various sources were established using GC-MS, and the antioxidant and anti-inflammatory bioactivities were evaluated using 2,2-diphenyl-1-picrylhydrazyl and nitric oxide inhibitory assays, respectively. Finally, 13 common peaks were identified from 10 batches of S. tenuifolia by searching against the standard mass spectra in NIST 14 and comparing the literature retention index. The different sources of S. tenuifolia EO exhibit mild antioxidant activities and significant anti-inflammatory effects. In particular, menthone (peak 3), isomenthone (peak 4), pulegone (peak 7), piperitone (peak 8), and β-caryophyllene (peak 11) might be the dominant constituents responsible for the antioxidant and anti-inflammatory activities of S. tenuifolia EO. This method may provide a time-saving, convenient way to screen the potential effective components of S. tenuifolia EO.
Collapse
Affiliation(s)
- Xi Bai
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.,College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Junping Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Li Chen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Tao Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Maitinuer Maiwulanjiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
16
|
Tsai KC, Huang YC, Liaw CC, Tsai CI, Chiou CT, Lin CJ, Wei WC, Lin SJS, Tseng YH, Yeh KM, Lin YL, Jan JT, Liang JJ, Liao CC, Chiou WF, Kuo YH, Lee SM, Lee MY, Su YC. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Biomed Pharmacother 2020; 133:111037. [PMID: 33249281 PMCID: PMC7676327 DOI: 10.1016/j.biopha.2020.111037] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is a global pandemic, with over 50 million confirmed cases and 1.2 million deaths as of November 11, 2020. No therapies or vaccines so far are recommended to treat or prevent the new coronavirus. A novel traditional Chinese medicine formula, Taiwan Chingguan Yihau (NRICM101), has been administered to patients with COVID-19 in Taiwan since April 2020. Its clinical outcomes and pharmacology have been evaluated. Among 33 patients with confirmed COVID-19 admitted in two medical centers, those (n = 12) who were older, sicker, with more co-existing conditions and showing no improvement after 21 days of hospitalization were given NRICM101. They achieved 3 consecutive negative results within a median of 9 days and reported no adverse events. Pharmacological assays demonstrated the effects of the formula in inhibiting the spike protein/ACE2 interaction, 3CL protease activity, viral plaque formation, and production of cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. This bedside-to-bench study suggests that NRICM101 may disrupt disease progression through its antiviral and anti-inflammatory properties, offering promise as a multi-target agent for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan.
| | - Yi-Chia Huang
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chia-I Tsai
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Section 4, Seatwen District, Taichung 407204, Taiwan.
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Sunny Jui-Shan Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Jia-Tsrong Jan
- Genomic Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan.
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Yao-Haur Kuo
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Shen-Ming Lee
- Department of Statistic, Feng Chia University, No. 100, Wenhwa Road, Seatwen District, Taichung 40724, Taiwan.
| | - Ming-Yung Lee
- Department of Data Science and Big Data Analytics, Providence University, Taichung, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan.
