1
|
Shu Q, Xie S, Junaid M, Zheng R, Tang H, Zou J, Zhou A. MPs and PFOS single and combined exposure significantly alter genetic expressions of growth hormone and insulin growth factor-related biomarkers during zebrafish embryonic development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174925. [PMID: 39043301 DOI: 10.1016/j.scitotenv.2024.174925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Microplastics (MPs) and perfluorooctane sulfonate (PFOS) are emerging pollutants that are ubiquitously present in the environment and can cause series of ecotoxicological effects on aquatic animals. This study examined how the expression of genes related to insulin growth factor (igf1, igf2a, igf2b, igfra, and igfrb) and growth hormone (ghrh, gh1, ghra, and ghrb) changes during the development of zebrafish embryos exposed to 8 μm polyethylene microplastics (PE-MPs) and perfluorooctane sulfonate (PFOS) individually and in combination for 72 h. Our findings revealed that both low-concentrations of MP (50 μg/L) and PFOS (0.02 μg/L) treatments could significantly activate gene expression within a short period. High concentrations of MPs (500 μg/L) and PFOS (0.1 μg/L) not only rapidly activated gene expression but also sustained high expression levels for a longer duration. During combined exposures, peak gene expression in the low concentration groups (50 μg/L MPs and 0.02 μg/L PFOS; 50 μg/L MPs and 0.1 μg/L PFOS) primarily occurred within 12 h after treatment. In the high concentration groups (500 μg/L MPs and 0.02 μg/L PFOS), peak expression was also observed within 12 h. Notably, the combined exposure groups exhibited more pronounced effects on gene expression than the individual exposure groups. The activation of gene expression was both more significant and longer-lasting in the combined exposure, indicating a synergistic regulatory effect of MPs and PFOS. Overall, our study suggests that zebrafish embryo development can be significantly impacted by exposure to MPs, PFOS, and their combination, with combined exposures having a more lasting and profound effect on gene regulation compared to single exposures.
Collapse
Affiliation(s)
- Qingsong Shu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ran Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huijuan Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
2
|
Lykkebo CA, Nguyen KH, Niklas AA, Laursen MF, Bahl MI, Licht TR, Mortensen MS. Diet rich in soluble dietary fibres increases excretion of perfluorooctane sulfonic acid (PFOS) in male Sprague-Dawley rats. Food Chem Toxicol 2024; 193:115041. [PMID: 39395735 DOI: 10.1016/j.fct.2024.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Perfluorooctane sulfonic acid (PFOS) belongs to a large group of anthropogenic compounds with high persistency named per- and polyfluorinated substances (PFAS). Widespread use from industry to household appliances and food-contact materials contributes to PFAS exposure with food as the primary source. Association studies suggest that vegetables and fibre rich diet may reduce PFOS levels in humans, but experimental data remain limited. Here, we investigated PFOS uptake and wash-out after seven days of PFOS (3 mg/kg/day) in two groups of rats (N = 12 per group) fed diets either high (HF) or low (LF) in soluble dietary fibres. Two control groups (N = 12/group) were fed the same diets without PFOS. Changes in pH and transit time were monitored alongside intestinal and faecal microbiota composition. We quantified systemic and excreted, linear and branched PFOS. Results revealed significantly lower pH and faster intestinal transit in the HF groups. Importantly, HF rats had lower serum PFOS concentrations and higher PFOS concentrations in caecal content and faeces, indicating a more efficient excretion on the fibre rich diet. In both dietary groups, PFOS affected the gut microbiota composition. Our results suggest that a diet rich in soluble dietary fibres accelerates excretion of PFOS and lowers PFOS concentration in serum.
Collapse
Affiliation(s)
- Claus Asger Lykkebo
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | - Khanh Hoang Nguyen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | - Agnieszka Anna Niklas
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | | | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark
| | - Martin Steen Mortensen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK, 2800, Denmark.
| |
Collapse
|
3
|
Tursi AR, Lindeman B, Kristoffersen AB, Hjertholm H, Bronder E, Andreassen M, Husøy T, Dirven H, Andorf S, Nygaard UC. Immune cell profiles associated with human exposure to perfluorinated compounds (PFAS) suggest changes in natural killer, T helper, and T cytotoxic cell subpopulations. ENVIRONMENTAL RESEARCH 2024; 256:119221. [PMID: 38795951 DOI: 10.1016/j.envres.2024.119221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitutes a group of highly persistent man-made substances. Recent evidence indicates that PFAS negatively impact the immune system. However, it remains unclear how different PFAS are associated with alterations in circulating leukocyte subpopulations. More detailed knowledge of such potential associations can provide better understanding into mechanisms of PFAS immunotoxicity in humans. In this exploratory study, associations of serum levels of common PFAS (perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS)) and immune cell profiles of peripheral blood mononuclear cells, both with and without immunostimulation, were investigated. High-dimensional single cell analysis by mass cytometry was done on blood leukocytes from fifty participants in the Norwegian human biomonitoring EuroMix study. Different PFAS were associated with changes in various subpopulations of natural killer (NK), T helper (Th), and cytotoxic T (Tc) cells. Broadly, PFAS concentrations were related to increased frequencies of NK cells and activated subpopulations of NK cells. Additionally, increased levels of activated T helper memory cell subpopulations point to Th2/Th17 and Treg-like skewed profiles. Finally, PFAS concentrations were associated with decreased frequencies of T cytotoxic cell subpopulations with CXCR3+ effector memory (EM) phenotypes. Several of these observations point to biologically plausible mechanisms that may contribute to explaining the epidemiological reports of immunosuppression by PFAS. Our results suggest that PFAS exposures even at relatively low levels are associated with changes in immune cell subpopulations, a finding which should be explored more thoroughly in a larger cohort. Additionally, causal relationships should be confirmed in experimental studies. Overall, this study demonstrates the strength of profiling by mass cytometry in revealing detailed changes in immune cells at a single cell level.
