1
|
Xiong S, Xu C, Yang C, Luo H, Xie J, Xia B, Zhang Z, Liao Y, Li C, Li Y, Lin L. FuKe QianJin capsule alleviates endometritis via inhibiting inflammation and pyroptosis through modulating TLR4/ NF-κB /NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118962. [PMID: 39426577 DOI: 10.1016/j.jep.2024.118962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuke Qianjin Capsule (FKC), a traditional Chinese medicine commonly employed for treating endometritis, lacks reported treatment mechanisms. AIM OF THE STUDY The aim of the present study was to explore the role and mechanism of FKC in lipopolysaccharide (LPS)-induced endometritis. MATERIALS AND METHODS The main active ingredients of FKC were identified via high-performance liquid chromatography (HPLC) in conjunction with standard substances. Prior to endometritis induction, Sprague Dawley female rats received FKC for 7 days. The endometritis model was established through an intrauterine injection of 1 mg/kg LPS. Concurrently, an LPS-induced RAW264.7 cell inflammation model was utilized, in which the cells were treated with serum containing Fuke Qianjin Capsule. Pathological alterations in the endometrium were assessed via H&E staining and transmission electron microscopy (TEM). The contents of MPO in uterine tissues, and NO release in cells, along with the secretion of IL-18, IL-1β, IL-6, and TNF-α in both tissues and cells, were determined via assay kits. The mRNA levels of Nlrp3, Caspase-1, Gsdmd, and Il-1β in uterine tissues and cells were analyzed via qPCR. The protein levels of TLR4, p65, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β in these samples were evaluated through Western blot analysis. Immunofluorescence was used to assess the protein levels of p-P65 and NLRP3 in uterine tissues and cells. RESULTS Five primary active components of FKC were identified. Treatment with FKC in vivo mitigated endometrial pathological damage and significantly decreased the levels of MPO, IL-18, IL-1β, IL-6, and TNF-α, as well as the levels of Nlrp3, Caspase-1, Gsdmd, and Il-1β mRNA in tissue samples. Treatment with FKC inhibited the expression of TLR4, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β, as well as reduced NLRP3 protein fluorescence intensity, and inhibited P65 phosphorylation. In vitro findings demonstrated that FKC-containing serum reduced IL-18, IL-1β, IL-6, and TNF-α levels, as well as reduced Nlrp3, Caspase-1, Gsdmd, and Il-1β mRNA levels. In addition, FKC-containing serum inhibited the protein expression of TLR4, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β. FKC-containing serum also reduced NLRP3 protein fluorescence intensity and suppressed P65 phosphorylation. CONCLUSION FKC reverses the LPS induced NLRP3 inflammasome activation, and mitigates inflammation and pyroptosis through the modulation of the TLR4/NF-κB/NLRP3 pathway, thereby alleviating endometritis.
Collapse
Affiliation(s)
- Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chunfang Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chen Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Hongshan Luo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Zhimin Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Yingyan Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yamei Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
2
|
Dai W, Wu J, Li K, Xu Y, Wang W, Xiao W. Andrographolide: A promising therapeutic agent against organ fibrosis. Eur J Med Chem 2024; 280:116992. [PMID: 39454221 DOI: 10.1016/j.ejmech.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/07/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Fibrosis is the terminal pathology of chronic illness in many organs, marked by excessive accumulation of extracellular matrix proteins. These changes influence organ function, ultimately resulting in organ failure. Although significant progress has been achieved in comprehending the molecular pathways responsible for fibrosis in the last decades, effective and approved clinical therapies for the condition are still lacking. Andrographolide is a diterpenoid isolated and purified mainly from the aboveground parts of the Andrographis paniculata plant, which possesses good effects of purging heat, detoxifying, antibacterial and anti-inflammatory. In-depth research has gradually confirmed the anticancer, antioxidant, antiviral and other effects of Andro so that it can play a preventive and therapeutic role in various diseases. Over the past few years, an increasing number of research findings have indicated that Andro exerts antifibrotic effects in various organs by acting on transforming growth factor-β/small mother against decapentaplegic protein, mitogen-activated protein kinases, nuclear factor-E2-related factor 2, nuclear factor kappa-B and other signalling molecules to inhibit inflammation, oxidative stress, epithelial-mesenchymal transition, fibroblast activation and collagen buildup. This review presents a compilation of findings regarding the antifibrotic impact of Andro in tissue and cell models in vitro and in vivo. Emphasis is placed on the potential therapeutic benefits of Andro in diseases related to organ fibrosis. Existing studies and cutting-edge technologies on Andro pharmacokinetics, toxicity and bioavailability are briefly discussed to provide evidence for accelerating its clinical conversion and adoption.
Collapse
Affiliation(s)
- Wei Dai
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Yingying Xu
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Research Institute for Biology and Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance(Shanghai University of Sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
4
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
5
|
Liu S, Liu J, Su N, Wei S, Xie N, Li X, Xie S, Liu J, Zhang B, Li W, Tan S. An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Andrographolide in Doxorubicin-Induced Cardiotoxicity. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07555-3. [PMID: 38400848 DOI: 10.1007/s10557-024-07555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Doxorubicin (Dox) is clinically limited due to its dose-dependent cardiotoxicity. Andrographolide (Andro) has been confirmed to exert cardiovascular protective activities. This study aimed to investigate protective effects of Andro in Dox-induced cardiotoxicity (DIC). METHODS The cardiotoxicity models were induced by Dox in vitro and in vivo. The viability and apoptosis of H9c2 cells and the myocardial function of c57BL/6 mice were accessed with and without Andro pretreatment. Network pharmacology and RNA-seq were employed to explore the mechanism of Andro in DIC. The protein levels of Bax, Bcl2, NLRP3, Caspase-1 p20, and IL-1β were qualified as well. RESULTS In vitro, Dox facilitated the downregulation of cell viability and upregulation of cell apoptosis, after Andro pretreatment, the above symptoms were remarkably reversed. In vivo, Andro could alleviate Dox-induced cardiac dysfunction and apoptosis, manifesting elevation of LVPWs, LVPWd, EF% and FS%, suppression of CK, CK-MB, c-Tnl and LDH, and inhibition of TUNEL-positive cells. Using network pharmacology, we collected and visualized 108 co-targets of Andro and DIC, which were associated with apoptosis, PI3K-AKT signaling pathway, and others. RNA-seq identified 276 differentially expressed genes, which were enriched in response to oxidative stress, protein phosphorylation, and others. Both network pharmacology and RNA-seq analysis identified Tap1 and Timp1 as key targets of Andro in DIC. RT-QPCR validation confirmed that the mRNA levels of Tap1 and Timp1 were consistent with the sequenced results. Moreover, the high expression of NLRP3, Caspase-1 p20, and IL-1β in the Dox group was reduced by Andro. CONCLUSIONS Andro could attenuate DIC through suppression of Tap1 and Timp1 and inhibition of NLRP3 inflammasome activation, serving as a promising cardioprotective drug.
Collapse
Affiliation(s)
- Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Nan Su
- Department of Ophthalmology, the First People's Hospital of Lanzhou City, Lanzhou, 730050, Gansu Province, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Shengyu Tan
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
6
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
7
|
Huang Z, Wu Z, Zhang J, Wang K, Zhao Q, Chen M, Yan S, Guo Q, Ma Y, Ji L. Andrographolide attenuated MCT-induced HSOS via regulating NRF2-initiated mitochondrial biogenesis and antioxidant response. Cell Biol Toxicol 2023; 39:3269-3285. [PMID: 37816928 DOI: 10.1007/s10565-023-09832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) is a death-dealing liver disease with a fatality rate of up to 67%. In the study present, we explored the efficacy of andrographolide (Andro), a diterpene lactone from Andrographis Herba, in ameliorating the monocrotaline (MCT)-induced HSOS and the underlying mechanism. The alleviation of Andro on MCT-induced rats HSOS was proved by biochemical index detection, electron microscope observation, and liver histological evaluation. Detection of hepatic ATP content, mitochondrial DNA (mtDNA) copy number, and protein expression of nuclear respiratory factor-1 (NRF1) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) demonstrated that Andro strengthened mitochondrial biogenesis in livers from MCT-treated rats. Chromatin immunoprecipitation assay exhibited that Andro enhanced the occupation of nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) in the promoter regions of both PPARGC1A and NRF1. Andro also activated the NRF2-dependent anti-oxidative response and alleviated liver oxidative injury. In Nrf2 knock-out mice, MCT induced more severe liver damage, and Andro showed no alleviation in it. Furthermore, the Andro-activated mitochondrial biogenesis and anti-oxidative response were reduced in Nrf2 knock-out mice. Contrastingly, knocking out Kelch-like ECH-associated protein 1 (Keap1), a NRF2 repressor, reduced MCT-induced liver damage. Results from co-immunoprecipitation, molecular docking analysis, biotin-Andro pull-down, cellular thermal shift assay, and surface plasmon resonance assay showed that Andro hindered the NRF2-KEAP1 interaction via directly binding to KEAP1. In conclusion, our results revealed that NRF2-dependent liver mitochondrial biogenesis and anti-oxidative response were essential for the Andro-provided alleviation of the MCT-induced HSOS. Graphical Headlights: 1. Andro alleviated MCT-induced HSOS via activating antioxidative response and promoting mitochondrial biogenesis. 2. Andro-activated antioxidative response and mitochondrial biogenesis were NRF2-dependent. 3. Andro activated NRF2 via binding to KEAP1.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Keke Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Minwei Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Shihao Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yun Ma
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Science, King's College London, London, UK
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
8
|
Yu X. Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts. Cardiol Ther 2023; 12:415-443. [PMID: 37247171 PMCID: PMC10423196 DOI: 10.1007/s40119-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023] Open
Abstract
Cardiac fibrosis is closely associated with multiple heart diseases, which are a prominent health issue in the global world. Neurohormones and cytokines play indispensable roles in cardiac fibrosis. Many signaling pathways participate in cardiac fibrosis as well. Cardiac fibrosis is due to impaired degradation of collagen and impaired fibroblast activation, and collagen accumulation results in increasing heart stiffness and inharmonious activity, leading to structure alterations and finally cardiac function decline. Herbal plants have been applied in traditional medicines for thousands of years. Because of their naturality, they have attracted much attention for use in resisting cardiac fibrosis in recent years. This review sheds light on several extracts from herbal plants, which are promising therapeutics for reversing cardiac fibrosis.
