1
|
Wojtyś MI, Maksymiuk W, Narczyk M, Bubić A, Ašler IL, Krzyżek P, Gościniak G, Jagusztyn-Krynicka EK, Bzowska A. Vitamin B6 inhibits activity of Helicobacter pylori adenylosuccinate synthetase and growth of reference and clinical, antibiotic-resistant H. pylori strains. J Enzyme Inhib Med Chem 2024; 39:2372734. [PMID: 39149761 DOI: 10.1080/14756366.2024.2372734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
The current therapies against gastric pathogen Helicobacter pylori are ineffective in over 20% of patients. Enzymes belonging to the purine salvage pathway are considered as novel drug targets in this pathogen. Therefore, the main aim of the current study was to determine the antibacterial activity of pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, against reference and clinical strains of H. pylori. Using a broad set of microbiological, physicochemical (UV absorption, LC-MS, X-ray analysis) and in silico experiments, we were able to prove that PLP inhibits adenylosuccinate synthetase (AdSS) from H. pylori by the competition with GTP (IC50eq ∼30 nM). This behaviour was attributed to formation of a Schiff base with a lysine residue (a covalent bond with Lys322 in the GTP binding site of AdSS) and was potentiated by the presence of vitamin C. This antibacterial activity of PLP gives hope for its future use against H. pylori.
Collapse
Affiliation(s)
- Marta Ilona Wojtyś
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Weronika Maksymiuk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Marta Narczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Ante Bubić
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Pals MJ, Lindberg A, Velema WA. Chemical strategies for antisense antibiotics. Chem Soc Rev 2024. [PMID: 39436264 PMCID: PMC11495246 DOI: 10.1039/d4cs00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/23/2024]
Abstract
Antibacterial resistance is a severe threat to modern medicine and human health. To stay ahead of constantly-evolving bacteria we need to expand our arsenal of effective antibiotics. As such, antisense therapy is an attractive approach. The programmability allows to in principle target any RNA sequence within bacteria, enabling tremendous selectivity. In this Tutorial Review we provide guidelines for devising effective antibacterial antisense agents and offer a concise perspective for future research. We will review the chemical architectures of antibacterial antisense agents with a special focus on the delivery and target selection for successful antisense design. This Tutorial Review will strive to serve as an essential guide for antibacterial antisense technology development.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Alexander Lindberg
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Siekierska I, Burmistrz M, Trylska J. Evaluating delivery of peptide nucleic acids to Gram-negative bacteria using differently linked membrane-active peptides and their stapled analogs. Bioorg Med Chem Lett 2024; 114:129993. [PMID: 39426432 DOI: 10.1016/j.bmcl.2024.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Antisense oligonucleotides have been developed as therapeutic compounds, with peptide nucleic acid (PNA) emerging as a promising nucleic acid mimic for antimicrobial applications. To be effective, PNAs must be internalized into bacterial cells, as they are not naturally absorbed. A strategy to improve PNA membrane penetration and cellular uptake involves covalently conjugating them to cell-penetrating peptides. However, these membrane-active peptides can exhibit cytotoxicity, and their efficiency as PNA carriers needs to be enhanced. Therefore, we explored new peptide-PNA conjugates and their linkers to understand how they affect PNA uptake into bacteria. We conjugated PNA to two peptides, anoplin and (KFF)3K, along with their structurally stabilized hydrocarbon-stapled derivatives, and evaluated their transport into various bacterial strains. The PNA sequence targeted bacterial mRNA encoding the essential acyl carrier protein. As linkages, we used either a non-cleavable 8-amino-2,6-dioxaoctanoyl (ethylene glycol, eg1) linker or a reducible disulfide bridge. We found that the hydrocarbon-stapled peptides did not enhance PNA delivery, despite the strong inner- and outer-membrane-penetrating capabilities of the standalone peptides. Additionally, the disulfide bridge linkage, which is cleavable in the bacterial cytoplasm, decreased the antimicrobial activity of the peptide-PNA conjugates. Notably, we identified anoplin as a new potent PNA carrier peptide, with the anoplin-eg1-PNA conjugate demonstrating antibacterial activity against E. coli and S. Typhimurium strains in the 2-4 µM range.
Collapse
Affiliation(s)
- Izabela Siekierska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Michał Burmistrz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
4
|
Thombare VJ, Wu Y, Pamulapati K, Han M, Tailhades J, Cryle MJ, Roberts KD, Velkov T, Li J, Patil NA. Advancing Nitrile-Aminothiol Strategy for Dual and Sequential Bioconjugation. Chemistry 2024; 30:e202401674. [PMID: 38839567 DOI: 10.1002/chem.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Nitrile-aminothiol conjugation (NATC) stands out as a promising biocompatible ligation technique due to its high chemo-selectivity. Herein we investigated the reactivity and substrate scope of NAT conjugation chemistry, thus developing a novel pH dependent orthogonal NATC as a valuable tool for chemical biology. The study of reaction kinetics elucidated that the combination of heteroaromatic nitrile and aminothiol groups led to the formation of an optimal bioorthogonal pairing, which is pH dependent. This pairing system was effectively utilized for sequential and dual conjugation. Subsequently, these rapid (≈1 h) and high yield (>90 %) conjugation strategies were successfully applied to a broad range of complex biomolecules, including oligonucleotides, chelates, small molecules and peptides. The effectiveness of this conjugation chemistry was demonstrated by synthesizing a fluorescently labelled antimicrobial peptide-oligonucleotide complex as a dual conjugate to imaging in live cells. This first-of-its-kind sequential NATC approach unveils unprecedented opportunities in modern chemical biology, showcasing exceptional adaptability in rapidly creating structurally complex bioconjugates. Furthermore, the results highlight its potential for versatile applications across fundamental and translational biomedical research.