Collapse
Affiliation(s)
- Amanda R Tursi
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | - Trine Husøy
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
4
|
Zhang B, Yang Y, Li Q, Ding X, Tian M, Ma Q, Xu D. Impacts of PFOS, PFOA and their alternatives on the gut, intestinal barriers and gut-organ axis. CHEMOSPHERE 2024; 361:142461. [PMID: 38810808 DOI: 10.1016/j.chemosphere.2024.142461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
With the restricted use of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a number of alternatives to PFOS and PFOA have attracted great interest. Most of the alternatives are still characterized by persistence, bioaccumulation, and a variety of toxicity. Due to the production and use of these substances, they can be detected in the atmosphere, soil and water body. They affect human health through several exposure pathways and especially enter the gut by drinking water and eating food, which results in gut toxicity. In this review, we summarized the effects of PFOS, PFOA and 9 alternatives on pathological changes in the gut, the disruption of physical, chemical, biological and immune barriers of the intestine, and the gut-organ axis. This review provides a valuable understanding of the gut toxicity of PFOS, PFOA and their alternatives as well as the human health risks of emerging contaminants.
Collapse
Affiliation(s)
- Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yunhui Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qing Li
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Mingming Tian
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qiao Ma
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
5
|
Chu C, Ran H, Zhou Y, Zhao K, Zhang YT, Fan YY, Wu LY, Liang LX, Huang JW, Guo LH, Zhou JX, Lin LZ, Ma JH, Zhang CF, Yu YJ, Dong GH, Zhao XM. Placental inflammatory injury induced by chlorinated polyfluorinated ether sulfonate (F-53B) through NLRP3 inflammasome activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116453. [PMID: 38772139 DOI: 10.1016/j.ecoenv.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Chlorinated polyfluorinated ether sulfonate, commercially known as F-53B, has been associated with adverse birth outcomes. However, the reproductive toxicology of F-53B on the placenta remains poorly understood. To address this gap, we examined the impact of F-53B on placental injury and its underlying molecular mechanisms in vivo. Pregnant C57BL/6 J female mice were randomly allocated to three groups: the control group, F-53B 0.8 µg/kg/day group, and F-53B 8 µg/kg/day group. After F-53B exposure through free drinking water from gestational day (GD) 0.5-14.5, the F-53B 8 µg/kg/day group exhibited significant increases in placental weights and distinctive histopathological alterations, including inflammatory cell infiltration, heightened syncytiotrophoblast knots, and a loosened trophoblastic basement membrane. Within the F-53B 8 µg/kg/day group, placental tissue exhibited increased apoptosis, as indicated by increased caspase3 activation. Furthermore, F-53B potentially induced the NF-κB signaling pathway activation through IκB-α phosphorylation. Subsequently, this activation upregulated the expression of inflammatory cytokines and components of the NLRP3 inflammasome, including activated caspase1, IL-1β, IL-18, and cleaved gasdermin D (GSDMD), ultimately leading to pyroptosis in the mouse placenta. Our findings reveal a pronounced inflammatory injury in the placenta due to F-53B exposure, suggesting potential reproductive toxicity at concentrations relevant to the human population. Further toxicological and epidemiological investigations are warranted to conclusively assess the reproductive health risks posed by F-53B.
Collapse
Affiliation(s)
- Chu Chu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Ran
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Myasthenia Gravis Clinical Specialized Study Centre, Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yang Zhou
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Kun Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Yuan Fan
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Xia Liang
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hao Guo
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Zhou
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun-Heng Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chao-Fan Zhang
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education,Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Miao Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
6
|
Zhou Y, Zhang L, Li Q, Wang P, Wang H, Shi H, Lu W, Zhang Y. Prenatal PFAS exposure, gut microbiota dysbiosis, and neurobehavioral development in childhood. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133920. [PMID: 38457972 DOI: 10.1016/j.jhazmat.2024.133920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Studies on the role of the gut microbiota in the associations between per- and polyfluoroalkyl substance (PFAS) exposure and adverse neurodevelopment are limited. Umbilical cord serum and faeces samples were collected from children, and the Strengths and Difficulties Questionnaire (SDQ) was conducted. Generalized linear models, linear mixed-effects models, multivariate analysis by linear models and microbiome regression-based kernel association tests were used to evaluate the associations among PFAS exposure, the gut microbiota, and neurobehavioural development. Perfluorohexane sulfonic acid (PFHxS) exposure was associated with increased scores for conduct problems and externalizing problems, as well as altered gut microbiota alpha and beta diversity. PFHxS concentrations were associated with higher relative abundances of Enterococcus spp. but lower relative abundances of several short-chain fatty acid-producing genera (e.g., Ruminococcus gauvreauii group spp.). PFHxS exposure was also associated with increased oxidative phosphorylation. Alpha and beta diversity were found significantly associated with conduct problems and externalizing problems. Ruminococcus gauvreauii group spp. abundance was positively correlated with prosocial behavior scores. Increased alpha diversity played a mediating role in the associations of PFHxS exposure with conduct problems. Our results suggest that the gut microbiota might play an important role in PFAS neurotoxicity, which may have implications for PFAS control.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Wenwei Lu
- School of Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Lykkebo CA, Mortensen MS, Davidsen N, Bahl MI, Ramhøj L, Granby K, Svingen T, Licht TR. Antibiotic induced restructuring of the gut microbiota does not affect oral uptake and accumulation of perfluorooctane sulfonic acid (PFOS) in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122179. [PMID: 37454717 DOI: 10.1016/j.envpol.2023.122179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a manmade legacy compound belonging to the group of persistent per- and polyfluorinated substances (PFAS). While many adverse health effects of PFOS have been identified, knowledge about its effect on the intestinal microbiota is scarce. The microbial community inhabiting the gut of mammals plays an important role in health, for instance by affecting the uptake, excretion, and bioavailability of some xenobiotic toxicants. Here, we investigated (i) the effect of vancomycin-mediated microbiota modulation on the uptake of PFOS in adult Sprague-Dawley rats, and (ii) the effects of PFOS exposure on the rat microbiota composition. Four groups of twelve rats were exposed daily for 7 days with either 3 mg/kg PFOS plus 8 mg/kg vancomycin, only PFOS, only vancomycin, or a corn oil control. Vancomycin-induced modulation of the gut microbiota composition did not affect uptake of branched and linear PFOS over a period of 7 days, measured in serum samples. 16S rRNA amplicon sequencing of faecal and intestinal samples revealed that vancomycin treatment lowered microbial alpha-diversity, while PFOS increased the microbial diversity in vancomycin-treated as well as in non-antibiotic treated animals, possibly because an observed decrease in the Enterobacteriaceae abundance allows other microbial species to propagate. Colonic short-chain fatty acids were significantly lower in vancomycin-treated animals but remained unaffected by PFOS. Our results suggest that PFOS exposure may disturb the intestinal microbiota, but that antibiotic-induced modulation of the intestinal ecosystem does not affect systemic uptake of PFOS in rats.
