1
|
Rakhymzhan A, Fiedler AF, Günther R, Domingue SR, Wooldridge L, Leben R, Cao Y, Bias A, Roodselaar J, Köhler R, Ulbricht C, Heidelin J, Andresen V, Beckers I, Haibel A, Duda G, Hauser AE, Niesner RA. Optimized intravital three-photon imaging of intact mouse tibia links plasma cell motility to functional states. iScience 2024; 27:110985. [PMID: 39391739 PMCID: PMC11466647 DOI: 10.1016/j.isci.2024.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Intravital deep bone marrow imaging is crucial to studying cellular dynamics and functions but remains challenging, and minimally invasive methods are needed. We employed a high pulse-energy 1650 nm laser to perform three-photon microscopy in vivo, reaching ≈400 μm depth in intact mouse tibia. Repetition rates of 3 and 4 MHz allowed us to analyze motility patterns of fast and rare cells within unperturbed marrow and to identify a bi-modal migratory behavior for plasma cells. Third harmonic generation (THG) was identified as a label-free marker for cellular organelles, particularly endoplasmic reticulum, indicating protein synthesis capacity. We found a strong THG signal, suggesting high antibody secretion, in one-third of plasma cells while the rest showed low signals. We discovered an inverse relationship between migratory behavior and THG signal, linking motility to functional plasma cell states. This method may enhance our understanding of marrow microenvironment effects on cellular functions.
Collapse
Affiliation(s)
- Asylkhan Rakhymzhan
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Alexander F. Fiedler
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- Freie Universität Berlin, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Robert Günther
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
| | | | | | - Ruth Leben
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- Freie Universität Berlin, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Yu Cao
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Anne Bias
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- Berlin University of Applied Sciences and Technology, Berlin, Germany
| | - Jay Roodselaar
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Ralf Köhler
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
| | - Carolin Ulbricht
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | | | | | - Ingeborg Beckers
- Berlin University of Applied Sciences and Technology, Berlin, Germany
| | - Astrid Haibel
- Berlin University of Applied Sciences and Technology, Berlin, Germany
| | - Georg Duda
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany
| | - Anja E. Hauser
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Raluca A. Niesner
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- Freie Universität Berlin, Dynamic and Functional in vivo Imaging, Berlin, Germany
| |
Collapse
|
2
|
Huang X, Gao X, Fu L. BINGO: a blind unmixing algorithm for ultra-multiplexing fluorescence images. Bioinformatics 2024; 40:btae052. [PMID: 38291952 PMCID: PMC10873573 DOI: 10.1093/bioinformatics/btae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/01/2024] Open
Abstract
MOTIVATION Spectral imaging is often used to observe different objects with multiple fluorescent labels to reveal the development of the biological event. As the number of observed objects increases, the spectral overlap between fluorophores becomes more serious, and obtaining a "pure" picture of each fluorophore becomes a major challenge. Here, we propose a blind spectral unmixing algorithm called BINGO (Blind unmixing via SVD-based Initialization Nmf with project Gradient descent and spare cOnstrain), which can extract all kinds of fluorophores more accurately from highly overlapping multichannel data, even if the spectra of the fluorophores are extremely similar or their fluorescence intensity varies greatly. RESULTS BINGO can isolate up to 10 fluorophores from spectral imaging data for a single excitation. nine-color living HeLa cells were visualized distinctly with BINGO. It provides an important algorithmic tool for multiplex imaging studies, especially in intravital imaging. BINGO shows great potential in multicolor imaging for biomedical sciences. AVAILABILITY AND IMPLEMENTATION The source code used for this paper is available with the test data at https://github.com/Xinyuan555/BINGO_unmixing.
Collapse
Affiliation(s)
- Xinyuan Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiujuan Gao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
- School of Physics and Optoelectronics Engineering, Hainan University, Haikou 570228, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
3
|
Blanc H, Kaddour G, David NB, Supatto W, Livet J, Beaurepaire E, Mahou P. Chromatically Corrected Multicolor Multiphoton Microscopy. ACS PHOTONICS 2023; 10:4104-4111. [PMID: 38145164 PMCID: PMC10739991 DOI: 10.1021/acsphotonics.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 12/26/2023]
Abstract
Simultaneous imaging of multiple labels in tissues is key to studying complex biological processes. Although strategies for color multiphoton excitation have been established, chromatic aberration remains a major problem when multiple excitation wavelengths are used in a scanning microscope. Chromatic aberration introduces a spatial shift between the foci of beams of different wavelengths that varies across the field of view, severely degrading the performance of color imaging. In this work, we propose an adaptive correction strategy that solves this problem in two-beam microscopy techniques. Axial chromatic aberration is corrected by a refractive phase mask that introduces pure defocus into one beam, while lateral chromatic aberration is corrected by a piezoelectric mirror that dynamically compensates for lateral shifts during scanning. We show that this light-efficient approach allows seamless chromatic correction over the entire field of view of different multiphoton objectives without compromising spatial and temporal resolution and that the effective area for beam-mixing processes can be increased by more than 1 order of magnitude. We illustrate this approach with simultaneous three-color, two-photon imaging of developing zebrafish embryos and fixed Brainbow mouse brain slices over large areas. These results establish a robust and efficient method for chromatically corrected multiphoton imaging.
Collapse
Affiliation(s)
- Hugo Blanc
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Gabriel Kaddour
- Sorbonne
Université, INSERM, CNRS, Institut
de la Vision, 75012 Paris, France
| | - Nicolas B. David
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Willy Supatto
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jean Livet
- Sorbonne
Université, INSERM, CNRS, Institut
de la Vision, 75012 Paris, France
| | - Emmanuel Beaurepaire
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
4
|
Chen ZH, Wang X, Yang M, Ming J, Yun B, Zhang L, Wang X, Yu P, Xu J, Zhang H, Zhang F. An Extended NIR-II Superior Imaging Window from 1500 to 1900 nm for High-Resolution In Vivo Multiplexed Imaging Based on Lanthanide Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202311883. [PMID: 37860881 DOI: 10.1002/anie.202311883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
High-resolution in vivo optical multiplexing in second near-infrared window (NIR-II, 1000-1700 nm) is vital to biomedical research. Presently, limited by bio-tissue scattering, only luminescent probes located at NIR-IIb (1500-1700 nm) window can provide high-resolution in vivo multiplexed imaging. However, the number of available luminescent probes in this narrow NIR-IIb region is limited, which hampers the available multiplexed channels of in vivo imaging. To overcome the above challenges, through theoretical simulation we expanded the conventional NIR-IIb window to NIR-II long-wavelength (NIR-II-L, 1500-1900 nm) window on the basis of photon-scattering and water-absorption. We developed a series of novel lanthanide luminescent nanoprobes with emission wavelengths from 1852 nm to 2842 nm. NIR-II-L nanoprobes enabled high-resolution in vivo dynamic multiplexed imaging on blood vessels and intestines, and provided multi-channels imaging on lymph tubes, tumors and intestines. The proposed NIR-II-L probes without mutual interference are powerful tools for high-contrast in vivo multiplexed detection, which holds promise for revealing physiological process in living body.
Collapse
Affiliation(s)
- Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaohan Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mingzhu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Baofeng Yun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xusheng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jing Xu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
5
|
Heuke S, Silva Martins C, André R, LeGoff L, Rigneault H. Frequency-encoded two-photon excited fluorescence microscopy. OPTICS LETTERS 2023; 48:4113-4116. [PMID: 37527131 DOI: 10.1364/ol.496071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
Two-photon excited fluorescence (2PEF) microscopy is the most popular non-linear imaging method of biomedical samples. State-of-the art 2PEF microscopes use multiple detectors and spectral filter sets to discriminate different fluorophores based on their distinct emission behavior (emission discrimination). One drawback of 2PEF is that fluorescence photons outside the filter transmission range are inherently lost, thereby reducing the imaging efficiency and speed. Furthermore, emission discrimination of different fluorophores may fail if their emission profiles are too similar. Here, we present an alternative 2PEF method that discriminates fluorophores based on their excitation spectra (excitation discrimination). For excitation we use two lasers of different wavelengths (ω1, ω2) resulting in excitation energies at 2ω1, 2ω2, and the mixing energy ω1+ω2. Both lasers are frequency encoded (FE) by an intensity modulation at distinct frequencies while all 2PEF emission is collected on a single detector. The signal is fed into a lock-in-amplifier and demodulated at various frequencies simultaneously. A customized nonnegative matrix factorization (NNMF) then generates fluorescence images that are free of cross talk. Combining FE-2PEF with multiple detectors has the potential to enable the simultaneous imaging of an unprecedented number of fluorophores.