Collapse
Affiliation(s)
- Xuejing Yu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75235, USA.
| |
Collapse
|
9
|
Fang X, Song J, Zhou K, Zi X, Sun B, Bao H, Li L. Molecular Mechanism Pathways of Natural Compounds for the Treatment of Non-Alcoholic Fatty Liver Disease. Molecules 2023; 28:5645. [PMID: 37570615 PMCID: PMC10419790 DOI: 10.3390/molecules28155645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and its incidence continues to increase each year. Yet, there is still no definitive drug that can stop its development. This review focuses mainly on lipotoxicity, oxidative stress, inflammation, and intestinal flora dysbiosis to understand NAFLD's pathogenesis. In this review, we used NCBI's PubMed database for retrieval, integrating in vivo and in vitro experiments to reveal the therapeutic effects of natural compounds on NAFLD. We also reviewed the mechanisms by which the results of these experiments suggest that these compounds can protect the liver from damage by modulating inflammation, reducing oxidative stress, decreasing insulin resistance and lipid accumulation in the liver, and interacting with the intestinal microflora. The natural compounds discussed in these papers target a variety of pathways, such as the AMPK pathway and the TGF-β pathway, and have significant therapeutic effects. This review aims to provide new possible therapeutic lead compounds and references for the development of novel medications and the clinical treatment of NAFLD. It offers fresh perspectives on the development of natural compounds in preventing and treating NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lijing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.F.)
| |
Collapse
|
10
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
11
|
Chen KQ, Ke BY, Cheng L, Yu XQ, Wang ZB, Wang SZ. Research and progress of inflammasomes in nonalcoholic fatty liver disease. Int Immunopharmacol 2023; 118:110013. [PMID: 36931172 DOI: 10.1016/j.intimp.2023.110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
With the development of the social economy, unhealthy living habits and eating styles are gradually affecting people's health in recent years. As a chronic liver disease, NAFLD is deeply affected by unhealthy living habits and eating styles and has gradually become an increasingly serious public health problem. As a protein complex in clinical research, the inflammasomes play a crucial role in the development of NAFLD, atherosclerosis, and other diseases. This paper reviews the types, composition, characteristics of inflammasomes, and molecular mechanism of the inflammasome in NAFLD. Meanwhile, the paper reviews the drugs and non-drugs that target NLRP3 inflammasome in the treatment of NAFLD in the past decades. we also analyzed and summarized the related experimental models, mechanisms, and results of NAFLD. Although current therapeutic strategies for NAFLD are not effective, we expect that we will be able to find an appropriate treatment to address this problem in the future with further research on inflammasome.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Bo-Yi Ke
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lu Cheng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiao-Qing Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Curcumin and Andrographolide Co-Administration Safely Prevent Steatosis Induction and ROS Production in HepG2 Cell Line. Molecules 2023; 28:molecules28031261. [PMID: 36770927 PMCID: PMC9919300 DOI: 10.3390/molecules28031261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging chronic liver disease worldwide. Curcumin and andrographolide are famous for improving hepatic functions, being able to reverse oxidative stress and release pro-inflammatory cytokines, and they are implicated in hepatic stellate cell activation and in liver fibrosis development. Thus, we tested curcumin and andrographolide separately and in combination to determine their effect on triglyceride accumulation and ROS production, identifying the differential expression of genes involved in fatty liver and oxidative stress development. In vitro steatosis was induced in HepG2 cells and the protective effect of curcumin, andrographolide, and their combination was observed evaluating cell viability, lipid and triglyceride content, ROS levels, and microarray differential gene expression. Curcumin, andrographolide, and their association were effective in reducing steatosis, triglyceride content, and ROS stress, downregulating the genes involved in lipid accumulation. Moreover, the treatments were able to protect the cytotoxic effect of steatosis, promoting the expression of survival and anti-inflammatory genes. The present study showed that the association of curcumin and andrographolide could be used as a therapeutic approach to counter high lipid content and ROS levels in steatosis liver, avoiding the possible hepatotoxic effect of curcumin. Furthermore, this study improved our understanding of the antisteatosis and hepatoprotective properties of a curcumin and andrographolide combination.
Collapse
|
13
|
Changes in Lipidomics, Metabolomics, and the Gut Microbiota in CDAA-Induced NAFLD Mice after Polyene Phosphatidylcholine Treatment. Int J Mol Sci 2023; 24:ijms24021502. [PMID: 36675016 PMCID: PMC9862520 DOI: 10.3390/ijms24021502] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in most parts of the world. Although there is no first-line drug approved for the treatment of NAFLD, polyene phosphatidylcholine (PPC) is used by clinicians to treat NAFLD patients. This study aimed to evaluate the efficacy of PPC on a mice model of NAFLD, and to study the PPC's mechanism of action. The mice were fed a choline-deficient, L-amino acid-defined (CDAA) diet to induce NAFLD and were subsequently treated with PPC. The treatment effects were evaluated by the liver index, histopathological examination, and routine blood chemistry analyses. Lipidomics and metabolomics analyses of 54 samples were carried out using ultraperformance liquid chromatography (UPLC) coupled to a mass spectrometer to select for changes in metabolites associated with CDAA diet-induced NAFLD and the effects of PPC treatment. The intestinal flora of mice were extracted for gene sequencing to find differences before and after the induction of NAFLD and PPC treatment. PPC significantly improved the CDAA diet-induced NAFLD condition in mice. A total of 19 metabolites including 5 polar metabolites and 14 lipids showed marked changes. In addition, significant differences in the abundance of Lactobacillus were associated with NAFLD. We inferred that the protective therapeutic effect of PPC on the liver was related to the supplement of phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin (PC, LPC, and SM, resectively) and acylcarnitine metabolism. This study developed a methodology for exploring the pathogenesis of NAFLD and can be extended to other therapeutic agents for treating NAFLD.
Collapse
|
14
|
Ran LS, Wu YZ, Gan YW, Wang HL, Wu LJ, Zheng CM, Ming Y, Xiong R, Li YL, Lei SH, Wang X, Lao XQ, Zhang HM, Wang L, Chen C, Zhao CY. Andrographolide ameliorates hepatic steatosis by suppressing FATP2-mediated fatty acid uptake in mice with nonalcoholic fatty liver disease. J Nat Med 2023; 77:73-86. [PMID: 36115008 PMCID: PMC9810587 DOI: 10.1007/s11418-022-01647-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/07/2022] [Indexed: 01/12/2023]
Abstract
Excessive intrahepatocellular lipid accumulation or steatosis is caused by abnormal lipid metabolism and a common character of nonalcoholic fatty liver disease (NAFLD), which may progress into cirrhosis and hepatocellular cancer. Andrographolide (Andro) is the primary active ingredient extracted from Andrographis paniculata, showing a protective role against dietary steatosis with the mechanism not fully understood. In this study, we showed that administration of Andro (50, 100, and 200 mg/kg/day for 8 weeks, respectively) attenuated obesity and metabolic syndrome in high-fat diet (HFD)-fed mice with improved glucose tolerance, insulin sensitivity, and reduced hyperinsulinemia, hyperglycemia, and hyperlipidemia. HFD-fed mice presented hepatic steatosis, which was significantly prevented by Andro. In vitro, Andro decreased the intracellular lipid droplets in oleic acid-treated LO2 cells. The selected RT-PCR array revealed a robust expression suppression of the fatty acid transport proteins (FATPs) by Andro treatment. Most importantly, we found that Andro consistently reduced the expression of FATP2 in both the oleic acid-treated LO2 cells and liver tissues of HFD-fed mice. Overexpression of FATP2 abolished the lipid-lowering effect of Andro in oleic acid-treated LO2 cells. Andro treatment also reduced the fatty acid uptake in oleic acid-treated LO2 cells, which was blunted by FATP2 overexpression. Collectively, our findings reveal a novel mechanism underlying the anti-steatosis effect of Andro by suppressing FATP2-mediated fatty acid uptake, suggesting the potential therapeutic application of Andro in the treatment of NAFLD.
