1
|
Kaneko T, Tanaka S, Sugiyama M, Kaise S, Inui H, Ushida K. The diversity of glycan chains in jellyfish mucin of three Cubozoan species: the contrast in molecular evolution rates of the peptide chain and Glycans. Glycobiology 2025; 35:cwae090. [PMID: 39499653 DOI: 10.1093/glycob/cwae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024] Open
Abstract
The O-glycan composition of jellyfish (JF) mucin (qniumucin: Q-mucin) extracted from three Cubozoan species was studied after the optimization of the purification protocol. Application of a stepwise gradient of ionic strength to anion exchange chromatography (AEXC) was effective for isolating Q-mucin from coexisting impurities. In the three species, the amino acid sequence of the tandem repeat (TR) region in Q-mucin in all three Cubozoans seemed to remain the same as that in all Scyphozoans, although their glycan chains seemed to exhibit clear diversity. In particular, the amounts of acidic moieties on the glycan chains of Q-mucin from the Cubozoans markedly varied even in these genetically close species. In two of the three Cubozoan species, the fraction of disaccharides was large, showing a sharp contrast to that of the glycans of Q-mucin in Scyphozoans. This study also indicates that the simple sequence of TR commonly inherited in all Cubozoan and Scyphozoan JF species after the long term of evolution over 500 M years. According to this research, the glycans and the TR of mucin-type glycoproteins (MTGPs), forming a hierarchical structure, appear to complement each other in the evolutionary changes because the time required for their hereditary conversion is considerably different. The cooperation of these mechanisms is a strategy to achieve the contradictory functions of biosystems, namely species conservation and diversity acquisition.
Collapse
Affiliation(s)
- Takuma Kaneko
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Shinra Tanaka
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Minami Sugiyama
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Shiori Kaise
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Hiroshi Inui
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Kiminori Ushida
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
- Atomic, Molecular & Optical Physics Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Wooldridge TB, Ford SM, Conwell HC, Hyde J, Harris K, Shapiro B. Direct Measurement of the Mutation Rate and Its Evolutionary Consequences in a Critically Endangered Mollusk. Mol Biol Evol 2025; 42:msae266. [PMID: 39775835 PMCID: PMC11704959 DOI: 10.1093/molbev/msae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The rate at which mutations arise is a fundamental parameter of biology. Despite progress in measuring germline mutation rates across diverse taxa, such estimates are missing for much of Earth's biodiversity. Here, we present the first estimate of a germline mutation rate from the phylum Mollusca. We sequenced three pedigreed families of the white abalone Haliotis sorenseni, a long-lived, large-bodied, and critically endangered mollusk, and estimated a de novo mutation rate of 8.60 × 10-9 single nucleotide mutations per site per generation. This mutation rate is similar to rates measured in vertebrates with comparable generation times and longevity to abalone, and higher than mutation rates measured in faster-reproducing invertebrates. The spectrum of de novo mutations is also similar to that seen in vertebrate species, although an excess of rare C > A polymorphisms in wild individuals suggests that a modifier allele or environmental exposure may have once increased C > A mutation rates. We use our rate to infer baseline effective population sizes (Ne) across multiple Pacific abalone and find that abalone persisted over most of their evolutionary history as large and stable populations, in contrast to extreme fluctuations over recent history and small census sizes in the present day. We then use our mutation rate to infer the timing and pattern of evolution of the abalone genus Haliotis, which was previously unknown due to few fossil calibrations. Our findings are an important step toward understanding mutation rate evolution and they establish a key parameter for conservation and evolutionary genomics research in mollusks.
Collapse
Affiliation(s)
- T Brock Wooldridge
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Sarah M Ford
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Holland C Conwell
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - John Hyde
- Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- Colossal Biosciences, Austin, TX 95060, USA
| |
Collapse
|
3
|
Seufert F, Pérez-Hernández G, Pándy-Szekeres G, Guixà-González R, Langenhan T, Gloriam DE, Hildebrand PW. Generic residue numbering of the GAIN domain of adhesion GPCRs. Nat Commun 2025; 16:246. [PMID: 39747076 PMCID: PMC11697300 DOI: 10.1038/s41467-024-55466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The GPCR autoproteolysis inducing (GAIN) domain is an ancient protein fold ubiquitous in adhesion G protein-coupled receptors (aGPCR). It contains a tethered agonist necessary and sufficient for receptor activation. The GAIN domain is a hotspot for pathological mutations. However, the low primary sequence conservation of GAIN domains has thus far hindered the knowledge transfer across different GAIN domains in human receptors as well as species orthologs. Here, we present a scheme for generic residue numbering of GAIN domains, based on structural alignments of over 14,000 modeled GAIN domain structures. This scheme is implemented in the GPCR database (GPCRdb) and elucidates the domain topology across different aGPCRs and their homologs in a large panel of species. We identify conservation hotspots and statistically cancer-enriched positions in human aGPCRs and show the transferability of positional and structural information between GAIN domain homologs. The GAIN-GRN scheme provides a robust strategy to allocate structural homologies at the primary and secondary levels also to GAIN domains of polycystic kidney disease 1/PKD1-like proteins, which now renders positions in both GAIN domain types comparable to one another. In summary, our work enables researchers to generate hypothesis and rationalize experiments related to GAIN domain function and pathology.
Collapse
Affiliation(s)
- Florian Seufert
- Institute for Medical Physics and Biophysics, Leipzig University, Medical Faculty, Leipzig, Germany
| | - Guillermo Pérez-Hernández
- Institute for Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Magyar Tudósok körútja 2., Budapest, Hungary
| | - Ramon Guixà-González
- Institute for Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig, Germany
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Leipzig University, Medical Faculty, Leipzig, Germany.
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig, Germany.
| |
Collapse
|
4
|
Carlisle E, Yin Z, Pisani D, Donoghue PCJ. Ediacaran origin and Ediacaran-Cambrian diversification of Metazoa. SCIENCE ADVANCES 2024; 10:eadp7161. [PMID: 39536100 PMCID: PMC11559618 DOI: 10.1126/sciadv.adp7161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The timescale of animal diversification has been a focus of debate over how evolutionary history should be calibrated to geologic time. Molecular clock analyses have invariably estimated a Cryogenian or Tonian origin of animals while unequivocal animal fossils first occur in the Ediacaran. However, redating of key Ediacaran biotas and the discovery of several Ediacaran crown-Metazoa prompt recalibration of molecular clock analyses. We present revised fossil calibrations and use them in molecular clock analyses estimating the timescale of metazoan evolutionary history. Integrating across uncertainties including phylogenetic relationships, clock model, and calibration strategy, we estimate Metazoa to have originated in the early Ediacaran, Eumetazoa in the middle Ediacaran, and Bilateria in the upper Ediacaran, with many crown-phyla originating across the Ediacaran-Cambrian interval or elsewise fully within the Cambrian. These results are in much closer accord with the fossil record, coinciding with marine oxygenation, but they reject a literal reading of the fossil record.
