1
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
2
|
Wolf SJ, Audu CO, Moon JY, Joshi AD, Melvin WJ, Barrett EC, Mangum K, de Jimenez GS, Rocco S, Buckley S, Ahmed Z, Wasikowski R, Kahlenberg JM, Tsoi LC, Gudjonsson JE, Gallagher KA. Diabetic Wound Keratinocytes Induce Macrophage JMJD3-Mediated Nlrp3 Expression via IL-1R Signaling. Diabetes 2024; 73:1462-1472. [PMID: 38869447 PMCID: PMC11333374 DOI: 10.2337/db23-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Macrophage (Mφ) plasticity is critical for normal wound repair; however, in type 2 diabetic wounds, Mφs persist in a low-grade inflammatory state that prevents the resolution of wound inflammation. Increased NLRP3 inflammasome activity has been shown in diabetic wound Mφs; however, the molecular mechanisms regulating NLRP3 expression and activity are unclear. Here, we identified that diabetic wound keratinocytes induce Nlrp3 gene expression in wound Mφs through IL-1 receptor-mediated signaling, resulting in enhanced inflammasome activation in the presence of pathogen-associated molecular patterns and damage-associated molecular patterns. We found that IL-1α is increased in human and murine wound diabetic keratinocytes compared with nondiabetic controls and directly induces Mφ Nlrp3 expression through IL-1 receptor signaling. Mechanistically, we report that the histone demethylase, JMJD3, is increased in wound Mφs late post-injury and is induced by IL-1α from diabetic wound keratinocytes, resulting in Nlrp3 transcriptional activation through an H3K27me3-mediated mechanism. Using genetically engineered mice deficient in JMJD3 in myeloid cells (Jmjd3f/flyz2Cre+), we demonstrate that JMJD3 controls Mφ-mediated Nlrp3 expression during diabetic wound healing. Thus, our data suggest a role for keratinocyte-mediated IL-1α/IL-1R signaling in driving enhanced NLRP3 inflammasome activity in wound Mφs. These data also highlight the importance of cell cross-talk in wound tissues and identify JMJD3 and the IL-1R signaling cascade as important upstream therapeutic targets for Mφ NLRP3 inflammasome hyperactivity in nonhealing diabetic wounds. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christopher O. Audu
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jadie Y. Moon
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Amrita D. Joshi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Emily C. Barrett
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Kevin Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Sabrina Rocco
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Sam Buckley
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Zara Ahmed
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan, Ann Arbor, MI
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Huang Y, Pan W, Ma J. SKP2-mediated ubiquitination and degradation of KLF11 promotes osteoarthritis via modulation of JMJD3/NOTCH1 pathway. FASEB J 2024; 38:e23640. [PMID: 38690715 DOI: 10.1096/fj.202300664rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Osteoarthritis (OA) is the main cause of cartilage damage and disability. This study explored the biological function of S-phase kinase-associated protein 2 (SKP2) and Kruppel-like factor 11 (KLF11) in OA progression and its underlying mechanisms. C28/I2 chondrocytes were stimulated with IL-1β to mimic OA in vitro. We found that SKP2, Jumonji domain-containing protein D3 (JMJD3), and Notch receptor 1 (NOTCH1) were upregulated, while KLF11 was downregulated in IL-1β-stimulated chondrocytes. SKP2/JMJD3 silencing or KLF11 overexpression repressed apoptosis and extracellular matrix (ECM) degradation in chondrocytes. Mechanistically, SKP2 triggered the ubiquitination and degradation of KLF11 to transcriptionally activate JMJD3, which resulted in activation of NOTCH1 through inhibiting H3K27me3. What's more, the in vivo study found that KLF11 overexpression delayed OA development in rats via restraining apoptosis and maintaining the balance of ECM metabolism. Taken together, ubiquitination and degradation of KLF11 regulated by SKP2 contributed to OA progression by activation of JMJD3/NOTCH1 pathway. Our findings provide promising therapeutic targets for OA.
Collapse
Affiliation(s)
- Yuanchi Huang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| | - Wenjie Pan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| |
Collapse
|
4
|
Chen R, Deng H, Zou L. Analysis of Bulk Transcriptome Sequencing Data and in vitro Experiments Reveal SIN3A as a Potential Target for Diabetic Foot Ulcer. Diabetes Metab Syndr Obes 2023; 16:4119-4132. [PMID: 38145255 PMCID: PMC10740743 DOI: 10.2147/dmso.s439924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023] Open
Abstract
Background Diabetic foot ulcers (DFUs) represent a severe complication of diabetes associated with reduced quality of life, lower limb amputations, hospitalizations, increased incidence, and mortality. Importantly, a significant number of pathogenic genes remain unexplored in DFUs. Methods A series of bioinformatics analyses were performed on publicly available bulk transcriptome sequencing datasets GSE134431 and GSE80178 to explore the transcriptomic changes in DFUs and select core genes for in vitro functional validation. In a focused examination, the differential expression analysis unveiled distinctions in gene expression patterns between DFUs and non-ulcerated diabetic skin tissues. Enriched functional annotations of differentially expressed genes were explored using the DAVID online tool. Protein-protein interaction analysis was conducted to investigate interactions among differentially expressed genes and select core genes. Knockdown or overexpression of core genes in HaCaT keratinocytes was performed to assess their impact on cell proliferation and migration. Results Ten core genes were identified. Cell Counting Kit-8 (CCK-8) and scratch assays demonstrated that downregulation of the core gene SIN3A significantly inhibited the migration and proliferation of HaCaT keratinocytes, while overexpression of SIN3A reversed the high-glucose-induced suppression of HaCaT cell viability and migration. Conclusion SIN3A expression is downregulated in DFUs. In vitro, SIN3A promotes the proliferation and migration of HaCaT keratinocytes, suggesting it may be a potential therapeutic target for DFUs.
Collapse
Affiliation(s)
- Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Haibo Deng
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Lijun Zou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
5
|
Sylvestre M, Barbier N, Sibut V, Nayar S, Monvoisin C, Leonard S, Saint-Vanne J, Martin A, Guirriec M, Latour M, Jouan F, Baulande S, Bohec M, Verdière L, Mechta-Grigoriou F, Mourcin F, Bertheuil N, Barone F, Tarte K, Roulois D. KDM6B drives epigenetic reprogramming associated with lymphoid stromal cell early commitment and immune properties. SCIENCE ADVANCES 2023; 9:eadh2708. [PMID: 38019914 PMCID: PMC10686565 DOI: 10.1126/sciadv.adh2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation.
Collapse
Affiliation(s)
- Marvin Sylvestre
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Nicolas Barbier
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Vonick Sibut
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Saba Nayar
- Centre for Translational inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Céline Monvoisin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Simon Leonard
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, F-35043 Nantes, France
| | - Julien Saint-Vanne
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - Ansie Martin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Marion Guirriec
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Maëlle Latour
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - Florence Jouan
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, F-75005 Paris, France
| | - Mylène Bohec
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, F-75005 Paris, France
| | - Léa Verdière
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, INSERM, U830, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| | - Frédéric Mourcin
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| | - Nicolas Bertheuil
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- Department of Plastic Surgery, CHU Rennes, F-35033 Rennes, France
| | | | - Karin Tarte
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
- SITI, Pôle Biologie, CHU Rennes, F-35033 Rennes, France
| | - David Roulois
- Honeycomb team, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Univ Rennes, INSERM, EFS, UMR S1236, Rennes, France
| |
Collapse
|
6
|
Wang B, Zhang J, Li G, Xu C, Yang L, Zhang J, Wu Y, Liu Y, Liu Z, Wang M, Li J, Tang X, Liu B. N-acetyltransferase 10 promotes cutaneous wound repair via the NF-κB-IL-6 axis. Cell Death Discov 2023; 9:324. [PMID: 37644005 PMCID: PMC10465497 DOI: 10.1038/s41420-023-01628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Cutaneous wound healing, an integral part for protection of skin barrier, is a complex biological process and intimately associated with keratinocyte migration. However, mechanisms regulating keratinocyte migration in the process of cutaneous wound repair remain largely unknown. Here, we found that N-acetyltransferase 10 (NAT10) is essential for cutaneous wound repair in an in vivo skin wound healing model-a significant delay of wound repair in Nat10 haploinsufficient mice and a remarkable inhibition of keratinocyte migration by NAT10 knockdown in an in vitro keratinocyte migration model. We further demonstrate that loss of NAT10 expression attenuates the wound-induced IL-6/IL-8 expression through inhibiting NF-κB/p65 activity in keratinocytes. By deeply digging, silencing NAT10 compromises the level of nuclear p65 by facilitating its poly-ubiquitination, thus accelerates its degradation in the nucleus. Notably, we detected a strong positive correlation between the expression of NAT10 and relevant NF-kB/p65-IL6 signaling activity in mouse wound skin tissues. Overall, our study reveals an important role of NAT10 on cutaneous wound repair by potentiating NF-κB/p65-IL-6/8-STAT3 signaling. Targeting NAT10 might be a potential strategy for the treatment of skin wound dysfunctions and related diseases.