Collapse
Affiliation(s)
- Varsha J Thombare
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Yimin Wu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Kavya Pamulapati
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Meiling Han
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Julien Tailhades
- Department of Biochemistry Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Max J Cryle
- Department of Biochemistry Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Kade D Roberts
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Tony Velkov
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Nitin A Patil
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| |
Collapse
|
5
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MDC, Azevedo NF. Oligonucleotide probes for imaging and diagnosis of bacterial infections. Crit Rev Biotechnol 2024:1-20. [PMID: 38830823 DOI: 10.1080/07388551.2024.2344574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/17/2023] [Indexed: 06/05/2024]
Abstract
The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Miguel Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rita Sobral Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Ghosh C, Popella L, Dhamodharan V, Jung J, Dietzsch J, Barquist L, Höbartner C, Vogel J. A comparative analysis of peptide-delivered antisense antibiotics using diverse nucleotide mimics. RNA (NEW YORK, N.Y.) 2024; 30:624-643. [PMID: 38413166 PMCID: PMC11098465 DOI: 10.1261/rna.079969.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Antisense oligomer (ASO)-based antibiotics that target mRNAs of essential bacterial genes have great potential for counteracting antimicrobial resistance and for precision microbiome editing. To date, the development of such antisense antibiotics has primarily focused on using phosphorodiamidate morpholino (PMO) and peptide nucleic acid (PNA) backbones, largely ignoring the growing number of chemical modalities that have spurred the success of ASO-based human therapy. Here, we directly compare the activities of seven chemically distinct 10mer ASOs, all designed to target the essential gene acpP upon delivery with a KFF-peptide carrier into Salmonella. Our systematic analysis of PNA, PMO, phosphorothioate (PTO)-modified DNA, 2'-methylated RNA (RNA-OMe), 2'-methoxyethylated RNA (RNA-MOE), 2'-fluorinated RNA (RNA-F), and 2'-4'-locked RNA (LNA) is based on a variety of in vitro and in vivo methods to evaluate ASO uptake, target pairing and inhibition of bacterial growth. Our data show that only PNA and PMO are efficiently delivered by the KFF peptide into Salmonella to inhibit bacterial growth. Nevertheless, the strong target binding affinity and in vitro translational repression activity of LNA and RNA-MOE make them promising modalities for antisense antibiotics that will require the identification of an effective carrier.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Linda Popella
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| | - V Dhamodharan
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Jakob Jung
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Julia Dietzsch
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080, Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
- Faculty of Medicine, University of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
7
|
MacLelland V, Kravitz M, Gupta A. Therapeutic and diagnostic applications of antisense peptide nucleic acids. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102086. [PMID: 38204913 PMCID: PMC10777018 DOI: 10.1016/j.omtn.2023.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peptide nucleic acids (PNAs) are synthetic nucleic acid analogs with a neutral N-(2-aminoethyl) glycine backbone. PNAs possess unique physicochemical characteristics such as increased resistance to enzymatic degradation, ionic strength and stability over a wide range of temperatures and pH, and low intrinsic electrostatic repulsion against complementary target oligonucleotides. PNA has been widely used as an antisense oligonucleotide (ASO). Despite the favorable characteristics of PNA, in comparison with other ASO technologies, the use of antisense PNA for novel therapeutics has lagged. This review provides a brief overview of PNA, its antisense mechanisms of action, delivery strategies, and highlights successful applications of PNA, focusing on anti-pathogenic, anti-neurodegenerative disease, anti-cancer, and diagnostic agents. For each application, several studies are discussed focusing on the different target sites of the PNA, design of different PNAs and the therapeutic outcome in different cell lines and animal models. Thereafter, persisting limitations slowing the successful integration of antisense PNA therapeutics are discussed in order to highlight actionable next steps in the development and optimization of PNA as an ASO.
Collapse
Affiliation(s)
- Victoria MacLelland
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Madeline Kravitz
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| |
Collapse
|
8
|
Tsylents U, Burmistrz M, Wojciechowska M, Stępień J, Maj P, Trylska J. Iron uptake pathway of Escherichia coli as an entry route for peptide nucleic acids conjugated with a siderophore mimic. Front Microbiol 2024; 15:1331021. [PMID: 38357356 PMCID: PMC10864483 DOI: 10.3389/fmicb.2024.1331021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Bacteria secrete various iron-chelators (siderophores), which scavenge Fe3+ from the environment, bind it with high affinity, and retrieve it inside the cell. After the Fe3+ uptake, bacteria extract the soluble iron(II) from the siderophore. Ferric siderophores are transported inside the cell via the TonB-dependent receptor system. Importantly, siderophore uptake paths have been also used by sideromycins, natural antibiotics. Our goal is to hijack the transport system for hydroxamate-type siderophores to deliver peptide nucleic acid oligomers into Escherichia coli cells. As siderophore mimics we designed and synthesized linear and cyclic Nδ-acetyl-Nδ-hydroxy-l-ornithine based peptides. Using circular dichroism spectroscopy, we found that iron(III) is coordinated by the linear trimer with hydroxamate groups but not by the cyclic peptide. The internal flexibility of the linear siderophore oxygen atoms and their interactions with Fe3+ were confirmed by all-atom molecular dynamics simulations. Using flow cytometry we found that the designed hydroxamate trimer transports PNA oligomers inside the E. coli cells. Growth recovery assays on various E. coli mutants suggest the pathway of this transport through the FhuE outer-membrane receptor, which is responsible for the uptake of the natural iron chelator, ferric-coprogen. This pathway also involves the FhuD periplasmic binding protein. Docking of the siderophores to the FhuE and FhuD receptor structures showed that binding of the hydroxamate trimer is energetically favorable corroborating the experimentally suggested uptake path. Therefore, this siderophore mimic, as well as its conjugate with PNA, is most probably internalized through the hydroxamate pathway.
Collapse
|
9
|
Hizume T, Sato Y, Iwaki H, Honda K, Okano K. Subtractive modification of bacterial consortium using antisense peptide nucleic acids. Front Microbiol 2024; 14:1321428. [PMID: 38260881 PMCID: PMC10800778 DOI: 10.3389/fmicb.2023.1321428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Microbiome engineering is an emerging research field that aims to design an artificial microbiome and modulate its function. In particular, subtractive modification of the microbiome allows us to create an artificial microbiome without the microorganism of interest and to evaluate its functions and interactions with other constituent bacteria. However, few techniques that can specifically remove only a single species from a large number of microorganisms and can be applied universally to a variety of microorganisms have been developed. Antisense peptide nucleic acid (PNA) is a potent designable antimicrobial agent that can be delivered into microbial cells by conjugating with a cell-penetrating peptide (CPP). Here, we tested the efficacy of the conjugate of CPP and PNA (CPP-PNA) as microbiome modifiers. The addition of CPP-PNA specifically inhibited the growth of Escherichia coli and Pseudomonas putida in an artificial bacterial consortium comprising E. coli, P. putida, Pseudomonas fluorescens, and Lactiplantibacillus plantarum. Moreover, the growth inhibition of P. putida promoted the growth of P. fluorescens and inhibited the growth of L. plantarum. These results indicate that CPP-PNA can be used not only for precise microbiome engineering but also for analyzing the growth relationships among constituent microorganisms in the microbiome.