Collapse
Affiliation(s)
- Emily Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- CAS Center for Excellence in Life and Paleoenvironment, Nanjing 210008, China
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
5
|
Karki BR, Macmillan AC, Vicente-Muñoz S, Greis KD, Romick LE, Cunningham JT. Evolutionary origins and innovations sculpting the mammalian PRPS enzyme complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616059. [PMID: 39411161 PMCID: PMC11476008 DOI: 10.1101/2024.10.01.616059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The phosphoribosyl pyrophosphate synthetase (PRPS) enzyme conducts a chokepoint reaction connecting central carbon metabolism and nucleotide production pathways, making it essential for life1,2. Here, we show that the presence of multiple PRPS-encoding genes is a hallmark trait of eukaryotes, and we trace the evolutionary origins and define the individual functions of each of the five mammalian PRPS homologs - three isozymes (one testis-restricted)3,4 and two non-enzymatic associated proteins (APs)5,6 - which we demonstrate operate together as a large molecular weight complex capable of attaining a heterogeneous array of functional multimeric configurations. Employing a repertoire of isogenic fibroblast clones in all viable individual or combinatorial assembly states, we define preferential interactions between subunits, and we show that cells lacking PRPS2, PRPSAP1, and PRPSAP2 render PRPS1 into aberrant homo-oligomeric assemblies with diminished metabolic flux and impaired proliferative capacity. We demonstrate how numerous evolutionary innovations in the duplicated genes have created specialized roles for individual complex members and identify translational control mechanisms that enable fine-tuned regulation of PRPS assembly and activity, which provide clues into the positive and negative selective pressures that facilitate metabolic flexibility and tissue specialization in advanced lifeforms. Collectively, our study demonstrates how evolution has transformed a single PRPS gene into a multimeric complex endowed with functional and regulatory features that govern cellular biochemistry.
Collapse
Affiliation(s)
- Bibek R. Karki
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Austin C. Macmillan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sara Vicente-Muñoz
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lindsey E. Romick
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA
| | - J. Tom Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Hehmeyer J, Plessier F, Marlow H. Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification. Annu Rev Cell Dev Biol 2024; 40:407-425. [PMID: 39052757 DOI: 10.1146/annurev-cellbio-111822-124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Integrative Biology Program, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Flora Plessier
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
7
|
Msweli S, Pakala SB, Syed K. NF-κB Transcription Factors: Their Distribution, Family Expansion, Structural Conservation, and Evolution in Animals. Int J Mol Sci 2024; 25:9793. [PMID: 39337282 PMCID: PMC11432056 DOI: 10.3390/ijms25189793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The Nuclear Factor Kappa B (NF-κB) transcription factor family consists of five members: RelA (p65), RelB, c-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). This family is considered a master regulator of classical biochemical pathways such as inflammation, immunity, cell proliferation, and cell death. The proteins in this family have a conserved Rel homology domain (RHD) with the following subdomains: DNA binding domain (RHD-DBD) and dimerization domain (RHD-DD). Despite the importance of the NF-κB family in biology, there is a lack of information with respect to their distribution patterns, evolution, and structural conservation concerning domains and subdomains in animals. This study aims to address this critical gap regarding NF-κB proteins. A comprehensive analysis of NF-κB family proteins revealed their distinct distribution in animals, with differences in protein sizes, conserved domains, and subdomains (RHD-DBD and RHD-DD). For the first time, NF-κB proteins with multiple RHD-DBDs and RHD-DDs have been identified, and in some cases, this is due to subdomain duplication. The presence of RelA/p65 exclusively in vertebrates shows that innate immunity originated in fishes, followed by amphibians, reptiles, aves, and mammals. Phylogenetic analysis showed that NF-κB family proteins grouped according to animal groups, signifying structural conservation after speciation. The evolutionary analysis of RHDs suggests that NF-κB family members p50/p105 and c-Rel may have been the first to emerge in arthropod ancestors, followed by RelB, RelA, and p52/p100.
Collapse
Affiliation(s)
- Siphesihle Msweli
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| | - Suresh B. Pakala
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500-046, India
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| |
Collapse
|
8
|
Wörheide G, Francis WR, Deister F, Krebs S, Erpenbeck D, Vargas S. The genomes of the aquarium sponges Tethya wilhelma and Tethya minuta (Porifera: Demospongiae). F1000Res 2024; 13:679. [PMID: 39193510 PMCID: PMC11347921 DOI: 10.12688/f1000research.150836.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Sponges (Phylum Porifera) are aquatic sessile metazoans found worldwide in marine and freshwater environments. They are significant in the animal tree of life as one of the earliest-branching metazoan lineages and as filter feeders play crucial ecological roles, particularly in coral reefs, but are susceptible to the effects of climate change. In the face of the current biodiversity crisis, genomic data is crucial for species conservation efforts and predicting their evolutionary potential in response to environmental changes. However, there is a limited availability of culturable sponge species with annotated high-quality genomes to further comprehensive insights into animal evolution, function, and their response to the ongoing global change. Despite the publication of a few high-quality annotated sponge genomes, there remains a gap in resources for culturable sponge species. To address this gap, we provide high quality draft genomes of the two congeneric aquarium species Tethya wilhelma and Tethya minuta, small ball-shaped demosponges that are easily maintained long-term in ex situ culture. As such, they offer promising opportunities as laboratory models to contribute to advancing our understanding of sponge biology and provide valuable resources for studying animal evolution, function, and responses to environmental challenges.
Collapse
Affiliation(s)
- Gert Wörheide
- Bayerische Staatssammlung für Paläontologie und Geologie, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Munich, Bavaria, 80333, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Warren R. Francis
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Fabian Deister
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Erpenbeck
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Sergio Vargas
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| |
Collapse
|
9
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
10
|
Wang X, Liu AG, Chen Z, Wu C, Liu Y, Wan B, Pang K, Zhou C, Yuan X, Xiao S. A late-Ediacaran crown-group sponge animal. Nature 2024; 630:905-911. [PMID: 38839967 DOI: 10.1038/s41586-024-07520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Sponges are the most basal metazoan phylum1 and may have played important roles in modulating the redox architecture of Neoproterozoic oceans2. Although molecular clocks predict that sponges diverged in the Neoproterozoic era3,4, their fossils have not been unequivocally demonstrated before the Cambrian period5-8, possibly because Precambrian sponges were aspiculate and non-biomineralized9. Here we describe a late-Ediacaran fossil, Helicolocellus cantori gen. et sp. nov., from the Dengying Formation (around 551-539 million years ago) of South China. This fossil is reconstructed as a large, stemmed benthic organism with a goblet-shaped body more than 0.4 m in height, with a body wall consisting of at least three orders of nested grids defined by quadrate fields, resembling a Cantor dust fractal pattern. The resulting lattice is interpreted as an organic skeleton comprising orthogonally arranged cruciform elements, architecturally similar to some hexactinellid sponges, although the latter are built with biomineralized spicules. A Bayesian phylogenetic analysis resolves H. cantori as a crown-group sponge related to the Hexactinellida. H. cantori confirms that sponges diverged and existed in the Precambrian as non-biomineralizing animals with an organic skeleton. Considering that siliceous biomineralization may have evolved independently among sponge classes10-13, we question the validity of biomineralized spicules as a necessary criterion for the identification of Precambrian sponge fossils.