Collapse
Affiliation(s)
- Ben Wang
- Department of Dermatology, Hunan Key Laboratory of Aging Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Guo Li
- Department of Dermatology, Hunan Key Laboratory of Aging Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chenzhong Xu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Langmei Yang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Yalan Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ye Liu
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ming Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ji Li
- Department of Dermatology, Hunan Key Laboratory of Aging Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
- School of Biomedical Sciences, Hunan University, Changsha, China.
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Deng H, Li B, Shen Q, Zhang C, Kuang L, Chen R, Wang S, Ma Z, Li G. Mechanisms of diabetic foot ulceration: A review. J Diabetes 2023; 15:299-312. [PMID: 36891783 PMCID: PMC10101842 DOI: 10.1111/1753-0407.13372] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are associated with complex pathogenic factors and are considered a serious complication of diabetes. The potential mechanisms underlying DFUs have been increasingly investigated. Previous studies have focused on the three aspects of diabetic peripheral vascular disease, neuropathy, and wound infections. With advances in technology, researchers have been gradually conducting studies using immune cells, endothelial cells, keratinocytes, and fibroblasts, as they are involved in wound healing. It has been reported that the upregulation or downregulation of molecular signaling pathways is essential for the healing of DFUs. With a recent increase in the awareness of epigenetics, its regulatory role in wound healing has become a much sought-after trend in the treatment of DFUs. This review focuses on four aspects involved in the pathogenesis of DFUs: physiological and pathological mechanisms, cellular mechanisms, molecular signaling pathway mechanisms, and epigenetics. Given the challenge in the treatment of DFUs, we are hopeful that our review will provide new ideas for peers.
Collapse
Affiliation(s)
- Haibo Deng
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Binghui Li
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qian Shen
- School of Foreign StudiesZhongnan University of Economics and LawWuhanHubeiChina
| | - Chenchen Zhang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Liwen Kuang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Ran Chen
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - SiYuan Wang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - ZhiQiang Ma
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Gongchi Li
- Department of Hand Surgery, Union Hospital affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
8
|
Aberrant promoter methylation of Wnt inhibitory factor-1 gene is a potential target for treating psoriasis. Clin Immunol 2023; 250:109294. [PMID: 36925027 DOI: 10.1016/j.clim.2023.109294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/29/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease mediated by immune and complex genetic factors. The wingless-related integration site (Wnt) signaling pathway plays a critical role in psoriasis, but how the Wnt pathway is regulated in psoriatic skin and whether it can be exploited for therapeutic benefits is unclear. By comparing biopsies from healthy and psoriatic skin, we found that Wnt inhibitory factor 1 (WIF1), an inhibitor of Wnt signaling, showed reduced expression at both mRNA and protein levels in psoriatic skin. We then quantified methylation of the WIF1 gene promoter by DNA methylation sequencing and found that the WIF1 promoter region was hypermethylated. We further showed that recombinant WIF1 injection ameliorates the imiquimod (IMQ) mouse model of psoriasis. We also revealed that treatment with the DNA methylation inhibitor, decitabine, inhibited proliferation of immortalized human keratinocytes (HaCaT) in a psoriasis-like inflammatory environment. Finally, we applied decitabine to the IMQ mouse model and demonstrated that treatment of mice with decitabine ameliorates the disease. Therefore, our study reveals that methylation of the WIF1 gene is associated with the pathogenesis of psoriasis, and suggests that pharmacological targeting of DNA methylation is a potential treatment strategy for psoriasis.
Collapse
|
9
|
Singh SK, Dwivedi SD, Yadav K, Shah K, Chauhan NS, Pradhan M, Singh MR, Singh D. Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines 2023; 11:biomedicines11020613. [PMID: 36831151 PMCID: PMC9952895 DOI: 10.3390/biomedicines11020613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Wound healing responses play a major role in chronic inflammation, which affects millions of people around the world. One of the daunting tasks of creating a wound-healing drug is finding equilibrium in the inflammatory cascade. In this study, the molecular and cellular mechanisms to regulate wound healing are explained, and recent research is addressed that demonstrates the molecular and cellular events during diabetic wound healing. Moreover, a range of factors or agents that facilitate wound healing have also been investigated as possible targets for successful treatment. It also summarises the various advances in research findings that have revealed promising molecular targets in the fields of therapy and diagnosis of cellular physiology and pathology of wound healing, such as neuropeptides, substance P, T cell immune response cDNA 7, miRNA, and treprostinil growth factors such as fibroblast growth factor, including thymosin beta 4, and immunomodulators as major therapeutic targets.
Collapse
Affiliation(s)
- Suraj Kumar Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Krishna Yadav
- Raipur Institute of Pharmaceutical Educations and Research, Sarona, Raipur 492010, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | | | - Madhulika Pradhan
- Gracious College of Pharmacy Abhanpur Raipur, Village-Belbhata, Taluka, Abhanpur 493661, Chhattisgarh, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
- Correspondence:
| |
Collapse
|
10
|
Mohammed FH, Cemic F, Hemberger J, Giri S. Biological skin regeneration using epigenetic targets. Drug Discov Today 2023; 28:103495. [PMID: 36681237 DOI: 10.1016/j.drudis.2023.103495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Epigenetics targets are the newest branches for building a novel platform of drugs for preventive and regenerative skin health care. Epigenetic regions [vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), transforming growth factor beta (TGFβ), DNA methyltransferases (DNMTs), histone deacetylase 1/2 (HDAC1/2), and miRNA) are innovative druggable targets. As we discuss here, a series of epigenetic-based small molecules are undergoing both clinical and preclinical trials for skin regeneration. Epigenetic writers, eraser targets, and epigenetic readers will become the key therapeutic windows for skin regenerative in the near future.
Collapse
Affiliation(s)
- Fahad Hussain Mohammed
- Biomedical and Biotechnological Center (BBZ), University of Leipzig, Leipzig, Germany; Institute of Biochemical Engineering & Analysis, University of Applied Sciences, Giessen, Germany
| | - Franz Cemic
- Institute of Biochemical Engineering & Analysis, University of Applied Sciences, Giessen, Germany
| | - Jürgen Hemberger
- Institute of Biochemical Engineering & Analysis, University of Applied Sciences, Giessen, Germany
| | - Shibashish Giri
- Centre for Biotechnology and Biomedicine, Department of Cell Techniques and Applied Stem Cell Biology, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany.
| |
Collapse
|
11
|
Ariel A. JMJD3 regulates diabetic wound repair in a STINGy fashion. Cell Mol Immunol 2023; 20:110-111. [PMID: 36323930 PMCID: PMC9794684 DOI: 10.1038/s41423-022-00937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Amiram Ariel
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
12
|
Audu CO, Melvin WJ, Joshi AD, Wolf SJ, Moon JY, Davis FM, Barrett EC, Mangum KD, Deng H, Xing X, Wasikowski R, Tsoi LC, Sharma SB, Bauer TM, Shadiow J, Corriere MA, Obi AT, Kunkel SL, Levi B, Moore BB, Gudjonsson JE, Smith AM, Gallagher KA. Macrophage-specific inhibition of the histone demethylase JMJD3 decreases STING and pathologic inflammation in diabetic wound repair. Cell Mol Immunol 2022; 19:1251-1262. [PMID: 36127466 PMCID: PMC9622909 DOI: 10.1038/s41423-022-00919-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/09/2022] [Indexed: 02/01/2023] Open
Abstract
Macrophage plasticity is critical for normal tissue repair following injury. In pathologic states such as diabetes, macrophage plasticity is impaired, and macrophages remain in a persistent proinflammatory state; however, the reasons for this are unknown. Here, using single-cell RNA sequencing of human diabetic wounds, we identified increased JMJD3 in diabetic wound macrophages, resulting in increased inflammatory gene expression. Mechanistically, we report that in wound healing, JMJD3 directs early macrophage-mediated inflammation via JAK1,3/STAT3 signaling. However, in the diabetic state, we found that IL-6, a cytokine increased in diabetic wound tissue at later time points post-injury, regulates JMJD3 expression in diabetic wound macrophages via the JAK1,3/STAT3 pathway and that this late increase in JMJD3 induces NFκB-mediated inflammatory gene transcription in wound macrophages via an H3K27me3 mechanism. Interestingly, RNA sequencing of wound macrophages isolated from mice with JMJD3-deficient myeloid cells (Jmjd3f/fLyz2Cre+) identified that the STING gene (Tmem173) is regulated by JMJD3 in wound macrophages. STING limits inflammatory cytokine production by wound macrophages during healing. However, in diabetic mice, its role changes to limit wound repair and enhance inflammation. This finding is important since STING is associated with chronic inflammation, and we found STING to be elevated in human and murine diabetic wound macrophages at late time points. Finally, we demonstrate that macrophage-specific, nanoparticle inhibition of JMJD3 in diabetic wounds significantly improves diabetic wound repair by decreasing inflammatory cytokines and STING. Taken together, this work highlights the central role of JMJD3 in tissue repair and identifies cell-specific targeting as a viable therapeutic strategy for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Christopher O Audu
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - William J Melvin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amrita D Joshi
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Jadie Y Moon
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Frank M Davis
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Emily C Barrett
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kevin D Mangum
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hongping Deng
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Sriganesh B Sharma
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Tyler M Bauer
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew A Corriere
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrea T Obi
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Kunkel
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bethany B Moore
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Andrew M Smith
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL, USA
| | - Katherine A Gallagher
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Chakraborty R, Borah P, Dutta PP, Sen S. Evolving spectrum of diabetic wound: Mechanistic insights and therapeutic targets. World J Diabetes 2022; 13:696-716. [PMID: 36188143 PMCID: PMC9521443 DOI: 10.4239/wjd.v13.i9.696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder resulting in an increased blood glucose level and prolonged hyperglycemia, causes long term health conse-quences. Chronic wound is frequently occurring in diabetes patients due to compromised wound healing capability. Management of wounds in diabetic patients remains a clinical challenge despite many advancements in the field of science and technology. Increasing evidence indicates that alteration of the biochemical milieu resulting from alteration in inflammatory cytokines and matrix metalloproteinase, decrease in fibroblast and keratinocyte functioning, neuropathy, altered leukocyte functioning, infection, etc., plays a significant role in impaired wound healing in diabetic people. Apart from the current pharmacotherapy, different other approaches like the use of conventional drugs, antidiabetic medication, antibiotics, debridement, offloading, platelet-rich plasma, growth factor, oxygen therapy, negative pressure wound therapy, low-level laser, extracorporeal shock wave bioengineered substitute can be considered in the management of diabetic wounds. Drugs/therapeutic strategy that induce angiogenesis and collagen synthesis, inhibition of MMPs, reduction of oxidative stress, controlling hyperglycemia, increase growth factors, regulate inflammatory cytokines, cause NO induction, induce fibroblast and keratinocyte proliferation, control microbial infections are considered important in controlling diabetic wound. Further, medicinal plants and/or phytoconstituents also offer a viable alternative in the treatment of diabetic wound. The focus of the present review is to highlight the molecular and cellular mechanisms, and discuss the drug targets and treatment strategies involved in the diabetic wound.