Collapse
Affiliation(s)
- Li-Sha Ran
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ya-Zeng Wu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi-Wen Gan
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li-Juan Wu
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Mei Zheng
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yao Ming
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ran Xiong
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong-Lin Li
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shi-Hang Lei
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xue Wang
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Qing Lao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong-Min Zhang
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, 4067, Australia.
| | - Chang-Ying Zhao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
15
|
Qin X, Wang X, Tian M, Dong Z, Wang J, Wang C, Huang Q. The role of Andrographolide in the prevention and treatment of liver diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154537. [PMID: 36610122 DOI: 10.1016/j.phymed.2022.154537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The presence or absence of damage to the liver organ is crucial to a person's health. Nutritional disorders, alcohol consumption, and drug abuse are the main causes of liver disease. Liver transplantation is the last irrevocable option for liver disease and has become a serious economic burden worldwide. Andrographolide (AP) is one of the main active ingredients of Herba Andrographitis. It has several biological activities and has been reported to have protective and therapeutic effects against liver diseases. Earlier literature has been written on AP's role in treating inflammation and other diseases, and there has not been a systematic review on liver diseases. This review is dedicated to sorting out the research results of AP against liver diseases. Pharmacokinetics, toxicity, and nanotechnology to improve bioavailability are discussed. Finally, an outlook and assessment of its future are provided. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and web of Science databases were used to search all relevant literature on AP for liver disease up to 2022. RESULTS Studies have shown that AP plays an important role in different liver disease phenotypes, mainly through anti-inflammatory and antioxidant activities. AP regulates HO-1 and inhibits hepatitis virus replication. It affects the NF-κB pathway, downregulates inflammatory factors such as IL-1β, IL-6, and TNF-α, and reduces liver damage. In preventing liver fibrosis, AP inhibits angiogenesis and activation of hepatic stellate cells and reduces oxidative stress involved in the Nrf2 and TGF-β1/Smad pathways. In addition, AP impedes the development of liver cancer by promoting apoptosis and autonomous phagocytosis in a cell-dependent way. Interestingly, miRNAs are involved in the therapeutic process of liver cancer and hepatic fibrosis. The poor solubility of AP limits the development of dosage forms. Therefore, the advent of nanoformulations has improved bioavailability. Although the effect of AP is dose- and time-dependent, the magnitude of its toxicity is not negligible. Some clinical trials have shown that AP has mild side effects. CONCLUSIONS AP, as an effective natural product, has a good effect on the liver disease through multiple pathways and targets. However, the dose reaches a certain level, leading to its toxicity and side effects. For better clinical application of AP, high-quality clinical and toxic intervention mechanisms are needed to validate current studies. In addition, modulation of miRNA-mediated hepatocellular carcinoma and liver fibrosis and synergistic action with drugs may be the future focus of AP. In conclusion, AP can be regarded as an important candidate for treating different liver diseases in the future.
Collapse
Affiliation(s)
- Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, No.51, Section 4, Renmin South Road, Wuhou District, Chengdu, 610042, PR. China.
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China.
| |
Collapse
|
16
|
Ran LS, Wu YZ, Gan YW, Wang HL, Wu LJ, Zheng CM, Ming Y, Xiong R, Li YL, Lei SH, Wang X, Lao XQ, Zhang HM, Wang L, Chen C, Zhao CY. Andrographolide ameliorates hepatic steatosis by suppressing FATP2-mediated fatty acid uptake in mice with nonalcoholic fatty liver disease. J Nat Med 2023; 77:73-86. [DOI: https:/doi.org/10.1007/s11418-022-01647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/07/2022] [Indexed: 02/14/2024]
Abstract
Abstract
Excessive intrahepatocellular lipid accumulation or steatosis is caused by abnormal lipid metabolism and a common character of nonalcoholic fatty liver disease (NAFLD), which may progress into cirrhosis and hepatocellular cancer. Andrographolide (Andro) is the primary active ingredient extracted from Andrographis paniculata, showing a protective role against dietary steatosis with the mechanism not fully understood. In this study, we showed that administration of Andro (50, 100, and 200 mg/kg/day for 8 weeks, respectively) attenuated obesity and metabolic syndrome in high-fat diet (HFD)-fed mice with improved glucose tolerance, insulin sensitivity, and reduced hyperinsulinemia, hyperglycemia, and hyperlipidemia. HFD-fed mice presented hepatic steatosis, which was significantly prevented by Andro. In vitro, Andro decreased the intracellular lipid droplets in oleic acid-treated LO2 cells. The selected RT-PCR array revealed a robust expression suppression of the fatty acid transport proteins (FATPs) by Andro treatment. Most importantly, we found that Andro consistently reduced the expression of FATP2 in both the oleic acid-treated LO2 cells and liver tissues of HFD-fed mice. Overexpression of FATP2 abolished the lipid-lowering effect of Andro in oleic acid-treated LO2 cells. Andro treatment also reduced the fatty acid uptake in oleic acid-treated LO2 cells, which was blunted by FATP2 overexpression. Collectively, our findings reveal a novel mechanism underlying the anti-steatosis effect of Andro by suppressing FATP2-mediated fatty acid uptake, suggesting the potential therapeutic application of Andro in the treatment of NAFLD.
Graphical abstract
Collapse
|
17
|
Luo R, Fan C, Jiang G, Hu F, Wang L, Guo Q, Zou M, Wang Y, Wang T, Sun Y, Peng X. Andrographolide restored production performances and serum biochemical indexes and attenuated organs damage in Mycoplasma gallisepticum-infected broilers. Br Poult Sci 2022; 64:164-175. [PMID: 36222587 DOI: 10.1080/00071668.2022.2128987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study aimed to study the preventive and therapeutic effects of andrographolide (Andro) during Mycoplasma gallisepticum HS strain (MG) infection in ArborAcres (AA) broilers.2. The minimum inhibitory concentration (MIC) of Andro against MG was measured. Broiler body weight, feed efficiency, morbidity, cure rate and mortality were recorded during the experiment. Air sac lesion scores and immune organ index were calculated. Expression of pMGA1.2 in lung tissue and serum biochemical indices were examined. Histopathological examinations of immune organs, liver, trachea and lung tissue were conducted by Haematoxylin and Eosin stain.3. MIC was 3.75 μg/mL and Andro significantly inhibited the expression of pMGA1.2 (P ≤ 0.05). Compared with control MG-infected group, Andro low-dose and high-dose prevention reduced the morbidity of chronic respiratory disease in 40.00% and 50.00%, respectively. Mortality of C, D and E group was 16.67%, 10.00% and 6.67%, respectively. Cure rate of E, F, G and H group was 92.00%, 92.86%, 93.33% and 100.0%, respectively. Compared with control MG-infected group, Andro treatment significantly increased average weight gain (AWG), relative weight gain rate (RWG) and feed conversion rate (FCR) at 18 to 24 days (P ≤ 0.05). Compared with control group, Andro alone treatment significantly increased AWG in broilers (P ≤ 0.05).4. Compared with control MG-infected group, Andro significantly attenuated MG-induced air sac lesion, immune organs, liver, trachea and lung damage in broilers. Andro alone treatment did not induce abnormal morphological changes in these organs in healthy broilers. Serum biochemical analysis results showed, comparing with control MG-infected group, Andro significantly decreased the content of total protein, albumin, globulin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, urea, creatinine, uric acid, total cholesterol, and increased the albumin/globulin ratio and content of alkaline phosphatase, apolipoprotein B and apolipoprotein A-I in a dose-dependent manner (P ≤ 0.05).5. Andro could act as a potential agent against MG infection in broilers.