Collapse
|
6
|
Carulli F, He M, Cova F, Erroi A, Li L, Brovelli S. Silica-Encapsulated Perovskite Nanocrystals for X-ray-Activated Singlet Oxygen Production and Radiotherapy Application. ACS ENERGY LETTERS 2023; 8:1795-1802. [PMID: 37090166 PMCID: PMC10111416 DOI: 10.1021/acsenergylett.3c00234] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Multicomponent systems consisting of lead halide perovskite nanocrystals (CsPbX3-NCs, X = Br, I) grown inside mesoporous silica nanospheres (NSs) with selectively sealed pores combine intense scintillation and strong interaction with ionizing radiation of CsPbX3 NCs with the chemical robustness in aqueous environment of silica particles, offering potentially promising candidates for enhanced radiotherapy and radio-imaging strategies. We demonstrate that CsPbX3 NCs boost the generation of singlet oxygen species (1O2) in water under X-ray irradiation and that the encapsulation into sealed SiO2 NSs guarantees perfect preservation of the inner NCs after prolonged storage in harsh conditions. We find that the 1O2 production is triggered by the electromagnetic shower released by the CsPbX3 NCs with a striking correlation with the halide composition (I3 > I3-x Br x > Br3). This opens the possibility of designing multifunctional radio-sensitizers able to reduce the local delivered dose and the undesired collateral effects in the surrounding healthy tissues by improving a localized cytotoxic effect of therapeutic treatments and concomitantly enabling optical diagnostics by radio imaging.
Collapse
Affiliation(s)
- Francesco Carulli
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Mengda He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Francesca Cova
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Andrea Erroi
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Liang Li
- Macao
Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Sergio Brovelli
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| |
Collapse
|
7
|
Chen Z, Huang J, Huang X, Gao X, Zhou Y, Fu L. Two-photon fluorescence imaging using a tunable spectral window based on fiber supercontinuum. OPTICS LETTERS 2023; 48:1518-1521. [PMID: 36946967 DOI: 10.1364/ol.485028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Two-photon excitation fluorescence (TPEF) microscopy has evolved into a versatile tool in biological research. However, the multiplexing capability of TPEF microscopy is limited by the narrow spectral bandwidth of the light source. In this study, we apply a photonic crystal fiber in TPEF microscopy to broaden the excitation source bandwidth. We tuned the spectral window using a spatial light modulator as a programmable diffraction grating that was placed behind a prism pair. In addition, we combined a grating pair to compensate for dispersion to improve the two-photon excitation efficiency. The combination of a broad spectrum and a programmable grating enabled fast spectral window tuning rate on a time scale of tens of milliseconds. We demonstrate the performance of our method by imaging live B16 cells labeled with four emission spectrum overlapped fluorescent proteins.
Collapse
|
8
|
Hernández IC, Yau J, Rishøj L, Cui N, Minderler S, Jowett N. Tutorial: multiphoton microscopy to advance neuroscience research. Methods Appl Fluoresc 2023; 11. [PMID: 36753763 DOI: 10.1088/2050-6120/acba66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Multiphoton microscopy (MPM) employs ultrafast infrared lasers for high-resolution deep three-dimensional imaging of live biological samples. The goal of this tutorial is to provide a practical guide to MPM imaging for novice microscopy developers and life-science users. Principles of MPM, microscope setup, and labeling strategies are discussed. Use of MPM to achieve unprecedented imaging depth of whole mounted explants and intravital imaging via implantable glass windows of the mammalian nervous system is demonstrated.
Collapse
Affiliation(s)
- Iván Coto Hernández
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Jenny Yau
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Lars Rishøj
- Technical University of Denmark, DTU Electro, Ørsteds Plads 343, 2800 Kgs. Lyngby, Denmark
| | - Nanke Cui
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Steven Minderler
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Nate Jowett
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| |
Collapse
|
9
|
Chiang HJ, Koo DES, Kitano M, Burkitt S, Unruh JR, Zavaleta C, Trinh LA, Fraser SE, Cutrale F. HyU: Hybrid Unmixing for longitudinal in vivo imaging of low signal-to-noise fluorescence. Nat Methods 2023; 20:248-258. [PMID: 36658278 PMCID: PMC9911352 DOI: 10.1038/s41592-022-01751-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2022] [Indexed: 01/21/2023]
Abstract
The expansion of fluorescence bioimaging toward more complex systems and geometries requires analytical tools capable of spanning widely varying timescales and length scales, cleanly separating multiple fluorescent labels and distinguishing these labels from background autofluorescence. Here we meet these challenging objectives for multispectral fluorescence microscopy, combining hyperspectral phasors and linear unmixing to create Hybrid Unmixing (HyU). HyU is efficient and robust, capable of quantitative signal separation even at low illumination levels. In dynamic imaging of developing zebrafish embryos and in mouse tissue, HyU was able to cleanly and efficiently unmix multiple fluorescent labels, even in demanding volumetric timelapse imaging settings. HyU permits high dynamic range imaging, allowing simultaneous imaging of bright exogenous labels and dim endogenous labels. This enables coincident studies of tagged components, cellular behaviors and cellular metabolism within the same specimen, providing more accurate insights into the orchestrated complexity of biological systems.
Collapse
Affiliation(s)
- Hsiao Ju Chiang
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Daniel E S Koo
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Masahiro Kitano
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sean Burkitt
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Le A Trinh
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Scott E Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Sadashivaiah V, Tippani M, Page SC, Kwon SH, Bach SV, Bharadwaj RA, Hyde TM, Kleinman JE, Jaffe AE, Maynard KR. SUFI: an automated approach to spectral unmixing of fluorescent multiplex images captured in mouse and post-mortem human brain tissues. BMC Neurosci 2023; 24:6. [PMID: 36698068 PMCID: PMC9878864 DOI: 10.1186/s12868-022-00765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Multispectral fluorescence imaging coupled with linear unmixing is a form of image data collection and analysis that allows for measuring multiple molecular signals in a single biological sample. Multiple fluorescent dyes, each measuring a unique molecule, are simultaneously measured and subsequently "unmixed" to provide a read-out for each molecular signal. This strategy allows for measuring highly multiplexed signals in a single data capture session, such as multiple proteins or RNAs in tissue slices or cultured cells, but can often result in mixed signals and bleed-through problems across dyes. Existing spectral unmixing algorithms are not optimized for challenging biological specimens such as post-mortem human brain tissue, and often require manual intervention to extract spectral signatures. We therefore developed an intuitive, automated, and flexible package called SUFI: spectral unmixing of fluorescent images. RESULTS This package unmixes multispectral fluorescence images by automating the extraction of spectral signatures using vertex component analysis, and then performs one of three unmixing algorithms derived from remote sensing. We evaluate these remote sensing algorithms' performances on four unique biological datasets and compare the results to unmixing results obtained using ZEN Black software (Zeiss). We lastly integrate our unmixing pipeline into the computational tool dotdotdot, which is used to quantify individual RNA transcripts at single cell resolution in intact tissues and perform differential expression analysis, and thereby provide an end-to-end solution for multispectral fluorescence image analysis and quantification. CONCLUSIONS In summary, we provide a robust, automated pipeline to assist biologists with improved spectral unmixing of multispectral fluorescence images.