Collapse
Affiliation(s)
- Claus Asger Lykkebo
- National Food Institute, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark.
| | | | - Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Kit Granby
- National Food Institute, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark.
| |
Collapse
|
9
|
Dai X, Zhang Q, Zhang G, Ma C, Zhang R. Protective effect of agar oligosaccharide on male Drosophila melanogaster suffering from oxidative stress via intestinal microflora activating the Keap1-Nrf2 signaling pathway. Carbohydr Polym 2023; 313:120878. [PMID: 37182968 DOI: 10.1016/j.carbpol.2023.120878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Agar oligosaccharide (AOS) is a new kind of marine functional oligosaccharide with generous biological activities. To investigate the antioxidative effects of AOS in vivo, 3 % aqueous hydrogen peroxide (H2O2) was used to induce oxidative stress in male Drosophila melanogaster (D. melanogaster) fed 5 % sucrose (SUC). AOS (0.125 %) in the medium extended the lifespan of D. melanogaster suffering from oxidative stress by improving antioxidant capacity and intestinal function. Electron microscopic observation of epithelial cells showed that AOS alleviated the damage caused by H2O2 challenge in the intestine of D. melanogaster, including a reduction of gut leakage and maintenance of intestinal length and cell ultrastructure. The Keap1-Nrf2 (analogues of CncC gene in D. melanogaster) signaling pathway was significantly activated based on gene expression levels and a reduction in ROS content in the intestine of D. melanogaster suffering from oxidative stress. The improvement of antioxidant capacity may be related to the regulation of intestinal microflora with AOS supplementation for D. melanogaster. Nrf2-RNAi, sterile and gnotobiotic D. melanogaster were used to validate the hypothesis that AOS activated the Keap1-Nrf2 signaling pathway to achieve antioxidant effects by regulating intestinal microflora. The above results contribute to our understanding of the antioxidative mechanism of AOS and promote its application in the food industry.
Collapse
|
10
|
Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, Grandjean P, Kaiser AM, Hauzenberger I, Hartmann C, Gundacker C, Uhl M. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health 2023; 22:19. [PMID: 36814257 PMCID: PMC9944481 DOI: 10.1186/s12940-022-00958-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/30/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. OBJECTIVE The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. METHODS A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. CONCLUSIONS Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Collapse
Affiliation(s)
- Veronika Ehrlich
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Berit Granum
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Birgitte Lindeman
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Philippe Grandjean
- Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Andreas-Marius Kaiser
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Ingrid Hauzenberger
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria.
| |
Collapse
|
11
|
Probiotic cultures as a potential protective strategy against the toxicity of environmentally relevant chemicals: State-of-the-art knowledge. Food Chem Toxicol 2023; 172:113582. [PMID: 36581092 DOI: 10.1016/j.fct.2022.113582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Environmentally relevant toxic substances may affect human health, provoking numerous harmful effects on central nervous, respiratory, cardiovascular, endocrine and reproductive system, and even cause various types of carcinoma. These substances, to which general population is constantly and simultaneously exposed, enter human body via food and water, but also by inhalation and dermal contact, while accumulating evidence suggests that probiotic cultures are able to efficiently adsorb and/or degrade them. Cell wall of probiotic bacteria/fungi, which contains structures such as exopolysaccharide, teichoic acid, protein and peptidoglycan components, is considered the main place of toxic substances adsorption. Moreover, probiotics are able to induce metabolism and degradation of various toxic substances, making them less toxic and more suitable for elimination. Other probable in vivo protective effects have also been suggested, including decreased intestinal absorption and increased excretion of toxic substances, prevented gut microbial dysbiosis, increase in the intestinal mucus secretion, decreased production of reactive oxygen species, reduction of inflammation, etc. Having all of this in mind, this review aims to summarize the state-of-the-art knowledge regarding the potential protective effects of different probiotic strains against environmentally relevant toxic substances (mycotoxins, polycyclic aromatic hydrocarbons, pesticides, perfluoroalkyl and polyfluoroalkyl substances, phthalates, bisphenol A and toxic metals).
Collapse
|
12
|
Bil W, Ehrlich V, Chen G, Vandebriel R, Zeilmaker M, Luijten M, Uhl M, Marx-Stoelting P, Halldorsson TI, Bokkers B. Internal relative potency factors based on immunotoxicity for the risk assessment of mixtures of per- and polyfluoroalkyl substances (PFAS) in human biomonitoring. ENVIRONMENT INTERNATIONAL 2023; 171:107727. [PMID: 36628859 DOI: 10.1016/j.envint.2022.107727] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Relative potency factors (RPFs) for per- and polyfluoroalkyl substances (PFAS) have previously been derived based on liver effects in rodents for the purpose of performing mixture risk assessment with primary input from biomonitoring studies. However, in 2020, EFSA established a tolerable weekly intake for four PFAS assuming equal toxic potency for immune suppressive effects in humans. In this study we explored the possibility of deriving RPFs for immune suppressive effects using available data in rodents and humans. Lymphoid organ weights, differential blood cell counts, and clinical chemistry from 28-day studies in male rats from the National Toxicology Program (NTP) were combined with modeled serum PFAS concentrations to derive internal RPFs by applying dose-response modelling. Identified functional studies used diverse protocols and were not suitable for derivation of RPFs but were used to support immunotoxicity of PFAS in a qualitative manner. Furthermore, a novel approach was used to estimate internal RPFs based on epidemiological data by dose-response curve fitting optimization, looking at serum antibody concentrations and key cell populations from the National Health and Nutrition Examination Survey (NHANES). Internal RPFs were successfully derived for PFAS based on rat thymus weight, spleen weight, and globulin concentration. The available dose-response information for blood cell counts did not show a significant trend. Immunotoxic potency in serum was determined in the order PFDA > PFNA > PFHxA > PFOS > PFBS > PFOA > PFHxS. The epidemiological data showed inverse associations for the sum of PFOA, PFNA, PFHxS, and PFOS with serum antibody concentrations to mumps and rubella, but the data did not allow for deduction of reliable internal RPF estimates. The internal RPFs for PFAS based on decreased rat lymphoid organ weights are similar to those previously established for increased rat liver weight, strengthening the confidence in the overall applicability of these RPFs.