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
17
|
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review. Curr Drug Discov Technol 2020; 17:469-483. [PMID: 31309894 DOI: 10.2174/1570163816666190715114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Infectious diseases are amongst the leading causes of death in the world and central nervous system infections produced by viruses may either be fatal or generate a wide range of symptoms that affect global human health. Most antiviral plants contain active phytoconstituents such as alkaloids, flavonoids, and polyphenols, some of which play an important antiviral role. Herein, we present a background to viral central nervous system (CNS) infections, followed by a review of medicinal plants and bioactive compounds that are effective against viral pathogens in CNS infections. METHODS A comprehensive literature search was conducted on scientific databases including: PubMed, Scopus, Google Scholar, and Web of Science. The relevant keywords used as search terms were: "myelitis", "encephalitis", "meningitis", "meningoencephalitis", "encephalomyelitis", "central nervous system", "brain", "spinal cord", "infection", "virus", "medicinal plants", and "biological compounds". RESULTS The most significant viruses involved in central nervous system infections are: Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV), West Nile Virus (WNV), Enterovirus 71 (EV71), Japanese Encephalitis Virus (JEV), and Dengue Virus (DENV). The inhibitory activity of medicinal plants against CNS viruses is mostly active through prevention of viral binding to cell membranes, blocking viral genome replication, prevention of viral protein expression, scavenging reactive Oxygen Species (ROS), and reduction of plaque formation. CONCLUSION Due to the increased resistance of microorganisms (bacteria, viruses, and parasites) to antimicrobial therapies, alternative treatments, especially using plant sources and their bioactive constituents, appear to be more fruitful.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sardari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, United Kingdom
| |
Collapse
|
18
|
Liu X, Zhang Y, Wu M, Ma Z, Cao H. The Potential Transformation Mechanisms of the Marker Components of Schizonepetae Spica and Its Charred Product. Molecules 2020; 25:molecules25163749. [PMID: 32824539 PMCID: PMC7463568 DOI: 10.3390/molecules25163749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Schizonepetae Spica (SS) is commonly used for treating colds, fevers, bloody stool and metrorrhagia in China. To treat colds and fevers, traditional Chinese medicine doctors often use raw SS, while to treat bloody stool and metrorrhagia, they usually use Schizonepetae Spica Carbonisata (SSC; raw SS processed by stir-frying until carbonization). However, there have been limited investigations designed to uncover the mechanism of stir-fry processing. In the present study, a method combining gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) was developed for the comprehensive analysis of the chemical profiles of SS and SSC samples. Principal component analysis of the GC-MS data demonstrated that there were 16 significant differences in volatile compounds between the SS and SSC samples. The simultaneous quantification of six nonvolatile compounds was also established based on HPLC, and remarkable differences were found between the two products. These changes were probably responsible for the various pharmacological effects of SS and SSC as well as the observed hepatotoxicity. Finally, the mechanisms could be rationalized by deducing possible reactions involved in the transformation of these marker components. This work reports a new strategy to reveal the chemical transformation of SS during stir-fry processing.
Collapse
Affiliation(s)
| | | | | | | | - Hui Cao
- Correspondence: (Y.Z.); (H.C.)
| |
Collapse
|
19
|
Zhang T, Qiu J, Wu X, Huang S, Yuan H, Park S. Schizonepeta Tenuifolia with Alpinia Oxyphylla Alleviates Atopic Dermatitis and Improves the Gut Microbiome in Nc/Nga Mice. Pharmaceutics 2020; 12:E722. [PMID: 32751987 PMCID: PMC7465453 DOI: 10.3390/pharmaceutics12080722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that may be related to gut microbes. Schizonepeta Tenuifolia Briquet (STB) and Alpinia Oxyphylla Miquel (AOM) has traditionally been used for anti-inflammatory activity. We evaluated the effects of STB, AOM and STB+AOM extracts on 2,4-dinitro-1-chlorobenzene (DNCB)-induced AD skin lesions in Nc/Nga mice and action mechanism was explored. AD lesions were induced in the dorsal skin of Nc/Nga mice by topical application of 1% followed by 0.2% DNCB. After DNCB was applied, the mice had topical applications of either 30% water, 0.01% dexamethasone, 30% STB, 30% AOM, 15% STB + 15% AOM extracts in butylene glycol (BG). Each group was also fed corresponding high-fat diets with 1% dextrin (AD-Con and AD-Positive), 1% STB (AD-STB), 1% AOM (AD-AOM) and 0.5% STB + 0.5% (AD-MIX). Normal-control mice had no DNCB application. The study evaluated the skin AD severity, scratching behavior and weight changes of AD mice for 5 weeks. Compared with AD-Con, AD-STB, AD-AOM and AD-MIX alleviated the clinical AD symptoms (erythema, pruritus, edema, erosion and lichenification and scratching behaviors), normalized immune chemistry (serum IgE concentration, mast cells and eosinophil infiltration), improved skin hyperplasia and enhanced the gut microbiome. AD-STB, AD-AOM, AD-MIX and AD-positive treatments inhibited cutaneous mRNA expression of TNF-α, IL-4 and IL-13 and serum IgE concentrations. AD-MIX most effectively reduced clinical AD symptoms and proinflammatory cytokines. AD-Positive also reduced them but serum GOT and GPT concentrations were abnormally high. AD-STB and AD-MIX increased the alpha-diversity of fecal bacteria and reduced the serum acetate concentration, compared to the AD-Con. In conclusion, the mixture of STB and AOM is effective for treating AD symptoms locally and systemically without adverse effects and are potential interventions for atopic dermatitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea; (T.Z.); (J.Q.); (X.W.); (S.H.); (H.Y.)