Collapse
Affiliation(s)
- Vijay Sadashivaiah
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Svitlana V Bach
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Rahul A Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Leben R, Lindquist RL, Hauser AE, Niesner R, Rakhymzhan A. Two-Photon Excitation Spectra of Various Fluorescent Proteins within a Broad Excitation Range. Int J Mol Sci 2022; 23:13407. [PMID: 36362194 PMCID: PMC9656010 DOI: 10.3390/ijms232113407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 03/26/2024] Open
Abstract
Two-photon excitation fluorescence laser-scanning microscopy is the preferred method for studying dynamic processes in living organ models or even in living organisms. Thanks to near-infrared and infrared excitation, it is possible to penetrate deep into the tissue, reaching areas of interest relevant to life sciences and biomedicine. In those imaging experiments, two-photon excitation spectra are needed to select the optimal laser wavelength to excite as many fluorophores as possible simultaneously in the sample under consideration. The more fluorophores that can be excited, and the more cell populations that can be studied, the better access to their arrangement and interaction can be reached in complex systems such as immunological organs. However, for many fluorophores, the two-photon excitation properties are poorly predicted from the single-photon spectra and are not yet available, in the literature or databases. Here, we present the broad excitation range (760 nm to 1300 nm) of photon-flux-normalized two-photon spectra of several fluorescent proteins in their cellular environment. This includes the following fluorescent proteins spanning from the cyan to the infrared part of the spectrum: mCerulean3, mTurquoise2, mT-Sapphire, Clover, mKusabiraOrange2, mOrange2, LSS-mOrange, mRuby2, mBeRFP, mCardinal, iRFP670, NirFP, and iRFP720.
Collapse
Affiliation(s)
- Ruth Leben
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), 10117 Berlin, Germany
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Randall L. Lindquist
- Immune Dynamics and Intravital Microscopy, Deutsches Rheuma-Forschungszentrum (DRFZ), 10117 Berlin, Germany
- Praxen für Nuklearmedizin, 12163 Berlin, Germany
| | - Anja E. Hauser
- Immune Dynamics and Intravital Microscopy, Deutsches Rheuma-Forschungszentrum (DRFZ), 10117 Berlin, Germany
- Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Raluca Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), 10117 Berlin, Germany
- Dynamic and Functional In Vivo Imaging, Freie Universität Berlin, 14163 Berlin, Germany
| | - Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), 10117 Berlin, Germany
| |
Collapse
|
12
|
Chen K, Li W, Xu K. Super-multiplexing excitation spectral microscopy with multiple fluorescence bands. BIOMEDICAL OPTICS EXPRESS 2022; 13:6048-6060. [PMID: 36733753 PMCID: PMC9872899 DOI: 10.1364/boe.473241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/18/2023]
Abstract
Fluorescence microscopy, with high molecular specificity and selectivity, is a valuable tool for studying complex biological systems and processes. However, the ability to distinguish a large number of distinct subcellular structures in a single sample is impeded by the broad spectra of molecular fluorescence. We have recently shown that excitation spectral microscopy provides a powerful means to unmix up to six fluorophores in a single fluorescence band. Here, by working with multiple fluorescence bands, we extend this approach to the simultaneous imaging of up to ten targets, with the potential for further expansions. By covering the excitation/emission bandwidth across the full visible range, an ultra-broad 24-wavelength excitation scheme is established through frame-synchronized scanning of the excitation wavelength from a white lamp via an acousto-optic tunable filter (AOTF), so that full-frame excitation-spectral images are obtained every 24 camera frames, offering superior spectral information and multiplexing capability. With numerical simulations, we validate the concurrent imaging of 10 fluorophores spanning the visible range to achieve exceptionally low (∼0.5%) crosstalks. For cell imaging experiments, we demonstrate unambiguous identification of up to eight different intracellular structures labeled by common fluorophores of substantial spectral overlap with minimal color crosstalks. We thus showcase an easy-to-implement, cost-effective microscopy system for visualizing complex cellular components with more colors and lower crosstalks.
Collapse
Affiliation(s)
- Kun Chen
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wan Li
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ke Xu
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Chou LT, Wu SH, Hung HH, Lin WZ, Chen ZP, Ivanov AA, Chia SH. Compact multicolor two-photon fluorescence microscopy enabled by tailorable continuum generation from self-phase modulation and dispersive wave generation. OPTICS EXPRESS 2022; 30:40315-40327. [PMID: 36298966 DOI: 10.1364/oe.470602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
By precisely managing fiber-optic nonlinearity with anomalous dispersion, we have demonstrated the control of generating plural few-optical-cycle pulses based on a 24-MHz Chromium:forsterite laser, allowing multicolor two-photon tissue imaging by wavelength mixing. The formation of high-order soliton and its efficient coupling to dispersive wave generation leads to phase-matched spectral broadening, and we have obtained a broadband continuum ranging from 830 nm to 1200 nm, delivering 5-nJ pulses with a pulse width of 10.5 fs using a piece of large-mode-area fiber. We locate the spectral enhancement at around 920 nm for the two-photon excitation of green fluorophores, and we can easily compress the resulting pulse close to its limited duration without the need for active pulse shaping. To optimize the wavelength mixing for sum-frequency excitation, we have realized the management of the power ratio and group delay between the soliton and dispersive wave by varying the initial pulse energy without additional delay control. We have thus demonstrated simultaneous three-color two-photon tissue imaging with contrast management between different signals. Our source optimization leads to efficient two-photon excitation reaching a 500-µm imaging depth under a low 14-mW illumination power. We believe our source development leads to an efficient and compact approach for driving multicolor two-photon fluorescence microscopy and other ultrafast investigations, such as strong-field-driven applications.
Collapse
|
14
|
Kaya M, Stein F, Padmanaban P, Zhang Z, Rouwkema J, Khalil ISM, Misra S. Visualization of micro-agents and surroundings by real-time multicolor fluorescence microscopy. Sci Rep 2022; 12:13375. [PMID: 35927294 PMCID: PMC9352757 DOI: 10.1038/s41598-022-17297-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Optical microscopy techniques are a popular choice for visualizing micro-agents. They generate images with relatively high spatiotemporal resolution but do not reveal encoded information for distinguishing micro-agents and surroundings. This study presents multicolor fluorescence microscopy for rendering color-coded identification of mobile micro-agents and dynamic surroundings by spectral unmixing. We report multicolor microscopy performance by visualizing the attachment of single and cluster micro-agents to cancer spheroids formed with HeLa cells as a proof-of-concept for targeted drug delivery demonstration. A microfluidic chip is developed to immobilize a single spheroid for the attachment, provide a stable environment for multicolor microscopy, and create a 3D tumor model. In order to confirm that multicolor microscopy is able to visualize micro-agents in vascularized environments, in vitro vasculature network formed with endothelial cells and ex ovo chicken chorioallantoic membrane are employed as experimental models. Full visualization of our models is achieved by sequential excitation of the fluorophores in a round-robin manner and synchronous individual image acquisition from three-different spectrum bands. We experimentally demonstrate that multicolor microscopy spectrally decomposes micro-agents, organic bodies (cancer spheroids and vasculatures), and surrounding media utilizing fluorophores with well-separated spectrum characteristics and allows image acquisition with 1280 [Formula: see text] 1024 pixels up to 15 frames per second. Our results display that real-time multicolor microscopy provides increased understanding by color-coded visualization regarding the tracking of micro-agents, morphology of organic bodies, and clear distinction of surrounding media.