Collapse
Affiliation(s)
- Raja Chakraborty
- Institute of Pharmacy, Assam Don Bosco University, Kamrup 782402, Assam, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| |
Collapse
|
14
|
Yu H, Wang Y, Wang D, Yi Y, Liu Z, Wu M, Wu Y, Zhang Q. Landscape of the epigenetic regulation in wound healing. Front Physiol 2022; 13:949498. [PMID: 36035490 PMCID: PMC9403478 DOI: 10.3389/fphys.2022.949498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Wound healing after skin injury is a dynamic and highly coordinated process involving a well-orchestrated series of phases, including hemostasis, inflammation, proliferation, and tissue remodeling. Epigenetic regulation refers to genome-wide molecular events, including DNA methylation, histone modification, and non-coding RNA regulation, represented by microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Epigenetic regulation is pervasively occurred in the genome and emerges as a new role in gene expression at the post-transcriptional level. Currently, it is well-recognized that epigenetic factors are determinants in regulating gene expression patterns, and may provide evolutionary mechanisms that influence the wound microenvironments and the entire healing course. Therefore, this review aims to comprehensively summarize the emerging roles and mechanisms of epigenetic remodeling in wound healing. Moreover, we also pose the challenges and future perspectives related to epigenetic modifications in wound healing, which would bring novel insights to accelerated wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Yiping Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Qi Zhang
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| |
Collapse
|
15
|
Jauch-Speer SL, Herrera-Rivero M, Ludwig N, Véras De Carvalho BC, Martens L, Wolf J, Imam Chasan A, Witten A, Markus B, Schieffer B, Vogl T, Rossaint J, Stoll M, Roth J, Fehler O. C/EBPδ-induced epigenetic changes control the dynamic gene transcription of S100a8 and S100a9. eLife 2022; 11:75594. [PMID: 35543413 PMCID: PMC9122501 DOI: 10.7554/elife.75594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The proinflammatory alarmins S100A8 and S100A9 are among the most abundant proteins in neutrophils and monocytes but are completely silenced after differentiation to macrophages. The molecular mechanisms of the extraordinarily dynamic transcriptional regulation of S100a8 and S100a9 genes, however, are only barely understood. Using an unbiased genome-wide CRISPR/Cas9 knockout (KO)-based screening approach in immortalized murine monocytes, we identified the transcription factor C/EBPδ as a central regulator of S100a8 and S100a9 expression. We showed that S100A8/A9 expression and thereby neutrophil recruitment and cytokine release were decreased in C/EBPδ KO mice in a mouse model of acute lung inflammation. S100a8 and S100a9 expression was further controlled by the C/EBPδ antagonists ATF3 and FBXW7. We confirmed the clinical relevance of this regulatory network in subpopulations of human monocytes in a clinical cohort of cardiovascular patients. Moreover, we identified specific C/EBPδ-binding sites within S100a8 and S100a9 promoter regions, and demonstrated that C/EBPδ-dependent JMJD3-mediated demethylation of H3K27me3 is indispensable for their expression. Overall, our work uncovered C/EBPδ as a novel regulator of S100a8 and S100a9 expression. Therefore, C/EBPδ represents a promising target for modulation of inflammatory conditions that are characterized by S100a8 and S100a9 overexpression.
Collapse
Affiliation(s)
| | | | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | - Leonie Martens
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jonas Wolf
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Anika Witten
- Department of Genetic Epidemiology, University of Münster, Münster, Germany
| | - Birgit Markus
- Clinic for Cardiology, Angiology and Internal Intensive Medicine, University Hospital Marburg, Marburg, Germany
| | - Bernhard Schieffer
- Clinic for Cardiology, Angiology and Internal Intensive Medicine, University Hospital Marburg, Marburg, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Wolf SJ, Audu CO, Joshi A, denDekker A, Melvin WJ, Davis FM, Xing X, Wasikowski R, Tsoi LC, Kunkel SL, Gudjonsson JE, O’Riordan MX, Kahlenberg JM, Gallagher KA. IFN-κ is critical for normal wound repair and is decreased in diabetic wounds. JCI Insight 2022; 7:e152765. [PMID: 35358091 PMCID: PMC9090246 DOI: 10.1172/jci.insight.152765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Wound repair following acute injury requires a coordinated inflammatory response. Type I IFN signaling is important for regulating the inflammatory response after skin injury. IFN-κ, a type I IFN, has recently been found to drive skin inflammation in lupus and psoriasis; however, the role of IFN-κ in the context of normal or dysregulated wound healing is unclear. Here, we show that Ifnk expression is upregulated in keratinocytes early after injury and is essential for normal tissue repair. Under diabetic conditions, IFN-κ was decreased in wound keratinocytes, and early inflammation was impaired. Furthermore, we found that the histone methyltransferase mixed-lineage leukemia 1 (MLL1) is upregulated early following injury and regulates Ifnk expression in diabetic wound keratinocytes via an H3K4me3-mediated mechanism. Using a series of in vivo studies with a geneticall y engineered mouse model (Mll1fl/fl K14cre-) and human wound tissues from patients with T2D, we demonstrate that MLL1 controls wound keratinocyte-mediated Ifnk expression and that Mll1 expression is decreased in T2D keratinocytes. Importantly, we found the administration of IFN-κ early following injury improves diabetic tissue repair through increasing early inflammation, collagen deposition, and reepithelialization. These findings have significant implications for understanding the complex role type I IFNs play in keratinocytes in normal and diabetic wound healing. Additionally, they suggest that IFN may be a viable therapeutic target to improve diabetic wound repair.
Collapse
Affiliation(s)
| | | | - Amrita Joshi
- Section of Vascular Surgery, Department of Surgery
| | | | | | | | | | | | | | | | | | | | - J. Michelle Kahlenberg
- Department of Dermatology
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology, and
| |
Collapse
|
17
|
He R, Cai H, Jiang Y, Liu R, Zhou Y, Qin Y, Yao C, Wang S, Hu Z. Integrative analysis prioritizes the relevant genes and risk factors for chronic venous disease. J Vasc Surg Venous Lymphat Disord 2022; 10:738-748.e5. [PMID: 35218958 DOI: 10.1016/j.jvsv.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Chronic venous disease (CVD) refers to a range of symptoms resulting from long-term morphological and functional abnormalities of the venous system. However, the mechanism of CVD development remains largely unknown. Here we aim to provide more information on CVD pathogenesis, prevention strategies and therapy development through the integrative analysis of large-scale genetic data. METHODS Genetic data were obtained from publicly accessible databases. We utilized different approaches, including FUMA, DEPICT, Sherlock, SMR/HEIDIS, DEPICT and NetWAS to identify possible causal genes for CVD. Candidate genes were prioritized to further literature-based review. The differential expression of prioritized genes was validated by microarray from the Gene Expression Omnibus (GEO), a public genomics data repository" and Real-time quantitative PCR (qPCR) of varicose veins (VVs) specimens. The causal relationships between risk factors and CVD were assessed using the Two-sample Mendelian randomization (MR) approach. RESULTS We identified 46 lead single-nucleotide polymorphisms (SNPs) and 26 plausible causal genes for CVD. Microarray data indicated differential expression of possible causal genes in CVD when compared to controls. The expression levels of WDR92, RSPO3, LIMA, ABCB10, DNAJC7, C1S, CXCL1 were significantly down-regulated (P<0.05). PHLDA1 and SERPINE1 were significantly upregulated (P<0.05). Dysregulated expression of WDR92, RSPO3 and CASZ1 was also found in varicose vein specimens by qPCR. Two-sample MR suggested causative effects of BMI (OR, 1.008, 95%CI, 1.005-1.010), standing height (OR, 1.009, 95%CI, 1.007-1.011), college degree (OR, 0.983, 95%CI, 0.991-0.976), insulin (OR, 0.858, 95%CI, 0.794-0.928) and metformin (OR, 0.944, 95%CI, 0.904-0.985) on CVD. CONCLUSIONS Our study integrates genetic and gene expression data to make an effective risk gene prediction and etiological inferences for CVD. Prioritized candidate genes provide more insights into CVD pathogenesis, and the causative effects of risk factors on CVD that deserve further investigation.