Collapse
Affiliation(s)
- R Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - C Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - G Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - F Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - L Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Q Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - M Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - T Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - X Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Li X, Yuan W, Wu J, Zhen J, Sun Q, Yu M. Andrographolide, a natural anti-inflammatory agent: An Update. Front Pharmacol 2022; 13:920435. [PMID: 36238575 PMCID: PMC9551308 DOI: 10.3389/fphar.2022.920435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Botanicals have attracted much attention in the field of anti-inflammatory due to their good pharmacological activity and efficacy. Andrographis paniculata is a natural plant ingredient that is widely used around the world. Andrographolide is the main active ingredient derived from Andrographis paniculata, which has a good effect on the treatment of inflammatory diseases. This article reviews the application, anti-inflammatory mechanism and molecular targets of andrographolide in different inflammatory diseases, including respiratory, digestive, immune, nervous, cardiovascular, skeletal, and tumor system diseases. And describe its toxicity and explain its safety. Studies have shown that andrographolide can be used to treat inflammatory lesions of various systemic diseases. In particular, it acts on many inflammation-related signalling pathways. The future direction of andrographolide research is also introduced, as is the recent research that indicates its potential clinical application as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Xiaohong Li
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaohong Li,
| | - Weichen Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minmin Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Huang Q, Xin X, Sun Q, An Z, Gou X, Feng Q. Plant-derived bioactive compounds regulate the NLRP3 inflammasome to treat NAFLD. Front Pharmacol 2022; 13:896899. [PMID: 36016562 PMCID: PMC9396216 DOI: 10.3389/fphar.2022.896899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by abnormal accumulation of hepatic fat and inflammatory response with complex pathogenesis. Over activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the secretion of interleukin (IL)-1β and IL-18, induces pyroptosis, and promotes the release of a large number of pro-inflammatory proteins. All of which contribute to the development of NAFLD. There is a great deal of evidence indicating that plant-derived active ingredients are effective and safe for NAFLD management. This review aims to summarize the research progress of 31 active plant-derived components (terpenoids, flavonoids, alkaloids, and phenols) that alleviate lipid deposition, inflammation, and pyroptosis by acting on the NLRP3 inflammasome studied in both in vitro and in vivo NAFLD models. These studies confirmed that the NLRP3 inflammasome and its related genes play a key role in NAFLD amelioration, providing a starting point for further study on the correlation of plant-derived compounds treatment with the NLRP3 inflammasome and NAFLD.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: Qin Feng,
| |
Collapse
|
20
|
Luo R, Wang Y, Guo Q, Fan C, Jiang G, Wang L, Zou M, Wang T, Sun Y, Peng X. Andrographolide attenuates Mycoplasma gallisepticum-induced inflammation and apoptosis by the JAK/PI3K/AKT signal pathway in the chicken lungs and primary alveolar type II epithelial cells. Int Immunopharmacol 2022; 109:108819. [DOI: 10.1016/j.intimp.2022.108819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/19/2022]
|
21
|
Dehydroisohispanolone as a Promising NLRP3 Inhibitor Agent: Bioevaluation and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:ph15070825. [PMID: 35890124 PMCID: PMC9316970 DOI: 10.3390/ph15070825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Dehydroisohispanolone (DIH), is a labdane diterpene that has exhibited anti-inflammatory activity via inhibition of NF-κB activation, although its potential effects on inflammasome activation remain unexplored. This study aims to elucidate whether DIH modulates NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome in macrophages. Our findings show that DIH inhibited NLRP3 activation triggered by Nigericin (Nig), adenosine triphosphate (ATP) and monosodium urate (MSU) crystals, indicating broad inhibitory effects. DIH significantly attenuated caspase-1 activation and secretion of the interleukin-1β (IL-1β) in J774A.1 cells. Interestingly, the protein expressions of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), pro-caspase-1 and pro-IL-1β were not affected by DIH treatment. Furthermore, we found that DIH pretreatment also inhibited the lipopolysaccharide (LPS)-induced NLRP3 inflammasome priming stage. In addition, DIH alleviated pyroptosis mediated by NLRP3 inflammasome activation. Similar results on IL-1β release were observed in Nig-activated bone marrow-derived macrophages (BMDMs). Covalent molecular docking analysis revealed that DIH fits well into the ATP-binding site of NLRP3 protein, forming a covalent bond with Cys415. In conclusion, our experiments show that DIH is an effective NLRP3 inflammasome inhibitor and provide new evidence for its application in the therapy of inflammation-related diseases.
Collapse
|
22
|
Andrographolide in Atherosclerosis: Integrating Network Pharmacology and In Vitro Pharmacological Evaluation. Biosci Rep 2022; 42:231291. [PMID: 35543243 PMCID: PMC9251584 DOI: 10.1042/bsr20212812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Andrographis paniculata (Burm.f.) Nees is a medicinal plant that has been traditionally used as an anti-inflammatory and antibacterial remedy for several conditions. Andrographolide (AG), the active constituent of A. paniculata (Burm.f.) Nees, has anti-lipidic and anti-inflammatory properties as well as cardiovascular protective effects. The present study aimed to explore the effects of AG on the progression of atherosclerosis and to investigate related mechanisms via network pharmacology. Materials and methods: Compound-related information was obtained from the PubChem database. Potential target genes were identified using STITCH, SwissTargetPrediction, Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine, and Comparative Toxicogenomics Database. Genes involved in atherosclerosis were obtained from DisGeNet and compared with AG target genes to obtain an overlapping set. Protein–protein interactions were determined by STRING. Gene ontology (GO) analysis was performed at WebGestalt, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was analyzed using Metascape. The final network showing the relationship between compounds, targets, and pathways was constructed using Cytoscape. After that, oxLDL-induced RAW264.7 cells were used to further validate a part of the network pharmacology results. Result: Eighty-one potential AG target genes were identified. PPI, GO, and KEGG enrichment revealed genes closely related to tumor progression, lipid transport, inflammation, and related pathways. AG improves the reverse cholesterol transport (RCT) through NF-κB/CEBPB/PPARG signaling in oxLDL-induced RAW264.7 cells. Conclusion: We successfully predict AG’s potential targets and pathways in atherosclerosis and illustrate the mechanism of action. AG may regulate NF-κB/CEBPB/PPARG signaling to alleviate atherosclerosis.
Collapse
|
23
|
Lu N, Cheng W, Liu D, Liu G, Cui C, Feng C, Wang X. NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Front Cell Dev Biol 2022; 10:823387. [PMID: 35493086 PMCID: PMC9045366 DOI: 10.3389/fcell.2022.823387] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/24/2022] [Indexed: 11/15/2022] Open
Abstract
The NLRP3 inflammasome is a crucial constituent of the body’s innate immune system, and a multiprotein platform which is initiated by pattern recognition receptors (PRRs). Its activation leads to caspase-1 maturation and release of inflammatory cytokines, interleukin-1β (IL-1β) and IL-18, and subsequently causes pyroptosis. Recently, the excess activation of NLRP3 inflammasome has been confirmed to mediate inflammatory responses and to participate in genesis and development of atherosclerosis. Therefore, the progress on the discovery of specific inhibitors against the NLRP3 inflammasome and the upstream and downstream inflammatory factors has become potential targets for clinical treatment. Here we review the recently described mechanisms about the NLRP3 inflammasome activation, and discuss emphatically the pharmacological interventions using statins and natural medication for atherosclerosis associated with NLRP3 inflammasome.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weijia Cheng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Can Cui
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Chaoli Feng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Xianwei Wang,
| |
Collapse
|
24
|
Song Z, Wang L, Cao Y, Liu Z, Zhang M, Zhang Z, Jiang S, Fan R, Hao T, Yang R, Wang B, Guan Z, Zhu L, Liu Z, Zhang S, Zhao L, Xu Z, Xu H, Dai G. Isoandrographolide inhibits NLRP3 inflammasome activation and attenuates silicosis in mice. Int Immunopharmacol 2022; 105:108539. [DOI: 10.1016/j.intimp.2022.108539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/05/2022]
|
25
|
Yu L, Hong W, Lu S, Li Y, Guan Y, Weng X, Feng Z. The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Front Pharmacol 2022; 13:780496. [PMID: 35350750 PMCID: PMC8957978 DOI: 10.3389/fphar.2022.780496] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is among the most prevalent primary liver diseases worldwide and can develop into various conditions, ranging from simple steatosis, through non-alcoholic steatohepatitis (NASH), to fibrosis, and eventually cirrhosis and hepatocellular carcinoma. Nevertheless, there is no effective treatment for NAFLD due to the complicated etiology. Recently, activation of the NLPR3 inflammasome has been demonstrated to be a contributing factor in the development of NAFLD, particularly as a modulator of progression from initial hepatic steatosis to NASH. NLRP3 inflammasome, as a caspase-1 activation platform, is critical for processing key pro-inflammatory cytokines and pyroptosis. Various stimuli involved in NAFLD can activate the NLRP3 inflammasome, depending on the diverse cellular stresses that they cause. NLRP3 inflammasome-related inhibitors and agents for NAFLD treatment have been tested and demonstrated positive effects in experimental models. Meanwhile, some drugs have been applied in clinical studies, supporting this therapeutic approach. In this review, we discuss the activation, biological functions, and treatment targeting the NLRP3 inflammasome in the context of NAFLD progression. Specifically, we focus on the different types of therapeutic agents that can inhibit the NLRP3 inflammasome and summarize their pharmacological effectiveness for NAFLD treatment.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,The Third Clinical College of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Wei Hong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shen Lu
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yaya Guan
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Xiaogang Weng
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
26
|
Assessment of hepatic fatty acids during non-alcoholic steatohepatitis progression using magnetic resonance spectroscopy. Ann Hepatol 2022; 25:100358. [PMID: 33962045 DOI: 10.1016/j.aohep.2021.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver abnormalities including steatosis, steatohepatitis, fibrosis, and cirrhosis. Liver biopsy remains the gold standard method to determine the disease stage in NAFLD but is an invasive and risky procedure. Studies have previously reported that changes in intrahepatic fatty acids (FA) composition are related to the progression of NAFLD, mainly in its early stages. The aim of this study was to characterize the liver FA composition in mice fed a Choline-deficient L-amino-defined (CDAA) diet at different stages of NAFLD using magnetic resonance spectroscopy (MRS). METHODS We used in-vivo MRS to perform a longitudinal characterization of hepatic FA changes in NAFLD mice for 10 weeks. We validated our findings with ex-vivo MRS, gas chromatography-mass spectrometry and histology. RESULTS In-vivo and ex-vivo results showed that livers from CDAA-fed mice exhibit a significant increase in liver FA content as well as a change in FA composition compared with control mice. After 4 weeks of CDAA diet, a decrease in polyunsaturated and an increase in monounsaturated FA were observed. These changes were associated with the appearance of early stages of steatohepatitis, confirmed by histology (NAFLD Activity Score (NAS) = 4.5). After 10 weeks of CDAA-diet, the liver FA composition remained stable while the NAS increased further to 6 showing a combination of early and late stages of steatohepatitis. CONCLUSION Our results suggest that monitoring lipid composition in addition to total water/fat with MRS may yield additional insights that can be translated for non-invasive stratification of high-risk NAFLD patients.