Collapse
Affiliation(s)
- Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands. .,Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | - Fabian Stein
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Prasanna Padmanaban
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Zhengya Zhang
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Jeroen Rouwkema
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Islam S M Khalil
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
15
|
Shaw PA, Forsyth E, Haseeb F, Yang S, Bradley M, Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window? Front Chem 2022; 10:921354. [PMID: 35815206 PMCID: PMC9263132 DOI: 10.3389/fchem.2022.921354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime Klausen
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Zhang Y, Garcia-Ibanez L, Ulbricht C, Lok LSC, Pike JA, Mueller-Winkler J, Dennison TW, Ferdinand JR, Burnett CJM, Yam-Puc JC, Zhang L, Alfaro RM, Takahama Y, Ohigashi I, Brown G, Kurosaki T, Tybulewicz VLJ, Rot A, Hauser AE, Clatworthy MR, Toellner KM. Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift. Nat Commun 2022; 13:2460. [PMID: 35513371 PMCID: PMC9072412 DOI: 10.1038/s41467-022-29978-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Infection or vaccination leads to the development of germinal centers (GC) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. Here we follow the migratory pathways of B cells emerging from germinal centers (BEM) and find that many BEM cells migrate into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From the SCS, BEM cells may exit the lymph node to enter distant tissues, while some BEM cells interact with and take up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibits the recycling of BEM cells and results in less efficient adaption to antigenic variation. Our findings thus suggest that the recycling of antigen variant-specific BEM cells and transport of antigen back to GC may support affinity maturation to antigenic drift.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Laura Garcia-Ibanez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Laurence S C Lok
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Thomas W Dennison
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Ferdinand
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Cameron J M Burnett
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Juan C Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lingling Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- The Francis Crick Institute, London, UK
| | - Raul Maqueda Alfaro
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan
| | - Geoffrey Brown
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | | | - Antal Rot
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, EC1M 6BQ, London, UK
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336, Munich, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Menna R Clatworthy
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
NAD(P)H fluorescence lifetime imaging of live intestinal nematodes reveals metabolic crosstalk between parasite and host. Sci Rep 2022; 12:7264. [PMID: 35508502 PMCID: PMC9068778 DOI: 10.1038/s41598-022-10705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Infections with intestinal nematodes have an equivocal impact: they represent a burden for human health and animal husbandry, but, at the same time, may ameliorate auto-immune diseases due to the immunomodulatory effect of the parasites. Thus, it is key to understand how intestinal nematodes arrive and persist in their luminal niche and interact with the host over long periods of time. One basic mechanism governing parasite and host cellular and tissue functions, metabolism, has largely been neglected in the study of intestinal nematode infections. Here we use NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate) fluorescence lifetime imaging of explanted murine duodenum infected with the natural nematode Heligmosomoides polygyrus and define the link between general metabolic activity and possible metabolic pathways in parasite and host tissue, during acute infection. In both healthy and infected host intestine, energy is effectively produced, mainly via metabolic pathways resembling oxidative phosphorylation/aerobic glycolysis features. In contrast, the nematodes shift their energy production from balanced fast anaerobic glycolysis-like and effective oxidative phosphorylation-like metabolic pathways, towards mainly anaerobic glycolysis-like pathways, back to oxidative phosphorylation/aerobic glycolysis-like pathways during their different life cycle phases in the submucosa versus the intestinal lumen. Additionally, we found an increased NADPH oxidase (NOX) enzymes-dependent oxidative burst in infected intestinal host tissue as compared to healthy tissue, which was mirrored by a similar defense reaction in the parasites. We expect that, the here presented application of NAD(P)H-FLIM in live tissues constitutes a unique tool to study possible shifts between metabolic pathways in host-parasite crosstalk, in various parasitic intestinal infections.
Collapse
|
18
|
Löhning M, Shen P, Dzamukova M, Durán-Hernández N, Roodselaar J, Hauser AE, Fiedler A, Niesner RA, Gaber T, Buttgereit F. [The DRFZ-a pioneer in research on the interaction between immune and stromal cells during de- and regeneration of the musculoskeletal system]. Z Rheumatol 2022; 81:652-659. [PMID: 35412048 DOI: 10.1007/s00393-022-01188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
Rheumatoid arthritis and osteoarthritis are two related chronic diseases of the musculoskeletal system which are particularly pronounced in the region of joints and bones. Their pathogeneses are associated with chronic inflammation, which can disrupt homeostasis in bones and articular cartilage. Degradation products deriving from articular cartilage can contribute to the exacerbation of inflammation in the joint region. Mechanical stimuli and blood vessels also play a central role in both the regulation of bone growth as well as in the regeneration of bone tissue. Not only chronic inflammatory processes but also hormonal changes after menopause or undesired effects of glucocorticoid therapy have an influence on the balance between bone resorption and deposition, by promoting the former and reducing the latter. This results in decreased bone quality and, in some cases, considerable loss of bone or osteoporosis. An in-depth understanding of these processes at the molecular, cellular, and tissue level, as well as of the changes present in chronic inflammatory diseases, has been the focus of research at the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ) since its foundation. Based on an improved understanding of these mechanisms, the DRFZ aims to develop improved prevention and treatment strategies with effects even in early disease stages.
Collapse
Affiliation(s)
- Max Löhning
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland. .,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland.
| | - Ping Shen
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Maria Dzamukova
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Nayar Durán-Hernández
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Jay Roodselaar
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Alexander Fiedler
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Deutschland
| | - Raluca A Niesner
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Deutschland
| | - Timo Gaber
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Frank Buttgereit
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| |
Collapse
|
19
|
Engelmann SA, Zhou A, Hassan AM, Williamson MR, Jarrett JW, Perillo EP, Tomar A, Spence DJ, Jones TA, Dunn AK. Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1888-1898. [PMID: 35519268 PMCID: PMC9045921 DOI: 10.1364/boe.448978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Here we introduce a fiber amplifier and a diamond Raman laser that output high powers (6.5 W, 1.3 W) at valuable wavelengths (1060 nm, 1250 nm) for two-photon excitation of red-shifted fluorophores. These custom excitation sources are both simple to construct and cost-efficient in comparison to similar custom and commercial alternatives. Furthermore, they operate at a repetition rate (80 MHz) that allows fast image acquisition using resonant scanners. With our system we demonstrate compatibility with fast resonant scanning, the ability to acquire neuronal images, and the capability to image vasculature at deep locations (>1 mm) within the mouse cerebral cortex.
Collapse
Affiliation(s)
- Shaun A. Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Ahmed M. Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Michael R. Williamson
- Institute for Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jeremy W. Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Evan P. Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Alankrit Tomar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - David J. Spence
- MQ Photonics, Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia
| | - Theresa A. Jones
- Institute for Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
20
|
Frattolin J, Watson DJ, Bonneuil WV, Russell MJ, Fasanella Masci F, Bandara M, Brook BS, Nibbs RJB, Moore JE. The Critical Importance of Spatial and Temporal Scales in Designing and Interpreting Immune Cell Migration Assays. Cells 2021; 10:3439. [PMID: 34943947 PMCID: PMC8700135 DOI: 10.3390/cells10123439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Intravital microscopy and other direct-imaging techniques have allowed for a characterisation of leukocyte migration that has revolutionised the field of immunology, resulting in an unprecedented understanding of the mechanisms of immune response and adaptive immunity. However, there is an assumption within the field that modern imaging techniques permit imaging parameters where the resulting cell track accurately captures a cell's motion. This notion is almost entirely untested, and the relationship between what could be observed at a given scale and the underlying cell behaviour is undefined. Insufficient spatial and temporal resolutions within migration assays can result in misrepresentation of important physiologic processes or cause subtle changes in critical cell behaviour to be missed. In this review, we contextualise how scale can affect the perceived migratory behaviour of cells, summarise the limited approaches to mitigate this effect, and establish the need for a widely implemented framework to account for scale and correct observations of cell motion. We then extend the concept of scale to new approaches that seek to bridge the current "black box" between single-cell behaviour and systemic response.