Collapse
Affiliation(s)
- Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | | | - Guangchao Chen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rob Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marco Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maria Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - Philip Marx-Stoelting
- Department Safety of Pesticides, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Thorhallur Ingi Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland (UI), Reykjavik, Iceland; Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
13
|
Garvey GJ, Anderson JK, Goodrum PE, Tyndall KH, Cox LA, Khatami M, Morales-Montor J, Schoeny RS, Seed JG, Tyagi RK, Kirman CR, Hays SM. Weight of evidence evaluation for chemical-induced immunotoxicity for PFOA and PFOS: findings from an independent panel of experts. Crit Rev Toxicol 2023; 53:34-51. [PMID: 37115714 DOI: 10.1080/10408444.2023.2194913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Immunotoxicity is the critical endpoint used by some regulatory agencies to establish toxicity values for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, the hypothesis that exposure to certain per- and polyfluoroalkyl substances (PFAS) causes immune dysregulation is subject to much debate. An independent, international expert panel was engaged utilizing methods to reduce bias and "groupthink". The panel concluded there is moderate evidence that PFOS and PFOA are immunotoxic, based primarily on evidence from animal data. However, species concordance and human relevance cannot be well established due to data limitations. The panel recommended additional testing that includes longer-term exposures, evaluates both genders, includes other species of animals, tests lower dose levels, assesses more complete measures of immune responses, and elucidates the mechanism of action. Panel members agreed that the Faroe Islands cohort data should not be used as the primary basis for deriving PFAS risk assessment values. The panel agreed that vaccine antibody titer is not useful as a stand-alone metric for risk assessment. Instead, PFOA and PFOS toxicity values should rely on multiple high-quality studies, which are currently not available for immune suppression. The panel concluded that the available PFAS immune epidemiology studies suffer from weaknesses in study design that preclude their use, whereas available animal toxicity studies provide comprehensive dataset to derive points of departure (PODs) for non-immune endpoints. The panel recommends accounting for potential PFAS immunotoxicity by applying a database uncertainty factor to POD values derived from animal studies for other more robustly supported critical effects.
Collapse
Affiliation(s)
| | | | | | | | - L Anthony Cox
- Business Analytics, University of Colorado, Denver, CO, USA
| | | | - Jorge Morales-Montor
- Department of Immunology, Universidad Nacional Autonoma De Mexico, Mexico City, Mexico
| | | | | | - Rajeev K Tyagi
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | | | | |
Collapse
|
14
|
Li J, Wang L, Zhang X, Liu P, Deji Z, Xing Y, Zhou Y, Lin X, Huang Z. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: An overview on the advances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158362. [PMID: 36055502 DOI: 10.1016/j.scitotenv.2022.158362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of artificially synthetic organic compounds that are hardly degraded in the natural environment. PFAS have been widely used for many decades, and the persistence and potential toxicity of PFAS are an emerging concern in the world. PFAS exposed via diet can be readily absorbed by the intestine and enter the circulatory system or accumulate directly at intestinal sites, which could interact with the intestine and cause the destruction of intestinal barrier. This review summarizes current relationships between PFAS exposure and intestinal barrier damage with a focus on more recent toxicological studies. Exposure to PFAS could cause inflammation in the gut, destruction of the gut epithelium and tight junction structure, reduction of the mucus layer, and induction of the toxicity of immune cells. PFAS accumulation could also induce microbial disorders and metabolic products changes. In addition, there are limited studies currently, and most available studies converge on the health risk of PFAS exposure for human intestinal disease. Therefore, more efforts are deserved to further understand potential associations between PFAS exposure and intestinal dysfunction and enable better assessment of exposomic toxicology and health risks for humans in the future.
Collapse
Affiliation(s)
- Jiaoyang Li
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xin Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhuoma Deji
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yudong Xing
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
15
|
Zhang Q, Zhang Y, Hu D, Wen W, Xia X. An unexpected synergistic toxicity caused by competitive bioconcentration of perfluoroalkyl acid mixtures to Daphnia magna: Further promoted by elevated temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120336. [PMID: 36216180 DOI: 10.1016/j.envpol.2022.120336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The mixed pollution of the global water environment by perfluoroalkyl acids (PFAAs) and their ecological risks have aroused widespread concern. However, the relationship between the combined toxicity of PFAA mixtures and their accumulation in aquatic organisms is not well understood in the context of global warming. Here, we study the bioconcentration and combined toxicity of three PFAA mixtures (PFOA, PFDA, PFDoA) to Daphnia magna (D. magna) under different exposure concentrations and temperatures. The results show that although competitive bioconcentration exists, the combined toxicity of the PFAA mixtures to D. magna is synergistic. These contradictory phenomena occur because although the longer-chain PFDoA inhibits the bioconcentration of the shorter-chain PFOA and PFDA, the bioconcentration of PFDoA itself is promoted, and PFDoA is more toxic to D. magna than PFOA and PFDA. The toxic equivalent concentration for the PFAA mixture is 1.38-1.67 times higher than that obtained from simple addition for the three PFAAs when exposed separately. Moreover, elevated temperature promotes not only the bioconcentration of each PFAA and the competition of bioconcentration between shorter-chain and longer-chain PAFF, but also the synergistic toxicity of PFAA mixtures to D. magna. This study suggests that the effect of the interactions among different PFAAs on their bioconcentration and toxicity under different water environmental conditions, such as temperature, should be considered for ecological risk assessment of PFAA mixtures.