Collapse
|
27
|
Yan W, Yu H, Liu B, Jiang Z, Jin H, Li Z, Li L, Zou D, Jiang H. Andrographolide suppresses osteoarthritis progression by regulating circ_Rapgef1/miR-383-3p/NLRP3 signaling axis. Transpl Immunol 2022; 71:101548. [PMID: 35122957 DOI: 10.1016/j.trim.2022.101548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Andrographolide (AD) has been reported to play a potential anti-arthritic role by facilitating the proliferation and inhibiting the apoptosis of chondrocytes. However, the molecular mechanism underlying the protective role of AD in osteoarthritis (OA) remains to be elucidated. METHODS OA mice model was established via anterior cruciate ligament transection (ACLT) operation. OA cell model was established through treating mice primary chondrocytes with LPS (1 μg/mL, 24 h). Enzyme-linked immunosorbent assay (ELISA) was performed to measure the concentrations of inflammatory cytokines in the supernatant. Cell proliferation was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay. Cell apoptosis was evaluated by flow cytometry. The intermolecular interaction was verified by dual-luciferase reporter assay. RESULTS AD administration reduced the infiltration of inflammatory cells in the synovial tissues of ankle joint and suppressed the inflammatory response in OA mice model in vivo. Lipopolysaccharide (LPS) stimulation suppressed the proliferation and induced the apoptosis and inflammation of chondrocytes, and AD treatment protected chondrocytes from LPS-induced dysfunction. Circular RNA (circRNA) Rap guanine nucleotide exchange factor 1 (circ_Rapgef1) overexpression attenuated AD-mediated protective effects in OA cell model. Circ_Rapgef1/microRNA-383-3p (miR-383-3p)/Nod-like receptor pyrin domain 3 (NLRP3) axis was identified in this study for the first time. Circ_Rapgef1 overexpression-mediated effects were partly reversed by the overexpression of miR-383-3p in chondrocytes. NLRP3 silencing partly overturned miR-383-3p knockdown-mediated effects in chondrocytes. Circ_Rapgef1 overexpression up-regulated the expression of NLRP3 partly by targeting miR-383-3p in chondrocytes. CONCLUSION Circ_Rapgef1 suppressed AD-mediated protective effects in OA partly by regulating miR-383-3p/NLRP3 signaling.
Collapse
Affiliation(s)
- Wei Yan
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Hong Yu
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Bo Liu
- Department of Orthopaedics, Qingdao Municipal Hospital, Shandong, China
| | - Zewei Jiang
- Department of Spine and Spinal Cord, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Hailong Jin
- Department of Hand and Microsurgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Zhiheng Li
- Department of Limb Trauma, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Lei Li
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Debao Zou
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Hongjiang Jiang
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China.
| |
Collapse
|
28
|
Charan HV, Dwivedi DK, Khan S, Jena G. Mechanisms of NLRP3 inflammasome-mediated hepatic stellate cell activation: therapeutic potential for liver fibrosis. Genes Dis 2022; 10:480-494. [DOI: 10.1016/j.gendis.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
|
29
|
Zhou Z, Zhang J, You L, Wang T, Wang K, Wang L, Kong X, Gao Y, Sun X. Application of herbs and active ingredients ameliorate non-alcoholic fatty liver disease under the guidance of traditional Chinese medicine. Front Endocrinol (Lausanne) 2022; 13:1000727. [PMID: 36204095 PMCID: PMC9530134 DOI: 10.3389/fendo.2022.1000727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem, and its prevalence has been on the rise in recent years. Traditional Chinese Medicine (TCM) contains a wealth of therapeutic resources and has been in use for thousands of years regarding the prevention of liver disease and has been shown to be effective in the treatment of NAFLD in China. but the molecular mechanisms behind it have not been elucidated. In this article, we have updated and summarized the research and evidence concerning herbs and their active ingredients for the treatment in vivo and vitro models of NAFLD or NASH, by searching PubMed, Web of Science and SciFinder databases. In particular, we have found that most of the herbs and active ingredients reported so far have the effect of clearing heat and dispelling dampness, which is consistent with the concept of dampness-heat syndrome, in TCM theory. we have attempted to establish the TCM theory and modern pharmacological mechanisms links between herbs and monomers according to their TCM efficacy, experiment models, targets of modulation and amelioration of NAFLD pathology. Thus, we provide ideas and perspectives for further exploration of the pathogenesis of NAFLD and herbal therapy, helping to further the scientific connotation of TCM theories and promote the modernization of TCM.
Collapse
Affiliation(s)
- Zhijia Zhou
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixia Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Infection, Oriental Hospital Affiliated to Tongji University, Shanghai, China
| | - Lingtai Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Yueqiu Gao
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Xuehua Sun
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| |
Collapse
|
30
|
Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 2021; 42:1147-1178. [PMID: 34877672 DOI: 10.1002/med.21873] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Andrographolide, a well-known natural lactone having a range of pharmacological actions in traditional Chinese medicine. It has long been used to cure a variety of ailments. In this review, we cover the pharmacokinetics and pharmacological activity of andrographolide which supports its further clinical application in cancers and inflammatory diseases. Growing evidence shows a good therapeutic effect in inflammatory diseases, including liver diseases, joint diseases, respiratory system diseases, nervous system diseases, heart diseases, inflammatory bowel diseases, and inflammatory skin diseases. As a result, the effects of andrographolide on immune cells and the processes that underpin them are discussed. The preclinical use of andrographolide to different organs in response to malignancies such as colorectal, liver, gastric, breast, prostate, lung, and oral cancers has also been reviewed. In addition, several clinical trials of andrographolide in inflammatory diseases and cancers have been summarized. This review highlights recent advances in ameliorating inflammatory diseases as well as cancers by andrographolide and its analogs, providing a new perspective for subsequent research of this traditional natural product.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Guoquan You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Ling Ye
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
31
|
Wong SK, Chin KY, Ima-Nirwana S. A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury. Drug Des Devel Ther 2021; 15:4615-4632. [PMID: 34785890 PMCID: PMC8591231 DOI: 10.2147/dddt.s331027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Andrographolide is the major compound found in the medicinal plant, Andrographis paniculata (Burm.f.) Nees, which accounts for its medicinal properties. Both the plant extract and compound have been reported to exhibit potential cardiovascular activities. This review summarises related studies describing the biological activities and target mechanisms of A. paniculata and andrographolide in vivo and in vitro. The current evidence unambiguously indicated the protective effects provided by A. paniculata and andrographolide administration against myocardial injury. The intervention ameliorates the symptoms of myocardial injury by interfering with the inductive phase of a) inflammatory response mediated by nuclear factor-kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signalling molecules; b) oxidative stress via activation of nuclear factor erythroid 2-related factor (Nrf-2) and reduction of enzymes responsible for generating reactive oxygen and nitrogen species; c) intrinsic and extrinsic mechanisms in apoptosis regulated by upstream insulin-like growth factor-1 receptor (IGF-1R) and peroxisome proliferator-activated receptor-alpha (PPAR-α); d) profibrotic growth factors thus reducing cardiac fibrosis, improving endothelial function and fibrinolytic function. In conclusion, A. paniculata and andrographolide possess therapeutic potential in the management of myocardial injury, which requires further validation in human clinical trials.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
32
|
The Role of Andrographolide on Skin Inflammations and Modulation of Skin Barrier Functions in Human Keratinocyte. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0289-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Zhang Y, Lv J, Zhang J, Lv Z, Yu M. Lipidomic-based investigation into the therapeutic effects of polyene phosphatidylcholine and Babao Dan on rats with non-alcoholic fatty liver disease. Biomed Chromatogr 2021; 36:e5271. [PMID: 34727379 DOI: 10.1002/bmc.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 11/11/2022]
Abstract
In recent years, with the improvement of people's living standards, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world. In this paper, the metabolic disorders in Sprague Dawley (SD) rats were induced by a choline-deficient, l-amino acid-defined (CDAA) diet. The therapeutic effects of polyene phosphatidylcholine (PPC) and Babao Dan (BBD) on NAFLD were observed. Lipidomic analysis was performed using ultra-high-performance liquid chromatography-Orbitrap MS, and data analysis and lipid identification were performed using the software LipidSearch. Both PPC and BBD can reduce lipid accumulation in the liver and improve abnormal biochemical indicators in rats, including reduction of triglycerides, total cholesterol, alanine transaminase and aspartate transaminase in serum. In addition, lipids in rat serum were systematically analyzed by lipidomics. The lipidomic results showed that the most obvious lipids with abnormal metabolism in CDAA diet-induced rats were glycerides (triglycerides and diacylglycerols), phospholipids and cholesterol esters. Both BBD and PPC partly reversed the disturbance to lipids induced by the CDAA diet. PPC may be more effective than BBD in alleviating NAFLD because it has a better effect on inhibiting the abnormal accumulation of lipids and reducing the inflammatory reaction in the body.