Collapse
Affiliation(s)
- Jennifer Frattolin
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Daniel J. Watson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Willy V. Bonneuil
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Matthew J. Russell
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Francesca Fasanella Masci
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Mikaila Bandara
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Bindi S. Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Robert J. B. Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| |
Collapse
|
21
|
Niesner RA, Hauser AE, Entenberg D. Life Through a Lens: Technological Development and Applications in Intravital Microscopy. Cytometry A 2021; 97:445-447. [PMID: 32378348 DOI: 10.1002/cyto.a.24019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Raluca A Niesner
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Leibniz Institute, Berlin, Germany.,Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Immune Dynamics, Deutsches Rheumaforschungszentrum (DRFZ), Leibniz Institute, Berlin, Germany.,Immune Dynamics and Intravital Microscopy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
22
|
Hsiao YT, Huang YF, Borah BJ, Chen SK, Sun CK. Single-laser-based simultaneous four-wavelength excitation source for femtosecond two-photon fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4661-4679. [PMID: 34513216 PMCID: PMC8407803 DOI: 10.1364/boe.428771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Multicolor labeling of biological samples with large volume is required for omic-level of study such as the construction of nervous system connectome. Among the various imaging method, two photon microscope has multiple advantages over traditional single photon microscope for higher resolution and could image large 3D volumes of tissue samples with superior imaging depth. However, the growing number of fluorophores for labeling underlines the urgent need for an ultrafast laser source with the capability of providing simultaneous plural excitation wavelengths for multiple fluorophores. Here, we propose and demonstrate a single-laser-based four-wavelength excitation source for two-photon fluorescence microscopy. Using a sub-100 fs 1,070-nm Yb:fiber laser to pump an ultrashort nonlinear photonic crystal fiber in the low negative dispersion region, we introduced efficient self-phase modulation and acquired a blue-shifted spectrum dual-peaked at 812 and 960 nm with 28.5% wavelength conversion efficiency. By compressing the blue-shift near-IR spectrum to 33 fs to ensure the temporal overlap of the 812 and 960 nm peaks, the so-called sum frequency effect created the third virtual excitation wavelength effectively at 886 nm. Combined with the 1,070 nm laser source as the fourth excitation wavelength, the all-fiber-format four-wavelength excitation source enabled simultaneous four-color two-photon imaging in Brainbow AAV-labeled (TagBFP, mTFP, EYFP, and mCherry) brain samples. With an increased number of excitation wavelengths and improved excitation efficiency than typical commercial femtosecond lasers, our compact four-wavelength excitation approach can provide a versatile, efficient, and easily accessible solution for multiple-color two-photon fluorescence imaging in the field of neuroscience, biomolecular probing, and clinical applications with at least four spectrally-distinct fluorophores.
Collapse
Affiliation(s)
- Yang-Ting Hsiao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Fan Huang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
23
|
Kaya M, Stein F, Rouwkema J, Khalil ISM, Misra S. Serial imaging of micro-agents and cancer cell spheroids in a microfluidic channel using multicolor fluorescence microscopy. PLoS One 2021; 16:e0253222. [PMID: 34129617 PMCID: PMC8205435 DOI: 10.1371/journal.pone.0253222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Multicolor fluorescence microscopy is a powerful technique to fully visualize many biological phenomena by acquiring images from different spectrum channels. This study expands the scope of multicolor fluorescence microscopy by serial imaging of polystyrene micro-beads as surrogates for drug carriers, cancer spheroids formed using HeLa cells, and microfluidic channels. Three fluorophores with different spectral characteristics are utilized to perform multicolor microscopy. According to the spectrum analysis of the fluorophores, a multicolor widefield fluorescence microscope is developed. Spectral crosstalk is corrected by exciting the fluorophores in a round-robin manner and synchronous emitted light collection. To report the performance of the multicolor microscopy, a simplified 3D tumor model is created by placing beads and spheroids inside a channel filled with the cell culture medium is imaged at varying exposure times. As a representative case and a method for bio-hybrid drug carrier fabrication, a spheroid surface is coated with beads in a channel utilizing electrostatic forces under the guidance of multicolor microscopy. Our experiments show that multicolor fluorescence microscopy enables crosstalk-free and spectrally-different individual image acquisition of beads, spheroids, and channels with the minimum exposure time of 5.5 ms. The imaging technique has the potential to monitor drug carrier transportation to cancer cells in real-time.
Collapse
Affiliation(s)
- Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Fabian Stein
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Jeroen Rouwkema
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Islam S. M. Khalil
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Rakhymzhan A, Acs A, Hauser AE, Winkler TH, Niesner RA. Improvement of the Similarity Spectral Unmixing Approach for Multiplexed Two-Photon Imaging by Linear Dimension Reduction of the Mixing Matrix. Int J Mol Sci 2021; 22:ijms22116046. [PMID: 34205072 PMCID: PMC8199868 DOI: 10.3390/ijms22116046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two-photon microscopy enables monitoring cellular dynamics and communication in complex systems, within a genuine environment, such as living tissues and, even, living organisms. Particularly, its application to understand cellular interactions in the immune system has brought unique insights into pathophysiologic processes in vivo. Simultaneous multiplexed imaging is required to understand the dynamic orchestration of the multiple cellular and non-cellular tissue compartments defining immune responses. Here, we present an improvement of our previously developed method, which allowed us to achieve multiplexed dynamic intravital two-photon imaging, by using a synergistic strategy. This strategy combines a spectrally broad range of fluorophore emissions, a wave-mixing concept for simultaneous excitation of all targeted fluorophores, and an unmixing algorithm based on the calculation of spectral similarities with previously measured fluorophore fingerprints. The improvement of the similarity spectral unmixing algorithm here described is based on dimensionality reduction of the mixing matrix. We demonstrate its superior performance in the correct pixel-based assignment of probes to tissue compartments labeled by single fluorophores with similar spectral fingerprints, as compared to the full-dimensional similarity spectral unmixing approach.
Collapse
Affiliation(s)
- Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Correspondence: (A.R.); (R.A.N.); Tel.: +49(0)30-28460-674 (A.R.); +49(0)30-838-466664 (R.A.N.)
| | - Andreas Acs
- Nicolaus-Fiebiger-Zentrum, Department of Biology, Division of Genetics, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.A.); (T.H.W.)
| | - Anja E. Hauser
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum, Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Thomas H. Winkler
- Nicolaus-Fiebiger-Zentrum, Department of Biology, Division of Genetics, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.A.); (T.H.W.)
| | - Raluca A. Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität, 14163 Berlin, Germany
- Correspondence: (A.R.); (R.A.N.); Tel.: +49(0)30-28460-674 (A.R.); +49(0)30-838-466664 (R.A.N.)
| |
Collapse
|
25
|
Reimer D, Meyer-Hermann M, Rakhymzhan A, Steinmetz T, Tripal P, Thomas J, Boettcher M, Mougiakakos D, Schulz SR, Urbanczyk S, Hauser AE, Niesner RA, Mielenz D. B Cell Speed and B-FDC Contacts in Germinal Centers Determine Plasma Cell Output via Swiprosin-1/EFhd2. Cell Rep 2021; 32:108030. [PMID: 32783949 DOI: 10.1016/j.celrep.2020.108030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Plasma cells secreting affinity-matured antibodies develop in germinal centers (GCs), where B cells migrate persistently and directionally over defined periods of time. How modes of GC B cell migration influence plasma cell development remained unclear. Through genetic deletion of the F-actin bundling protein Swiprosin-1/EF-hand domain family member 2 (EFhd2) and by two-photon microscopy, we show that EFhd2 restrains B cell speed in GCs and hapten-specific plasma cell output. Modeling the GC reaction reveals that increasing GC B cell speed promotes plasma cell generation. Lack of EFhd2 also reduces contacts of GC B cells with follicular dendritic cells in vivo. Computational modeling uncovers that both GC output and antibody affinity depend quantitatively on contacts of GC B cells with follicular dendritic cells when B cells migrate more persistently. Collectively, our data explain how GC B cells integrate speed and persistence of cell migration with B cell receptor affinity.
Collapse
Affiliation(s)
- Dorothea Reimer
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig, Integrated Centre of Systems Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Tobit Steinmetz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Center (OICE), Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Boettcher
- Department of Internal Medicine V, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine V, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Anja E Hauser
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany; Charité - University Medicine, Berlin, Germany
| | - Raluca A Niesner
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany; Dynamic and Functional In Vivo Imaging, Veterinary Medicine, Freie Universität, Berlin, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
26
|
Buttolph ML, Mejooli MA, Sidorenko P, Eom CY, Schaffer CB, Wise FW. Synchronously pumped Raman laser for simultaneous degenerate and nondegenerate two-photon microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:2496-2507. [PMID: 33996243 PMCID: PMC8086478 DOI: 10.1364/boe.421647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 05/30/2023]
Abstract
Two-photon fluorescence microscopy is a nonlinear imaging modality frequently used in deep-tissue imaging applications. A tunable-wavelength multicolor short-pulse source is usually required to excite fluorophores with a wide range of excitation wavelengths. This need is most typically met by solid-state lasers, which are bulky, expensive, and complicated systems. Here, we demonstrate a compact, robust fiber system that generates naturally synchronized femtosecond pulses at 1050 nm and 1200 nm by using a combination of gain-managed and Raman amplification. We image the brain of a mouse and view the blood vessels, neurons, and other cell-like structures using simultaneous degenerate and nondegenerate excitation.