Collapse
Affiliation(s)
- Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yidi Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Diexuan Hu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wu Wen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
16
|
Beale DJ, Bissett A, Nilsson S, Bose U, Nelis JLD, Nahar A, Smith M, Gonzalez-Astudillo V, Braun C, Baddiley B, Vardy S. Perturbation of the gut microbiome in wild-caught freshwater turtles (Emydura macquarii macquarii) exposed to elevated PFAS levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156324. [PMID: 35654195 DOI: 10.1016/j.scitotenv.2022.156324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent and pervasive. Understanding the toxicity of PFAS to wildlife is difficult, both due to the complexity of biotic and abiotic perturbations in the taxa under study and the practical and ethical problems associated with studying the impacts of environmental pollutants on free living wildlife. One avenue of inquiry into the effects of environmental pollutants, such as PFAS, is assessing the impact on the host gut microbiome. Here we show the microbial composition and biochemical functional outputs from the gut microbiome of sampled faeces from euthanised and necropsied wild-caught freshwater turtles (Emydura macquarii macquarii) exposed to elevated PFAS levels. The microbial community composition was profiled by 16S rRNA gene sequencing using a Nanopore MinION and the biochemical functional outputs of the gut microbiome were profiled using a combination of targeted central carbon metabolism metabolomics using liquid chromatography coupled to a triple quadrupole mass spectrometer (LC-QqQ-MS) and untargeted metabolomics using liquid chromatography coupled to a quadrupole time of flight mass spectrometer (LC-QToF-MS). Total PFAS was measured in the turtle serum using standard methods. These preliminary data demonstrated a 60-fold PFAS increase in impacted turtles compared to the sampled aquatic environment. The microbiome community was also impacted in the PFAS exposed turtles, with the ratio of Firmicutes-to-Bacteroidetes rising from 1.4 at the reference site to 5.5 at the PFAS impacted site. This ratio increase is indicative of host stress and dysfunction of the gut microbiome that was correlated with the biochemical metabolic function data, metabolites observed that are indications of stress and inflammation in the gut microbiome. Utilising the gut microbiome of sampled faeces collected from freshwater turtles provides a non-destructive avenue for investigating the impacts of PFAS in native wildlife, and provides an avenue to explore other contaminants in higher-order taxa within the environment.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Joost Laurus Dinant Nelis
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Akhikun Nahar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Research and Innovation Park, Acton, ACT 2601, Australia
| | - Matthew Smith
- National Collections and Marine Infrastructure (NCMI), Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | | | - Christoph Braun
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Brenda Baddiley
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| |
Collapse
|
17
|
Lochhead P, Khalili H, Ananthakrishnan AN, Burke KE, Richter JM, Sun Q, Grandjean P, Chan AT. Plasma concentrations of perfluoroalkyl substances and risk of inflammatory bowel diseases in women: A nested case control analysis in the Nurses' Health Study cohorts. ENVIRONMENTAL RESEARCH 2022; 207:112222. [PMID: 34662575 PMCID: PMC9960490 DOI: 10.1016/j.envres.2021.112222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are synthetic compounds used in a wide variety of industrial and consumer applications. An association between PFAS exposure and risk of ulcerative colitis (UC) has been reported in a highly exposed population. However, data are limited on risk of inflammatory bowel diseases (IBD) among individuals with background population levels of PFAS exposure. OBJECTIVES We set out to examine the association between plasma PFAS concentrations and risk of IBD among women in two population-based, prospective cohort studies in which pre-diagnostic blood specimens were available. METHODS We conducted a nested case-control study in the Nurses' Health Study and Nurses' Health Study II cohorts. We identified 73 participants with incident Crohn's disease (CD) and 80 participants with incident UC who had provided blood samples before diagnosis. Cases were matched 1:2 to IBD-free controls. Plasma concentrations of five major PFASs were measured by liquid chromatography and tandem mass spectrometry. We used conditional logistic models to estimated odds ratios for risk of IBD according to log10-transformed PFAS concentrations, adjusting for potential confounders. RESULTS In multivariable models, we observed inverse associations between plasma concentrations of three PFASs and risk of CD (all P ≤ 0.012 for a standard deviation increase in log10PFAS). The inverse association with CD was strongest for perfluorodecanoate, where, compared to the lowest tertile, the odds ratio (OR) for the highest tertile was 0.39 (95% confidence interval, 0.17-0.92). No associations were observed between PFAS concentrations and UC risk. DISCUSSION Our results do not support the hypothesis that elevated PFAS exposure is associated with higher risk of UC. Contrary to expectation, our data suggest that circulating concentrations of some PFASs may be inversely associated with CD development.
Collapse
Affiliation(s)
- Paul Lochhead
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristin E Burke
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James M Richter
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philippe Grandjean
- Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Diaz OE, Sorini C, Morales RA, Luo X, Frede A, Krais AM, Chávez MN, Wincent E, Das S, Villablanca EJ. Perfluorooctanesulfonic acid modulates barrier function and systemic T cell homeostasis during intestinal inflammation. Dis Model Mech 2021; 14:273848. [PMID: 34792120 PMCID: PMC8713990 DOI: 10.1242/dmm.049104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
The intestinal epithelium is continuously exposed to deleterious environmental factors which might cause aberrant immune responses leading to inflammatory disorders. However, what environmental factors might contribute to disease are yet poorly understood. Here, to overcome the lack of in vivo models suitable for screening of environmental factors we used zebrafish reporters of intestinal inflammation. Using zebrafish, we interrogated the immunomodulatory effects of polyfluoroalkyl substances (PFAS), which have been positively associated with ulcerative colitis incidence. Exposure with perfluorooctanesulfonic acid (PFOS) during TNBS-induced inflammation enhances the expression of proinflammatory cytokines as well as neutrophil recruitment to the intestine of zebrafish larvae, which was validated in TNBS-induced colitis mice models. Moreover, PFOS exposure in mice undergoing colitis resulted in neutrophil-dependent increased intestinal permeability and enhanced PFOS translocation into circulation. Finally, this was associated with a neutrophil dependent expansion of systemic CD4+ T cells. Thus, our results indicate that PFOS worsens inflammation-induced intestinal damage with disruption of T cell homeostasis beyond the gut and provides a novel in vivo toolbox to screen for pollutants affecting intestinal homeostasis.