| |
Collapse
|
20
|
Huang ST, Lai HC, Lin YC, Huang WT, Hung HH, Ou SC, Lin HJ, Hung MC. Principles and treatment strategies for the use of Chinese herbal medicine in patients at different stages of coronavirus infection. Am J Cancer Res 2020; 10:2010-2031. [PMID: 32774998 PMCID: PMC7407358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel, human-infecting β-coronavirus enveloped, positive-sense single-stranded RNA viruses, similar to the severe acute respiratory syndrome (SARS) infection that emerged in November 2002. In traditional Chinese medicine (TCM), the epidemic disease concepts of "febrile epidemics" (wenyi) or "warm diseases" (wenbing) are based on geographic and cultural aspects, and Chinese herbal medicine (CHM) played an important role in the treatment of epidemic diseases. CHM was widely used to treat patients suffered with SARS almost two decades ago during outbreak of SARS, with proven safety and potential benefits. TCM has also been widely used to treat cancer patients for a long history and much of them associate with immunomodulatory activity and are used to treat coronavirus-related diseases. We propose the use of CHM treatment principles for clinical practice, based on four main stages of COVID-19 infection: early, intermediate, severe, and convalescence. We suggest corresponding decoctions that exhibit antiviral activity and anti-inflammatory effects in the early stage of infection; preventing the disease from progressing from an intermediate to severe stage of infection; restoring normal lung function and improving consciousness in the severe stage; and ameliorating pulmonary and vascular injury in the convalescent stage. We summarize the pharmaceutical mechanisms of CHM for treating coronavirus via antiviral, anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University HospitalTaichung, Taiwan
- An-Nan Hospital, China Medical UniversityTainan, Taiwan
| | - Hsiang-Chun Lai
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Yu-Chun Lin
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Wei-Te Huang
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hao-Hsiu Hung
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hung-Jen Lin
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
21
|
Metabolic Reprogramming of Host Cells in Response to Enteroviral Infection. Cells 2020; 9:cells9020473. [PMID: 32085644 PMCID: PMC7072837 DOI: 10.3390/cells9020473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins.
Collapse
|
22
|
Liu X, Zhang Y, Wu M, Ma Z, Cao H. Color discrimination and gas chromatography-mass spectrometry fingerprint based on chemometrics analysis for the quality evaluation of Schizonepetae Spica. PLoS One 2020; 15:e0227235. [PMID: 31910241 PMCID: PMC6946158 DOI: 10.1371/journal.pone.0227235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/13/2019] [Indexed: 01/04/2023] Open
Abstract
Schizonepetae Spica (SS), the dried spike of Schizonepeta tenuifolia Briq., is a traditional Chinese medicinal herb. According to the color of persistent calyx, SS is categorized into two classes: the yellowish-green-type and the brownish-type. Based on the chemometrics analysis of gas chromatography-mass spectrometry (GC-MS), a novel model of identifying and evaluating the quality of SS in different colors was constructed for the first time in this work. 20 batches SS samples of different colors were collected and used to extract essential oils. The average essential oils yield of SS in yellowish-green color was significantly higher than that of SS in brownish color from the same origin (p<0.05). The GC-MS fingerprints of 20 batches SS samples whose correlation coefficients were over 0.964 demonstrated SS samples were consistent to some extent in spite of slightly different chemical indexes. A total of 39 common volatiles compounds were identified. Hierarchical clustering analysis (HCA), principal component analysis (PCA) and partial least-squares discriminate analysis (PLS-DA) were developed to distinguish SS samples characterized by different colors. Consistent results were obtained to show that SS samples could be successfully grouped according to their color. Finally, 4,5,6,7-tetrahydro-3,6-dimethyl-benzofuran and pulegone were detected as the key variables for discriminating SS samples of different colors and for quality control. The obtained results proved that SS of good quality were often yellowish-green and those of poor quality were often brownish.