Collapse
Affiliation(s)
- Michael L. Buttolph
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Menansili A. Mejooli
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Pavel Sidorenko
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Chi-Yong Eom
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Frank W. Wise
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Ulbricht C, Leben R, Rakhymzhan A, Kirchhoff F, Nitschke L, Radbruch H, Niesner RA, Hauser AE. Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages. eLife 2021; 10:56020. [PMID: 33749591 PMCID: PMC8060033 DOI: 10.7554/elife.56020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/19/2021] [Indexed: 01/31/2023] Open
Abstract
Calcium is a universal second messenger present in all eukaryotic cells. The mobilization and storage of Ca2+ ions drives a number of signaling-related processes, stress-responses, or metabolic changes, all of which are relevant for the development of immune cells and their adaption to pathogens. Here, we introduce the Förster resonance energy transfer (FRET)-reporter mouse YellowCaB expressing the genetically encoded calcium indicator TN-XXL in B lymphocytes. Calcium-induced conformation change of TN-XXL results in FRET-donor quenching measurable by two-photon fluorescence lifetime imaging. For the first time, using our novel numerical analysis, we extract absolute cytoplasmic calcium concentrations in activated B cells during affinity maturation in vivo. We show that calcium in activated B cells is highly dynamic and that activation introduces a persistent calcium heterogeneity to the lineage. A characterization of absolute calcium concentrations present at any time within the cytosol is therefore of great value for the understanding of long-lived beneficial immune responses and detrimental autoimmunity.
Collapse
Affiliation(s)
- Carolin Ulbricht
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, Berlin, Germany.,Immune Dynamics, Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | | | - Lars Nitschke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helena Radbruch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany.,Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, Berlin, Germany.,Immune Dynamics, Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| |
Collapse
|
28
|
Rakhymzhan A, Acs A, Leben R, Winkler TH, Hauser AE, Niesner RA. Method for Multiplexed Dynamic Intravital Multiphoton Imaging. Methods Mol Biol 2021; 2350:145-156. [PMID: 34331284 DOI: 10.1007/978-1-0716-1593-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intravital two-photon microscopy enables monitoring of cellular dynamics and communication of complex systems, in genuine environment-the living organism. Particularly, its application in understanding the immune system brought unique insights into pathophysiologic processes in vivo. Here we present a method to achieve multiplexed dynamic intravital two-photon imaging by using a synergistic strategy combining a spectrally broad range of fluorophore emissions, a wave-mixing concept for simultaneous excitation of all targeted fluorophores, and an effective unmixing algorithm based on the calculation of spectral similarities with previously acquired fluorophore fingerprints. Our unmixing algorithm allows us to distinguish 7 fluorophore signals corresponding to various cellular and tissue compartments by using only four detector channels.
Collapse
Affiliation(s)
- Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheumaforschungszentrum - a Leibniz Institute, Berlin, Germany.
| | - Andreas Acs
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ruth Leben
- Biophysical Analytics, Deutsches Rheumaforschungszentrum - a Leibniz Institute, Berlin, Germany
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anja E Hauser
- Immundynamics, Deutsches Rheumaforschungszentrum - a Leibniz Institute, Berlin, Germany.,Immundynamics and Intravital Microscopy, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analytics, Deutsches Rheumaforschungszentrum - a Leibniz Institute, Berlin, Germany. .,Dynamic and Functional in vivo Imaging, Institute for Veterinary Physiology, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
29
|
Cosco ED, Spearman AL, Ramakrishnan S, Lingg JGP, Saccomano M, Pengshung M, Arús BA, Wong KCY, Glasl S, Ntziachristos V, Warmer M, McLaughlin RR, Bruns OT, Sletten EM. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat Chem 2020; 12:1123-1130. [PMID: 33077925 PMCID: PMC7680456 DOI: 10.1038/s41557-020-00554-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350-700 nm) and near-infrared (700-1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000-2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions.
Collapse
Affiliation(s)
- Emily D Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anthony L Spearman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shyam Ramakrishnan
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jakob G P Lingg
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mara Saccomano
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Monica Pengshung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bernardo A Arús
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kelly C Y Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Glasl
- Institute of Biomedical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Martin Warmer
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ryan R McLaughlin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Upadhaya S, Krichevsky O, Akhmetzyanova I, Sawai CM, Fooksman DR, Reizis B. Intravital Imaging Reveals Motility of Adult Hematopoietic Stem Cells in the Bone Marrow Niche. Cell Stem Cell 2020; 27:336-345.e4. [PMID: 32589864 DOI: 10.1016/j.stem.2020.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Adult mammalian hematopoietic stem cells (HSCs) reside in the bone marrow (BM) but can be mobilized into blood for use in transplantation. HSCs interact with BM niche cells that produce growth factor c-Kit ligand (Kitl/SCF) and chemokine CXCL12, and were thought to be static and sessile. We used two-photon laser scanning microscopy to visualize genetically labeled HSCs in the BM of live mice for several hours. The majority of HSCs showed a dynamic non-spherical morphology and significant motility, undergoing slow processive motion interrupted by short stretches of confined motion. HSCs moved in the perivascular space and showed intermittent close contacts with SCF-expressing perivascular stromal cells. In contrast, mobilization-inducing blockade of CXCL12 receptor CXCR4 and integrins rapidly abrogated HSC motility and shape dynamics in real time. Our results reveal an unexpectedly dynamic nature of HSC residence in the BM and interaction with the SCF+ stromal niche, which is disrupted during HSC mobilization.