Collapse
Affiliation(s)
- Rongzhou He
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Huoying Cai
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu Jiang
- Department of Ophthalmology, the First People's Hospital of Guangzhou City, Guangzhou, China; Zhongshan ophthalmic center, Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhou
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yuansen Qin
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zuojun Hu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Vascular Disease Treatment, Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| |
Collapse
|
18
|
Chen M, Chen X, Hu X, Dai J, Sun J. Androgen receptor contributes to microglial/macrophage activation in rats with intracranial hemorrhage by mediating the JMJD3/Botch/Notch1 axis. Neurosci Lett 2021; 765:136283. [PMID: 34624395 DOI: 10.1016/j.neulet.2021.136283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
Intracerebral hemorrhage (ICH) is a leading medical problem and has no effective treatment approach up until now. The transcription factor androgen receptor (AR) has been indicated in the cerebrovascular function recently. However, its participation in ICH remains unclear. The present study aims to expound the regulation of AR in microglia/macrophage phenotypes and the secondary brain injury in a rat model with ICH, and to discuss the involved pathway. Following the induction of ICH in rats, we found that ICH led to increased mNSS score, enhanced microglial activity, and promoted levels of inflammatory factors and apoptosis of brain cells. Using microarray analysis, AR was found to be significantly overexpressed in ICH rat brain tissues. AR repressed the transcription of Jumonji d3 (JMJD3, histone 3 demethylase). JMJD3 inhibited the methylation of Botch and promoted the activity of Notch1. JMJD3 hampered microglial activity and ameliorated secondary brain injury in rats, whereas upregulation of AR or downregulation of Botch reversed the protective effects of JMJD3. In conclusion, we found that AR promoted microglial activation and secondary brain injury via transcriptionally repressing JMJD3 and mediating the subsequent Botch/Notch1 pathway, which may provide novel insights into therapeutic options for the treatment of ICH.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Xiaoxiang Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Xingzhong Hu
- Department of Clinical Laboratory, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Junxia Dai
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jun Sun
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
19
|
ADAM17 Mediates Hypoxia-Induced Keratinocyte Migration via the p38/MAPK Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8328216. [PMID: 34746310 PMCID: PMC8568513 DOI: 10.1155/2021/8328216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022]
Abstract
Although hypoxia has been shown to promote keratinocyte migration and reepithelialization, the underlying molecular mechanisms remain largely unknown. ADAM17, a member of the metalloproteinase superfamily, has been implicated in a variety of cellular behaviors such as proliferation, adhesion, and migration. ADAM17 is known to promote cancer cell migration under hypoxia, and whether or how ADAM17 plays a role in hypoxia-induced keratinocyte migration has not been identified. Here, we found that ADAM17 expression and activity were significantly promoted in keratinocytes under hypoxic condition, inhibition of ADAM17 by TAPI-2, or silencing of ADAM17 using small interfering RNA which suppressed the hypoxia-induced migration of keratinocytes significantly, indicating a pivotal role for ADAM17 in keratinocyte migration. Further, we showed that p38/MAPK was activated by hypoxia. SB203580, an inhibitor of p38/MAPK, significantly attenuated the upregulation of ADAM17 as well as the migration of keratinocytes induced by hypoxia. Activation of p38/MAPK by MKK6 (Glu) overexpression, however, had adverse effects. Taken together, our study demonstrated that hypoxia-induced keratinocyte migration requires the p38/MAPK-ADAM17 signal axis, which sheds new light on the regulatory mechanisms of keratinocyte migration. Our study might also help in developing therapeutic strategies to facilitate wound healing in vivo, where cells are migrated in a hypoxic microenvironment.
Collapse
|
20
|
Danilevicz CK, Wagner VP, Ferreira N, Bock H, Salles Pilar EF, Webber LP, Schmidt TR, Alonso ECP, de Mendonça EF, Valadares MC, Marreto RN, Martins MD. Curcuma longa L. Effects on Akt/mTOR Pathway and NF-κB Expression During Skin Wound Healing: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2021; 29:e92-e100. [PMID: 34261975 DOI: 10.1097/pai.0000000000000961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Skin ulcers, wounds, or burns represent a burden for health care worldwide. Our aim was to explore the effects of mucoadhesive formulation with Curcuma longa L. extract mucoadhesive formulation containing curcumin (MFC) on skin healing in Wistar rats. Fifty-four rats were randomly allocated into 3 groups: control, vehicle, and MFC. A full-thickness circular wound was induced on the back of each animal. Two daily applications of the products were performed according to the experimental group. On days 3, 10, and 21, 6 animals in each group were euthanized. Clinical analysis was based on wound area. Histologic analysis was performed in hematoxylin and eosin-stained sections, with re-epithelization and inflammation being assessed by means of semiquantitative scores. To analyze the Akt/mTOR pathway, immunohistochemistry for phospho Akt (pAkt) and phospho ribosomal protein S6 were investigated. In addition, nuclear factor kappa-light-chain-enhancer of activated B cells immunolabeling was performed. Clinical analysis revealed wounds with a smaller area on days 3 and 10 in curcumin-treated animals. Histologically, MFC had a significant impact on inflammatory events on days 3 and 10 and promoted faster re-epithelization, which was evidenced on day 10. MFC-treated wounds exhibited pAkt upregulation on day 10 and both pAkt and phospho ribosomal protein S6 downregulation on day 21. Nuclear factor kappa-light-chain-enhancer of activated B cells expression varied through the evaluation periods; however, no significant difference was observed between groups. Collectively, our results indicate that MFC is efficient in accelerating cutaneous wound repair through modulation of the inflammatory process and stimulus of re-epithelization by an Akt/mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Chris K Danilevicz
- Department of Oral Pathology, School of Dentistry
- Department of Pharmacology, Institute of Basic Health Sciences
| | - Vivian P Wagner
- Department of Oral Pathology, School of Dentistry
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba
| | - Nilson Ferreira
- School of Dentistry, Federal University of Uberlândia, Uberlândia, MG
| | - Hugo Bock
- Unit of Molecular and Protein Analysis (Experimental Research Center), Clinics Hospital of Porto Alegre
| | - Emily F Salles Pilar
- Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | | | | | - Ellen C P Alonso
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy
| | | | - Marize C Valadares
- Laboratory of Pharmacology and Cellular Toxicology, Pharmacy Faculty, Federal University of Goiás, Goiânia, GO, Brazil
| | - Ricardo N Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy
| | - Manoela D Martins
- Department of Oral Pathology, School of Dentistry
- Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba
| |
Collapse
|
21
|
Li L, Bai L, Yang K, Zhang J, Gao Y, Jiang M, Yang Y, Zhang X, Wang L, Wang X, Qiao Y, Xu JT. KDM6B epigenetically regulated-interleukin-6 expression in the dorsal root ganglia and spinal dorsal horn contributes to the development and maintenance of neuropathic pain following peripheral nerve injury in male rats. Brain Behav Immun 2021; 98:265-282. [PMID: 34464689 DOI: 10.1016/j.bbi.2021.08.231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
The lysine specific demethylase 6B (KDM6B) has been implicated as a coregulator in the expression of proinflammatory mediators, and in the pathogenesis of inflammatory and arthritic pain. However, the role of KDM6B in neuropathic pain has yet to be studied. In the current study, the neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rats. Immunohistochemistry, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR assays were performed to investigate the underlying mechanisms. Our results showed that SNL led to a significant increase in KDM6B mRNA and protein in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn; and this increase correlated a markedly reduction in the level of H3K27me3 methylation in the same tissue. Double immunofluorescence staining revealed that the KDM6B expressed in myelinated A- and unmyelinated C-fibers in the DRG; and located in neuronal cells, astrocytes, and microglia in the dorsal horn. Behavioral data showed that SNL-induced mechanical allodynia and thermal hyperalgesia were impaired by the treatment of prior to i.t. injection of GSK-J4, a specific inhibitor of KDM6B, or KDM6B siRNA. Both microinjection of AAV2-EGFP-KDM6B shRNA in the lumbar 5 dorsal horn and sciatic nerve, separately, alleviated the neuropathic pain following SNL. The established neuropathic pain was also partially attenuated by repeat i.t. injections of GSK-J4 or KDM6B siRNA, started on day 7 after SNL. SNL also resulted in a remarkable increased expression of interleukin-6 (IL-6) in the DRG and dorsal horn. But this increase was dramatically inhibited by i.t. injection of GSK-J4 and KDM6B siRNA; and suppressed by prior to microinjection of AAV2-EGFP-KDM6B shRNA in the dorsal horn and sciatic nerve. Results of ChIP-PCR assay showed that SNL-induced enhanced binding of STAT3 with IL-6 promoter was inhibited by prior to i.t. injection of GSK-J4. Meanwhile, the level of H3K27me3 methylation was also decreased by the treatment. Together, our results indicate that SNL-induced upregulation of KDM6B via demethylating H3K27me3 facilitates the binding of STAT3 with IL-6 promoter, and subsequently mediated-increase in the expression of IL-6 in the DRG and dorsal horn contributes to the development and maintenance of neuropathic pain. Targeting KDM6B might a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Kangli Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Mingjun Jiang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
22
|
