1
|
Li CY, Bowers JM, Alexander TA, Behrens KA, Jackson P, Amini CJ, Juntti SA. A pheromone receptor in cichlid fish mediates attraction to females but inhibits male parental care. Curr Biol 2024; 34:3866-3880.e7. [PMID: 39094572 PMCID: PMC11387146 DOI: 10.1016/j.cub.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Reproductive behaviors differ across species, but the mechanisms that control variation in mating and parental care systems remain unclear. In many animal species, pheromones guide mating and parental care. However, it is not well understood how vertebrate pheromone signaling evolution can lead to new reproductive behavior strategies. In fishes, prostaglandin F2α (PGF2α) drives mating and reproductive pheromone signaling in fertile females, but this pheromonal activity appears restricted to specific lineages, and it remains unknown how a female fertility pheromone is sensed for most fish species. Here, we utilize single-cell transcriptomics and CRISPR gene editing in a cichlid fish model to identify and test the roles of key genes involved in olfactory sensing of reproductive cues. We find that a pheromone receptor, Or113a, detects fertile cichlid females and thereby promotes male attraction and mating behavior, sensing a ligand other than PGF2α. Furthermore, while cichlid fishes exhibit extensive parental care, for most species, care is provided solely by females. We find that males initiate mouthbrooding parental care if they have disrupted signaling in ciliated sensory neurons due to cnga2b mutation or if or113a is inactivated. Together, these results show that distinct mechanisms of pheromonal signaling drive reproductive behaviors across taxa. Additionally, these findings indicate that a single pheromone receptor has gained a novel role in behavior regulation, driving avoidance of paternal care among haplochromine cichlid fishes. Lastly, a sexually dimorphic, evolutionarily derived parental behavior is controlled by central circuits present in both sexes, while olfactory signals gate this behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jessica M Bowers
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Peter Jackson
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Cyrus J Amini
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Scott A Juntti
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Vaikakkara Chithran A, Allan DW, O'Connor TP. Adult expression of the cell adhesion protein Fasciclin 3 is required for the maintenance of adult olfactory interneurons. J Cell Sci 2024; 137:jcs261759. [PMID: 38934299 DOI: 10.1242/jcs.261759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The proper functioning of the nervous system is dependent on the establishment and maintenance of intricate networks of neurons that form functional neural circuits. Once neural circuits are assembled during development, a distinct set of molecular programs is likely required to maintain their connectivity throughout the lifetime of the organism. Here, we demonstrate that Fasciclin 3 (Fas3), an axon guidance cell adhesion protein, is necessary for the maintenance of the olfactory circuit in adult Drosophila. We utilized the TARGET system to spatiotemporally knockdown Fas3 in selected populations of adult neurons. Our findings show that Fas3 knockdown results in the death of olfactory circuit neurons and reduced survival of adults. We also demonstrated that Fas3 knockdown activates caspase-3-mediated cell death in olfactory local interneurons, which can be rescued by overexpressing baculovirus p35, an anti-apoptotic protein. This work adds to the growing set of evidence indicating a crucial role for axon guidance proteins in the maintenance of neuronal circuits in adults.