Collapse
Affiliation(s)
- Oscar E Diaz
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden.,Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden.,Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden.,Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Xinxin Luo
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden.,Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Annika Frede
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden.,Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - Myra N Chávez
- Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Solna, Sweden
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden.,Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden.,Center of Molecular Medicine, 17176 Stockholm, Sweden
| |
Collapse
|
19
|
Britt-Marie B, Sara P, Suzanne F, Frank RF, Anna RM. Temporal and Geographical Variation of Intestinal Ulcers in Grey Seals ( Halichoerus grypus) and Environmental Contaminants in Baltic Biota during Four Decades. Animals (Basel) 2021; 11:ani11102968. [PMID: 34679987 PMCID: PMC8532654 DOI: 10.3390/ani11102968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary In the 1970s it was discovered that seal populations in the Baltic Sea had decreased severely due to hunting and high levels of contaminants. Lesions were found in several organs and many of the females became sterile. Since then, most of the organ lesions have decreased and so have the levels of some pollutants. However, ulcers in the large intestines of the grey seals increased in the early 1980s and decreased after the mid-1990s. The aims of this study were to: (1) describe the ulcers and investigate if there is a trend over time that coincides with concentrations of some pollutants in Baltic biota; (2) evaluate the significance of different sea areas in the Baltic, grade of parasite intensity, as well as the sex and age of the seals. The results show that seals with ulcers had, in general, higher parasite intensity. Ulcers were more common in older seals and in the Bothnian Sea. The time trend of ulcers coincides with the trend of certain contaminant levels (BDE-47, PFOS and cadmium). The high prevalence of intestinal ulcers and the high intensity of acanthocephalan parasites appear to be unique to the Baltic population of grey seals. Abstract The prevalence of intestinal ulcers and parasites was investigated in 2172 grey seals (Halichoerus grypus) collected in the Baltic Sea and 49 grey seals collected outside the Baltic Sea (i.e., the Atlantic). An increase in frequency of ileocaeco-colonic ulcers was observed in the early 1980s, followed by a decrease in the mid-1990s. At the same time, there was an increase followed by a decrease in brominated flame retardants, Perfluorooctanesulfonic acid (PFOS) and cadmium levels in herring (Clupea harengus), the most common prey item in Baltic grey seal diet, as well as in another top predator in the Baltic, the common guillemot (Uria aalge). The frequency of intestinal ulcers was significantly related to the intensity of acanthocephalan parasites, the age of the seal and the region of the Baltic Sea. Perforation of the intestinal wall was the cause of death in 26 of the investigated Baltic grey seals. In contrast, none of the investigated Atlantic grey seals had intestinal ulcers. They showed a thin colonic wall and very few acanthocephalan parasites. The high prevalence of intestinal ulcers and the high parasite intensity appear to be unique to the Baltic population of grey seals.
Collapse
Affiliation(s)
- Bäcklin Britt-Marie
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE 104 05 Stockholm, Sweden; (P.S.); (F.S.); (R.M.A.)
- Correspondence: ; Tel.: +46-851-954-259
| | - Persson Sara
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE 104 05 Stockholm, Sweden; (P.S.); (F.S.); (R.M.A.)
| | - Faxneld Suzanne
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE 104 05 Stockholm, Sweden; (P.S.); (F.S.); (R.M.A.)
| | - Rigét F. Frank
- Department of Ecoscience, Danish Centre for Environment and Energy, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
| | - Roos M. Anna
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE 104 05 Stockholm, Sweden; (P.S.); (F.S.); (R.M.A.)
| |
Collapse
|
20
|
Wang M, Li Q, Hou M, Chan LLY, Liu M, Ter SK, Dong T, Xia Y, Chotirmall SH, Fang M. Inactivation of common airborne antigens by perfluoroalkyl chemicals modulates early life allergic asthma. Proc Natl Acad Sci U S A 2021; 118:e2011957118. [PMID: 34099560 PMCID: PMC8214667 DOI: 10.1073/pnas.2011957118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Allergic asthma, driven by T helper 2 cell-mediated immune responses to common environmental antigens, remains the most common respiratory disease in children. Perfluorinated chemicals (PFCs) are environmental contaminants of great concern, because of their wide application, persistence in the environment, and bioaccumulation. PFCs associate with immunological disorders including asthma and attenuate immune responses to vaccines. The influence of PFCs on the immunological response to allergens during childhood is unknown. We report here that a major PFC, perfluorooctane sulfonate (PFOS), inactivates house dust mite (HDM) to dampen 5-wk-old, early weaned mice from developing HDM-induced allergic asthma. PFOS further attenuates the asthma protective effect of the microbial product lipopolysaccharide (LPS). We demonstrate that PFOS prevents desensitization of lung epithelia by LPS, thus abolishing the latter's protective effect. A close mechanistic study reveals that PFOS specifically binds the major HDM allergen Der p1 with high affinity as well as the lipid A moiety of LPS, leading to the inactivation of both antigens. Moreover, PFOS at physiological human (nanomolar) concentrations inactivates Der p1 from HDM and LPS in vitro, although higher doses did not cause further inactivation because of possible formation of PFOS aggregates. This PFOS-induced neutralization of LPS has been further validated in primary human cell models and extended to an in vivo bacterial infection mouse model. This study demonstrates that early life exposure of mice to a PFC blunts airway antigen bioactivity to modulate pulmonary inflammatory responses, which may adversely affect early pulmonary health.