Stevenson AW, Deng Z, Allahham A, Prêle CM, Wood FM, Fear MW. The epigenetics of keloids. Exp Dermatol 2021; 30:1099-1114. [PMID: 34152651 DOI: 10.1111/exd.14414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Keloid scarring is a fibroproliferative disorder of the skin with unknown pathophysiology, characterised by fibrotic tissue that extends beyond the boundaries of the original wound. Therapeutic options are few and commonly ineffective, with keloids very commonly recurring even after surgery and adjunct treatments. Epigenetics, defined as alterations to the DNA not involving the base-pair sequence, is a key regulator of cell functions, and aberrant epigenetic modifications have been found to contribute to many pathologies. Multiple studies have examined many different epigenetic modifications in keloids, including DNA methylation, histone modification, microRNAs and long non-coding RNAs. These studies have established that epigenetic dysregulation exists in keloid scars, and successful future treatment of keloids may involve reverting these aberrant modifications back to those found in normal skin. Here we summarise the clinical and experimental studies available on the epigenetics of keloids, discuss the major open questions and future perspectives on the treatment of this disease.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Cecilia M Prêle
- Ear Science Centre, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Institute for Respiratory Health, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
23
|
Li X, Liu C, Zhu Y, Rao H, Liu M, Gui L, Feng W, Tang H, Xu J, Gao WQ, Li L. SETD2 epidermal deficiency promotes cutaneous wound healing via activation of AKT/mTOR Signalling. Cell Prolif 2021; 54:e13045. [PMID: 33949020 PMCID: PMC8168411 DOI: 10.1111/cpr.13045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Cutaneous wound healing is one of the major medical problems worldwide. Epigenetic modifiers have been identified as important players in skin development, homeostasis and wound repair. SET domain–containing 2 (SETD2) is the only known histone H3K36 tri‐methylase; however, its role in skin wound healing remains unclear. Materials and Methods To elucidate the biological role of SETD2 in wound healing, conditional gene targeting was used to generate epidermis‐specific Setd2‐deficient mice. Wound‐healing experiments were performed on the backs of mice, and injured skin tissues were collected and analysed by haematoxylin and eosin (H&E) and immunohistochemical staining. In vitro, CCK8 and scratch wound‐healing assays were performed on Setd2‐knockdown and Setd2‐overexpression human immortalized keratinocyte cell line (HaCaT). In addition, RNA‐seq and H3K36me3 ChIP‐seq analyses were performed to identify the dysregulated genes modulated by SETD2. Finally, the results were validated in functional rescue experiments using AKT and mTOR inhibitors (MK2206 and rapamycin). Results Epidermis‐specific Setd2‐deficient mice were successfully established, and SETD2 deficiency resulted in accelerated re‐epithelialization during cutaneous wound healing by promoting keratinocyte proliferation and migration. Furthermore, the loss of SETD2 enhanced the scratch closure and proliferation of keratinocytes in vitro. Mechanistically, the deletion of Setd2 resulted in the activation of AKT/mTOR signalling pathway, while the pharmacological inhibition of AKT and mTOR with MK2206 and rapamycin, respectively, delayed wound closure. Conclusions Our results showed that SETD2 loss promoted cutaneous wound healing via the activation of AKT/mTOR signalling.
Collapse
Affiliation(s)
- Xiaoxue Li
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Gui
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Feng
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huayuan Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS, Tomic-Canic M. Epigenetic regulation of cellular functions in wound healing. Exp Dermatol 2021; 30:1073-1089. [PMID: 33690920 DOI: 10.1111/exd.14325] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Stringent spatiotemporal regulation of the wound healing process involving multiple cell types is associated with epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, as well as non-coding RNAs. Here, we discuss the epigenetic changes that occur during wound healing and the rapidly expanding understanding of how these mechanisms affect healing resolution in both acute and chronic wound milieu. We provide a focussed overview of current research into epigenetic regulators that contribute to wound healing by specific cell type. We highlight the role of epigenetic regulators in the molecular pathophysiology of chronic wound conditions. The understanding of how epigenetic regulators can affect cellular functions during normal and impaired wound healing could lead to novel therapeutic approaches, and we outline questions that can provide guidance for future research on epigenetic-based interventions to promote healing. Dissecting the dynamic interplay between cellular subtypes involved in wound healing and epigenetic parameters during barrier repair will deepen our understanding of how to improve healing outcomes in patients affected by chronic non-healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivien Chen
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jamie L Burgess
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S Mervis
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
25
|
Khelil M, Griffin H, Bleeker MCG, Steenbergen RDM, Zheng K, Saunders-Wood T, Samuels S, Rotman J, Vos W, van den Akker BE, de Menezes RX, Kenter GG, Doorbar J, Jordanova ES. Delta-Like Ligand-Notch1 Signaling Is Selectively Modulated by HPV16 E6 to Promote Squamous Cell Proliferation and Correlates with Cervical Cancer Prognosis. Cancer Res 2021; 81:1909-1921. [PMID: 33500246 DOI: 10.1158/0008-5472.can-20-1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV) drives high-grade intraepithelial neoplasia and cancer; for unknown reasons, this occurs most often in the cervical transformation zone. Either mutation or HPV E6-driven inhibition of Notch1 can drive neoplastic development in stratified squamous epithelia. However, the contribution of Notch1 and its Delta-like ligands (DLL) to site susceptibility remains poorly understood. Here, we map DLL1/DLL4 expression in cell populations present in normal cervical biopsies by immunofluorescence. In vitro keratinocyte 2D monolayer models, growth assays, and organotypic raft cultures were used to assess the functional role of DLL-Notch signaling in uninfected cells and its modulation by HPV16 in neoplasia. An RNA sequencing-based gene signature was used to suggest the cell of origin of 279 HPV-positive cervical carcinomas from The Cancer Genome Atlas and to relate this to disease prognosis. Finally, the prognostic impact of DLL4 expression was investigated in three independent cervical cancer patient cohorts. Three molecular cervical carcinoma subtypes were identified, with reserve cell tumors the most common and linked to relatively good prognosis. Reserve cells were characterized as DLL1-/DLL4+, a proliferative phenotype that is temporarily observed during squamous metaplasia and wound healing but appears to be sustained by HPV16 E6 in raft models of low-grade and, more prominently, high-grade neoplasia. High expression of DLL4 was associated with an increased likelihood of cervical cancer-associated death and recurrence. Taken together, DLL4-Notch1 signaling reflects a proliferative cellular state transiently present during physiologic processes but inherent to cervical reserve cells, making them strongly resemble neoplastic tissue even before HPV infection has occurred. SIGNIFICANCE: This study investigates cervical cancer cell-of-origin populations and describes a DLL-Notch1 phenotype that is associated with disease prognosis and that might help identify cells that are susceptible to HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Maryam Khelil
- Centre for Gynaecological Oncology Amsterdam (CGOA): Amsterdam UMC and The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, the Netherlands
| | - Heather Griffin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Maaike C G Bleeker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam (CCA), Amsterdam, the Netherlands
| | - Renske D M Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam (CCA), Amsterdam, the Netherlands
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Sanne Samuels
- Centre for Gynaecological Oncology Amsterdam (CGOA): Amsterdam UMC and The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, the Netherlands
| | - Jossie Rotman
- Centre for Gynaecological Oncology Amsterdam (CGOA): Amsterdam UMC and The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, the Netherlands
| | - Wim Vos
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam (CCA), Amsterdam, the Netherlands
| | | | - Renée X de Menezes
- Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Biostatistics, Amsterdam, the Netherlands
| | - Gemma G Kenter
- Centre for Gynaecological Oncology Amsterdam (CGOA): Amsterdam UMC and The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, the Netherlands
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ekaterina S Jordanova
- Centre for Gynaecological Oncology Amsterdam (CGOA): Amsterdam UMC and The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, the Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
26
|
Yu C, Xiong C, Tang J, Hou X, Liu N, Bayliss G, Zhuang S. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression. Am J Cancer Res 2021; 11:2706-2721. [PMID: 33456568 PMCID: PMC7806480 DOI: 10.7150/thno.48679] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: The Jumonji domain containing-3 (JMJD3), a specific histone demethylase for trimethylation on histone H3 lysine 27 (H3K27me3), is associated with the pathogenesis of many diseases, but its role in renal fibrosis remains unexplored. Here we examined the role of JMJD3 and mechanisms involved in the activation of renal fibroblasts and development of renal fibrosis. Methods: Murine models of 5/6 surgical nephrectomy (SNx) and ureteral unilateral obstruction (UUO) were used to assess the effect of a specific JMJD3 inhibitor, GSKJ4, and genetic deletion of JMJD3 from FOXD1 stroma-derived renal interstitial cells on the development of renal fibrosis and activation of renal interstitial fibroblasts. Cultured rat renal interstitial fibroblasts (NRK-49F) and mouse renal tubular epithelial cells (mTECs) were also used to examine JMJD3-mediated activation of profibrotic signaling. Results: JMJD3 and H3K27me3 expression levels were upregulated in the kidney of mice subjected to SNx 5/6 and UUO. Pharmacological inhibition of JMJD3 with GSKJ4 or genetic deletion of JMJD3 led to worsening of renal dysfunction as well as increased deposition of extracellular matrix proteins and activation of renal interstitial fibroblasts in the injured kidney. This was coincident with decreased expression of Smad7 and enhanced expression of H3K27me3, transforming growth factor β1 (TGFβ1), Smad3, Notch1, Notch3 and Jagged1. Inhibition of JMJD3 by GSK J4 or its specific siRNA also resulted in the similar responses in cultured NRK-49F and mTECs exposed to serum or TGFβ1. Moreover, JMJD3 inhibition augmented phosphorylation of AKT and ERK1/2 in vivo and in vitro. Conclusion: These results indicate that JMJD3 confers anti-fibrotic effects by limiting activation of multiple profibrotic signaling pathways and suggest that JMJD3 modulation may have therapeutic effects for chronic kidney disease.