Collapse
Affiliation(s)
- Xiaopeng Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Alexander G Liu
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Zhe Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengxi Wu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yarong Liu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ke Pang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, Nanjing, China
| | - Xunlai Yuan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Shuhai Xiao
- Department of Geosciences and Global Change Centre, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Khurana MP, Scheidwasser-Clow N, Penn MJ, Bhatt S, Duchêne DA. The Limits of the Constant-rate Birth-Death Prior for Phylogenetic Tree Topology Inference. Syst Biol 2024; 73:235-246. [PMID: 38153910 PMCID: PMC11129600 DOI: 10.1093/sysbio/syad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 12/30/2023] Open
Abstract
Birth-death models are stochastic processes describing speciation and extinction through time and across taxa and are widely used in biology for inference of evolutionary timescales. Previous research has highlighted how the expected trees under the constant-rate birth-death (crBD) model tend to differ from empirical trees, for example, with respect to the amount of phylogenetic imbalance. However, our understanding of how trees differ between the crBD model and the signal in empirical data remains incomplete. In this Point of View, we aim to expose the degree to which the crBD model differs from empirically inferred phylogenies and test the limits of the model in practice. Using a wide range of topology indices to compare crBD expectations against a comprehensive dataset of 1189 empirically estimated trees, we confirm that crBD model trees frequently differ topologically compared with empirical trees. To place this in the context of standard practice in the field, we conducted a meta-analysis for a subset of the empirical studies. When comparing studies that used Bayesian methods and crBD priors with those that used other non-crBD priors and non-Bayesian methods (i.e., maximum likelihood methods), we do not find any significant differences in tree topology inferences. To scrutinize this finding for the case of highly imbalanced trees, we selected the 100 trees with the greatest imbalance from our dataset, simulated sequence data for these tree topologies under various evolutionary rates, and re-inferred the trees under maximum likelihood and using the crBD model in a Bayesian setting. We find that when the substitution rate is low, the crBD prior results in overly balanced trees, but the tendency is negligible when substitution rates are sufficiently high. Overall, our findings demonstrate the general robustness of crBD priors across a broad range of phylogenetic inference scenarios but also highlight that empirically observed phylogenetic imbalance is highly improbable under the crBD model, leading to systematic bias in data sets with limited information content.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, 1352 Copenhagen, Denmark
| | - Neil Scheidwasser-Clow
- Section of Epidemiology, Department of Public Health, University of Copenhagen, 1352 Copenhagen, Denmark
| | - Matthew J Penn
- Department of Statistics, University of Oxford, OX1 3LB, Oxford, UK
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, 1352 Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, SW7 2AZ, London, UK
| | - David A Duchêne
- Centre for Evolutionary Hologenomics, University of Copenhagen, 1352 Copenhagen, Denmark
| |
Collapse
|
12
|
Stern RJ, Gerya TV. The importance of continents, oceans and plate tectonics for the evolution of complex life: implications for finding extraterrestrial civilizations. Sci Rep 2024; 14:8552. [PMID: 38609425 PMCID: PMC11015018 DOI: 10.1038/s41598-024-54700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/14/2024] [Indexed: 04/14/2024] Open
Abstract
Within the uncertainties of involved astronomical and biological parameters, the Drake Equation typically predicts that there should be many exoplanets in our galaxy hosting active, communicative civilizations (ACCs). These optimistic calculations are however not supported by evidence, which is often referred to as the Fermi Paradox. Here, we elaborate on this long-standing enigma by showing the importance of planetary tectonic style for biological evolution. We summarize growing evidence that a prolonged transition from Mesoproterozoic active single lid tectonics (1.6 to 1.0 Ga) to modern plate tectonics occurred in the Neoproterozoic Era (1.0 to 0.541 Ga), which dramatically accelerated emergence and evolution of complex species. We further suggest that both continents and oceans are required for ACCs because early evolution of simple life must happen in water but late evolution of advanced life capable of creating technology must happen on land. We resolve the Fermi Paradox (1) by adding two additional terms to the Drake Equation: foc (the fraction of habitable exoplanets with significant continents and oceans) and fpt (the fraction of habitable exoplanets with significant continents and oceans that have had plate tectonics operating for at least 0.5 Ga); and (2) by demonstrating that the product of foc and fpt is very small (< 0.00003-0.002). We propose that the lack of evidence for ACCs reflects the scarcity of long-lived plate tectonics and/or continents and oceans on exoplanets with primitive life.
Collapse
Affiliation(s)
- Robert J Stern
- Department of Sustainable Earth Systems Science, University of Texas at Dallas, Richardson, TX, 75083-0688, USA
| | - Taras V Gerya
- Department of Earth Sciences, ETH-Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland.
| |
Collapse
|
13
|
Sierra NC, Gold DA. The evolution of cnidarian stinging cells supports a Precambrian radiation of animal predators. Evol Dev 2024; 26:e12469. [PMID: 38236185 DOI: 10.1111/ede.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
Cnidarians-the phylum including sea anemones, corals, jellyfish, and hydroids-are one of the oldest groups of predatory animals. Nearly all cnidarians are carnivores that use stinging cells called cnidocytes to ensnare and/or envenom their prey. However, there is considerable diversity in cnidocyte form and function. Tracing the evolutionary history of cnidocytes may therefore provide a proxy for early animal feeding strategies. In this study, we generated a time-calibrated molecular clock of cnidarians and performed ancestral state reconstruction on 12 cnidocyte types to test the hypothesis that the original cnidocyte was involved in prey capture. We conclude that the first cnidarians had only the simplest and least specialized cnidocyte type (the isorhiza) which was just as likely to be used for adhesion and/or defense as the capture of prey. A rapid diversification of specialized cnidocytes occurred through the Ediacaran (~654-574 million years ago), with major subgroups developing unique sets of cnidocytes to match their distinct feeding styles. These results are robust to changes in the molecular clock model, and are consistent with growing evidence for an Ediacaran diversification of animals. Our work also provides insight into the evolution of this complex cell type, suggesting that convergence of forms is rare, with the mastigophore being an interesting counterexample.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Integrative Genetics and Genomics, University of California, Davis, Davis, California, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Integrative Genetics and Genomics, University of California, Davis, Davis, California, USA
| |
Collapse
|
14
|
Aleotti A, Goulty M, Lewis C, Giorgini F, Feuda R. The origin, evolution, and molecular diversity of the chemokine system. Life Sci Alliance 2024; 7:e202302471. [PMID: 38228369 PMCID: PMC10792014 DOI: 10.26508/lsa.202302471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Chemokine signalling performs key functions in cell migration via chemoattraction, such as attracting leukocytes to the site of infection during host defence. The system consists of a ligand, the chemokine, usually secreted outside the cell, and a chemokine receptor on the surface of a target cell that recognises the ligand. Several noncanonical components interact with the system. These include a variety of molecules that usually share some degree of sequence similarity with canonical components and, in some cases, are known to bind to canonical components and/or to modulate cell migration. Whereas canonical components have been described in vertebrate lineages, the distribution of the noncanonical components is less clear. Uncertainty over the relationships between canonical and noncanonical components hampers our understanding of the evolution of the system. We used phylogenetic methods, including gene-tree to species-tree reconciliation, to untangle the relationships between canonical and noncanonical components, identify gene duplication events, and clarify the origin of the system. We found that unrelated ligand groups independently evolved chemokine-like functions. We found noncanonical ligands outside vertebrates, such as TAFA "chemokines" found in urochordates. In contrast, all receptor groups are vertebrate-specific and all-except ACKR1-originated from a common ancestor in early vertebrates. Both ligand and receptor copy numbers expanded through gene duplication events at the base of jawed vertebrates, with subsequent waves of innovation occurring in bony fish and mammals.