Collapse
Affiliation(s)
- Yicong Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jinxiao Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China.,Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao, China
| |
Collapse
|
34
|
Jiang X, Gu Y, Huang Y, Zhou Y, Pang N, Luo J, Tang Z, Zhang Z, Yang L. CBD Alleviates Liver Injuries in Alcoholics With High-Fat High-Cholesterol Diet Through Regulating NLRP3 Inflammasome-Pyroptosis Pathway. Front Pharmacol 2021; 12:724747. [PMID: 34630100 PMCID: PMC8493333 DOI: 10.3389/fphar.2021.724747] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol abuse and high-fat diet–induced liver diseases have been the most prevalent chronic liver diseases and the leading reasons for liver transplantation around the world. Cannabidiol (CBD) is a botanical component extracted from marijuana plants without psychoactive impact. In our previous reports, we found that CBD can prevent fatty liver induced by Lieber–DeCarli ethanol diet or non-alcoholic fatty liver disease (NAFLD) induced by high-fat high-cholesterol diet. The current work is a further study on whether CBD can alleviate liver injuries induced by ethanol plus high-fat high-cholesterol diet (EHFD), which is a model simulating heavy alcohol drinkers in a Western diet. A mice liver injury model induced by EHFD for 8 weeks was applied to explore the protective properties of CBD and the underlying mechanisms. We found that CBD prevented liver steatosis and oxidative stress induced by EHFD. CBD treatment inhibited macrophage recruitment and suppressed activation of NFκB–NLRP3–pyroptosis pathway in mice livers. The hepatoprotective property of CBD in the current model might be a result of inhibition of inflammation via alleviating activation of the hepatic NFκB–NLRP3 inflammasome–pyroptosis pathway by CBD.
Collapse
Affiliation(s)
- Xuye Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingying Gu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanling Huang
- Department of Nutrition, Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Yujia Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nengzhi Pang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jing Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Zinkernagel Biotech Co. Ltd, Foshan, China
| | - Zhenfeng Zhang
- Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department of Radiology, Translational Medicine Center and Guangdong Provincial Education Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lili Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Saha P, Skidmore PT, Holland LA, Mondal A, Bose D, Seth RK, Sullivan K, Janulewicz PA, Horner R, Klimas N, Nagarkatti M, Nagarkatti P, Lim ES, Chatterjee S. Andrographolide Attenuates Gut-Brain-Axis Associated Pathology in Gulf War Illness by Modulating Bacteriome-Virome Associated Inflammation and Microglia-Neuron Proinflammatory Crosstalk. Brain Sci 2021; 11:brainsci11070905. [PMID: 34356139 PMCID: PMC8304847 DOI: 10.3390/brainsci11070905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut–Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut–Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria Akkermansia, Lachnospiraceae, and Bifidobacterium, the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families Siphoviridae and Myoviridae known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1β and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut–Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI.
Collapse
Affiliation(s)
- Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Peter T. Skidmore
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
| | - Ayan Mondal
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Ratanesh K. Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (K.S.); (P.A.J.)
| | - Patricia A. Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (K.S.); (P.A.J.)
| | - Ronnie Horner
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.N.); (P.N.)
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.N.); (P.N.)
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
- Columbia VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-777-8120 or +1-919-599-2278
| |
Collapse
|
36
|
Li L, Li SH, Jiang JP, Liu C, Ji LL. Investigating pharmacological mechanisms of andrographolide on non-alcoholic steatohepatitis (NASH): A bioinformatics approach of network pharmacology. CHINESE HERBAL MEDICINES 2021; 13:342-350. [PMID: 36118934 PMCID: PMC9476713 DOI: 10.1016/j.chmed.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the mechanisms of andrographolide against non-alcoholic steatohepatitis (NASH) based on network pharmacology, so as to provide a reference for further study of andrographolide in the treatment of NASH and other metabolic diseases. Methods The methionine- and choline-deficient (MCD) diet-induced NASH mice were treated by administration of andrographolide, and serum transaminase and pathological changes were analyzed. The network pharmacology-based bioinformatic strategy was then used to search the potential targets, construct protein-protein interaction (PPI) network, analyze gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment, and conduct molecular docking to explore the molecular mechanisms. Results The predicted core targets TNF, MAPK8, IL6, IL1B and AKT1 were enriched in non-alcoholic fatty liver disease (NAFLD) signaling pathway and against NASH by regulation of de novo fatty acids synthesis, anti-inflammation and anti-oxidation. Conclusion This work provides a scientific basis for further demonstration of the anti-NASH mechanisms of andrographolide.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Anhui Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
- Shanghai Key Laboratory of Compound Chinese Medicines, MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sheng-he Li
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Anhui Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jin-peng Jiang
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Anhui Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Chang Liu
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Anhui Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Li-li Ji
- Shanghai Key Laboratory of Compound Chinese Medicines, MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
37
|
Özenver N, Efferth T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 2021; 170:105710. [PMID: 34089866 DOI: 10.1016/j.phrs.2021.105710] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition to NLRP3-mediated diseases. For this purpose, we performed a systematic literature search by screening PubMed, Scopus, and Google Scholar databases. By compiling the data of phytochemical inhibitors targeting NLRP3 inflammasome activation, a complex balance between inflammasome activation or inhibition with NLRP3 as central player was pointed out in NLRP3-driven pathological conditions. Phytochemicals represent potential therapeutic leads, enabling the generation of chemical derivatives with improved pharmacological features to treat NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
38
|
Li J, Yang X, Yang P, Xu K, Peng X, Cai W, Zhao S, Hu L, Li Z, Cui F, Wang W, Peng G, Xu X, He J, Liu J. Andrographolide alleviates bleomycin-induced NLRP3 inflammasome activation and epithelial-mesenchymal transition in lung epithelial cells by suppressing AKT/mTOR signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:764. [PMID: 34268377 PMCID: PMC8246226 DOI: 10.21037/atm-20-7973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Background Andrographolide (Andro), a diterpenoid extracted from Andrographis paniculata, has been shown to attenuate pulmonary fibrosis in rodents; however, the potential mechanisms remain largely unclear. This study investigated whether and how Andro alleviates bleomycin (BLM)-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and epithelial-mesenchymal transition (EMT) in the lung epithelial cells. Methods The in vivo effects of Andro were evaluated in a rat model of BLM-induced pulmonary fibrosis. The roles of Andro in BLM-induced NLRP3 inflammasome activation, EMT and AKT/mTOR signaling were investigated using human alveolar epithelial A549 cells. Results We found that Andro significantly alleviated pulmonary edema and histopathological changes, decreased weight loss, and reduced collagen deposition. Andro downregulated the levels of NLRP3, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in the lungs of BLM-treated rats, suggesting the inhibitory effect of Andro on NLRP3 inflammasome activation in vivo. Additionally, the symptoms of BLM-mediated EMT phenotype in the lung were also attenuated after Andro administration. In vitro, Andro also markedly inhibited BLM-induced NLRP3 inflammasome activation and EMT in A549 cells. Moreover, Andro inhibited BLM-induced phosphorylation of AKT and mTOR in A549 cells, suggesting that AKT/mTOR inactivation mediates Andro-induced effects on BLM-induced NLRP3 inflammasome activation and EMT. Conclusions These data indicate that Andro can reduce BLM-induced pulmonary fibrosis through suppressing NLRP3 inflammasome activation and EMT in lung epithelial cells via AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jingpei Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohan Yang
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Penghui Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ke Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weipeng Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Simin Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Zhuoyi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guilin Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Lab of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int 2021; 15:21-35. [PMID: 33548031 PMCID: PMC7886759 DOI: 10.1007/s12072-020-10121-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), characterized as excess lipid accumulation in the liver which is not due to alcohol use, has emerged as one of the major health problems around the world. The dysregulated lipid metabolism creates a lipotoxic environment which promotes the development of NAFLD, especially the progression from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH). PURPOSEAND AIM This review focuses on the mechanisms of lipid accumulation in the liver, with an emphasis on the metabolic fate of free fatty acids (FFAs) in NAFLD and presents an update on the relevant cellular processes/mechanisms that are involved in lipotoxicity. The changes in the levels of various lipid species that result from the imbalance between lipolysis/lipid uptake/lipogenesis and lipid oxidation/secretion can cause organellar dysfunction, e.g. ER stress, mitochondrial dysfunction, lysosomal dysfunction, JNK activation, secretion of extracellular vesicles (EVs) and aggravate (or be exacerbated by) hypoxia which ultimately lead to cell death. The aim of this review is to provide an overview of how abnormal lipid metabolism leads to lipotoxicity and the cellular mechanisms of lipotoxicity in the context of NAFLD.