Collapse
|
27
|
Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing. Int J Mol Sci 2020; 21:E8790. [PMID: 33233704 PMCID: PMC7699912 DOI: 10.3390/ijms21228790] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
As the most dominant cell type in the skin, keratinocytes play critical roles in wound repair not only as structural cells but also exerting important immune functions. This review focuses on the communications between keratinocytes and immune cells in wound healing, which are mediated by various cytokines, chemokines, and extracellular vesicles. Keratinocytes can also directly interact with T cells via antigen presentation. Moreover, keratinocytes produce antimicrobial peptides that can directly kill the invading pathogens and contribute to wound repair in many aspects. We also reviewed the epigenetic mechanisms known to regulate keratinocyte immune functions, including histone modifications, non-protein-coding RNAs (e.g., microRNAs, and long noncoding RNAs), and chromatin dynamics. Lastly, we summarized the current evidence on the dysregulated immune functions of keratinocytes in chronic nonhealing wounds. Based on their crucial immune functions in skin wound healing, we propose that keratinocytes significantly contribute to the pathogenesis of chronic wound inflammation. We hope this review will trigger an interest in investigating the immune roles of keratinocytes in chronic wound pathology, which may open up new avenues for developing innovative wound treatments.
Collapse
Affiliation(s)
| | | | - Ning Xu Landén
- Center for Molecular Medicine, Ming Wai Lau Centre for Reparative Medicine, Department of Medicine Solna, Dermatology and Venereology Division, Karolinska Institute, 17176 Stockholm, Sweden; (M.P.); (D.L.)
| |
Collapse
|
28
|
Intracellular Ca 2+-Mediated AE2 Is Involved in the Vectorial Movement of HaCaT Keratinocyte. Int J Mol Sci 2020; 21:ijms21228429. [PMID: 33182643 PMCID: PMC7698169 DOI: 10.3390/ijms21228429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Keratinocyte migration is initiated toward the wound skin barrier as a crucial process in wound healing. However, the migratory machinery used by keratinocytes is relatively unknown. Histamine signaling, including an increase in the Ca2+ signal, mediated the enhanced protein expression and chloride/bicarbonate exchange activity of anion exchanger AE2 in keratinocytes. In this study, we applied an agarose spot assay to induce a vectorial motion. The vectorial stimulation of the histamine-containing agarose spot enhanced the HaCaT keratinocyte migration, compared to non-directional stimulation. AE2 is associated with the vectorial movement of HaCaT keratinocytes. Enhanced expression of AE2 was mainly associated with an increase in Ca2+ and was abolished by the treatment with the Ca2+ chelating agent BAPTA-AM. These findings revealed that the directionality of Ca2+-exerted stimulation can play a prominent role in facilitating migration through the involvement of AE2 as a migratory machinery in HaCaT keratinocytes.
Collapse
|
29
|
Quaresma MC, Pankonien I, Clarke LA, Sousa LS, Silva IAL, Railean V, Doušová T, Fuxe J, Amaral MD. Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition. Cell Death Dis 2020; 11:920. [PMID: 33106471 PMCID: PMC7588414 DOI: 10.1038/s41419-020-03119-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial–mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-β1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.
Collapse
Affiliation(s)
- Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luís S Sousa
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Tereza Doušová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jonas Fuxe
- Division of Pathology, Department of Laboratory Medicine (LABMED), Karolinska Institutet and Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
30
|
Gwak J, Jeong H, Lee K, Shin JY, Sim T, Na J, Kim J, Ju BG. SFMBT2-Mediated Infiltration of Preadipocytes and TAMs in Prostate Cancer. Cancers (Basel) 2020; 12:E2718. [PMID: 32971847 PMCID: PMC7565541 DOI: 10.3390/cancers12092718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
Infiltration of diverse cell types into tumor microenvironment plays a critical role in cancer progression including metastasis. We previously reported that SFMBT2 (Scm-like with four mbt domains 2) regulates the expression of matrix metalloproteinases (MMPs) and migration and invasion of cancer cells in prostate cancer. Here we investigated whether the down-regulation of SFMBT2 regulates the infiltration of preadipocytes and tumor-associated macrophages (TAMs) in prostate cancer. We found that the down-regulation of SFMBT2 promotes the infiltration of preadipocytes and TAMs through up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression in prostate cancer. Expression of CXCL8, CCL2, CXCL10, and CCL20 was also elevated in prostate cancer patients having a higher Gleason score (≥8), which had substantially lower SFMBT2 expression. We also found that the up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression is dependent on NF-κB activation in prostate cancer cells expressing a low level of SFMBT2. Moreover, increased IL-6 from infiltrated preadipocytes and TAMs promoted migration and invasion of prostate cancer cells expressing a low level of SFMBT2. Our study may suggest that SFMBT2 a critical regulator for the infiltration of preadipocytes and TAMs into the prostate tumor microenvironment. Thus, the regulation of SFMBT2 may provide a new therapeutic strategy to inhibit prostate cancer metastasis, and SFMBT2 could be used as a potential biomarker in prostate cancer metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea; (J.G.); (H.J.); (K.L.); (J.Y.S.); (T.S.); (J.N.); (J.K.)
| |
Collapse
|
31
|
Lewis CJ, Stevenson A, Fear MW, Wood FM. A review of epigenetic regulation in wound healing: Implications for the future of wound care. Wound Repair Regen 2020; 28:710-718. [DOI: 10.1111/wrr.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher J. Lewis
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Andrew Stevenson
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Mark W. Fear
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Fiona M. Wood
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| |
Collapse
|
32
|
Davis FM, denDekker A, Joshi AD, Wolf SJ, Audu C, Melvin WJ, Mangum K, Riordan MO, Kunkel SL, Gallagher KA. Palmitate-TLR4 signaling regulates the histone demethylase, JMJD3, in macrophages and impairs diabetic wound healing. Eur J Immunol 2020; 50:1929-1940. [PMID: 32662520 DOI: 10.1002/eji.202048651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/30/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Chronic macrophage inflammation is a hallmark of type 2 diabetes (T2D) and linked to the development of secondary diabetic complications. T2D is characterized by excess concentrations of saturated fatty acids (SFA) that activate innate immune inflammatory responses, however, mechanism(s) by which SFAs control inflammation is unknown. Using monocyte-macrophages isolated from human blood and murine models, we demonstrate that palmitate (C16:0), the most abundant circulating SFA in T2D, increases expression of the histone demethylase, Jmjd3. Upregulation of Jmjd3 results in removal of the repressive histone methylation (H3K27me3) mark on NFκB-mediated inflammatory gene promoters driving macrophage-mediated inflammation. We identify that the effects of palmitate are fatty acid specific, as laurate (C12:0) does not regulate Jmjd3 and the associated inflammatory profile. Further, palmitate-induced Jmjd3 expression is controlled via TLR4/MyD88-dependent signaling mechanism, where genetic depletion of TLR4 (Tlr4-/- ) or MyD88 (MyD88-/- ) negated the palmitate-induced changes in Jmjd3 and downstream NFκB-induced inflammation. Pharmacological inhibition of Jmjd3 using a small molecule inhibitor (GSK-J4) reduced macrophage inflammation and improved diabetic wound healing. Together, we conclude that palmitate contributes to the chronic Jmjd3-mediated activation of macrophages in diabetic peripheral tissue and a histone demethylase inhibitor-based therapy may represent a novel treatment for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Frank M Davis
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Audu
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Mary O Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Gratton R, Tricarico PM, Moltrasio C, Lima Estevão de Oliveira AS, Brandão L, Marzano AV, Zupin L, Crovella S. Pleiotropic Role of Notch Signaling in Human Skin Diseases. Int J Mol Sci 2020; 21:E4214. [PMID: 32545758 PMCID: PMC7353046 DOI: 10.3390/ijms21124214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Notch signaling orchestrates the regulation of cell proliferation, differentiation, migration and apoptosis of epidermal cells by strictly interacting with other cellular pathways. Any disruption of Notch signaling, either due to direct mutations or to an aberrant regulation of genes involved in the signaling route, might lead to both hyper- or hypo-activation of Notch signaling molecules and of target genes, ultimately inducing the onset of skin diseases. The mechanisms through which Notch contributes to the pathogenesis of skin diseases are multiple and still not fully understood. So far, Notch signaling alterations have been reported for five human skin diseases, suggesting the involvement of Notch in their pathogenesis: Hidradenitis Suppurativa, Dowling Degos Disease, Adams-Oliver Syndrome, Psoriasis and Atopic Dermatitis. In this review, we aim at describing the role of Notch signaling in the skin, particularly focusing on the principal consequences associated with its alterations in these five human skin diseases, in order to reorganize the current knowledge and to identify potential cellular mechanisms in common between these pathologies.