Collapse
Affiliation(s)
- Alessandra Aleotti
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Matthew Goulty
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Clifton Lewis
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Flaviano Giorgini
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Roberto Feuda
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Shimizu K, Nishi M, Sakate Y, Kawanami H, Bito T, Arima J, Leria L, Maldonado M. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera. Nat Commun 2024; 15:181. [PMID: 38185711 PMCID: PMC10772126 DOI: 10.1038/s41467-023-44226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Metazoans use silicon traces but rarely develop extensive silica skeletons, except for the early-diverging lineage of sponges. The mechanisms underlying metazoan silicification remain incompletely understood, despite significant biotechnological and evolutionary implications. Here, the characterization of two proteins identified from hexactinellid sponge silica, hexaxilin and perisilin, supports that the three classes of siliceous sponges (Hexactinellida, Demospongiae, and Homoscleromorpha) use independent protein machineries to build their skeletons, which become non-homologous structures. Hexaxilin forms the axial filament to intracellularly pattern the main symmetry of the skeletal parts, while perisilin appears to operate in their thickening, guiding extracellular deposition of peripheral silica, as does glassin, a previously characterized hexactinellid silicifying protein. Distant hexaxilin homologs occur in some bilaterians with siliceous parts, suggesting putative conserved silicifying activity along metazoan evolution. The findings also support that ancestral Porifera were non-skeletonized, acquiring silica skeletons only after diverging into major classes, what reconciles molecular-clock dating and the fossil record.
Collapse
Affiliation(s)
- Katsuhiko Shimizu
- Platform for Community-based Research and Education, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8550, Japan.
| | - Michika Nishi
- Division of Agricultural Science, Graduate studies of Sustainability Science, Tottori University Graduate School, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Yuto Sakate
- Division of Agricultural Science, Graduate studies of Sustainability Science, Tottori University Graduate School, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Haruka Kawanami
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Tomohiro Bito
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Jiro Arima
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Laia Leria
- Sponge Ecobiology and Biotechnology Group, Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, 17300, Spain
| | - Manuel Maldonado
- Sponge Ecobiology and Biotechnology Group, Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, 17300, Spain.
| |
Collapse
|
16
|
Belato FA, Mello B, Coates CJ, Halanych KM, Brown FD, Morandini AC, de Moraes Leme J, Trindade RIF, Costa-Paiva EM. Divergence time estimates for the hypoxia-inducible factor-1 alpha (HIF1α) reveal an ancient emergence of animals in low-oxygen environments. GEOBIOLOGY 2024; 22:e12577. [PMID: 37750460 DOI: 10.1111/gbi.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635-560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957-1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.
Collapse
Affiliation(s)
- Flavia A Belato
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | - Beatriz Mello
- Biology Institute, Genetics Department, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Christopher J Coates
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Federico D Brown
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | - André C Morandini
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | | | - Ricardo I F Trindade
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, São Paulo - SP, Brazil
| | - Elisa Maria Costa-Paiva
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, São Paulo - SP, Brazil
| |
Collapse
|
17
|
Anderson RP, Woltz CR, Tosca NJ, Porter SM, Briggs DEG. Fossilisation processes and our reading of animal antiquity. Trends Ecol Evol 2023; 38:1060-1071. [PMID: 37385847 DOI: 10.1016/j.tree.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Estimates for animal antiquity exhibit a significant disconnect between those from molecular clocks, which indicate crown animals evolved ∼800 million years ago (Ma), and those from the fossil record, which extends only ∼574 Ma. Taphonomy is often held culpable: early animals were too small/soft/fragile to fossilise, or the circumstances that preserve them were uncommon in the early Neoproterozoic. We assess this idea by comparing Neoproterozoic fossilisation processes with those of the Cambrian and its abundant animal fossils. Cambrian Burgess Shale-type (BST) preservation captures animals in mudstones showing a narrow range of mineralogies; yet, fossiliferous Neoproterozoic mudstones rarely share the same mineralogy. Animal fossils are absent where BST preservation occurs in deposits ≥789 Ma, suggesting a soft maximum constraint on animal antiquity.
Collapse
Affiliation(s)
- Ross P Anderson
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK; All Souls College, University of Oxford, Oxford, OX1 4AL, UK.
| | - Christina R Woltz
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; Department of Earth and Planetary Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Susannah M Porter
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA; Yale Peabody Museum, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Kleinau G, Ali AH, Wiechert F, Szczepek M, Schmidt A, Spahn CMT, Liebscher I, Schöneberg T, Scheerer P. Intramolecular activity regulation of adhesion GPCRs in light of recent structural and evolutionary information. Pharmacol Res 2023; 197:106971. [PMID: 38032292 DOI: 10.1016/j.phrs.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Amal Hassan Ali
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Franziska Wiechert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, 04103 Leipzig, Germany; School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Kumala L, Thomsen M, Canfield DE. Respiration kinetics and allometric scaling in the demosponge Halichondria panicea. BMC Ecol Evol 2023; 23:53. [PMID: 37726687 PMCID: PMC10507823 DOI: 10.1186/s12862-023-02163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The aquiferous system in sponges represents one of the simplest circulatory systems used by animals for the internal uptake and distribution of oxygen and metabolic substrates. Its modular organization enables sponges to metabolically scale with size differently than animals with an internal circulatory system. In this case, metabolic rate is typically limited by surface to volume constraints to maintain an efficient supply of oxygen and food. Here, we consider the linkeage between oxygen concentration, the respiration rates of sponges and sponge size. RESULTS We explored respiration kinetics for individuals of the demosponge Halichondria panicea with varying numbers of aquiferous modules (nmodules = 1-102). From this work we establish relationships between the sponge size, module number, maximum respiration rate (Rmax) and the half-saturation constant, Km, which is the oxygen concentration producing half of the maximum respiration rate, Rmax. We found that the nmodules in H. panicea scales consistently with sponge volume (Vsp) and that Rmax increased with sponge size with a proportionality > 1. Conversly, we found a lack of correlation between Km and sponge body size suggesting that oxygen concentration does not control the size of sponges. CONCLUSIONS The present study reveals that the addition of aquiferous modules (with a mean volume of 1.59 ± 0.22 mL) enables H. panicea in particular, and likely demosponges in general, to grow far beyond constraints limiting the size of their component modules and independent of ambient oxygen levels.
Collapse
Affiliation(s)
- Lars Kumala
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark.
- Marine Biological Research Centre, University of Southern Denmark, Kerteminde, 5300, Denmark.
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark.
| | - Malte Thomsen
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Marine Biological Research Centre, University of Southern Denmark, Kerteminde, 5300, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
| | - Donald E Canfield
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense M, 5230, Denmark
| |
Collapse
|
20
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
21
|
Delgado-Rodriguez SE, Ryan AP, Daugherty MD. Recurrent Loss of Macrodomain Activity in Host Immunity and Viral Proteins. Pathogens 2023; 12:674. [PMID: 37242344 PMCID: PMC10221186 DOI: 10.3390/pathogens12050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Protein post-translational modifications (PTMs) are an important battleground in the evolutionary arms races that are waged between the host innate immune system and viruses. One such PTM, ADP-ribosylation, has recently emerged as an important mediator of host antiviral immunity. Important for the host-virus conflict over this PTM is the addition of ADP-ribose by PARP proteins and removal of ADP-ribose by macrodomain-containing proteins. Interestingly, several host proteins, known as macroPARPs, contain macrodomains as well as a PARP domain, and these proteins are both important for the host antiviral immune response and evolving under very strong positive (diversifying) evolutionary selection. In addition, several viruses, including alphaviruses and coronaviruses, encode one or more macrodomains. Despite the presence of the conserved macrodomain fold, the enzymatic activity of many of these proteins has not been characterized. Here, we perform evolutionary and functional analyses to characterize the activity of macroPARP and viral macrodomains. We trace the evolutionary history of macroPARPs in metazoans and show that PARP9 and PARP14 contain a single active macrodomain, whereas PARP15 contains none. Interestingly, we also reveal several independent losses of macrodomain enzymatic activity within mammalian PARP14, including in the bat, ungulate, and carnivore lineages. Similar to macroPARPs, coronaviruses contain up to three macrodomains, with only the first displaying catalytic activity. Intriguingly, we also reveal the recurrent loss of macrodomain activity within the alphavirus group of viruses, including enzymatic loss in insect-specific alphaviruses as well as independent enzymatic losses in two human-infecting viruses. Together, our evolutionary and functional data reveal an unexpected turnover in macrodomain activity in both host antiviral proteins and viral proteins.