Collapse
Affiliation(s)
- Tatsuya Hizume
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yu Sato
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kenji Okano
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
- International Center for Biotechnology, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Tsylents U, Siekierska I, Trylska J. Peptide nucleic acid conjugates and their antimicrobial applications-a mini-review. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:533-544. [PMID: 37610696 PMCID: PMC10618302 DOI: 10.1007/s00249-023-01673-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Peptide nucleic acid (PNA) is a nucleic acid mimic with high specificity and binding affinity to natural DNA or RNA, as well as resistance to enzymatic degradation. PNA sequences can be designed to selectively silence gene expression, which makes PNA a promising tool for antimicrobial applications. However, the poor membrane permeability of PNA remains the main limiting factor for its applications in cells. To overcome this obstacle, PNA conjugates with different molecules have been developed. This mini-review focuses on covalently linked conjugates of PNA with cell-penetrating peptides, aminosugars, aminoglycoside antibiotics, and non-peptidic molecules that were tested, primarily as PNA carriers, in antibacterial and antiviral applications. The chemistries of the conjugation and the applied linkers are also discussed.
Collapse
Affiliation(s)
- Uladzislava Tsylents
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Izabela Siekierska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland.
| |
Collapse
|
11
|
Macyszyn J, Chyży P, Burmistrz M, Lobka M, Miszkiewicz J, Wojciechowska M, Trylska J. Structural dynamics influences the antibacterial activity of a cell-penetrating peptide (KFF) 3K. Sci Rep 2023; 13:14826. [PMID: 37684254 PMCID: PMC10491836 DOI: 10.1038/s41598-023-38745-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/13/2023] [Indexed: 09/10/2023] Open
Abstract
Given the widespread demand for novel antibacterial agents, we modified a cell-penetrating peptide (KFF)3K to transform it into an antibacterial peptide. Namely, we inserted a hydrocarbon staple into the (KFF)3K sequence to induce and stabilize its membrane-active secondary structure. The staples were introduced at two positions, (KFF)3K[5-9] and (KFF)3K[2-6], to retain the initial amphipathic character of the unstapled peptide. The stapled analogues are protease resistant contrary to (KFF)3K; 90% of the stapled (KFF)3K[5-9] peptide remained undigested after incubation in chymotrypsin solution. The stapled peptides showed antibacterial activity (with minimal inhibitory concentrations in the range of 2-16 µM) against various Gram-positive and Gram-negative strains, contrary to unmodified (KFF)3K, which had no antibacterial effect against any strain at concentrations up to 32 µM. Also, both stapled peptides adopted an α-helical structure in the buffer and micellar environment, contrary to a mostly undefined structure of the unstapled (KFF)3K in the buffer. We found that the antibacterial activity of (KFF)3K analogues is related to their disruptive effect on cell membranes and we showed that by stapling this cell-penetrating peptide, we can induce its antibacterial character.
Collapse
Affiliation(s)
- Julia Macyszyn
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Piotr Chyży
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał Burmistrz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Małgorzata Lobka
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Joanna Miszkiewicz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | | | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
12
|
Hong S, Jiang W, Ding Q, Lin K, Zhao C, Wang X. The Current Progress of Tetrahedral DNA Nanostructure for Antibacterial Application and Bone Tissue Regeneration. Int J Nanomedicine 2023; 18:3761-3780. [PMID: 37457798 PMCID: PMC10348378 DOI: 10.2147/ijn.s403882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Recently, programmable assembly technologies have enabled the application of DNA in the creation of new nanomaterials with unprecedented functionality. One of the most common DNA nanostructures is the tetrahedral DNA nanostructure (TDN), which has attracted great interest worldwide due to its high stability, simple assembly procedure, high predictability, perfect programmability, and excellent biocompatibility. The unique spatial structure of TDN allows it to penetrate cell membranes in abundance and regulate cellular biological properties as a natural genetic material. Previous studies have demonstrated that TDNs can regulate various cellular biological properties, including promoting cells proliferation, migration and differentiation, inhibiting cells apoptosis, as well as possessing anti-inflammation and immunomodulatory capabilities. Furthermore, functional molecules can be easily modified at the vertices of DNA tetrahedron, DNA double helix structure, DNA tetrahedral arms or DNA tetrahedral cage structure, enabling TDN to be used as a nanocarrier for a variety of biological applications, including targeted therapies, molecular diagnosis, biosensing, antibacterial treatment, antitumor strategies, and tissue regeneration. In this review, we mainly focus on the current progress of TDN-based nanomaterials for antimicrobial applications, bone and cartilage tissue repair and regeneration. The synthesis and characterization of TDN, as well as the biological merits are introduced. In addition, the challenges and prospects of TDN-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Shebin Hong
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Weidong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Qinfeng Ding
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Cancan Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Tekintaş Y, Temel A. Antisense oligonucleotides: a promising therapeutic option against infectious diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:1-39. [PMID: 37395450 DOI: 10.1080/15257770.2023.2228841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Infectious diseases have been one of the biggest health problems of humanity for centuries. Nucleic acid-based therapeutics have received attention in recent years with their effectiveness in the treatment of various infectious diseases and vaccine development studies. This review aims to provide a comprehensive understanding of the basic properties underlying the mechanism of antisense oligonucleotides (ASOs), their applications, and their challenges. The efficient delivery of ASOs is the greatest challenge for their therapeutic success, but this problem is overcome with new-generation antisense molecules developed with chemical modifications. The types, carrier molecules, and gene regions targeted by sequences have been summarized in detail. Research and development of antisense therapy is still in its infancy; however, gene silencing therapies appear to have the potential for faster and longer-lasting activity than conventional treatment strategies. On the other hand, realizing the potential of antisense therapy will require a large initial economic investment to ascertain the pharmacological properties and learn how to optimize them. The ability of ASOs to be rapidly designed and synthesized to target different microbes can reduce drug discovery time from 6 years to 1 year. Since ASOs are not particularly affected by resistance mechanisms, they come to the fore in the fight against antimicrobial resistance. The design-based flexibility of ASOs has enabled it to be used for different types of microorganisms/genes and successful in vitro and in vivo results have been revealed. The current review summarized a comprehensive understanding of ASO therapy in combating bacterial and viral infections.