Collapse
Affiliation(s)
- Xindan Liu
- Research Center for Traditional Chinese Medicine of Lingnan, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Ying Zhang
- Research Center for Traditional Chinese Medicine of Lingnan, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Menghua Wu
- Research Center for Traditional Chinese Medicine of Lingnan, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Zhiguo Ma
- Research Center for Traditional Chinese Medicine of Lingnan, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Hui Cao
- Research Center for Traditional Chinese Medicine of Lingnan, College of Pharmacy, Jinan University, Guangzhou, PR China
- * E-mail:
| |
Collapse
|
23
|
Do MH, Choi J, Kim Y, Park HY, Park Y, Ha SK, Hur J. Schizonepeta tenuifolia reduces methylglyoxal-induced cytotoxicity and oxidative stress in mesangial cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Wang S, Yang X, Han X, Li T, Bao Y, Meng X. Anti-lung cancer activity of Schizonepetae Spica extract and identification of its compounds by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1646274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian, PR China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, PR China
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China
| | - Xinxin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian, PR China
| | - Xiao Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian, PR China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, PR China
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian, PR China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, PR China
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian, PR China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, PR China
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China
| |
Collapse
|
25
|
Yang CH, Liang CT, Jiang ST, Chen KH, Yang CC, Cheng ML, Ho HY. A Novel Murine Model Expressing a Chimeric mSCARB2/hSCARB2 Receptor Is Highly Susceptible to Oral Infection with Clinical Isolates of Enterovirus 71. J Virol 2019; 93:e00183-19. [PMID: 30894476 PMCID: PMC6532076 DOI: 10.1128/jvi.00183-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 01/05/2023] Open
Abstract
Enterovirus 71 (EV71) infection is generally associated with hand-foot-and-mouth disease (HFMD) and may cause severe neurological disorders and even death. An effective murine oral infection model for studying the pathogenesis of various clinical EV71 isolates is lacking. We developed a transgenic (Tg) mouse that expresses an EV71 receptor, that is, human scavenger receptor class B member 2 (hSCARB2), in a pattern highly similar to that of endogenous murine SCARB2 (mSCARB2) protein. A FLAG-tagged SCARB2 cDNA fragment composed of exons 3 to 12 was inserted into a murine Scarb2 gene-containing bacterial artificial chromosome (BAC) clone, and the resulting transgene was used for establishment of chimeric receptor-expressing Tg mice. Tg mice intragastrically (i.g.) infected with clinical isolates of EV71 showed neurological symptoms, such as ataxia and paralysis, and fatality. There was an age-dependent decrease in susceptibility to viral infection. Pathological characteristics of the infected Tg mice resembled those of encephalomyelitis in human patients. Viral infection was accompanied by microglial activation. Clodronate treatment of the brain slices from Tg mice enhanced viral replication, while lipopolysaccharide treatment significantly inhibited it, suggesting an antiviral role for microglia during EV71 infection. Taken together, this Tg mouse provides a model that closely mimics natural infection for studying EV71 pathogenesis and for evaluating the efficacy of vaccines or other antiviral drugs.IMPORTANCE The availability of a murine model of EV71 infection is beneficial for the understanding of pathogenic mechanisms and the development and assessment of vaccines and antiviral drugs. However, the lack of a murine oral infection model thwarted the study of pathogenesis induced by clinically relevant EV71 strains that are transmitted via the oral-oral or oral-fecal route. Our Tg mice could be intragastrically infected with clinically relevant EV71 strains in an efficient way and developed neurological symptoms and pathological changes strikingly resembling those of human infection. Moreover, these mice showed an age-dependent change in susceptibility that is similar to the human case. This Tg mouse, when combined with the use of other genetically modified mice, potentially contributes to studying the relationship between developmental changes in immunity and susceptibility to virus.