Collapse
Affiliation(s)
| | | | - Matthew D. Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California—San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Brown MO, Olagunju BO, Giner JL, Welander PV. Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations. Nat Commun 2023; 14:1859. [PMID: 37012227 PMCID: PMC10070321 DOI: 10.1038/s41467-023-37552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Sterane molecular fossils are broadly interpreted as eukaryotic biomarkers, although diverse bacteria also produce sterols. Steranes with side-chain methylations can act as more specific biomarkers if their sterol precursors are limited to particular eukaryotes and are absent in bacteria. One such sterane, 24-isopropylcholestane, has been attributed to demosponges and potentially represents the earliest evidence for animals on Earth, but enzymes that methylate sterols to give the 24-isopropyl side-chain remain undiscovered. Here, we show that sterol methyltransferases from both sponges and yet-uncultured bacteria function in vitro and identify three methyltransferases from symbiotic bacteria each capable of sequential methylations resulting in the 24-isopropyl sterol side-chain. We demonstrate that bacteria have the genomic capacity to synthesize side-chain alkylated sterols, and that bacterial symbionts may contribute to 24-isopropyl sterol biosynthesis in demosponges. Together, our results suggest bacteria should not be dismissed as potential contributing sources of side-chain alkylated sterane biomarkers in the rock record.
Collapse
Affiliation(s)
- Malory O Brown
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Babatunde O Olagunju
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - José-Luis Giner
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
23
|
Jones BM, Rubin BER, Dudchenko O, Kingwell CJ, Traniello IM, Wang ZY, Kapheim KM, Wyman ES, Adastra PA, Liu W, Parsons LR, Jackson SR, Goodwin K, Davidson SM, McBride MJ, Webb AE, Omufwoko KS, Van Dorp N, Otárola MF, Pham M, Omer AD, Weisz D, Schraiber J, Villanea F, Wcislo WT, Paxton RJ, Hunt BG, Aiden EL, Kocher SD. Convergent and complementary selection shaped gains and losses of eusociality in sweat bees. Nat Ecol Evol 2023; 7:557-569. [PMID: 36941345 PMCID: PMC11610481 DOI: 10.1038/s41559-023-02001-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/18/2023] [Indexed: 03/23/2023]
Abstract
Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin E R Rubin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Ian M Traniello
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Karen M Kapheim
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biology, Utah State University, Logan, UT, USA
| | - Eli S Wyman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Per A Adastra
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - S RaElle Jackson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Matthew J McBride
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kennedy S Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Nikki Van Dorp
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mauricio Fernández Otárola
- Biodiversity and Tropical Ecology Research Center (CIBET) and School of Biology, University of Costa Rica, San José, Costa Rica
| | - Melanie Pham
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Schraiber
- Department of Biology, Temple University, Philadelphia, PA, USA
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Fernando Villanea
- Department of Biology, Temple University, Philadelphia, PA, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Robert J Paxton
- Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
24
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
25
|
Cazet JF, Siebert S, Little HM, Bertemes P, Primack AS, Ladurner P, Achrainer M, Fredriksen MT, Moreland RT, Singh S, Zhang S, Wolfsberg TG, Schnitzler CE, Baxevanis AD, Simakov O, Hobmayer B, Juliano CE. A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state. Genome Res 2023; 33:283-298. [PMID: 36639202 PMCID: PMC10069465 DOI: 10.1101/gr.277040.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
- Lyell Immunopharma, South San Francisco, California 94080, USA
| | - Hannah Morris Little
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Philip Bertemes
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Abby S Primack
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Peter Ladurner
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Matthias Achrainer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Mark T Fredriksen
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Travis Moreland
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sumeeta Singh
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, Florida 32080, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, 1010 Vienna, Austria
| | - Bert Hobmayer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA;
| |
Collapse
|
26
|
Griffiths HJ, Whittle RJ, Mitchell EG. Animal survival strategies in Neoproterozoic ice worlds. GLOBAL CHANGE BIOLOGY 2023; 29:10-20. [PMID: 36220153 PMCID: PMC10091762 DOI: 10.1111/gcb.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The timing of the first appearance of animals is of crucial importance for understanding the evolution of life on Earth. Although the fossil record places the earliest metazoans at 572-602 Ma, molecular clock studies suggest a far earlier origination, as far back as ~850 Ma. The difference in these dates would place the rise of animal life into a time period punctuated by multiple colossal, potentially global, glacial events. Although the two schools of thought debate the limitations of each other's methods, little time has been dedicated to how animal life might have survived if it did arise before or during these global glacial periods. The history of recent polar biota shows that organisms have found ways of persisting on and around the ice of the Antarctic continent throughout the Last Glacial Maximum (33-14 Ka), with some endemic species present before the breakup of Gondwana (180-23 Ma). Here we discuss the survival strategies and habitats of modern polar marine organisms in environments analogous to those that could have existed during Neoproterozoic glaciations. We discuss how, despite the apparent harshness of many ice covered, sub-zero, Antarctic marine habitats, animal life thrives on, in and under the ice. Ice dominated systems and processes make some local environments more habitable through water circulation, oxygenation, terrigenous nutrient input and novel habitats. We consider how the physical conditions of Neoproterozoic glaciations would likely have dramatically impacted conditions for potential life in the shallows and erased any possible fossil evidence from the continental shelves. The recent glacial cycle has driven the evolution of Antarctica's unique fauna by acting as a "diversity pump," and the same could be true for the late Proterozoic and the evolution of animal life on Earth, and the existence of life elsewhere in the universe on icy worlds or moons.
Collapse
|
27
|
Łukowiak M, Van Soest R, Klautau M, Pérez T, Pisera A, Tabachnick K. The terminology of sponge spicules. J Morphol 2022; 283:1517-1545. [PMID: 36208470 DOI: 10.1002/jmor.21520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 01/19/2023]
Abstract
Sponges (Porifera) are a diverse and globally distributed clade of benthic organisms, with an evolutionary history reaching at least the Ediacaran-Cambrian (541 Ma) boundary interval. Throughout their research history, sponges have been subjects of intense studies in many fields, including paleontology, evolutionary biology, and even bioengineering and pharmacology. The skeletons of sponges are mostly characterized by the presence of mineral elements termed spicules, which structurally support the sponge bodies, though they also minimize the metabolic cost of water exchange and deter predators. The description of the spicules' shape and the skeleton organization represents the fundamental basis of sponge taxonomy and systematics. Here, we provide an illustrated catalogue of sponge spicules, which is based on previous works on sponge spicules, for example, and gathers and updates all terms that are currently used in sponge descriptions. Each spicule type is further illustrated through high quality scanning electron microscope micrographs. It is expected to be a valuable source that will facilitate spicule identification and, in certain cases, also enable sponge classification.