Collapse
Affiliation(s)
- Yamaç Tekintaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
14
|
Macyszyn J, Burmistrz M, Mieczkowski A, Wojciechowska M, Trylska J. Conjugates of Aminoglycosides with Stapled Peptides as a Way to Target Antibiotic-Resistant Bacteria. ACS OMEGA 2023; 8:19047-19056. [PMID: 37273645 PMCID: PMC10233823 DOI: 10.1021/acsomega.3c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023]
Abstract
The misuse and overuse of antibiotics led to the development of bacterial resistance to existing aminoglycoside (AMG) antibiotics and limited their use. Consequently, there is a growing need to develop effective antimicrobials against multidrug-resistant bacteria. To target resistant strains, we propose to combine 2-deoxystreptamine AMGs, neomycin (NEO) and amikacin (AMK), with a membrane-active antimicrobial peptide anoplin and its hydrocarbon stapled derivative. The AMG-peptide hybrids were conjugated using the click chemistry reaction in solution to obtain a non-cleavable triazole linker and by disulfide bridge formation on the resin to obtain a linker cleavable in the bacterial cytoplasm. Homo-dimers connected via disulfide bridges between the N-terminus thiol analogues of anoplin and hydrocarbon stapled anoplin were also synthesized. These hybrid compounds show a notable increase in antibacterial and bactericidal activity, as compared to the unconjugated ones or their combinations, against Gram-positive and Gram-negative bacteria, especially for the strains resistant to AMK or NEO. The conjugates and disulfide peptide dimers exhibit low hemolytic activity on sheep red blood erythrocytes.
Collapse
Affiliation(s)
- Julia Macyszyn
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Michał Burmistrz
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Adam Mieczkowski
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Monika Wojciechowska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Lennon SR, Wierzba AJ, Siwik SH, Gryko D, Palmer AE, Batey RT. Targeting Riboswitches with Beta-Axial-Substituted Cobalamins. ACS Chem Biol 2023; 18:1136-1147. [PMID: 37094176 PMCID: PMC10395008 DOI: 10.1021/acschembio.2c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
RNA-targeting small-molecule therapeutics is an emerging field hindered by an incomplete understanding of the basic principles governing RNA-ligand interactions. One way to advance our knowledge in this area is to study model systems where these interactions are better understood, such as riboswitches. Riboswitches bind a wide array of small molecules with high affinity and selectivity, providing a wealth of information on how RNA recognizes ligands through diverse structures. The cobalamin-sensing riboswitch is a particularly useful model system, as similar sequences show highly specialized binding preferences for different biological forms of cobalamin. This riboswitch is also widely dispersed across bacteria and therefore holds strong potential as an antibiotic target. Many synthetic cobalamin forms have been developed for various purposes including therapeutics, but their interaction with cobalamin riboswitches is yet to be explored. In this study, we characterize the interactions of 11 cobalamin derivatives with three representative cobalamin riboswitches using in vitro binding experiments (both chemical footprinting and a fluorescence-based assay) and a cell-based reporter assay. The derivatives show productive interactions with two of the three riboswitches, demonstrating simultaneous plasticity and selectivity within these RNAs. The observed plasticity is partially achieved through a novel structural rearrangement within the ligand binding pocket, providing insight into how similar RNA structures can be targeted. As the derivatives also show in vivo functionality, they serve as several potential lead compounds for further drug development.
Collapse
Affiliation(s)
- Shelby R. Lennon
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Aleksandra J. Wierzba
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303 – 0596, USA
| | - Shea H. Siwik
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303 – 0596, USA
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
16
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
17
|
Todkari I, Gupta MK, Ganesh KN. Silver soldering of PNA:DNA duplexes: assembly of a triple duplex from bimodal PNAs with all-C on one face. Chem Commun (Camb) 2022; 58:4083-4086. [PMID: 35266467 DOI: 10.1039/d1cc07297h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA:bm-PNA duplexes endowed with all-C on either the t-amide or triazole face and mixed base sequence on the other face can be welded with silver ions through C:Ag+:C connects to give triple duplexes in one complex. The interplay of WC and Ag+-mediated duplexes leads to synergistic stability effects on both duplexes and the complex.
Collapse
Affiliation(s)
- Iranna Todkari
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India. .,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road Road, Tirupati, 517507, Andhra Pradesh, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India. .,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road Road, Tirupati, 517507, Andhra Pradesh, India
| |
Collapse
|
18
|
Machalska E, Zajac G, Wierzba AJ, Kapitán J, Andruniów T, Spiegel M, Gryko D, Bouř P, Baranska M. Recognition of the True and False Resonance Raman Optical Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ewa Machalska
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
| | - Grzegorz Zajac
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Aleksandra J. Wierzba
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Josef Kapitán
- Department of Optics Palacký University Olomouc 17. listopadu 12 77146 Olomouc Czech Republic
| | - Tadeusz Andruniów
- Department of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicine Wroclaw Medical University Borowska 211A 50-556 Wroclaw Poland
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Malgorzata Baranska
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Bobrzynskiego 14 30-348 Krakow Poland
| |
Collapse
|
19
|
Machalska E, Zajac G, Wierzba AJ, Kapitán J, Andruniów T, Spiegel M, Gryko D, Bouř P, Baranska M. Recognition of the True and False Resonance Raman Optical Activity. Angew Chem Int Ed Engl 2021; 60:21205-21210. [PMID: 34216087 PMCID: PMC8519086 DOI: 10.1002/anie.202107600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Resonance Raman optical activity (RROA) possesses all aspects of a sensitive tool for molecular detection, but its measurement remains challenging. We demonstrate that reliable recording of RROA of chiral colorful compounds is possible, but only after considering the effect of the electronic circular dichroism (ECD) on the ROA spectra induced by the dissolved chiral compound. We show RROA for a number of model vitamin B12 derivatives that are chemically similar but exhibit distinctively different spectroscopic behavior. The ECD/ROA effect is proportional to the concentration and dependent on the optical pathlength of the light propagating through the sample. It can severely alter relative band intensities and signs in the natural RROA spectra. The spectra analyses are supported by computational modeling based on density functional theory. Neglecting the ECD effect during ROA measurement can lead to misinterpretation of the recorded spectra and erroneous conclusions about the molecular structure.