Collapse
Affiliation(s)
- Cheng-Hung Yang
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Chung-Tiang Liang
- Novo Nordisk Research Centre, Department of Animal Facility, Discovery Biology, Beijing, China
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
| | - Chun-Chiao Yang
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Yao Ho
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
26
|
Hsp27 Responds to and Facilitates Enterovirus A71 Replication by Enhancing Viral Internal Ribosome Entry Site-Mediated Translation. J Virol 2019; 93:JVI.02322-18. [PMID: 30814282 PMCID: PMC6475798 DOI: 10.1128/jvi.02322-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target. Enterovirus 71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease (HFMD) and fatal neurological diseases, and no effective treatment is available. Characterization of key host factors is important for understanding its pathogenesis and developing antiviral drugs. Here we report that Hsp27 is one of the most upregulated proteins in response to EV-A71 infection, as revealed by two-dimensional gel electrophoresis-based proteomics studies. Depletion of Hsp27 by small interfering RNA or CRISPR/Cas9-mediated knockout significantly inhibited viral replication, protein expression, and reproduction, while restoration of Hsp27 restored such virus activities. Furthermore, we show that Hsp27 plays a crucial role in regulating viral internal ribosome entry site (IRES) activities by two different mechanisms. Hsp27 markedly promoted 2Apro-mediated eukaryotic initiation factor 4G cleavage, an important process for selecting and initiating IRES-mediated translation. hnRNP A1 is a key IRES trans-acting factor (ITAF) for enhancing IRES-mediated translation. Surprisingly, knockout of Hsp27 differentially blocked hnRNP A1 but not FBP1 translocation from the nucleus to the cytoplasm and therefore abolished the hnRNP A1 interaction with IRES. Most importantly, the Hsp27 inhibitor 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), a compound isolated from a traditional Chinese herb, significantly protected against cytopathic effects and inhibited EV-A71 infection. Collectively, our results demonstrate new functions of Hsp27 in facilitating virus infection and provide novel options for combating EV-A71 infection by targeting Hsp27. IMPORTANCE Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target.
Collapse
|
27
|
Antiviral activity of Schizonepeta tenuifolia Briquet against noroviruses via induction of antiviral interferons. J Microbiol 2018; 56:683-689. [DOI: 10.1007/s12275-018-8228-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023]
|
28
|
Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection. Viruses 2018; 10:v10040155. [PMID: 29597291 PMCID: PMC5923449 DOI: 10.3390/v10040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 01/01/2023] Open
Abstract
Enterovirus 71 (EV71) infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD). Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.
Collapse
|
29
|
Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K. Effects of Salt Stress on Plant Growth, Antioxidant Capacity, Glandular Trichome Density, and Volatile Exudates of Schizonepeta tenuifolia Briq. Int J Mol Sci 2018; 19:E252. [PMID: 29342961 PMCID: PMC5796199 DOI: 10.3390/ijms19010252] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022] Open
Abstract
Salinity is a major abiotic factor affecting plant growth and secondary metabolism. However, no information is available about its effects on Schizonepeta tenuifolia Briq., a traditional Chinese herb. Here, we investigated the changes of plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of S. tenuifolia exposed to salt stress (0, 25, 50, 75, 100 mM NaCl). Results showed that its dry biomass was reduced by salt treatments except 25 mM NaCl. Contents of antioxidants, including phenolics and flavonoids, increased at low (25 mM) or moderate (50 mM) levels, but declined at severe (75 and 100 mM) levels. On leaf surfaces, big peltate and small capitate glandular trichomes (GTs) were found. Salt treatments, especially at moderate and severe concentrations, enhanced the density of total GTs on both leaf sides. The most abundant compound in GT volatile exudates was pulegone. Under salinity, relative contents of this component and other monoterpenes decreased significantly; biosynthesis and accumulation of esters were enhanced, particularly sulfurous acid,2-ethylhexyl hexyl ester, which became the second major compound as salinity increased. In conclusion, salt stress significantly influenced the growth and secondary metabolism of S. tenuifolia, enabling us to study the changes of its pharmacological activities.
Collapse
Affiliation(s)
- Ying Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Nanyu Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lijin Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yongjuan Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoqing Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kangcai Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|