Collapse
Affiliation(s)
- Mengjing Wang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Louisa L Y Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Soo Kai Ter
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Ting Dong
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore;
| |
Collapse
|
21
|
Torres L, Redko A, Limper C, Imbiakha B, Chang S, August A. Effect of Perfluorooctanesulfonic acid (PFOS) on immune cell development and function in mice. Immunol Lett 2021; 233:31-41. [PMID: 33722553 PMCID: PMC8577040 DOI: 10.1016/j.imlet.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Perfluoroctanesulfonate (PFOS) belongs to a larger family of compounds known as Per- and polyfluoroalkyl substances (PFAS). The strength of the carbon-fluorine bond makes PFOS extremely resistant to environmental degradation. Due to its persistent nature, research has been directed to elucidating possible health effects of PFOS on humans and laboratory animals. Here we have explored the effects of PFOS exposure on immune development and function in mice. We exposed adult mice to 3 and 1.5 μg/kg/day of PFOS for 2 and 4 weeks, respectively, and examined the effects of PFOS exposure on populations of T cells, B cells, and granulocytes. These doses of PFOS resulted in serum levels of approximately 100 ng/mL with no weight loss during exposure. We find that PFOS does not affect T-cell development during this time. However, while PFOS exposure reduced immune cell populations in some organs, it also led to an increase in the numbers of cells in others, suggesting possible relocalization of cells. We also examined the effect of PFOS on the response to influenza virus infection. We find that exposure to PFOS at 1.5 μg/kg/day of PFOS for 4 weeks does not affect weight loss or survival, nor is viral clearance affected. Analysis of antibody and T cell specific antiviral responses indicate that at this concentration, PFOS does not suppress the immune cell development or antigen specific immune response.
Collapse
Affiliation(s)
- Luisa Torres
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Amie Redko
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Candice Limper
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Brian Imbiakha
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | | | - Avery August
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Liang H, Yang M, Zeng C, Wu W, Zhao L, Wang Y. Perfluorooctane sulfonate exerts inflammatory bowel disease-like intestinal injury in rats. PeerJ 2021; 9:e10644. [PMID: 33510972 PMCID: PMC7798615 DOI: 10.7717/peerj.10644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Background Perfluorooctane sulfonate (PFOS), a type of perfluorinated compounds (PFCs), can induce various organ toxicity, including hepatomegaly, immunotoxicity, and gut microbiota disorder. PFCs have been associated with inflammatory bowel disease (IBD). Yet, whether PFOS exposure causes IBD-like disorder and the underlying mechanism remains undefined. Here, we investigated the influence of PFOS exposure on the development of IBD-like disorder in rats. Methods Sprague-Dawley rats were intraperitoneally injected with PFOS (1 or 10 mg/kg) or normal saline (NS) every other day for 15 days. Body weight, serum concentrations of serum amyloid A (SAA) and high sensitivity C reactive protein (hsCRP) were measured. Pathological assessments of villi height and crypt depth in the proximal duodenum and jejunum were performed using H&E staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to assay cell apoptosis in the jejunum. The infiltration of inflammatory cells and cytokines in the jejunum were detected by immunohistochemistry analysis. Results PFOS (10 mg/kg) significantly increased the body weight, SAA and hsCRP, whereas no significant differences were observed in PFOS 1 mg/kg group of rats. The villi height and crypt depth in the proximal duodenum and jejunum were significantly reduced upon PFOS exposure. PFOS induced higher histopathological score in intestinal tissues compared to NS. Notably, TUNEL-positive cells were significantly higher in the jejunum upon PFOS exposure. Further, neutrophil and macrophage accumulated, and inflammatory cytokines infiltration were also remarkably increased in rats exposed to PFOS. Conclusion PFOS induces IBD-like phenotypes in rats, with associated inflammatory infiltration to intestinal.
Collapse
Affiliation(s)
- Hai Liang
- Department of Pharmacy, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Miao Yang
- Department of Neurology, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Cheng Zeng
- Department of Pharmacy, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Wei Wu
- Department of Pharmacy, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Liying Zhao
- Department of Pharmacy, Deqing People's Hospital, Huzhou, Zhejiang Province, China
| | - Yu Wang
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Xian Y, Lv X, Xie M, Xiao F, Kong C, Ren Y. Physiological function and regulatory signal of intestinal type 3 innate lymphoid cell(s). Life Sci 2020; 262:118504. [PMID: 32991877 DOI: 10.1016/j.lfs.2020.118504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Of the three groups of innate lymphoid cells, the type 3 innate lymphoid cell(s) (ILC3) include the subgroup of enteric ILC3 that participates in many physiological functions of the organism, such as promoting the repair of damaged mucosa, maintaining the homeostasis of gut symbiotic microorganisms, and presenting specific antigens. ILC3 also includes splenic and decidual ILC3. Like other physiological processes in the organism, enteric ILC3 functions are precisely regulated at the endogenous and exogenous levels. However, there has been no review on the physiological functions and regulatory signals of intestinal ILC3. In this paper, based on the current research on the physiological functions of enteric ILC3 in animals and the human, we summarize the signals that regulate cytokine secretion, antigen presentation and the quantity of ILC3 under normal intestinal conditions. We discuss for the first time the classification of the promoting mechanism of secretagogues of ILC3 into direct and indirect types. We also propose that ILC3 can promote intestinal homeostasis, and intestinal homeostasis can ensure the physiological phenotype of ILC3. If homeostasis is disturbed, ILC3 may participate in intestinal pathological changes. Therefore, regulating ILC3 and maintaining intestinal homeostasis are critical to the body.