Collapse
Affiliation(s)
- Magdalena Łukowiak
- Department of Environmental Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Rob Van Soest
- Naturalis Biodiversity Center, Dept. Marine Biodiversity, Leiden, The Netherlands
| | - Michelle Klautau
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thierry Pérez
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Station Marine d'Endoume, Marseille, France
| | - Andrzej Pisera
- Department of Environmental Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Konstantin Tabachnick
- Shirshov Institute of Oceanology of Academy of Sciences of Russia, Moscow, Russian Federation
| |
Collapse
|
28
|
Naimark EB. Geochemical and Evolutionary Prerequisites for the Cambrian Skeletal Revolution. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Lamb TD. Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction. J Physiol 2022; 600:4585-4601. [PMID: 35412676 PMCID: PMC9790638 DOI: 10.1113/jp282058] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 12/30/2022] Open
Abstract
The detection of light in the vertebrate retina utilizes a duplex system of closely related rod and cone photoreceptors: cones respond extremely rapidly, and operate at 'photopic' levels of illumination, from moonlight upwards; rods respond much more slowly, thereby obtaining greater sensitivity, and function effectively only at 'scotopic' levels of moonlight and lower. Rods and cones employ distinct isoforms of many of the proteins in the phototransduction cascade, and they thereby represent a unique evolutionary system, whereby the same process (the detection of light) uses a distinct set of genes in two classes of cell. The molecular mechanisms of phototransduction activation are described, and the classical quantitative predictions for the onset phase of the electrical response to light are developed. Recent work predicting the recovery phase of the rod's response to intense flashes is then presented, that provides an accurate account of the time that the response spends in saturation. Importantly, this also provides a new estimate for the rate at which a single rhodopsin activates molecules of the G-protein, transducin, that is substantially higher than other estimates in the literature. Finally, the evolutionary origin of the phototransduction proteins in rods and cones is examined, and it is shown that most of the rod/cone differences were established at the first of the two rounds of whole-genome duplication more than 500 million years ago.
Collapse
Affiliation(s)
- Trevor D. Lamb
- Eccles Institute of NeuroscienceJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
30
|
Cophylogeny and convergence shape holobiont evolution in sponge-microbe symbioses. Nat Ecol Evol 2022; 6:750-762. [PMID: 35393600 DOI: 10.1038/s41559-022-01712-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Symbiotic microbial communities of sponges serve critical functions that have shaped the evolution of reef ecosystems since their origins. Symbiont abundance varies tremendously among sponges, with many species classified as either low microbial abundance (LMA) or high microbial abundance (HMA), but the evolutionary dynamics of these symbiotic states remain unknown. This study examines the LMA/HMA dichotomy across an exhaustive sampling of Caribbean sponge biodiversity and predicts that the LMA symbiotic state is the ancestral state among sponges. Conversely, HMA symbioses, consisting of more specialized microorganisms, have evolved multiple times by recruiting similar assemblages, mostly since the rise of scleractinian-dominated reefs. Additionally, HMA symbioses show stronger signals of phylosymbiosis and cophylogeny, consistent with stronger co-evolutionary interaction in these complex holobionts. These results indicate that HMA holobionts are characterized by increased endemism, metabolic dependence and chemical defences. The selective forces driving these patterns may include the concurrent increase in dissolved organic matter in reef ecosystems or the diversification of spongivorous fishes.
Collapse
|
31
|
Curdt F, Schupp PJ, Rohde S. Light Availability Affects the Symbiosis of Sponge Specific Cyanobacteria and the Common Blue Aquarium Sponge ( Lendenfeldia chondrodes). Animals (Basel) 2022; 12:1283. [PMID: 35625129 PMCID: PMC9137838 DOI: 10.3390/ani12101283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial symbionts in marine sponges play a decisive role in the biological and ecological functioning of their hosts. Although this topic has been the focus of numerous studies, data from experiments under controlled conditions are rare. To analyze the ongoing metabolic processes, we investigated the symbiosis of the sponge specific cyanobacterium Synechococcus spongiarum and its sponge host Lendenfeldia chondrodes under varying light conditions in a defined aquarium setting for 68 days. Sponge clonal pieces were kept at four different light intensities, ranging from no light to higher intensities that were assumed to trigger light stress. Growth as a measure of host performance and photosynthetic yield as a proxy of symbiont photosynthetic activity were measured throughout the experiment. The lack of light prevented sponge growth and induced the expulsion of all cyanobacteria and related pigments by the end of the experiment. Higher light conditions allowed rapid sponge growth and high cyanobacteria densities. In addition, photosynthetically active radiation above a certain level triggered an increase in cyanobacteria's lutein levels, a UV absorbing protein, thus protecting itself and the host's cells from UV radiation damage. Thus, L. chondrodes seems to benefit strongly from hosting the cyanbacterium S. spongiarum and the relationship should be considered obligatory mutualistic.
Collapse
Affiliation(s)
- Franziska Curdt
- Department for Environmental Biochemistry, Institute for Chemistry and Biology of the Marine Environment Terramare, Carl-von-Ossietzky University Oldenburg, 26382 Wilhelmshaven, Germany; (F.C.); (P.J.S.)
| | - Peter J. Schupp
- Department for Environmental Biochemistry, Institute for Chemistry and Biology of the Marine Environment Terramare, Carl-von-Ossietzky University Oldenburg, 26382 Wilhelmshaven, Germany; (F.C.); (P.J.S.)
- Helmholtz Institute for Functional Marine Biodiversity, Carl-von-Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Sven Rohde
- Department for Environmental Biochemistry, Institute for Chemistry and Biology of the Marine Environment Terramare, Carl-von-Ossietzky University Oldenburg, 26382 Wilhelmshaven, Germany; (F.C.); (P.J.S.)
| |
Collapse
|
32
|
A novel regulatory gene promotes novel cell fate by suppressing ancestral fate in the sea anemone Nematostella vectensis. Proc Natl Acad Sci U S A 2022; 119:e2113701119. [PMID: 35500123 PMCID: PMC9172639 DOI: 10.1073/pnas.2113701119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we demonstrate how a new cell type can arise through duplication of an ancestral cell type followed by functional divergence of the new daughter cell. Specifically, we show that stinging cells in a cnidarian (namely, a sea anemone) emerged by duplication of an ancestral neuron followed by inhibition of the RFamide neuropeptide it once secreted. This finding is evidence that stinging cells evolved from a specific subtype of neurons and suggests other neuronal subtypes may have been coopted for other novel secretory functions. Cnidocytes (i.e., stinging cells) are an unequivocally novel cell type used by cnidarians (i.e., corals, jellyfish, and their kin) to immobilize prey. Although they are known to share a common evolutionary origin with neurons, the developmental program that promoted the emergence of cnidocyte fate is not known. Using functional genomics in the sea anemone, Nematostella vectensis, we show that cnidocytes develop by suppression of neural fate in a subset of neurons expressing RFamide. We further show that a single regulatory gene, a C2H2-type zinc finger transcription factor (ZNF845), coordinates both the gain of novel (cnidocyte-specific) traits and the inhibition of ancestral (neural) traits during cnidocyte development and that this gene arose by domain shuffling in the stem cnidarian. Thus, we report a mechanism by which a truly novel regulatory gene (ZNF845) promotes the development of a truly novel cell type (cnidocyte) through duplication of an ancestral cell lineage (neuron) and inhibition of its ancestral identity (RFamide).