Collapse
|
40
|
Ding N, Wei B, Fu X, Wang C, Wu Y. Natural Products that Target the NLRP3 Inflammasome to Treat Fibrosis. Front Pharmacol 2020; 11:591393. [PMID: 33390969 PMCID: PMC7773645 DOI: 10.3389/fphar.2020.591393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Fibrosis is a common pathway followed by different organs after injury, and it can lead to parenchymal scarring, cellular dysfunction, and even organ failure. The NLRP3 inflammasome is a multiprotein complex composed of the sensor molecule NLRP3, the adaptor apoptosis-associated speck-like protein containing a CARD (ASC), and the effector protease caspase-1. Overactivation of the NLRP3 inflammasome triggers the abundant secretion of IL-1β and IL-18, induces pyroptosis, and promotes the release of a swathe of proinflammatory proteins, all of which contribute to fibrogenic processes in multiple organs. In recent years, screening bioactive natural compounds for NLRP3 inhibitors to alleviate fibrosis has gained broad interest from the scientific community because of the associated cost-effectiveness and easy access. In this review, we systematically and comprehensively summarize the natural products, including terpenoids, phenols, and alkaloids, among others, and the plant-derived crude extracts, that have been reported to ameliorate fibrosis via inhibiting NLRP3 inflammasome activation and highlight the underlying mechanisms. Among all the compounds, diterpenoids is the most promising candidates for inhibiting NLRP3 inflammasome activation and improving fibrosis, as they possess combined inhibitory effect on NLRP3 inflammasome assembly and NF-κB signaling pathway. All the information may aid in the development of therapeutic strategies for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Bo Wei
- Research lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaohui Fu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
41
|
Tavakoli R, Tabeshpour J, Asili J, Shakeri A, Sahebkar A. Cardioprotective Effects of Natural Products via the Nrf2 Signaling Pathway. Curr Vasc Pharmacol 2020; 19:525-541. [PMID: 33155913 DOI: 10.2174/1570161119999201103191242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Due to its poor regenerative capacity, the heart is specifically vulnerable to xenobiotic- induced cardiotoxicity, myocardial ischaemia/reperfusion injury and other pathologies. Nuclear factor erythroid-2-related factor 2 (Nrf2) is considered as an essential factor in protecting cardiomyocytes against oxidative stress resulting from free radicals and reactive oxygen species. It also serves as a key regulator of antioxidant enzyme expression via the antioxidant response element, a cis-regulatory element, which is found in the promoter region of several genes encoding detoxification enzymes and cytoprotective proteins. It has been reported that a variety of natural products are capable of activating Nrf2 expression, and in this way, increase the antioxidant potential of cardiomyocytes. In the present review, we consider the cardioprotective activities of natural products and their possible therapeutic potential.
Collapse
Affiliation(s)
- Rasool Tavakoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Bransh, Islamic Azad University, Damghan, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Islam MT, Bardaweel SK, Mubarak MS, Koch W, Gaweł-Beben K, Antosiewicz B, Sharifi-Rad J. Immunomodulatory Effects of Diterpenes and Their Derivatives Through NLRP3 Inflammasome Pathway: A Review. Front Immunol 2020; 11:572136. [PMID: 33101293 PMCID: PMC7546345 DOI: 10.3389/fimmu.2020.572136] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein (NLRP) inflammasomes are involved in the molecular pathogenesis of many diseases and disorders. Among NLRPs, the NLRP3 (in humans encoded by the NLRP3 gene) is expressed predominantly in macrophages as a component of the inflammasome and is associated with many diseases, including gout, type 2 diabetes, multiple sclerosis, atherosclerosis, and neurological diseases and disorders. Diterpenes containing repeated isoprenoid units in their structure are a member of some essential oils that possess diverse biological activities and are becoming a landmark in the field of drug discovery and development. This review sketches a current scenario of diterpenes or their derivatives acting through NLRPs, especially NLRP3-associated pathways with anti-inflammatory effects. For this, a literature survey on the subject has been undertaken using a number of known databases with specific keywords. Findings from the aforementioned databases suggest that diterpenes and their derivatives can exert anti-inflammatory effects via NLRPs-related pathways. Andrographolide, triptolide, kaurenoic acid, carnosic acid, oridonin, teuvincenone F, and some derivatives of tanshinone IIA and phorbol have been found to act through NLRP3 inflammasome pathways. In conclusion, diterpenes and their derivatives could be one of the promising compounds for the treatment of NLRP3-mediated inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ho Chi Minh City, Vietnam
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Gaweł-Beben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Beata Antosiewicz
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
43
|
Ma X, Jiang Y, Wen J, Zhao Y, Zeng J, Guo Y. A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol 2020; 888:173578. [PMID: 32976828 DOI: 10.1016/j.ejphar.2020.173578] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The discovery of drugs to treat liver fibrosis has long been a challenge over the past decades due to its complicated pathogenesis. As a primary approach for drug development, natural products account for 30% of clinical drugs used for disease treatment. Therefore, natural products are increasingly important for their medicinal value in liver fibrosis therapy. In this part of the review, special focus is placed on the effect and mechanism of natural compounds, including alkaloids, terpenoids, glycosides, coumarins and others. A total of 36 kinds of natural compounds demonstrate significant antifibrotic effects in various liver fibrosis models in vivo and in hepatic stellate cells (HSCs) in vitro. Revealing the mechanism will provide further basis for clinical conversion, as well as accelerate drug discovery. The mechanism was further summarized with the finding of network regulation by several natural products, such as oxymatrine, paeoniflorin, ginsenoside Rg1 and taurine. Moreover, there are still improvements needed in investigating clinical efficacy, determining mechanisms, and combining applications, as well as semisynthesis and modification. Therefore, natural products area promising resource for agents that protect against liver fibrosis.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
44
|
Idalsoaga F, Kulkarni AV, Mousa OY, Arrese M, Arab JP. Non-alcoholic Fatty Liver Disease and Alcohol-Related Liver Disease: Two Intertwined Entities. Front Med (Lausanne) 2020; 7:448. [PMID: 32974366 PMCID: PMC7468507 DOI: 10.3389/fmed.2020.00448] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, with a prevalence of 25-30%. Since its first description in 1980, NAFLD has been conceived as a different entity from alcohol-related fatty liver disease (ALD), despite that, both diseases have an overlap in the pathophysiology, share genetic-epigenetic factors, and frequently coexist. Both entities are characterized by a broad spectrum of histological features ranging from isolated steatosis to steatohepatitis and cirrhosis. Distinction between NAFLD and ALD is based on the amount of consumed alcohol, which has been arbitrarily established. In this context, a proposal of positive criteria for NAFLD diagnosis not considering exclusion of alcohol consumption as a prerequisite criterion for diagnosis had emerged, recognizing the possibility of a dual etiology of fatty liver in some individuals. The impact of moderate alcohol use on the severity of NAFLD is ill-defined. Some studies suggest protective effects in moderate doses, but current evidence shows that there is no safe threshold for alcohol consumption for NAFLD. In fact, given the synergistic effect between alcohol consumption, obesity, and metabolic dysfunction, it is likely that alcohol use serves as a significant risk factor for the progression of liver disease in NAFLD and metabolic syndrome. This also affects the incidence of hepatocellular carcinoma. In this review, we summarize the overlapping pathophysiology of NAFLD and ALD, the current data on alcohol consumption in patients with NAFLD, and the effects of metabolic dysfunction and overweight in ALD.