Collapse
Affiliation(s)
- Yin Xian
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Xiaodong Lv
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Minjia Xie
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Fuyang Xiao
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Chenyang Kong
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Yixing Ren
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China.
| |
Collapse
|
24
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
25
|
Liberti A, Bertocci I, Pollet A, Musco L, Locascio A, Ristoratore F, Spagnuolo A, Sordino P. An indoor study of the combined effect of industrial pollution and turbulence events on the gut environment in a marine invertebrate. MARINE ENVIRONMENTAL RESEARCH 2020; 158:104950. [PMID: 32217300 DOI: 10.1016/j.marenvres.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Natural storms are able to determine reworking of seabed up to considerable depths and favour suspension of sediment-associated chemicals. Yet, a direct link between exposure to resuspended contaminants and the biological effects on marine organisms have to be fully established. We exposed adults of a suspension feeder, the ascidian Ciona robusta, to polluted sediment (e.g., containing mixtures of polycyclic aromatic hydrocarbons and heavy metals) from the industrial area of Bagnoli-Coroglio under two temporal patterns ('aggregated' vs. 'spaced') of turbulence events. Then, we assessed the impact of resuspended pollutants on the ascidian gut environment via four broad categories: oxidative stress, innate immunity, host-microbiota interactions, and epithelium. An early oxidative stress response was seen after a week of exposure to static sediment. Instead, water turbulence had no effect on the antioxidant defence. The first episode of turbulent suspension induced a minimal pro-inflammatory response in the 'spaced' pattern. Mucus overproduction and a complete occlusion of the crypt lumen were found following sediment reworking. This study suggests a protective response of the gut environment in marine invertebrates exposed to environmental extremes, leading to increased susceptibility to disease and to concerns on the combined effects of chronic environmental contamination and acute disturbance events possibly associated with climate change.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Iacopo Bertocci
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, University of Pisa, CoNISMa, Pisa, Italy
| | | | - Luigi Musco
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
26
|
Martínez R, Navarro-Martín L, Luccarelli C, Codina AE, Raldúa D, Barata C, Tauler R, Piña B. Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:462-471. [PMID: 31022537 DOI: 10.1016/j.scitotenv.2019.04.200] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Exposure to PFOS (perfluorooctanesulfonate) has been related to toxic effects on lipid metabolism, immunological response, and different endocrine systems. We present here a transcriptomic analysis of zebrafish embryos exposed to different concentrations of PFOS (0.03-1.0 mg/L) from 48 to 120 hpf. No major survival or morphological alterations (swimming bladder inflation, kyphosis, eye separation and size…) were observed below the 1.0 mg/L mark. Conversely, we observed significant increase in transcripts related to lipid transport and metabolism even at the lowest used concentration. In addition, we observed a general decrease on transcripts related to natural immunity and defense again infections, which adds to the recent concerns about PFOS as immunotoxicant, particularly in humans. Derived PoD (Point of Departure) values for transcriptional changes (0.011 mg/L) were about 200-fold lower than the corresponding PoD values for morphometric effects (2.53 mg/L), and close to levels observed in human blood serum or bird eggs. Our data suggest that currently applicable tolerable levels of PFOS in commercial goods should be re-evaluated, taking into account its potential effects on lipid metabolism and the immune system.
Collapse
Affiliation(s)
- Rubén Martínez
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona 08007, Spain.
| | | | | | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | | | - Carlos Barata
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Romà Tauler
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Benjamin Piña
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
27
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
28
|
Stylianou M, Björnsdotter MK, Olsson PE, Ericson Jogsten I, Jass J. Distinct transcriptional response of Caenorhabditis elegans to different exposure routes of perfluorooctane sulfonic acid. ENVIRONMENTAL RESEARCH 2019; 168:406-413. [PMID: 30388497 DOI: 10.1016/j.envres.2018.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Although people are exposed daily to per- and polyfluorinated alkyl substances (PFASs), the biological consequences are poorly explored. The health risks associated with PFAS exposure are currently based on chemical analysis with a weak correlation to potential harmful effects in man and animals. In this study, we show that perfluorooctane sulfonic acid (PFOS), often the most enriched PFAS in the environment, can be transferred via bacteria to higher organisms such as Caenorhabditis elegans. C. elegans nematodes were exposed to PFOS directly in buffer or by feeding on bacteria pretreated with PFOS, and this led to distinct gene expression profiles. Specifically, heavy metal and heat shock associated genes were significantly, although inversely, expressed following the different PFOS exposures. The innate immunity receptor for microbial pathogens, clec-60, was shown for the first time to be down-regulated by PFOS. This is in line with a previous study indicating that PFOS is associated with children's susceptibility to certain infectious diseases. Furthermore, bar-1, a gene associated with various cancers was highly up-regulated only when C. elegans were exposed to PFOS pretreated live bacteria. Furthermore, dead bacterial biomass had higher binding capacity for linear and isomeric PFOS than live bacteria, which correlated to the higher levels of PFOS detected in C. elegans when fed the treated E. coli, respectively. These results reveal new aspects concerning trophic chain transport of PFOS.
Collapse
Affiliation(s)
- Marios Stylianou
- The Life Science Center-Biology, School of Science and Technology, Örebro University, Sweden
| | - Maria K Björnsdotter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, Sweden
| | - Ingrid Ericson Jogsten
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Sweden
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, Sweden.
| |
Collapse
|
29
|
Mucus: An Underestimated Gut Target for Environmental Pollutants and Food Additives. Microorganisms 2018; 6:microorganisms6020053. [PMID: 29914144 PMCID: PMC6027178 DOI: 10.3390/microorganisms6020053] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Synthetic chemicals (environmental pollutants, food additives) are widely used for many industrial purposes and consumer-related applications, which implies, through manufactured products, diet, and environment, a repeated exposure of the general population with growing concern regarding health disorders. The gastrointestinal tract is the first physical and biological barrier against these compounds, and thus their first target. Mounting evidence indicates that the gut microbiota represents a major player in the toxicity of environmental pollutants and food additives; however, little is known on the toxicological relevance of the mucus/pollutant interplay, even though mucus is increasingly recognized as essential in gut homeostasis. Here, we aimed at describing how environmental pollutants (heavy metals, pesticides, and other persistent organic pollutants) and food additives (emulsifiers, nanomaterials) might interact with mucus and mucus-related microbial species; that is, “mucophilic” bacteria such as mucus degraders. This review highlights that intestinal mucus, either directly or through its crosstalk with the gut microbiota, is a key, yet underestimated gut player that must be considered for better risk assessment and management of environmental pollution.
Collapse
|