Collapse
Affiliation(s)
- Rossella Gratton
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Paola Maura Tricarico
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | | | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Luisa Zupin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Sergio Crovella
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
34
|
High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling. Cells 2020; 9:cells9061430. [PMID: 32526908 PMCID: PMC7348934 DOI: 10.3390/cells9061430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell–cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases’ biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases’ effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos. In this review, we highlight theses latest large-scale efforts, and we discuss the emerging opportunities that may lead to the next wave of discoveries.
Collapse
|
35
|
Boudra R, Ramsey MR. Understanding Transcriptional Networks Regulating Initiation of Cutaneous Wound Healing. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:161-173. [PMID: 32226345 PMCID: PMC7087049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis has an essential function in creating a barrier against the external environment to retain proper fluid balance and block the entry of pathogens. When damage occurs to this barrier, the wound must quickly be sealed to avoid fluid loss, cleared of invading pathogens, and then keratinocytes must re-form an intact barrier. This requires complex integration of temporally and spatially distinct signals to execute orderly closure of the wound, and failure of this process can lead to chronic ulceration. Transcription factors serve as a key integration point for the myriad of information coming from the external environment, allowing for an orderly process of re-epithelialization. Importantly, transcription factors engage with and alter the chromatin structure around key target genes through association with different chromatin-modifying complexes. In this review, we will discuss the current understanding of how transcription is regulated during the initiation of re-epithelialization, and the exciting technological advances that will allow for a more refined mechanistic understanding of the re-epithelialization process.
Collapse
Affiliation(s)
- Rafik Boudra
- Brigham and Women’s Hospital Department of Dermatology, Boston, MA,Harvard Medical School, Boston, MA
| | - Matthew R. Ramsey
- Brigham and Women’s Hospital Department of Dermatology, Boston, MA,Harvard Medical School, Boston, MA,To whom all correspondence should be addressed: Matthew R. Ramsey, PhD, Brigham and Women’s Hospital, 77 Ave Louis Pasteur, HIM 668, Boston, MA 02115; Tel: (617) 525-5775, Fax: (617) 525-5571,
| |
Collapse
|
36
|
Cario M, Pain C, Kaulanjan-Checkmodine P, Masia D, Delia G, Casoli V, Costet P, Goussot JF, Guyonnet-Duperat V, Bibeyran A, Ezzedine K, Reymermier C, Andre-Frei V, Taieb A. Epidermal keratin 5 expression and distribution is under dermal influence. Pigment Cell Melanoma Res 2019; 33:435-445. [PMID: 31692218 DOI: 10.1111/pcmr.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF-2 and keratin 5. In vitro analysis confirmed that FGF-2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling-Degos Disease (DDD) have already been associated with the pheomelanosome-eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age-related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.
Collapse
Affiliation(s)
- Muriel Cario
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France.,National Reference Center for Rare skin Diseases, Bordeaux University Hospitals, Bordeaux, France.,AquiDerm, Bordeaux, France
| | - Catherine Pain
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France
| | | | - Daniela Masia
- Department of Plastic Surgery and Hand Surgery, Aurelia Hospital, Rome, Italy
| | - Gabriele Delia
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Vincent Casoli
- Department of Plastic Surgery, Bordeaux University Hospitals, Bordeaux, France
| | - Pierre Costet
- Animalerie Spécialisée, Bordeaux University, Bordeaux, France
| | | | | | - Alice Bibeyran
- Plateforme de Vectorologie VectUb, Bordeaux University, Bordeaux, France
| | - Khaled Ezzedine
- EA EpiDermE (Epidémiologie en Dermatologie et Evaluation des Thérapeutiques), Service de Dermatologie, UPE-Université Paris-Est, Hôpital Henri Mondor, Créteil, France
| | | | | | - Alain Taieb
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France.,National Reference Center for Rare skin Diseases, Bordeaux University Hospitals, Bordeaux, France.,Department of Dermatology, Bordeaux University Hospitals, Bordeaux, France
| |
Collapse
|
37
|
Liubomirski Y, Lerrer S, Meshel T, Morein D, Rubinstein-Achiasaf L, Sprinzak D, Wiemann S, Körner C, Ehrlich M, Ben-Baruch A. Notch-Mediated Tumor-Stroma-Inflammation Networks Promote Invasive Properties and CXCL8 Expression in Triple-Negative Breast Cancer. Front Immunol 2019; 10:804. [PMID: 31105691 PMCID: PMC6492532 DOI: 10.3389/fimmu.2019.00804] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/26/2019] [Indexed: 01/12/2023] Open
Abstract
Stromal cells and pro-inflammatory cytokines play key roles in promoting the aggressiveness of triple-negative breast cancers (TNBC; Basal/Basal-like). In our previous study we demonstrated that stimulation of TNBC and mesenchymal stem cells (MSCs) co-cultures by the pro-inflammatory cytokine tumor necrosis factor α (TNFα) has led to increased metastasis-related properties in vitro and in vivo. In this context, elevated release of the pro-metastatic chemokines CXCL8 (IL-8) and CCL5 (RANTES) was noted in TNFα- and interleukin-1β (IL-1β)-stimulated TNBC:MSC co-cultures; the process was partly (CXCL8) and entirely (CCL5) dependent on physical contacts between the two cell types. Here, we demonstrate that DAPT, inhibitor of γ-secretase that participates in activation of Notch receptors, inhibited the migration and invasion of TNBC cells that were grown in “Contact” co-cultures with MSCs or with patient-derived cancer-associated fibroblasts (CAFs), in the presence of TNFα. DAPT also inhibited the contact-dependent induction of CXCL8, but not of CCL5, in TNFα- and IL-1β-stimulated TNBC:MSC/CAF co-cultures; some level of heterogeneity between the responses of different TNBC cell lines was noted, with MDA-MB-231:MSC/CAF co-cultures being the most sensitive to DAPT. Patient dataset studies comparing basal tumors to luminal-A tumors, and mRNA analyses of Notch receptors in TNBC and luminal-A cells pointed at Notch1 as possible mediator of CXCL8 increase in TNFα-stimulated TNBC:stroma “Contact” co-cultures. Accordingly, down-regulation of Notch1 in TNBC cells by siRNA has substantially reduced the contact-dependent elevation in CXCL8 in TNFα- and also in IL-1β-stimulated TNBC:MSC “Contact” co-cultures. Then, studies in which CXCL8 or p65 (NF-κB pathway) were down-regulated (siRNAs; CRISPR/Cas9) in TNBC cells and/or MSCs, indicated that upon TNFα stimulation of “Contact” co-cultures, p65 was activated and led to CXCL8 production mainly in TNBC cells. Moreover, our findings indicated that when tumor cells interacted with stromal cells in the presence of pro-inflammatory stimuli, TNFα-induced p65 activation has led to elevated Notch1 expression and activation, which then gave rise to elevated production of CXCL8. Overall, tumor:stroma interactions set the stage for Notch1 activation by pro-inflammatory signals, leading to CXCL8 induction and consequently to pro-metastatic activities. These observations may have important clinical implications in designing novel therapy combinations in TNBC.