Collapse
Affiliation(s)
- Aarya Vaikakkara Chithran
- Graduate Program in Neuroscience, 3402-2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy P O'Connor
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Sireci S, Kocagöz Y, Alkiraz AS, Güler K, Dokuzluoglu Z, Balcioglu E, Meydanli S, Demirler MC, Erdogan NS, Fuss SH. HB-EGF promotes progenitor cell proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium. FEBS J 2024; 291:2098-2133. [PMID: 38088047 DOI: 10.1111/febs.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Maintenance and regeneration of the zebrafish olfactory epithelium (OE) are supported by two distinct progenitor cell populations that occupy spatially discrete stem cell niches and respond to different tissue conditions. Globose basal cells (GBCs) reside at the inner and peripheral margins of the sensory OE and are constitutively active to replace sporadically dying olfactory sensory neurons (OSNs). In contrast, horizontal basal cells (HBCs) are uniformly distributed across the sensory tissue and are selectively activated by acute injury conditions. Here we show that expression of the heparin-binding epidermal growth factor-like growth factor (HB-EGF) is strongly and transiently upregulated in response to OE injury and signals through the EGF receptor (EGFR), which is expressed by HBCs. Exogenous stimulation of the OE with recombinant HB-EGF promotes HBC expansion and OSN neurogenesis in a pattern that resembles the tissue response to injury. In contrast, pharmacological inhibition of HB-EGF membrane shedding, HB-EGF availability, and EGFR signaling strongly attenuate or delay injury-induced HBC activity and OSN restoration without affecting maintenance neurogenesis by GBCs. Thus, HB-EGF/EGFR signaling appears to be a critical component of the signaling network that controls HBC activity and, consequently, repair neurogenesis in the zebrafish OE.
Collapse
Affiliation(s)
- Siran Sireci
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Yigit Kocagöz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Kardelen Güler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Zeynep Dokuzluoglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Ecem Balcioglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Sinem Meydanli
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | | | - Stefan Herbert Fuss
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| |
Collapse
|
4
|
Rueda-García V, Rondón-Barragán IS. Molecular Characterization of Neurogranin (NRGN) Gene from Red‑Bellied Pacu (Piaractus brachypomus). Mol Neurobiol 2024; 61:2620-2630. [PMID: 37922064 PMCID: PMC11043121 DOI: 10.1007/s12035-023-03700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Neurogranin (NRGN) is a small brain protein expressed in various telencephalic areas and plays an essential role in synaptic plasticity by regulating the availability of calmodulin (CaM). The study aims to characterize the neurogranin gene in Colombian native fish, red-bellied pacu, Piaractus brachypomus, its basal tissue expression and differential expression in brain injury and sublethal toxicity by organophosphates. NRGN gene contains an open reading frame of 183 nucleotides encoding for 60 amino acids. Bioinformatics analysis showed an IQ motif necessary in the interaction with CaM. NRGN mRNA was detected in tissues with higher expression in brain, gills, and head kidney. In brain regions, NRGN showed high expression in the telencephalon (TE) and olfactory bulb (OB). In the sublethal toxicity experiment, NRGN mRNA was upregulated in individuals under organophosphate exposure in the OB and optic chiasm (OC). In brain injury experiment, NRGN showed upregulation at 14 days in OC and at 24 h and 7 days in TE. These findings demonstrate the differential expression of NRGN under different experimental conditions which make it a candidate for a biomarker in the brain of P. brachypomus.
Collapse
Affiliation(s)
- Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia.
| |
Collapse
|
5
|
Kowatschew D, Bozorg Nia S, Hassan S, Ustinova J, Weth F, Korsching SI. Spatial organization of olfactory receptor gene choice in the complete V1R-related ORA family of zebrafish. Sci Rep 2022; 12:14816. [PMID: 36045218 PMCID: PMC9433392 DOI: 10.1038/s41598-022-17900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
The vertebrate sense of smell employs four main receptor families for detection of odors, among them the V1R/ORA family, which is unusually small and highly conserved in teleost fish. Zebrafish possess just seven ORA receptors, enabling a comprehensive analysis of the expression patterns of the entire family. The olfactory organ of zebrafish is representative for teleosts, cup-shaped, with lamella covered with sensory epithelium protruding into the cup from a median raphe. We have performed quantitative in situ hybridization on complete series of horizontal cryostat sections of adult zebrafish olfactory organ, and have analysed the location of ora-expressing cells in three dimensions, radial diameter, laminar height, and height-within-the-organ. We report broadly overlapping, but distinctly different distributions for all ora genes, even for ora3a and ora3b, the most recent gene duplication. Preferred positions in different dimensions are independent of each other. This spatial logic is very similar to previous reports for the much larger families of odorant receptor (or) and V2R-related olfC genes in zebrafish. Preferred positions for ora genes tend to be more central and more apical than those we observed for these other two families, consistent with expression in non-canonical sensory neuron types.