Collapse
Affiliation(s)
- Ewa Machalska
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
| | - Grzegorz Zajac
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Aleksandra J. Wierzba
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Josef Kapitán
- Department of OpticsPalacký University Olomouc17. listopadu 1277146OlomoucCzech Republic
| | - Tadeusz Andruniów
- Department of ChemistryWroclaw University of Science and TechnologyWyb. Wyspianskiego 2750-370WroclawPoland
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal MedicineWroclaw Medical UniversityBorowska 211A50-556WroclawPoland
| | - Dorota Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Petr Bouř
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Malgorzata Baranska
- Faculty of ChemistryJagiellonian UniversityGronostajowa 230-387KrakowPoland
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityBobrzynskiego 1430-348KrakowPoland
| |
Collapse
|
20
|
Bhingardeve P, Jain P, Ganesh KN. Molecular Assembly of Triplex of Duplexes from Homothyminyl-Homocytosinyl Cγ( S/ R)-Bimodal Peptide Nucleic Acids with dA 8/dG 6 and the Cell Permeability of Bimodal Peptide Nucleic Acids. ACS OMEGA 2021; 6:19757-19770. [PMID: 34368563 PMCID: PMC8340421 DOI: 10.1021/acsomega.1c02451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/05/2021] [Indexed: 05/08/2023]
Abstract
Peptide nucleic acids (PNAs) are analogues of DNA with a neutral acyclic polyamide backbone containing nucleobases attached through a t-amide link on repeating units of aminoethylglycine (aeg). They bind to complementary DNA or RNA in a sequence-specific manner to form duplexes with higher stablity than DNA:DNA and DNA:RNA hybrids. We have recently explored a new type of PNA termed bimodal PNA (bm-PNA) designed with two nucleobases per aeg repeating unit of PNA oligomer and attached at Cα or Cγ of each aeg unit through a spacer sidechain. We demonstrated that Cγ-bimodal PNA oligomers with mixed nucleobase sequences bind concurrently two different complementary DNAs, forming double duplexes, one from each t-amide and Cγ face, sharing a common PNA backbone. In such bm-PNA:DNA ternary complexes, the two duplexes show higher thermal stability than individual duplexes. Herein, we show that Cγ(S/R)-bimodal PNAs with homothymines (T8) on a t-amide face and homocytosine (C6) on a Cγ-face form a conjoined pentameric complex consisting of a triplex (bm-PNA-T8)2:dA8 and two duplexes of bm-PNA-C6:dG6. The pentameric complex [dG6:Cγ(S/R)-bm-PNA:dA8:Cγ(S/R)-bm-PNA:dG6] exhibits higher thermal stability than the individual triplex and duplex, with Cγ(S)-bm-PNA complexes being more stable than Cγ(R)-bm-PNA complexes. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-order assemblies with DNA and RNA. The Cγ(S/R)-bimodal PNAs are shown to enter MCF7 and NIH 3T3 cells and exhibit low toxicity to cells.
Collapse
Affiliation(s)
- Pramod Bhingardeve
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Prashant Jain
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Krishna N. Ganesh
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Indian
Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| |
Collapse
|
21
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
22
|
Jackowska A, Gryko D. Vitamin B 12 Derivatives Suitably Tailored for the Synthesis of Photolabile Conjugates. Org Lett 2021; 23:4940-4944. [PMID: 33794095 DOI: 10.1021/acs.orglett.1c00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin B12 conjugates are broadly studied in biological sciences. As light offers spatiotemporal control, we decided to develop a method for the preparation of vitamin B12 conjugates that release tethered molecules upon exposure to light. Herein, we report vitamin B12 derivatives possessing a photolabile linker suitable for conjugation with amines, azides, and alkynes. The potential applications of such conjugates are broad and include the delivery of drugs, labels, and imaging agents to their place of action and spatiotemporal release.
Collapse
Affiliation(s)
- Agnieszka Jackowska
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
23
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
24
|
Borner T, Workinger JL, Tinsley IC, Fortin SM, Stein LM, Chepurny OG, Holz GG, Wierzba AJ, Gryko D, Nexø E, Shaulson ED, Bamezai A, Da Silva VAR, De Jonghe BC, Hayes MR, Doyle RP. Corrination of a GLP-1 Receptor Agonist for Glycemic Control without Emesis. Cell Rep 2021; 31:107768. [PMID: 32553160 PMCID: PMC7376604 DOI: 10.1016/j.celrep.2020.107768] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/10/2019] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat type 2 diabetes mellitus often produce nausea, vomiting, and in some patients, undesired anorexia. Notably, these behavioral effects are caused by direct central GLP-1R activation. Herein, we describe the creation of a GLP-1R agonist conjugate with modified brain penetrance that enhances GLP-1R-mediated glycemic control without inducing vomiting. Covalent attachment of the GLP-1R agonist exendin-4 (Ex4) to dicyanocobinamide (Cbi), a corrin ring containing precursor of vitamin B12, produces a "corrinated" Ex4 construct (Cbi-Ex4). Data collected in the musk shrew (Suncus murinus), an emetic mammal, reveal beneficial effects of Cbi-Ex4 relative to Ex4, as evidenced by improvements in glycemic responses in glucose tolerance tests and a profound reduction of emetic events. Our findings highlight the potential for clinical use of Cbi-Ex4 for millions of patients seeking improved glycemic control without common side effects (e.g., emesis) characteristic of current GLP-1 therapeutics.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ian C Tinsley
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleg G Chepurny
- Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA
| | - George G Holz
- Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA
| | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Ebba Nexø
- Department of Clinical Biochemistry and Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Evan D Shaulson
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ankur Bamezai
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Valentina A Rodriguez Da Silva
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, NY, USA; Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA.