Collapse
Affiliation(s)
- Yulia Liubomirski
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shalom Lerrer
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Linor Rubinstein-Achiasaf
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry & Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcelo Ehrlich
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Dalirfardouei R, Jamialahmadi K, Jafarian AH, Mahdipour E. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J Tissue Eng Regen Med 2019; 13:555-568. [PMID: 30656863 DOI: 10.1002/term.2799] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/20/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Wound healing is a complicated process that contains a number of overlapping and consecutive phases, disruption in each of which can cause chronic nonhealing wounds. In the current study, we investigated the effects of exosomes as paracrine factors released from menstrual blood-derived mesenchymal stem cells (MenSCs) on wound-healing process in diabetic mice. The exosomes were isolated from MenSCs conditioned media using ultracentrifugation and were characterized by scanning electron microscope and western blotting assay. A full thickness excisional wound was created on the dorsal skin of each streptozotocin-induced diabetic mouse. The mice were divided into three groups as follows: phosphate buffered saline, exosomes, and MenSC groups. We found that MenSC-derived exosomes can resolve inflammation via induced M1-M2 macrophage polarization. It was observed that exosomes enhance neoangiogenesis through vascular endothelial growth factor A upregulation. Re-epithelialization accelerated in the exosome-treated mice, most likely through NF-κB p65 subunit upregulation and activation of the NF-κB signaling pathway. The results demonstrated that exosomes possibly cause less scar formation through decreased Col1:Col3 ratio. These notable results showed that the MenSC-derived exosomes effectively ameliorated cutaneous nonhealing wounds. We suggest that exosomes can be employed in regenerative medicine for skin repair in difficult-to-heal conditions such as diabetic foot ulcer.
Collapse
Affiliation(s)
- Razieh Dalirfardouei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Photobiomodulation therapy modulates epigenetic events and NF-κB expression in oral epithelial wound healing. Lasers Med Sci 2019; 34:1465-1472. [DOI: 10.1007/s10103-019-02745-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/06/2019] [Indexed: 01/13/2023]
|
40
|
den Dekker A, Davis FM, Kunkel SL, Gallagher KA. Targeting epigenetic mechanisms in diabetic wound healing. Transl Res 2019; 204:39-50. [PMID: 30392877 PMCID: PMC6331222 DOI: 10.1016/j.trsl.2018.10.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
Impaired wound healing is a major secondary complication of type 2 diabetes that often results in limb loss and disability. Normal tissue repair progresses through discrete phases including hemostasis, inflammation, proliferation, and remodeling. In diabetes, normal progression through these phases is impaired resulting in a sustained inflammatory state and dysfunctional epithelialization in the wound. Due to their plasticity, macrophages play a critical role in the transition from the inflammation phase to the proliferation phase. Diabetes disrupts macrophage function by impairing monocyte recruitment to the wound, reducing phagocytosis, and prohibiting the transition of inflammatory macrophages to an anti-inflammatory state. Diabetes also impedes keratinocyte and fibroblast function during the later phases resulting in impaired epithelialization of the wound. Several recent studies suggest that altered epigenetic regulation of both immune and structural cells in wounds may influence cell phenotypes and healing, particularly in pathologic states, such as diabetes. Specifically, it has been shown that macrophage plasticity during wound repair is partly regulated epigenetically and that diabetes alters this epigenetic regulation and contributes to a sustained inflammatory state. Epigenetic regulation is also known to regulate keratinocyte and fibroblast function during wound repair. In this review, we provide an introduction to the epigenetic mechanisms that regulate tissue repair and highlight recent findings that demonstrate, how epigenetic events are altered during the course of diabetic wound healing.
Collapse
Affiliation(s)
- Aaron den Dekker
- Department of Surgery, University of Michigan, Ann Arbor, Michgan
| | - Frank M Davis
- Department of Surgery, University of Michigan, Ann Arbor, Michgan
| | - Steve L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
41
|
Mahadik K, Yadav P, Bhatt B, Shah RA, Balaji KN. Deregulated AUF1 Assists BMP-EZH2-Mediated Delayed Wound Healing during Candida albicans Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:3617-3629. [PMID: 30429285 DOI: 10.4049/jimmunol.1800688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Tissue repair is a complex process that necessitates an interplay of cellular processes, now known to be dictated by epigenetics. Intriguingly, macrophages are testimony to a large repertoire of evolving functions in this process. We identified a role for BMP signaling in regulating macrophage responses to Candida albicans infection during wound repair in a murine model. In this study, the RNA binding protein, AU-rich element-binding factor 1, was posttranslationally destabilized to bring about ubiquitin ligase, NEDD4-directed activation of BMP signaling. Concomitantly, PI3K/PKCδ mobilized the rapid phosphorylation of BMP-responsive Smad1/5/8. Activated BMP pathway orchestrated the elevated recruitment of EZH2 at promoters of genes assisting timely wound closure. In vivo, the repressive H3K27 trimethylation was observed to persist, accompanied by a robust upregulation of BMP pathway upon infection with C. albicans, culminating in delayed wound healing. Altogether, we uncovered the signaling networks coordinated by fungal colonies that are now increasingly associated with the infected wound microbiome, resulting in altered wound fate.
Collapse
Affiliation(s)
- Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Preeti Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | |
Collapse
|
42
|
Park S, Daily JW, Lee J. Can Topical Use of Ginseng or Ginsenosides Accelerate Wound Healing? J Med Food 2018; 21:1075-1076. [PMID: 30311829 DOI: 10.1089/jmf.2018.29000.com] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sunmin Park
- 1 Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University , Asan, South Korea
| | - James W Daily
- 2 Department of R&D, Daily Manufacturing, Inc. , Rockwell, North Carolina, USA
| | - Jeongmin Lee
- 3 Department of Medical Nutrition, Kyung Hee University , Yongin, Republic of Korea
| |
Collapse
|
43
|
Langan EA, Fink T, Paus R. Is prolactin a negative neuroendocrine regulator of human skin re-epithelisation after wounding? Arch Dermatol Res 2018; 310:833-841. [PMID: 30244404 DOI: 10.1007/s00403-018-1864-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022]
Abstract
Chronic wounds remain a major unmet healthcare challenge, associated with substantial morbidity and economic costs. Therefore, novel treatment strategies and therapeutic approaches need to be urgently developed. Yet, despite the increasingly recognized importance of neurohormonal signaling in skin physiology, the neuroendocrine regulation of cutaneous wound healing has received surprisingly little attention. Human skin, and its appendages, locally express the pleiotropic neurohormone prolactin (PRL), which not only regulates lactation but also hair follicle cycling, angiogenesis, keratinocyte proliferation, and epithelial stem cell functions. Therefore, we examined the effects of PRL in experimentally wounded female human skin organ culture. Overall, this revealed that PRL slightly, but significantly, inhibited epidermal regeneration (reepithelialisation), cytokeratin 6 protein expression and intraepidermal mitochondrial activity (MTCO1 expression), while it promoted keratinocyte terminal differentiation (i.e. involucrin expression) ex vivo. If the current pilot data are confirmed by further studies, PRL may serve as one of the-rarely studied-negative regulators of cutaneous wound healing that control excessive reepithelialisation. This raises the intriguing and clinically relevant question of whether PRL receptor antagonists could actually promote epidermal repair after human skin wounding.
Collapse
Affiliation(s)
- E A Langan
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK
| | - T Fink
- Department of Dermatology, Klinikum Oldenburg, Oldenburg, Germany
| | - R Paus
- Centre for Dermatology Research, University of Manchester, Manchester, UK. .,Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
44
|
McGovern M, Castaneda PG, Pekar O, Vallier LG, Cram EJ, Hubbard EJA. The DSL ligand APX-1 is required for normal ovulation in C. elegans. Dev Biol 2018; 435:162-169. [PMID: 29371032 DOI: 10.1016/j.ydbio.2018.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/14/2017] [Accepted: 01/11/2018] [Indexed: 01/13/2023]
Abstract
DSL ligands activate the Notch receptor in many cellular contexts across metazoa to specify cell fate. In addition, Notch receptor activity is implicated in post-mitotic morphogenesis and neuronal function. In C. elegans, the DSL family ligand APX-1 is expressed in a subset of cells of the proximal gonad lineage, where it can act as a latent proliferation-promoting signal to maintain proximal germline tumors. Here we examine apx-1 in the proximal gonad and uncover a role in the maintenance of normal ovulation. Depletion of apx-1 causes an endomitotic oocyte (Emo) phenotype and ovulation defects. We find that lag-2 can substitute for apx-1 in this role, that the ovulation defect is partially suppressed by loss of ipp-5, and that lin-12 depletion causes a similar phenotype. In addition, we find that the ovulation defects are often accompanied by a delay of spermathecal distal neck closure after oocyte entry. Although calcium oscillations occur in the spermatheca, calcium signals are abnormal when the distal neck does not close completely. Moreover, oocytes sometimes cannot properly transit through the spermatheca, leading to fragmentation of oocytes once the neck closes. Finally, abnormal oocytes and neck closure defects are seen occasionally when apx-1 or lin-12 activity is reduced in adult animals, suggesting a possible post-developmental role for APX-1 and LIN-12 signaling in ovulation.
Collapse
Affiliation(s)
- Marie McGovern
- Department of Biological Sciences, Kingsborough Community College, City University of New York, 2001 Oriental Blvd, Brooklyn, NY 11235, United States; Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York, NY 10016, United States
| | | | - Olga Pekar
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York, NY 10016, United States
| | - Laura G Vallier
- Department of Biology, Hofstra University, Hempstead, NY 11549, United States
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|