Collapse
Affiliation(s)
- Daniel Kowatschew
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Shahrzad Bozorg Nia
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Shahzaib Hassan
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Jana Ustinova
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Franco Weth
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
6
|
Zhu H, Zhang X, Xu S, Wu J, Hou M, Zhao H, Zhou Q, Zhong X. Gene duplication, conservation, and divergence of activating transcription factor 5 gene in zebrafish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:301-313. [PMID: 35226401 DOI: 10.1002/jez.b.23124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
Abstract
Activating transcription factor 5 (Atf5) is a member of the ATF/CREB family of transcription factors and involved in diverse cellular functions and diseases in mammals. However, the function of atf5 remains largely unknown in fish. Here, we report the expression pattern and function of duplicated atf5 genes in zebrafish. The results showed that the gene structures of zebrafish atf5a and atf5b were similar to their mammalian orthologs. Zebrafish Atf5a and Atf5b shared an amino acid sequence identity of 40.7%. Zebrafish atf5a and atf5b had maternal origin with dynamic expression during embryonic development. Zebrafish atf5a mRNA is mainly enriched in olfactory epithelium, midbrain, and hindbrain, while zebrafish atf5b mRNA is mainly detected in midbrain, hindbrain, and liver during embryogenesis. The results of acute hypoxia experiment showed that atf5a mRNA was significantly upregulated in the brain, liver, and muscle, while atf5b mRNA was just increased significantly in the brain. Functional analysis showed that knockdown of atf5a affects the development of the ciliated neurons in zebrafish embryos. The effect was enhanced when atf5a MO was co-injected with atf5b MO. The development of ciliated neurons in zebrafish embryos was not affected by injection of atf5b MO alone. atf5a knockdown also affects the development of early-born olfactory neurons. The effects caused by atf5a knockdown could be rescued by atf5b mRNA. These results suggest that the duplicated atf5 genes may have evolved divergently and play redundant biological roles in the development of olfactory sensory neurons in zebrafish.
Collapse
Affiliation(s)
- Huihui Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaoyi Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shifan Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jiawen Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Mengying Hou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
7
|
Kocagöz Y, Demirler MC, Eski SE, Güler K, Dokuzluoglu Z, Fuss SH. Disparate progenitor cell populations contribute to maintenance and repair neurogenesis in the zebrafish olfactory epithelium. Cell Tissue Res 2022; 388:331-358. [PMID: 35266039 DOI: 10.1007/s00441-022-03597-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/02/2022] [Indexed: 12/25/2022]
Abstract
Olfactory sensory neurons (OSNs) undergo constant turnover under physiological conditions but also regenerate efficiently following tissue injury. Maintenance and repair neurogenesis in the olfactory epithelium (OE) have been attributed to the selective activity of globose (GBCs) and horizontal basal cells (HBCs), respectively. In zebrafish, cells with GBC-like properties are localized to the peripheral margins of the sensory OE and contribute to OSN neurogenesis in the intact OE, while cells that resemble HBCs at the morphological and molecular level are more uniformly distributed. However, the contribution of these cells to the restoration of the injured OE has not been demonstrated. Here, we provide a detailed cellular and molecular analysis of the tissue response to injury and show that a dual progenitor cell system also exists in zebrafish. Zebrafish HBCs respond to the structural damage of the OE and generate a transient population of proliferative neurogenic progenitors that restores OSNs. In contrast, selective ablation of OSNs by axotomy triggers neurogenic GBC proliferation, suggesting that distinct signaling events activate GBC and HBC responses. Molecular analysis of differentially expressed genes in lesioned and regenerating OEs points toward an involvement of the canonical Wnt/β-catenin pathway. Activation of Wnt signaling appears to be sufficient to stimulate mitotic activity, while inhibition significantly reduces, but does not fully eliminate, HBC responses. Zebrafish HBCs are surprisingly active even under physiological conditions with a strong bias toward the zones of constitutive OSN neurogenesis, suggestive of a direct lineage relationship between progenitor cell subtypes.