| |
Collapse
|
25
|
Chen W, Dong B, Liu W, Liu Z. Recent Advances in Peptide Nucleic Acids as Antibacterial Agents. Curr Med Chem 2021; 28:1104-1125. [PMID: 32484766 DOI: 10.2174/0929867327666200602132504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
The emergence of antibiotic-resistant bacteria and the slow progress in searching for new antimicrobial agents makes it hard to treat bacterial infections and cause problems for the healthcare system worldwide, including high costs, prolonged hospitalizations, and increased mortality. Therefore, the discovery of effective antibacterial agents is of great importance. One attractive alternative is antisense peptide nucleic acid (PNA), which inhibits or eliminates gene expression by binding to the complementary messenger RNA (mRNA) sequence of essential genes or the accessible and functionally important regions of the ribosomal RNA (rRNA). Following 30 years of development, PNAs have played an extremely important role in the treatment of Gram-positive, Gram-negative, and acidfast bacteria due to their desirable stability of hybrid complex with target RNA, the strong affinity for target mRNA/rRNA, and the stability against nucleases. PNA-based antisense antibiotics can strongly inhibit the growth of pathogenic and antibiotic-resistant bacteria in a sequence-specific and dose-dependent manner at micromolar concentrations. However, several fundamental challenges, such as intracellular delivery, solubility, physiological stability, and clearance still need to be addressed before PNAs become broadly applicable in clinical settings. In this review, we summarize the recent advances in PNAs as antibacterial agents and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| | - Bo Dong
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| |
Collapse
|
26
|
Pereira S, Yao R, Gomes M, Jørgensen PT, Wengel J, Azevedo NF, Sobral Santos R. Can Vitamin B12 Assist the Internalization of Antisense LNA Oligonucleotides into Bacteria? Antibiotics (Basel) 2021; 10:antibiotics10040379. [PMID: 33916701 PMCID: PMC8065541 DOI: 10.3390/antibiotics10040379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of bacterial resistance to traditional small-molecule antibiotics is fueling the search for innovative strategies to treat infections. Inhibiting the expression of essential bacterial genes using antisense oligonucleotides (ASOs), particularly composed of nucleic acid mimics (NAMs), has emerged as a promising strategy. However, their efficiency depends on their association with vectors that can translocate the bacterial envelope. Vitamin B12 is among the largest molecules known to be taken up by bacteria and has very recently started to gain interest as a trojan-horse vector. Gapmers and steric blockers were evaluated as ASOs against Escherichia coli (E. coli). Both ASOs were successfully conjugated to B12 by copper-free azide-alkyne click-chemistry. The biological effect of the two conjugates was evaluated together with their intracellular localization in E. coli. Although not only B12 but also both B12-ASO conjugates interacted strongly with E. coli, they were mostly colocalized with the outer membrane. Only 6–9% were detected in the cytosol, which showed to be insufficient for bacterial growth inhibition. These results suggest that the internalization of B12-ASO conjugates is strongly affected by the low uptake rate of the B12 in E. coli and that further studies are needed before considering this strategy against biofilms in vivo.
Collapse
Affiliation(s)
- Sara Pereira
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.P.); (M.G.); (N.F.A.)
| | - Ruwei Yao
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.Y.); (P.T.J.); (J.W.)
| | - Mariana Gomes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.P.); (M.G.); (N.F.A.)
| | - Per Trolle Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.Y.); (P.T.J.); (J.W.)
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (R.Y.); (P.T.J.); (J.W.)
| | - Nuno Filipe Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.P.); (M.G.); (N.F.A.)
| | - Rita Sobral Santos
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.P.); (M.G.); (N.F.A.)
- Correspondence:
| |
Collapse
|
27
|
Facile Preparation of PNA-Peptide Conjugates with a Polar Maleimide-Thioether Linkage. Methods Mol Biol 2021; 2105:97-118. [PMID: 32088866 DOI: 10.1007/978-1-0716-0243-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Conjugation of a delivery peptide containing a thiol functionality (e.g., a cysteine residue) with a PNA oligomer displaying a single unprotected aliphatic primary amine (e.g., the N-terminus or a C-terminal lysine residue) can be achieved via a one-pot modification with a bisfunctional maleimide linker also displaying a reactive N-hydroxysuccinimidyl ester group (e.g., Mal-PEG2-OSu). Here, an optimized protocol with respect to ratios between the reactants as well as recommended reaction times is presented. Formation and conversion of the maleimide-PNA intermediate was followed by analytical HPLC as exemplified by its conjugation to (KFF)3K-Cys-NH2. In addition, the reaction time required for direct conversion of a preformed Mal-(CH2)2-(C=O)-PNA oligomer in the presence of a slight excess of thiol-modified peptide (with a varying degree of sterical hindrance: HS-(CH2)2-CONH-(KFF)3K-NH2, (KFF)3K-hCys-NH2 and (KFF)3K-Cys-NH2) is provided.
Collapse
|
28
|
Pieńko T, Czarnecki J, Równicki M, Wojciechowska M, Wierzba AJ, Gryko D, Bartosik D, Trylska J. Vitamin B 12-peptide nucleic acids use the BtuB receptor to pass through the Escherichia coli outer membrane. Biophys J 2021; 120:725-737. [PMID: 33453274 DOI: 10.1016/j.bpj.2021.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Short modified oligonucleotides that bind in a sequence-specific way to messenger RNA essential for bacterial growth could be useful to fight bacterial infections. One such promising oligonucleotide is peptide nucleic acid (PNA), a synthetic DNA analog with a peptide-like backbone. However, the limitation precluding the use of oligonucleotides, including PNA, is that bacteria do not import them from the environment. We have shown that vitamin B12, which most bacteria need to take up for growth, delivers PNAs to Escherichia coli cells when covalently linked with PNAs. Vitamin B12 enters E. coli via a TonB-dependent transport system and is recognized by the outer-membrane vitamin B12-specific BtuB receptor. We engineered the E. coli ΔbtuB mutant and found that transport of the vitamin B12-PNA conjugate requires BtuB. Thus, the conjugate follows the same route through the outer membrane as taken by free vitamin B12. From enhanced sampling all-atom molecular dynamics simulations, we determined the mechanism of conjugate permeation through BtuB. BtuB is a β-barrel occluded by its luminal domain. The potential of mean force shows that conjugate passage is unidirectional and its movement into the BtuB β-barrel is energetically favorable upon luminal domain unfolding. Inside BtuB, PNA extends making its permeation mechanically feasible. BtuB extracellular loops are actively involved in transport through an induced-fit mechanism. We prove that the vitamin B12 transport system can be hijacked to enable PNA delivery to E. coli cells.