Collapse
|
33
|
Maria Costa-Paiva E, Mello B, Santos Bezerra B, Coates CJ, Halanych KM, Brown F, de Moraes Leme J, Trindade RIF. Molecular dating of the blood pigment hemocyanin provides new insight into the origin of animals. GEOBIOLOGY 2022; 20:333-345. [PMID: 34766436 DOI: 10.1111/gbi.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The Neoproterozoic included changes in oceanic redox conditions, the configuration of continents and climate, extreme ice ages (Sturtian and Marinoan), and the rise of complex life forms. A much-debated topic in geobiology concerns the influence of atmospheric oxygenation on Earth and the origin and diversification of animal lineages, with the most widely popularized hypotheses relying on causal links between oxygen levels and the rise of animals. The vast majority of extant animals use aerobic metabolism for growth and homeostasis; hence, the binding and transportation of oxygen represent a vital physiological task. Considering the blood pigment hemocyanin (Hc) is present in sponges and ctenophores, and likely to be present in the common ancestor of animals, we investigated the evolution and date of Hc emergence using bioinformatics approaches on both transcriptomic and genomic data. Bayesian molecular dating suggested that the ancestral animal Hc gene arose approximately 881 Ma during the Tonian Period (1000-720 Ma), prior to the extreme glaciation events of the Cryogenian Period (720-635 Ma). This result is corroborated by a recently discovered fossil of a putative sponge ~890 Ma and modern molecular dating for the origin of metazoans of ~1,000-650 Ma (but does contradict previous inferences regarding the origin of Hc ~700-600 Ma). Our data reveal that crown-group animals already possessed hemocyanin-like blood pigments, which may have enhanced the oxygen-carrying capacity of these animals in hypoxic environments at that time or acted in the transport of hormones, detoxification of heavy metals, and immunity pathways.
Collapse
Affiliation(s)
- Elisa Maria Costa-Paiva
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
- Geophysics and Atmospheric Sciences, Institute of Astronomy, University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Mello
- Genetics Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Santos Bezerra
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Federico Brown
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ricardo I F Trindade
- Geophysics and Atmospheric Sciences, Institute of Astronomy, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
34
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
35
|
Ehrlich H, Luczak M, Ziganshin R, Mikšík I, Wysokowski M, Simon P, Baranowska‐Bosiacka I, Kupnicka P, Ereskovsky A, Galli R, Dyshlovoy S, Fischer J, Tabachnick KR, Petrenko I, Jesionowski T, Lubkowska A, Figlerowicz M, Ivanenko VN, Summers AP. Arrested in Glass: Actin within Sophisticated Architectures of Biosilica in Sponges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105059. [PMID: 35156333 PMCID: PMC9009123 DOI: 10.1002/advs.202105059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznan61614Poland
| | - Magdalena Luczak
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznan61704Poland
| | - Rustam Ziganshin
- Institute of Bioorganic ChemistryRussian Academy of SciencesMoscow142290Russian Federation
| | - Ivan Mikšík
- Institute of PhysiologyThe Czech Academy of SciencesPrague142 20Czech Republic
| | - Marcin Wysokowski
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyPoznan60965Poland
| | - Paul Simon
- Max Planck Institute for Chemical Physics of SolidsDresden01187Germany
| | - Irena Baranowska‐Bosiacka
- Department of Biochemistry and Medical ChemistryPomeranian Medical University in SzczecinSzczecin70111Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical ChemistryPomeranian Medical University in SzczecinSzczecin70111Poland
| | - Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE)CNRSIRDAix Marseille UniversitéMarseille13003France
- Biological FacultySt. Petersburg State UniversitySt. Petersburg199034Russian Federation
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesMoscow119334Russian Federation
| | - Roberta Galli
- Clinical Sensoring and MonitoringDepartment of Anesthesiology and Intensive Care MedicineTU DresdenDresden01307Germany
| | - Sergey Dyshlovoy
- Laboratory of Experimental OncologyUniversity Medical Center Hamburg‐EppendorfHamburg20251Germany
- Laboratory of PharmacologyA.V. Zhirmunsky National Scientific Center of Marine BiologyFar Eastern BranchRussian Academy of SciencesVladivostok690041Russian Federation
| | - Jonas Fischer
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
| | | | - Iaroslav Petrenko
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
| | - Teofil Jesionowski
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyPoznan60965Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical MedicineFaculty of Health SciencesPomeranian Medical University in SzczecinSzczecin71210Poland
| | - Marek Figlerowicz
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznan61704Poland
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate ZoologyBiological FacultyLomonosov Moscow State UniversityMoscow119991Russian Federation
| | - Adam P. Summers
- Department of BiologyFriday Harbor LabsUniversity of WashingtonFriday HarborWA98195USA
| |
Collapse
|
36
|
Mills DB, Sperling EA. Marine sponges in the once and future ocean. GLOBAL CHANGE BIOLOGY 2022; 28:1953-1955. [PMID: 34932850 DOI: 10.1111/gcb.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Animals originated under hypoxia-low-oxygen conditions that are currently expanding throughout the global ocean. How marine sponges respond to hypoxia is both relevant to reconstructing early animal evolution and for forecasting the fate of modern marine ecosystems. In a new effort, multiple sponge species from two different oceans were found to tolerate hypoxia in the lab, revealing a more general capacity for hypoxia tolerance across sponges with implications for both the deep past and near future of animal life.
Collapse
Affiliation(s)
- Daniel B Mills
- Department of Geological Sciences, Stanford University, Stanford, California, USA
- The Penn State Extraterrestrial Intelligence Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erik A Sperling
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
37
|
Vicencio-Jimenez S, Villalobos M, Maldonado PE, Vergara RC. The Energy Homeostasis Principle: A Naturalistic Approach to Explain the Emergence of Behavior. Front Syst Neurosci 2022; 15:782781. [PMID: 35069133 PMCID: PMC8770284 DOI: 10.3389/fnsys.2021.782781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
It is still elusive to explain the emergence of behavior and understanding based on its neural mechanisms. One renowned proposal is the Free Energy Principle (FEP), which uses an information-theoretic framework derived from thermodynamic considerations to describe how behavior and understanding emerge. FEP starts from a whole-organism approach, based on mental states and phenomena, mapping them into the neuronal substrate. An alternative approach, the Energy Homeostasis Principle (EHP), initiates a similar explanatory effort but starts from single-neuron phenomena and builds up to whole-organism behavior and understanding. In this work, we further develop the EHP as a distinct but complementary vision to FEP and try to explain how behavior and understanding would emerge from the local requirements of the neurons. Based on EHP and a strict naturalist approach that sees living beings as physical and deterministic systems, we explain scenarios where learning would emerge without the need for volition or goals. Given these starting points, we state several considerations of how we see the nervous system, particularly the role of the function, purpose, and conception of goal-oriented behavior. We problematize these conceptions, giving an alternative teleology-free framework in which behavior and, ultimately, understanding would still emerge. We reinterpret neural processing by explaining basic learning scenarios up to simple anticipatory behavior. Finally, we end the article with an evolutionary perspective of how this non-goal-oriented behavior appeared. We acknowledge that our proposal, in its current form, is still far from explaining the emergence of understanding. Nonetheless, we set the ground for an alternative neuron-based framework to ultimately explain understanding.