Collapse
Affiliation(s)
- Yigit Kocagöz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Sema Elif Eski
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
- Institute of Interdisciplinary Research in Human and Molecular Biology, Free University of Brussels, Campus Erasme, 1070, Brussels, Belgium
| | - Kardelen Güler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Zeynep Dokuzluoglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey
| | - Stefan H Fuss
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Kuzey Park 319, 34342, Bebek - Istanbul, Turkey.
| |
Collapse
|
8
|
Ruiz OE, Samms KM, Eisenhoffer GT. A protocol to evaluate epithelial regeneration after inducing cell loss in zebrafish larvae. STAR Protoc 2022; 3:101073. [PMID: 35036954 PMCID: PMC8749296 DOI: 10.1016/j.xpro.2021.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Epithelial tissues sustain barrier function by removing and replacing aberrant or unfit cells. Here, we describe approaches to evaluate epithelial restorative capacity after inducing cell loss in zebrafish larvae. We provide details to quantify morphological changes to the tail fin epithelium after cell loss, and instructions to interrogate changes in gene expression and proliferation associated with replacement of the lost cells. Together, this approach establishes an in vivo vertebrate model for the rapid assessment of molecular pathways controlling epithelial regeneration. For complete details on the use and execution of this profile, please refer to Wurster et al. (2021). Evaluation of epithelial restorative capacity after cell loss in zebrafish larvae Quantification of morphological changes related to cell loss in the tail fin epithelium Instructions to interrogate changes in gene expression after induced cell loss Steps to assess proliferation associated with replacement of the lost cells
Collapse
Affiliation(s)
- Oscar E Ruiz
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krystin M Samms
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genetics and Epigenetics Graduate Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
9
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Response of Olfactory Sensory Neurons to Mercury Ions in Zebrafish: An Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:227-242. [PMID: 35177137 DOI: 10.1017/s1431927621013763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Maria G Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| |
Collapse
|
10
|
|
11
|
Kowatschew D, Korsching SI. An Ancient Adenosine Receptor Gains Olfactory Function in Bony Vertebrates. Genome Biol Evol 2021; 13:6367781. [PMID: 34499158 PMCID: PMC8462279 DOI: 10.1093/gbe/evab211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Nucleotides are an important class of odorants for aquatic vertebrates such as frogs and fishes, but also have manifold signaling roles in other cellular processes. Recently, an adenosine receptor believed to belong to the adora2 clade has been identified as an olfactory receptor in zebrafish. Here, we set out to elucidate the evolutionary history of both this gene and its olfactory function. We have performed a thorough phylogenetic study in vertebrates, chordates and their sister group, ambulacraria, and show that the origin of the zebrafish olfactory receptor gene can be traced back to the most recent common ancestor of all three groups as a segregate sister clade (adorb) to the adora gene family. Eel, carp, and clawed frog all express adorb in a sparse and distributed pattern within their olfactory epithelium very similar to the pattern observed for zebrafish that is, consistent with a function as olfactory receptor. In sharp contrast, lamprey adorb-expressing cells are absent from the sensory region of the lamprey nose, but form a contiguous domain directly adjacent to the sensory region. Double-labeling experiments confirmed the expression of lamprey adorb in nonneuronal cells and are consistent with an expression in neuronal progenitor cells. Thus, adorb may have undergone a switch of function in the jawed lineage of vertebrates towards a role as olfactory receptor.