Collapse
Affiliation(s)
- Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland.
| | - Jakub Czarnecki
- Faculty of Biology, University of Warsaw, Warsaw, Poland; Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
29
|
Abstract
Vitamin B12 (cobalamin, Cbl) is an essential nutrient for all mammals and some bacteria. From a chemical point of view, it is a highly functionalized molecule, which enables conjugation at multiple positions and attachment of various cargoes. Both mammalian and bacterial cells have developed a specific transport pathway for the uptake of vitamin B12, and as a consequence, cobalamin is an attractive candidate for the delivery of biologically relevant molecules into cells. Indeed, hybrid molecules containing vitamin B12 in their structure have found various applications in medicinal chemistry, diagnostics, and biological sciences.Herein, we describe synthetic strategies toward the synthesis of vitamin B12 conjugates with peptide nucleic acid (PNA ) oligomers. Such short-modified oligonucleotides targeted at bacterial DNA or RNA can act as antibacterial agents if efficiently taken up by bacterial cells. The uptake of such oligonucleotides is hindered by the bacterial cell envelope, but vitamin B12 was found to efficiently deliver antisense PNA into Escherichia coli and Salmonella Typhimurium cells. This paves the way to the use of vitamin B12-PNA conjugates in antibacterial and diagnostic applications.Vitamin B12-PNA conjugates can be prepared via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) that gives access to covalently linked hybrids or via connecting both building blocks by reduction-sensitive disulfide bridge. Both approaches require prior modification of vitamin B12 by incorporation of the azide moiety or via transformation of the native functional group into a moiety reactive toward thiols. Conjugation of vitamin B12 with PNA-tagged substrates efficiently furnishes designed conjugates.
Collapse
Affiliation(s)
| | | | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
30
|
Volpi S, Cancelli U, Neri M, Corradini R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals (Basel) 2020; 14:14. [PMID: 33375595 PMCID: PMC7823687 DOI: 10.3390/ph14010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The number of applications of peptide nucleic acids (PNAs)-oligonucleotide analogs with a polyamide backbone-is continuously increasing in both in vitro and cellular systems and, parallel to this, delivery systems able to bring PNAs to their targets have been developed. This review is intended to give to the readers an overview on the available carriers for these oligonucleotide mimics, with a particular emphasis on newly developed multi-component- and multifunctional vehicles which boosted PNA research in recent years. The following approaches will be discussed: (a) conjugation with carrier molecules and peptides; (b) liposome formulations; (c) polymer nanoparticles; (d) inorganic porous nanoparticles; (e) carbon based nanocarriers; and (f) self-assembled and supramolecular systems. New therapeutic strategies enabled by the combination of PNA and proper delivery systems are discussed.
Collapse
Affiliation(s)
| | | | | | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (U.C.); (M.N.)
| |
Collapse
|
31
|
Wojciechowska M, Miszkiewicz J, Trylska J. Conformational Changes of Anoplin, W-MreB 1-9, and (KFF) 3K Peptides near the Membranes. Int J Mol Sci 2020; 21:E9672. [PMID: 33352981 PMCID: PMC7766051 DOI: 10.3390/ijms21249672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Many peptides interact with biological membranes, but elucidating these interactions is challenging because cellular membranes are complex and peptides are structurally flexible. To contribute to understanding how the membrane-active peptides behave near the membranes, we investigated peptide structural changes in different lipid surroundings. We focused on two antimicrobial peptides, anoplin and W-MreB1-9, and one cell-penetrating peptide, (KFF)3K. Firstly, by using circular dichroism spectroscopy, we determined the secondary structures of these peptides when interacting with micelles, liposomes, E. coli lipopolysaccharides, and live E. coli bacteria. The peptides were disordered in the buffer, but anoplin and W-MreB1-9 displayed lipid-induced helicity. Yet, structural changes of the peptide depended on the composition and concentration of the membranes. Secondly, we quantified the destructive activity of peptides against liposomes by monitoring the release of a fluorescent dye (calcein) from the liposomes treated with peptides. We observed that only for anoplin and W-MreB1-9 calcein leakage from liposomes depended on the peptide concentration. Thirdly, bacterial growth inhibition assays showed that peptide conformational changes, evoked by the lipid environments, do not directly correlate with the antimicrobial activity of the peptides. However, understanding the relation between peptide structural properties, mechanisms of membrane disruption, and their biological activities can guide the design of membrane-active peptides.
Collapse
Affiliation(s)
- Monika Wojciechowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
| | - Joanna Miszkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
| |
Collapse
|
32
|
Bhingardeve P, Madhanagopal BR, Ganesh KN. Cγ( S/ R)-Bimodal Peptide Nucleic Acids (Cγ- bm-PNA) Form Coupled Double Duplexes by Synchronous Binding to Two Complementary DNA Strands. J Org Chem 2020; 85:13680-13693. [PMID: 32985197 DOI: 10.1021/acs.joc.0c01853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide nucleic acids (PNAs) are linear equivalents of DNA with a neutral acyclic polyamide backbone that has nucleobases attached via tert-amide link on repeating units of aminoethylglycine. They bind complementary DNA or RNA with sequence specificity to form hybrids that are more stable than the corresponding DNA/RNA self-duplexes. A new type of PNA termed bimodal PNA [Cγ(S/R)-bm-PNA] is designed to have a second nucleobase attached via amide spacer to a side chain at Cγ on the repeating aeg units of PNA oligomer. Cγ-bimodal PNA oligomers that have two nucleobases per aeg unit are demonstrated to concurrently bind two different complementary DNAs, to form duplexes from both tert-amide side and Cγ side. In such PNA:DNA ternary complexes, the two duplexes share a common PNA backbone. The ternary DNA 1:Cγ(S/R)-bm-PNA:DNA 2 complexes exhibit better thermal stability than the isolated duplexes, and the Cγ(S)-bm-PNA duplexes are more stable than Cγ(R)-bm-PNA duplexes. Bimodal PNAs are first examples of PNA analogues that can form DNA2:PNA:DNA1 double duplexes via recognition through natural bases. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-level assemblies.