Collapse
Affiliation(s)
- Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Oleg Krichevsky
- Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | - Catherine M Sawai
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; INSERM Unit 1218 ACTION Laboratory, University of Bordeaux, Bergonié Cancer Institute, 33076 Bordeaux, France
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
31
|
Hagert CF, Bohn AB, Wittenborn TR, Degn SE. Seeing the Confetti Colors in a New Light Utilizing Flow Cytometry and Imaging Flow Cytometry. Cytometry A 2020; 97:811-823. [PMID: 32459058 DOI: 10.1002/cyto.a.24032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 11/07/2022]
Abstract
Stochastic multicolor transgenic labeling systems, such as the Brainbow reporters, have emerged as powerful tools in lineage tracing experiments. Originally designed for large-scale mapping of neuronal projections in densely populated tissues, they have been repurposed for diverse uses. The Brainbow 2.1-derived Confetti reporter was used, for example, to define stem cell clonality and dynamics in crypts of the intestinal mucosa, T-cell clonality, microglial heterogeneity, and B-cell clonal evolution in germinal centers. Traditionally, read-outs have relied on imaging in situ, providing information about cellular localization within tissue stroma. However, recent applications of the technique have moved into hematopoietically derived motile cell types, for example, T and B lymphocytes and their progeny, creating an unmet need to survey larger populations of cells ex vivo to determine labeling densities or skews in color representation over time to read-out clonal expansion and selection effects. Originally designed for imaging methods, these reporters encode information in the spectral properties of fluorophores and their subcellular localization, making them poorly suited to traditional flow cytometry analyses. The advent of high-content imaging and imaging flow cytometry have recently closed the gap between flow cytometry and imaging. We analyzed a 10-color biallelic Confetti reporter using flow and imaging flow cytometry. Beyond its use as a high-throughput method for measuring reporter labeling densities and color distributions over time, it also opens the door to new avenues of research relying on similar read-outs, for example, tumor heterogeneity and clonal dynamics. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Anja Bille Bohn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
32
|
Rakhymzhan A, Reuter L, Raspe R, Bremer D, Günther R, Leben R, Heidelin J, Andresen V, Cheremukhin S, Schulz-Hildebrandt H, Bixel MG, Adams RH, Radbruch H, Hüttmann G, Hauser AE, Niesner RA. Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging. Cytometry A 2020; 97:515-527. [PMID: 32293804 DOI: 10.1002/cyto.a.24012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022]
Abstract
Two-photon microscopy (2PM) has brought unique insight into the mechanisms underlying immune system dynamics and function since it enables monitoring of cellular motility and communication in complex systems within their genuine environment-the living organism. However, use of 2PM in clinical settings is limited. In contrast, optical coherence tomography (OCT), a noninvasive label-free diagnostic imaging method, which allows monitoring morphologic changes of large tissue regions in vivo, has found broad application in the clinic. Here we developed a combined multimodal technology to achieve near-instantaneous coregistered OCT, 2PM, and second harmonic generation (SHG) imaging over large volumes (up to 1,000 × 1,000 × 300 μm3 ) of tendons and other tissue compartments in mouse paws, as well as in mouse lymph nodes, spleens, and femurs. Using our multimodal imaging approach, we found differences in macrophage cell shape and motility behavior depending on whether they are located in tendons or in the surrounding tissue compartments of the mouse paw. The cellular shape of tissue-resident macrophages, indicative for their role in tissue, correlated with the supramolecular organization of collagen as revealed by SHG and OCT. Hence, the here-presented approach of coregistered OCT and 2PM has the potential to link specific cellular phenotypes and functions (as revealed by 2PM) to tissue morphology (as highlighted by OCT) and thus, to build a bridge between basic research knowledge and clinical observations. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Lucie Reuter
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Raphael Raspe
- Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics and Intravital Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Bremer
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Robert Günther
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Judith Heidelin
- LaVision BioTec-A Miltenyi Biotec Company, Bielefeld, Germany
| | - Volker Andresen
- LaVision BioTec-A Miltenyi Biotec Company, Bielefeld, Germany
| | | | | | - Maria G Bixel
- Max-Plank-Institut for Molecular Biomedicine, Tissue Morphogenesis, Münster, Germany
| | - Ralf H Adams
- Max-Plank-Institut for Molecular Biomedicine, Tissue Morphogenesis, Münster, Germany
| | - Helena Radbruch
- Institute for Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Anja E Hauser
- Immundynamics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Immundynamics and Intravital Microscopy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analytics, Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.,Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
33
|
Stefanowski J, Fiedler AF, Köhler M, Günther R, Liublin W, Tschaikner M, Rauch A, Reismann D, Matthys R, Nützi R, Bixel MG, Adams RH, Niesner RA, Duda GN, Hauser AE. Limbostomy: Longitudinal Intravital Microendoscopy in Murine Osteotomies. Cytometry A 2020; 97:483-495. [PMID: 32196971 DOI: 10.1002/cyto.a.23997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
Abstract
Bone healing involves the interplay of immune cells, mesenchymal cells, and vasculature over the time course of regeneration. Approaches to quantify the spatiotemporal aspects of bone healing at cellular resolution during long bone healing do not yet exist. Here, a novel technique termed Limbostomy is presented, which combines intravital microendoscopy with an osteotomy. This design allows a modular combination of an internal fixator plate with a gradient refractive index (GRIN) lens at various depths in the bone marrow and can be combined with a surgical osteotomy procedure. The field of view (FOV) covers a significant area of the fracture gap and allows monitoring cellular processes in vivo. The GRIN lens causes intrinsic optical aberrations which have to be corrected. The optical system was characterized and a postprocessing algorithm was developed. It corrects for wave front aberration-induced image plane deformation and for background and noise signals, enabling us to observe subcellular processes. Exemplarily, we quantitatively and qualitatively analyze angiogenesis in bone regeneration. We make use of a transgenic reporter mouse strain with nucleargreen fluorescent protein and membrane-bound tdTomato under the Cadherin-5 promoter. We observe two phases of vascularization. First, rapid vessel sprouting pervades the FOV within 3-4 days after osteotomy. Second, the vessel network continues to be dynamically remodeled until the end of our observation time, 14 days after surgery. Limbostomy opens a unique set of opportunities and allows further insight on spatiotemporal aspects of bone marrow biology, for example, hematopoiesis, analysis of cellular niches, immunological memory, and vascularization in the bone marrow during health and disease. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jonathan Stefanowski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alexander F Fiedler
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Freie Universitat Berlin, Veterinary Medicine, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Markus Köhler
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Freie Universitat Berlin, Veterinary Medicine, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Robert Günther
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Wjatscheslaw Liublin
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Martin Tschaikner
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Ariana Rauch
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - David Reismann
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | | | | | | | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Raluca A Niesner
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Freie Universitat Berlin, Veterinary Medicine, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Georg N Duda
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Julius Wolff Institute, Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| |
Collapse
|
34
|
Si P, Honkala A, de la Zerda A, Smith BR. Optical Microscopy and Coherence Tomography of Cancer in Living Subjects. Trends Cancer 2020; 6:205-222. [PMID: 32101724 DOI: 10.1016/j.trecan.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Intravital microscopy (IVM) and optical coherency tomography (OCT) are two powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. Recent advances in labeling and label-free techniques empower IVM and OCT for a wide range of preclinical and clinical cancer imaging, providing profound insights into the complex physiological, cellular, and molecular behaviors of tumors. Preclinical IVM and OCT have elucidated many otherwise inscrutable aspects of cancer biology, while clinical applications of IVM and OCT are revolutionizing cancer diagnosis and therapies. We review important progress in the fields of IVM and OCT for cancer imaging in living subjects, highlighting key technological developments and their emerging applications in fundamental cancer biology research and clinical oncology investigation.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; The Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Bryan Ronain Smith
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Perrin L, Bayarmagnai B, Gligorijevic B. Frontiers in Intravital Multiphoton Microscopy of Cancer. Cancer Rep (Hoboken) 2020; 3:e1192. [PMID: 32368722 PMCID: PMC7197974 DOI: 10.1002/cnr2.1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background Cancer is a highly complex disease which involves the co-operation of tumor cells with multiple types of host cells and the extracellular matrix. Cancer studies which rely solely on static measurements of individual cell types are insufficient to dissect this complexity. In the last two decades, intravital microscopy has established itself as a powerful technique that can significantly improve our understanding of cancer by revealing the dynamic interactions governing cancer initiation, progression and treatment effects, in living animals. This review focuses on intravital multiphoton microscopy (IV-MPM) applications in mouse models of cancer. Recent Findings IV-MPM studies have already enabled a deeper understanding of the complex events occurring in cancer, at the molecular, cellular and tissue levels. Multiple cells types, present in different tissues, influence cancer cell behavior via activation of distinct signaling pathways. As a result, the boundaries in the field of IV-MPM are continuously being pushed to provide an integrated comprehension of cancer. We propose that optics, informatics and cancer (cell) biology are co-evolving as a new field. We have identified four emerging themes in this new field. First, new microscopy systems and image processing algorithms are enabling the simultaneous identification of multiple interactions between the tumor cells and the components of the tumor microenvironment. Second, techniques from molecular biology are being exploited to visualize subcellular structures and protein activities within individual cells of interest, and relate those to phenotypic decisions, opening the door for "in vivo cell biology". Third, combining IV-MPM with additional imaging modalities, or omics studies, holds promise for linking the cell phenotype to its genotype, metabolic state or tissue location. Finally, the clinical use of IV-MPM for analyzing efficacy of anti-cancer treatments is steadily growing, suggesting a future role of IV-MPM for personalized medicine. Conclusion IV-MPM has revolutionized visualization of tumor-microenvironment interactions in real time. Moving forward, incorporation of novel optics, automated image processing, and omics technologies, in the study of cancer biology, will not only advance our understanding of the underlying complexities but will also leverage the unique aspects of IV-MPM for clinical use.