Collapse
Affiliation(s)
- Daniel Kowatschew
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Germany
| |
Collapse
|
12
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
13
|
Demirler MC, Sakizli U, Bali B, Kocagöz Y, Eski SE, Ergönen A, Alkiraz AS, Bayramli X, Hassenklöver T, Manzini I, Fuss SH. Purinergic signalling selectively modulates maintenance but not repair neurogenesis in the zebrafish olfactory epithelium. FEBS J 2019; 287:2699-2722. [PMID: 31821713 DOI: 10.1111/febs.15170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/26/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Olfactory sensory neurons (OSNs) of the vertebrate olfactory epithelium (OE) undergo continuous turnover but also regenerate efficiently when the OE is acutely damaged by traumatic injury. Two distinct pools of neuronal stem/progenitor cells, the globose (GBCs), and horizontal basal cells (HBCs) have been shown to selectively contribute to intrinsic OSN turnover and damage-induced OE regeneration, respectively. For both types of progenitors, their rate of cell divisions and OSN production must match the actual loss of cells to maintain or to re-establish sensory function. However, signals that communicate between neurons or glia cells of the OE and resident neurogenic progenitors remain largely elusive. Here, we investigate the effect of purinergic signaling on cell proliferation and OSN neurogenesis in the zebrafish OE. Purine stimulation elicits transient Ca2+ signals in OSNs and distinct non-neuronal cell populations, which are located exclusively in the basal OE and stain positive for the neuronal stem cell marker Sox2. The more apical population of Sox2-positive cells comprises evenly distributed glia-like sustentacular cells (SCs) and spatially restricted GBC-like cells, whereas the more basal population expresses the HBC markers keratin 5 and tumor protein 63 and lines the entire sensory OE. Importantly, exogenous purine stimulation promotes P2 receptor-dependent mitotic activity and OSN generation from sites where GBCs are located but not from HBCs. We hypothesize that purine compounds released from dying OSNs modulate GBC progenitor cell cycling in a dose-dependent manner that is proportional to the number of dying OSNs and, thereby, ensures a constant pool of sensory neurons over time.
Collapse
Affiliation(s)
- Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Uğurcan Sakizli
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Burak Bali
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Yiğit Kocagöz
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Sema Elif Eski
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Arda Ergönen
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Xalid Bayramli
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Germany
| | - Stefan H Fuss
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey.,Center for Life Sciences and Technologies, Istanbul, Turkey
| |
Collapse
|
14
|
Calvo-Ochoa E, Byrd-Jacobs CA. The Olfactory System of Zebrafish as a Model for the Study of Neurotoxicity and Injury: Implications for Neuroplasticity and Disease. Int J Mol Sci 2019; 20:ijms20071639. [PMID: 30986990 PMCID: PMC6480214 DOI: 10.3390/ijms20071639] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
The olfactory system, composed of the olfactory organs and the olfactory bulb, allows organisms to interact with their environment and through the detection of odor signals. Olfaction mediates behaviors pivotal for survival, such as feeding, mating, social behavior, and danger assessment. The olfactory organs are directly exposed to the milieu, and thus are particularly vulnerable to damage by environmental pollutants and toxicants, such as heavy metals, pesticides, and surfactants, among others. Given the widespread occurrence of olfactory toxicants, there is a pressing need to understand the effects of these harmful compounds on olfactory function. Zebrafish (Danio rerio) is a valuable model for studying human physiology, disease, and toxicity. Additionally, the anatomical components of the zebrafish olfactory system are similar to those of other vertebrates, and they present a remarkable degree of regeneration and neuroplasticity, making it an ideal model for the study of regeneration, reorganization and repair mechanisms following olfactory toxicant exposure. In this review, we focus on (1) the anatomical, morphological, and functional organization of the olfactory system of zebrafish; (2) the adverse effects of olfactory toxicants and injury to the olfactory organ; and (3) remodeling and repair neuroplasticity mechanisms following injury and degeneration by olfactory toxicant exposure.