Collapse
Affiliation(s)
- Francisco Idalsoaga
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Omar Y Mousa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.,Division of Gastroenterology and Hepatology, Mayo Clinic Health System, Mankato, MN, United States
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
45
|
Chen S, Luo Z, Chen X. Andrographolide mitigates cartilage damage via miR-27-3p-modulated matrix metalloproteinase13 repression. J Gene Med 2020; 22:e3187. [PMID: 32196852 DOI: 10.1002/jgm.3187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a potential anti-arthritic agent, Andrographolide (And) is capable of promoting chondrocyte proliferation and preventing apoptosis in pathologic condition. The present study aimed to explore the roles of And in in vivo and in vitro models of osteoarthritis (OA), as well as its underlying molecular mechanisms. METHODS An OA mouse model was established using anterior cruciate ligament transection operation on the left knee joint. The pathological changes of articular cartilage were assessed using safranin O staining. Chondrocyte proliferation and apoptosis were measured using cell a counting kit-8 assay and flow cytometry. Bioinformatics algorithms and a luciferase reporter assay were used to evaluate matrix metalloproteinase13 (MMP13) as a direct target of miR-27-3p. RESULTS And had the ability to prevent catabolism and facilitate anabolism of articular cartilage in an experimental OA model in mice. In addition, And alleviated chondrocyte apoptosis in in vitro and in vivo models of OA. We also found that both up-regulation of MMP13 and down-regulation of miR-27-3p in the proximal tibia of OA mice and interleukin (IL)-1β-stimulated chondrocytes were reversed by And administration simultaneously. MMP13 was validated as direct target of miR-27-3p and could be suppressed by overexpression of miR-27-3p in mouse chondrocyte. Furthermore, overexpression of miR-27-3p or MMP13 loss-of-function in chondrocytes could alleviate IL-1β-induced apoptosis. CONCLUSIONS These results indicated that miR-27-3p/MMP13 signaling axis might be a potential therapeutic target of And for preventing the progression of OA.
Collapse
Affiliation(s)
- Shaojian Chen
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| | - Zhihuan Luo
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| | - Xiaguang Chen
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
46
|
Knorr J, Wree A, Tacke F, Feldstein AE. The NLRP3 Inflammasome in Alcoholic and Nonalcoholic Steatohepatitis. Semin Liver Dis 2020; 40:298-306. [PMID: 32526788 DOI: 10.1055/s-0040-1708540] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (ASH) are advanced forms of fatty liver diseases that are associated with a high morbidity and mortality worldwide. Patients with ASH or NASH are more susceptible to the progression of fibrosis and cirrhosis up to the development of hepatocellular carcinoma. Currently, there are limited medical therapies available. Accompanied by the asymptomatic disease progression, the demand for liver transplants is high. This review provides an overview about the growing evidence for a central role of NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multiprotein complex that acts as a central driver of inflammation via activation of caspase 1, maturation and release of pro-inflammatory cytokines including interleukin-1β, and trigger of inflammatory pyroptotic cell death in both NASH and ASH. We also discuss potential therapeutic approaches targeting NLRP3 inflammasome and related upstream and downstream pathways to develop prognostic biomarkers and medical treatments for both liver diseases.
Collapse
Affiliation(s)
- Jana Knorr
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine, Berlin, Germany.,Department of Pediatric Gastroenterology, University of California, San Diego (UCSD), San Diego, California and Rady Children's Hospital, San Diego, California
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Ariel E Feldstein
- Department of Pediatric Gastroenterology, University of California, San Diego (UCSD), San Diego, California and Rady Children's Hospital, San Diego, California
| |
Collapse
|
47
|
Zhang M, Yang M, Wang N, Liu Q, Wang B, Huang T, Tong Y, Ming Y, Wong CW, Liu J, Yao D, Guan M. Andrographolide modulates HNF4α activity imparting on hepatic metabolism. Mol Cell Endocrinol 2020; 513:110867. [PMID: 32422400 DOI: 10.1016/j.mce.2020.110867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Hepatic nuclear factor 4 alpha (HNF4α) drives the expression of apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTP) and phospholipase A2 G12B (PLA2G12B), governing hepatic very-low-density lipoprotein (VLDL) production and secretion. Andrographolide (AP) is a major constituent isolated from Andrographis paniculata. We found that AP can disrupt the interaction between HNF4α and its coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Virtual docking and mutational analysis indicated that arginine 235 of HNF4α is essential for binding to AP. As a consequence of antagonizing the activity of HNF4α, AP suppresses the expression of ApoB, MTP and PLA2G12B and reduces the rate of hepatic VLDL secretion in vivo. AP additionally reduced gluconeogenesis via down-regulating the expression of HNF4α target genes phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6pc). Collectively, our results suggest that AP affects liver function via modulating the transcriptional activity of HNF4α.
Collapse
Affiliation(s)
- Minyi Zhang
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Meng Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Na Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingli Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Binxu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Tongling Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yan Tong
- Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yanlin Ming
- Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Yuen Long, Hong Kong, China
| | - Jinsong Liu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dongsheng Yao
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
48
|
Andrographolide attenuates choroidal neovascularization by inhibiting the HIF-1α/VEGF signaling pathway. Biochem Biophys Res Commun 2020; 530:60-66. [PMID: 32828316 DOI: 10.1016/j.bbrc.2020.06.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Choroidal neovascularization (CNV), a characteristic of wet age-related macular degeneration (AMD), leads to severe vision loss amongst the elderly in the developed countries. Currently, the premier treatment for AMD is anti-VEGF therapy, which has limited efficacy, and is still controversial. Previous studies have showed that Andrographolide (Andro) had various biological effects, including anti-angiogenesis, anti-inflammation, and antioxidant. However, the effect of Andro on the formation of CNV has not been studied thus far. Here our results showed that Andro reduced the expression levels of HIF-1α and VEGF in the RF/6A cells chemical hypoxia model and the laser-induced CNV mouse model. Moreover, Andro inhibited the tube formation activity of RF/6A cells under hypoxic conditions. Furthermore, intraperitoneal injection of Andro reduced the severity of choroidal vascular leakage and the size of CNV in the laser-induced CNV mouse model, indicating that Andro attenuated the development of CNV by inhibiting the HIF-1α/VEGF signaling pathway. These results suggest that Andro could be a potential novel therapeutic agent for AMD.
Collapse
|
49
|
Extracellular vesicles derived from fat-laden hepatocytes undergoing chemical hypoxia promote a pro-fibrotic phenotype in hepatic stellate cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165857. [PMID: 32512191 DOI: 10.1016/j.bbadis.2020.165857] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The transition from steatosis to non-alcoholic steatohepatitis (NASH) is a key issue in non-alcoholic fatty liver disease (NAFLD). Observations in patients with obstructive sleep apnea syndrome (OSAS) suggest that hypoxia contributes to progression to NASH and liver fibrosis, and the release of extracellular vesicles (EVs) by injured hepatocytes has been implicated in NAFLD progression. AIM To evaluate the effects of hypoxia on hepatic pro-fibrotic response and EV release in experimental NAFLD and to assess cellular crosstalk between hepatocytes and human hepatic stellate cells (LX-2). METHODS HepG2 cells were treated with fatty acids and subjected to chemically induced hypoxia using the hypoxia-inducible factor 1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2). Lipid droplets, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic-associated genes were assessed. EVs were isolated by ultracentrifugation. LX-2 cells were treated with EVs from hepatocytes. The CDAA-fed mouse model was used to assess the effects of intermittent hypoxia (IH) in experimental NASH. RESULTS Chemical hypoxia increased steatosis, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic gene expressions in fat-laden HepG2 cells. Chemical hypoxia also increased the release of EVs from HepG2 cells. Treatment of LX2 cells with EVs from fat-laden HepG2 cells undergoing chemical hypoxia increased expression pro-fibrotic markers. CDAA-fed animals exposed to IH exhibited increased portal inflammation and fibrosis that correlated with an increase in circulating EVs. CONCLUSION Chemical hypoxia promotes hepatocellular damage and pro-inflammatory and pro-fibrotic signaling in steatotic hepatocytes both in vitro and in vivo. EVs from fat-laden hepatocytes undergoing chemical hypoxia evoke pro-fibrotic responses in LX-2 cells.
Collapse
|
50
|
Xu Y, Guo W, Zhang C, Chen F, Tan HY, Li S, Wang N, Feng Y. Herbal Medicine in the Treatment of Non-Alcoholic Fatty Liver Diseases-Efficacy, Action Mechanism, and Clinical Application. Front Pharmacol 2020; 11:601. [PMID: 32477116 PMCID: PMC7235193 DOI: 10.3389/fphar.2020.00601] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with high prevalence in the developed countries. NAFLD has been considered as one of the leading causes of cryptogenic cirrhosis and chronic liver disease. The individuals with obesity, insulin resistance and diabetes mellitus, hyperlipidaemia, and hypertension cardiovascular disease have a high risk to develop NAFLD. The related critical pathological events are associated with the development of NAFLD including insulin resistance, lipid metabolism dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. The development of NAFLD range from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis is characterized by fat accumulation, which represents the early stage of NAFLD. Then, inflammation triggered by steatosis drives early NAFLD progression into NASH. Therefore, the amelioration of steatosis and inflammation is essential for NAFLD therapy. The herbal medicine have taken great effects on the improvement of steatosis and inflammation for treating NAFLD. It has been found out that these effects involved the multiple mechanisms underlying lipid metabolism and inflammation. In this review, we pay particular attention on herbal medicine treatment and make summary about the research of herbal medicine, including herb formula, herb extract and naturals compound on NAFLD. We make details about their protective effects, the mechanism of action involved in the amelioration steatosis and inflammation for NAFLD therapy as well as the clinical application.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|