Collapse
Affiliation(s)
- Louisiane Perrin
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
| | | | - Bojana Gligorijevic
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
- Fox Chase Cancer CenterCancer Biology ProgramPhiladelphiaPennsylvania
| |
Collapse
|
36
|
McRae TD, Oleksyn D, Miller J, Gao YR. Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning. PLoS One 2019; 14:e0225410. [PMID: 31790435 PMCID: PMC6886781 DOI: 10.1371/journal.pone.0225410] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/02/2019] [Indexed: 11/18/2022] Open
Abstract
Due to the overlapping emission spectra of fluorophores, fluorescence microscopy images often have bleed-through problems, leading to a false positive detection. This problem is almost unavoidable when the samples are labeled with three or more fluorophores, and the situation is complicated even further when imaged under a multiphoton microscope. Several methods have been developed and commonly used by biologists for fluorescence microscopy spectral unmixing, such as linear unmixing, non-negative matrix factorization, deconvolution, and principal component analysis. However, they either require pre-knowledge of emission spectra or restrict the number of fluorophores to be the same as detection channels, which highly limits the real-world applications of those spectral unmixing methods. In this paper, we developed a robust and flexible spectral unmixing method: Learning Unsupervised Means of Spectra (LUMoS), which uses an unsupervised machine learning clustering method to learn individual fluorophores’ spectral signatures from mixed images, and blindly separate channels without restrictions on the number of fluorophores that can be imaged. This method highly expands the hardware capability of two-photon microscopy to simultaneously image more fluorophores than is possible with instrumentation alone. Experimental and simulated results demonstrated the robustness of LUMoS in multi-channel separations of two-photon microscopy images. We also extended the application of this method to background/autofluorescence removal and colocalization analysis. Lastly, we integrated this tool into ImageJ to offer an easy to use spectral unmixing tool for fluorescence imaging. LUMoS allows us to gain a higher spectral resolution and obtain a cleaner image without the need to upgrade the imaging hardware capabilities.
Collapse
Affiliation(s)
- Tristan D. McRae
- Multiphoton Research Core Facility, Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States of America
| | - David Oleksyn
- Center for Vaccine Biology and Immunology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jim Miller
- Center for Vaccine Biology and Immunology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Yu-Rong Gao
- Multiphoton Research Core Facility, Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
37
|
Intravital multiphoton microscopy as a novel tool in the field of immunopharmacology. Pharmacol Ther 2019; 206:107429. [PMID: 31689449 DOI: 10.1016/j.pharmthera.2019.107429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/11/2019] [Indexed: 11/22/2022]
Abstract
Intravital microscopy with multiphoton excitation is a recently developed optical imaging technique for deep tissue imaging without fixation or sectioning, which permits examination of fundamental concepts regarding the dynamic nature of cells under physiological and pathological conditions in living animals. This novel technique also offers exciting opportunities for pharmacological research by providing new platforms for the study of cellular dynamics in response to drugs in vivo. Moreover, fluorescent chemical probes for functional or molecular analysis in single cells in vivo play important roles in pharmacology. For example, we have recently revealed the pharmacodynamic actions of different biological agents for the treatment of rheumatoid arthritis (RA) in vivo by directly visualizing drug-induced cellular behaviors and functions of osteoclasts on bone surfaces. This review focuses on the principles and advantages of intravital imaging for the dissection of pharmacological mechanisms, and discusses how such imaging can contribute to the drug development process, introducing recent trials that evaluated the in vivo pharmacological effects of various agents.
Collapse
|
38
|
Ricard C, Arroyo ED, He CX, Portera-Cailliau C, Lepousez G, Canepari M, Fiole D. Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells. Brain Struct Funct 2018; 223:3011-3043. [PMID: 29748872 PMCID: PMC6119111 DOI: 10.1007/s00429-018-1678-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Imaging the brain of living laboratory animals at a microscopic scale can be achieved by two-photon microscopy thanks to the high penetrability and low phototoxicity of the excitation wavelengths used. However, knowledge of the two-photon spectral properties of the myriad fluorescent probes is generally scarce and, for many, non-existent. In addition, the use of different measurement units in published reports further hinders the design of a comprehensive imaging experiment. In this review, we compile and homogenize the two-photon spectral properties of 280 fluorescent probes. We provide practical data, including the wavelengths for optimal two-photon excitation, the peak values of two-photon action cross section or molecular brightness, and the emission ranges. Beyond the spectroscopic description of these fluorophores, we discuss their binding to biological targets. This specificity allows in vivo imaging of cells, their processes, and even organelles and other subcellular structures in the brain. In addition to probes that monitor endogenous cell metabolism, studies of healthy and diseased brain benefit from the specific binding of certain probes to pathology-specific features, ranging from amyloid-β plaques to the autofluorescence of certain antibiotics. A special focus is placed on functional in vivo imaging using two-photon probes that sense specific ions or membrane potential, and that may be combined with optogenetic actuators. Being closely linked to their use, we examine the different routes of intravital delivery of these fluorescent probes according to the target. Finally, we discuss different approaches, strategies, and prerequisites for two-photon multicolor experiments in the brains of living laboratory animals.
Collapse
Affiliation(s)
- Clément Ricard
- Brain Physiology Laboratory, CNRS UMR 8118, 75006, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, 75006, Paris, France
- Fédération de Recherche en Neurosciences FR 3636, Paris, 75006, France
| | - Erica D Arroyo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Cynthia X He
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Gabriel Lepousez
- Unité Perception et Mémoire, Département de Neuroscience, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marco Canepari
- Laboratory for Interdisciplinary Physics, UMR 5588 CNRS and Université Grenoble Alpes, 38402, Saint Martin d'Hères, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France
- Institut National de la Santé et Recherche Médicale (INSERM), Grenoble, France
| | - Daniel Fiole
- Unité Biothérapies anti-Infectieuses et Immunité, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge cedex, France.
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, 28 rue du docteur Roux, 75725, Paris Cedex 15, France.
- ESRF-The European Synchrotron, 38043, Grenoble cedex, France.
| |
Collapse
|
39
|
Holzwarth K, Köhler R, Philipsen L, Tokoyoda K, Ladyhina V, Wählby C, Niesner RA, Hauser AE. Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bone marrow sections. Cytometry A 2018; 93:876-888. [DOI: 10.1002/cyto.a.23526] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/22/2018] [Accepted: 06/20/2018] [Indexed: 01/07/2023]
Affiliation(s)
| | - Ralf Köhler
- Deutsches Rheumaforschungszentrum, a Leibniz Institute; Berlin Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Medical Faculty; Otto von Guericke University; Magdeburg Germany
| | - Koji Tokoyoda
- Deutsches Rheumaforschungszentrum, a Leibniz Institute; Berlin Germany
| | - Valeriia Ladyhina
- Centre for Image Analysis, Department of Information Technology, Division of Visual Information and Interaction; Uppsala University; Uppsala Sweden
| | - Carolina Wählby
- Centre for Image Analysis, Department of Information Technology, Division of Visual Information and Interaction; Uppsala University; Uppsala Sweden
| | - Raluca A. Niesner
- Deutsches Rheumaforschungszentrum, a Leibniz Institute; Berlin Germany
| | - Anja E. Hauser
- Immune Dynamics; Charité - Universitätsmedizin; Berlin Germany
- Deutsches Rheumaforschungszentrum, a Leibniz Institute; Berlin Germany
| |
Collapse
|
40
|
Phasor-Based Endogenous NAD(P)H Fluorescence Lifetime Imaging Unravels Specific Enzymatic Activity of Neutrophil Granulocytes Preceding NETosis. Int J Mol Sci 2018; 19:ijms19041018. [PMID: 29596303 PMCID: PMC5979388 DOI: 10.3390/ijms19041018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Abstract
Time-correlated single-photon counting combined with multi-photon laser scanning microscopy has proven to be a versatile tool to perform fluorescence lifetime imaging in biological samples and, thus, shed light on cellular functions, both in vitro and in vivo. Here, by means of phasor-analyzed endogenous NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) fluorescence lifetime imaging, we visualize the shift in the cellular metabolism of healthy human neutrophil granulocytes during phagocytosis of Staphylococcus aureus pHrodo™ beads. We correlate this with the process of NETosis, i.e., trapping of pathogens by DNA networks. Hence, we are able to directly show the dynamics of NADPH oxidase activation and its requirement in triggering NETosis in contrast to other pathways of cell death and to decipher the dedicated spatio-temporal sequence between NADPH oxidase activation, nuclear membrane disintegration and DNA network formation. The endogenous FLIM approach presented here uniquely meets the increasing need in the field of immunology to monitor cellular metabolism as a basic mechanism of cellular and tissue functions.
Collapse
|