Collapse
Affiliation(s)
- Erika Calvo-Ochoa
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| | - Christine A Byrd-Jacobs
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|
15
|
Ahuja G, Reichel V, Kowatschew D, Syed AS, Kotagiri AK, Oka Y, Weth F, Korsching SI. Overlapping but distinct topology for zebrafish V2R-like olfactory receptors reminiscent of odorant receptor spatial expression zones. BMC Genomics 2018; 19:383. [PMID: 29792162 PMCID: PMC5966872 DOI: 10.1186/s12864-018-4740-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Background The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. Results To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. Conclusion Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and their expression zones intermingle with those of odorant receptor genes. Thus, distinctly different expression zones for individual receptor genes constitute a general feature shared by teleost and tetrapod V2R/OlfC and odorant receptor families alike. Electronic supplementary material The online version of this article (10.1186/s12864-018-4740-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaurav Ahuja
- Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany. .,Present address: Center for Molecular Medicine Cologne (ZMMK), Robert-Koch-Str. 21, 50931, Cologne, Germany. .,Present address: Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany.
| | - Vera Reichel
- Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Daniel Kowatschew
- Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Adnan S Syed
- Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Aswani Kumar Kotagiri
- Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Yuichiro Oka
- Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.,Present address: Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Present address: Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Franco Weth
- Karlsruher Institut fuer Technologie (KIT) - Campus Sued, Zoologisches Institut, Abteilung fuer Zell- und Neurobiologie, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sigrun I Korsching
- Institute of Genetics, University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
16
|
Blin M, Tine E, Meister L, Elipot Y, Bibliowicz J, Espinasa L, Rétaux S. Developmental evolution and developmental plasticity of the olfactory epithelium and olfactory skills in Mexican cavefish. Dev Biol 2018; 441:242-251. [PMID: 29709597 DOI: 10.1016/j.ydbio.2018.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
The fish Astyanax mexicanus comes in two forms: the normal surface-dwelling (SF) and the blind depigmented cave-adapted (CF) morphs. Among many phenotypic differences, cavefish show enhanced olfactory sensitivity to detect amino-acid odors and they possess large olfactory sensory organs. Here, we questioned the relationship between the size of the olfactory organ and olfactory capacities. Comparing olfactory detection abilities of CF, SF and F1 hybrids with various olfactory epithelium (OE) sizes in behavioral tests, we concluded that OE size is not the only factor involved. Other possibilities were envisaged. First, olfactory behavior was tested in SF raised in the dark or after embryonic lens ablation, which leads to eye degeneration and mimics the CF condition. Both absence of visual function and absence of visual organs improved the SF olfactory detection capacities, without affecting the size of their OE. This suggested that developmental plasticity occurs between the visual and the olfactory modalities, and can be recruited in SF after visual deprivation. Second, the development of the olfactory epithelium was compared in SF and CF in their first month of life. Proliferation, cell death, neuronal lifespan, and olfactory progenitor cell cycling properties were identical in the two morphs. By contrast, the proportions of the three main olfactory sensory neurons subtypes (ciliated, microvillous and crypt) in their OE differed. OMP-positive ciliated neurons were more represented in SF, TRPC2-positive microvillous neurons were proportionately more abundant in CF, and S100-positive crypt cells were found in equal densities in the two morphs. Thus, general proliferative properties of olfactory progenitors are identical but neurogenic properties differ and lead to variations in the neuronal composition of the OE in SF and CF. Together, these experiments suggest that there are at least two components in the evolution of cavefish olfactory skills: (1) one part of eye-dependent developmental phenotypic plasticity, which does not depend on the size of the olfactory organ, and (2) one part of developmental evolution of the OE, which may stem from embryonic specification of olfactory neurons progenitor pools.
Collapse
Affiliation(s)
- Maryline Blin
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Eugène Tine
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Lydvina Meister
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Yannick Elipot
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Jonathan Bibliowicz
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Luis Espinasa
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Pandey S, Shekhar K, Regev A, Schier AF. Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. Curr Biol 2018; 28:1052-1065.e7. [PMID: 29576475 DOI: 10.1016/j.cub.2018.02.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions.
Collapse
Affiliation(s)
- Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Karthik Shekhar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Koch Institute of Integrative Cancer Research Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|