Collapse
Affiliation(s)
- Sergio Vicencio-Jimenez
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mario Villalobos
- Escuela de Psicología y Filosofía, Universidad de Tarapacá, Arica, Chile
| | - Pedro E. Maldonado
- Laboratorio de Neurosistemas, Departamento de Neurociencia & BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo C. Vergara
- Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de las Ciencias de la Educación, Ñuñoa, Chile
- *Correspondence: Rodrigo C. Vergara
| |
Collapse
|
38
|
Fournier GP, Parsons CW, Cutts EM, Tamre E. Standard Candles for Dating Microbial Lineages. Methods Mol Biol 2022; 2569:41-74. [PMID: 36083443 DOI: 10.1007/978-1-0716-2691-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular clock analyses are challenging for microbial phylogenies, due to a lack of fossil calibrations that can reliably provide absolute time constraints. An alternative source of temporal constraints for microbial groups is provided by the inheritance of proteins that are specific for the utilization of eukaryote-derived substrates, which have often been dispersed across the Tree of Life via horizontal gene transfer. In particular, animal, algal, and plant-derived substrates are often produced by groups with more precisely known divergence times, providing an older-bound on their availability within microbial environments. Therefore, these ages can serve as "standard candles" for dating microbial groups across the Tree of Life, expanding the reach of informative molecular clock investigations. Here, we formally develop the concept of substrate standard candles and describe how they can be propagated and applied using both microbial species trees and individual gene family phylogenies. We also provide detailed evaluations of several candidate standard candles and discuss their suitability in light of their often complex evolutionary and metabolic histories.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Chris W Parsons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise M Cutts
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Erik Tamre
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
39
|
Hamann L, Blanke A. Suspension feeders: diversity, principles of particle separation and biomimetic potential. J R Soc Interface 2022; 19:20210741. [PMID: 35078340 PMCID: PMC8790370 DOI: 10.1098/rsif.2021.0741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Suspension feeders (SFs) evolved a high diversity of mechanisms, sometimes with remarkably convergent morphologies, to retain plankton, detritus and man-made particles with particle sizes ranging from less than 1 µm to several centimetres. Based on an extensive literature review, also including the physical and technical principles of solid-liquid separation, we developed a set of 18 ecological and technical parameters to review 35 taxa of suspension-feeding Metazoa covering the diversity of morphological and functional principles. This includes passive SFs, such as gorgonians or crinoids that use the ambient flow to encounter particles, and sponges, bivalves or baleen whales, which actively create a feeding current. Separation media can be flat or funnel-shaped, built externally such as the filter houses in larvaceans, or internally, like the pleated gills in bivalves. Most SFs feed in the intermediate flow region of Reynolds number 1-50 and have cleaning mechanisms that allow for continuous feeding. Comparison of structure-function patterns in SFs to current filtration technologies highlights potential solutions to common technical design challenges, such as mucus nets which increase particle adhesion in ascidians, vanes which reduce pressure losses in whale sharks and changing mesh sizes in the flamingo beak which allow quick adaptation to particle sizes.
Collapse
Affiliation(s)
- Leandra Hamann
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Alexander Blanke
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
40
|
Fortunato A, Fleming A, Aktipis A, Maley CC. Upregulation of DNA repair genes and cell extrusion underpin the remarkable radiation resistance of Trichoplax adhaerens. PLoS Biol 2021; 19:e3001471. [PMID: 34788294 PMCID: PMC8635375 DOI: 10.1371/journal.pbio.3001471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/01/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Trichoplax adhaerens is the simplest multicellular animal with tissue differentiation and somatic cell turnover. Like all other multicellular organisms, it should be vulnerable to cancer, yet there have been no reports of cancer in T. adhaerens or any other placozoan. We investigated the cancer resistance of T. adhaerens, discovering that they are able to tolerate high levels of radiation damage (218.6 Gy). To investigate how T. adhaerens survive levels of radiation that are lethal to other animals, we examined gene expression after the X-ray exposure, finding overexpression of genes involved in DNA repair and apoptosis including the MDM2 gene. We also discovered that T. adhaerens extrudes clusters of inviable cells after X-ray exposure. T. adhaerens is a valuable model organism for studying the molecular, genetic, and tissue-level mechanisms underlying cancer suppression. The placozoan Trichoplax adhaerens is able to tolerate high levels of radiation and is resilient to DNA damage; this study reveals that exposure to X-rays triggers the extrusion of cell clusters which subsequently die, and that radiation exposure induces the overexpression of genes involved in DNA repair.
Collapse
Affiliation(s)
- Angelo Fortunato
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona, United States of America.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Alexis Fleming
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona, United States of America.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, Arizona, United States of America
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona, United States of America.,Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona, United States of America.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
41
|
Unmack PJ, Adams M, Hammer MP, Johnson JB, Gruber B, Gilles A, Young M, Georges A. Plotting for change: an analytical framework to aid decisions on which lineages are candidate species in phylogenomic species discovery. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A recent study argued that coalescent-based models of species delimitation mostly delineate population structure, not species, and called for the validation of candidate species using biological information additional to the genetic information, such as phenotypic or ecological data. Here, we introduce a framework to interrogate genomic datasets and coalescent-based species trees for the presence of candidate species in situations where additional biological data are unavailable, unobtainable or uninformative. For de novo genomic studies of species boundaries, we propose six steps: (1) visualize genetic affinities among individuals to identify both discrete and admixed genetic groups from first principles and to hold aside individuals involved in contemporary admixture for independent consideration; (2) apply phylogenetic techniques to identify lineages; (3) assess diagnosability of those lineages as potential candidate species; (4) interpret the diagnosable lineages in a geographical context (sympatry, parapatry, allopatry); (5) assess significance of difference or trends in the context of sampling intensity; and (6) adopt a holistic approach to available evidence to inform decisions on species status in the difficult cases of allopatry. We adopt this approach to distinguish candidate species from within-species lineages for a widespread species complex of Australian freshwater fishes (Retropinna spp.). Our framework addresses two cornerstone issues in systematics that are often not discussed explicitly in genomic species discovery: diagnosability and how to determine it, and what criteria should be used to decide whether diagnosable lineages are conspecific or represent different species.
Collapse
Affiliation(s)
- Peter J Unmack
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Mark Adams
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Department of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael P Hammer
- Museum & Art Gallery of the Northern Territory, Darwin, NT, Australia
| | - Jerald B Johnson
- Department of Biology, Brigham Young University, Provo, UT, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA
| | - Bernd Gruber
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - André Gilles
- UMR 1467 RECOVER, Aix Marseille Univ, INRAE, Centre St Charles, 3 place Victor Hugo, Marseille, France
| | - Matthew Young
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
42
|
Grabacka M, Pierzchalska M, Płonka PM, Pierzchalski P. The Role of PPAR Alpha in the Modulation of Innate Immunity. Int J Mol Sci 2021; 22:10545. [PMID: 34638886 PMCID: PMC8508635 DOI: 10.3390/ijms221910545] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor α is a potent regulator of systemic and cellular metabolism and energy homeostasis, but it also suppresses various inflammatory reactions. In this review, we focus on its role in the regulation of innate immunity; in particular, we discuss the PPARα interplay with inflammatory transcription factor signaling, pattern-recognition receptor signaling, and the endocannabinoid system. We also present examples of the PPARα-specific immunomodulatory functions during parasitic, bacterial, and viral infections, as well as approach several issues associated with innate immunity processes, such as the production of reactive nitrogen and oxygen species, phagocytosis, and the effector functions of macrophages, innate lymphoid cells, and mast cells. The described phenomena encourage the application of endogenous and pharmacological PPARα agonists to alleviate the disorders of immunological background and the development of new solutions that engage PPARα activation or suppression.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland;
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Cracow, Poland;
| |
Collapse
|
43
|
Andrade MP, Santos D, Bueno GM, Santos CMD. What if… Sponges Originated 890 Million Years Ago? On the Emergence of Some Precursors of Animal Sentience. Evol Biol 2021. [DOI: 10.1007/s11692-021-09551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Introduction. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
45
|
Index. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
|
47
|
Visions. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Visions of a Digital Future. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Science, Vision, Perspective. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
The Evolution of Eyes. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|