Collapse
Affiliation(s)
- Pramod Bhingardeve
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Bharath Raj Madhanagopal
- Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| | - Krishna N Ganesh
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India.,Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| |
Collapse
|
33
|
Patel R, Sarma S, Shukla A, Parmar P, Goswami D, Saraf M. Walking through the wonder years of artificial DNA: peptide nucleic acid. Mol Biol Rep 2020; 47:8113-8131. [PMID: 32990905 DOI: 10.1007/s11033-020-05819-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
Peptide Nucleic Acid (PNA) serves as an artificial functional analog of DNA. Being immune to enzymatic degradation and possessing strong affinity towards DNA and RNA, it is an ideal candidate for many medical and biotechnological applications that are of antisense and antigene in nature. PNAs are anticipated to have its application in DNA and RNA detection as well as quantification, to serve as antibacterial and antiviral agents, and silencing gene for developing anticancer strategies. Although, their restricted entry in both eukaryotic and prokaryotic cells limit their applications. In addition, aggregation of PNA in storage containers reduces the quality and quantity of functional PNA that makes it inadequate for their mass production and storage. To overcome these limitations, researchers have modified PNA either by the addition of diverse functional groups at various loci on its backbone, or by synthesizing chimeras with other moieties associated with various delivery agents that aids their entry into the cell. Here, this review article summarizes few of the structural modifications that are performed with PNA, methods used to improve their cellular uptake and shedding light on the applications of PNA in various prospects in biological sciences.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Sameera Sarma
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Arpit Shukla
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Paritosh Parmar
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
34
|
Pifer R, Greenberg DE. Antisense antibacterial compounds. Transl Res 2020; 223:89-106. [PMID: 32522669 DOI: 10.1016/j.trsl.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
Extensive antibiotic use combined with poor historical drug stewardship practices have created a medical crisis in which once treatable bacterial infections are now increasingly unmanageable. To combat this, new antibiotics will need to be developed and safeguarded. An emerging class of antibiotics based upon nuclease-stable antisense technologies has proven valuable in preclinical testing against a variety of bacterial pathogens. This review describes the current state of development of antisense-based antibiotics, the mechanisms thus far employed by these compounds, and possible future avenues of research.
Collapse
Affiliation(s)
- Reed Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
35
|
Hu Y, Chen Z, Mao X, Li M, Hou Z, Meng J, Luo X, Xue X. Loop-armed DNA tetrahedron nanoparticles for delivering antisense oligos into bacteria. J Nanobiotechnology 2020; 18:109. [PMID: 32753061 PMCID: PMC7401225 DOI: 10.1186/s12951-020-00667-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Antisense oligonucleotides (ASOs) based technology is considered a potential strategy against antibiotic-resistant bacteria; however, a major obstacle to the application of ASOs is how to deliver them into bacteria effectively. DNA tetrahedra (Td) is an emerging carrier for delivering ASOs into eukaryotes, but there is limited information about Td used for bacteria. In this research, we investigated the uptake features of Td and the impact of linkage modes between ASOs and Td on gene-inhibition efficiency in bacteria. Results Td was more likely to adhere to bacterial membranes, with moderate ability to penetrate into the bacteria. Strikingly, Td could penetrate into bacteria more effectively with the help of Lipofectamine 2000 (LP2000) at a 0.125 μL/μg ratio to Td, but the same concentration of LP2000 had no apparent effect on linear DNA. Furthermore, linkage modes between ASOs and Td influenced gene-knockdown efficiency. Looped structure of ASOs linked to one side of the Td exhibited better gene-knockdown efficiency than the overhung structure. Conclusions This study established an effective antisense delivery system based on loop-armed Td, which opens opportunities for developing antisense antibiotics.![]()
Collapse
Affiliation(s)
- Yue Hu
- Department of Pharmacology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhou Chen
- Department of Pharmacology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zheng Hou
- Department of Pharmacology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Jingru Meng
- Department of Pharmacology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiaoxing Luo
- Department of Pharmacology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Xiaoyan Xue
- Department of Pharmacology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
36
|
Zhao S, Wang ZP, Wen X, Li S, Wei G, Guo J, He Y. Synthesis of Vitamin B 12-Antibiotic Conjugates with Greatly Improved Activity against Gram-Negative Bacteria. Org Lett 2020; 22:6632-6636. [PMID: 32806210 DOI: 10.1021/acs.orglett.0c02403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is an urgent need to discover new antibiotics and improve the efficacy of known antibiotics against Gram-negative bacteria. "Trojan horse" conjugates are novel and promising antibiotics. Herein we report the design and synthesis of vitamin-B12-ampicillin conjugates, which exhibited more than 500 times improved activity against Escherichia coli compared with ampicillin itself. Our studies demonstrate that the vitamin-B12 uptake pathway could be employed for effective antibiotic delivery and efficacy enhancement.
Collapse
Affiliation(s)
- Sheng Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Zhi-Peng Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xumei Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Siyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Guoxing Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| |
Collapse
|
37
|
|
38
|
Extracellular loops of BtuB facilitate transport of vitamin B12 through the outer membrane of E. coli. PLoS Comput Biol 2020; 16:e1008024. [PMID: 32609716 PMCID: PMC7360065 DOI: 10.1371/journal.pcbi.1008024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/14/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin B12 (or cobalamin) is an enzymatic cofactor essential both for mammals and bacteria. However, cobalamin can be synthesized only by few microorganisms so most bacteria need to take it up from the environment through the TonB-dependent transport system. The first stage of cobalamin import to E. coli cells occurs through the outer-membrane receptor called BtuB. Vitamin B12 binds with high affinity to the extracellular side of the BtuB protein. BtuB forms a β-barrel with inner luminal domain and extracellular loops. To mechanically allow for cobalamin passage, the luminal domain needs to partially unfold with the help of the inner-membrane TonB protein. However, the mechanism of cobalamin permeation is unknown. Using all-atom molecular dynamics, we simulated the transport of cobalamin through the BtuB receptor embedded in an asymmetric and heterogeneous E. coli outer-membrane. To enhance conformational sampling of the BtuB loops, we developed the Gaussian force-simulated annealing method (GF-SA) and coupled it with umbrella sampling. We found that cobalamin needs to rotate in order to permeate through BtuB. We showed that the mobility of BtuB extracellular loops is crucial for cobalamin binding and transport and resembles an induced-fit mechanism. Loop mobility depends not only on the position of cobalamin but also on the extension of luminal domain. We provided atomistic details of cobalamin transport through the BtuB receptor showing the essential role of the mobility of BtuB extracellular loops. A similar TonB-dependent transport system is used also by many other compounds, such as haem and siderophores, and importantly, can be hijacked by natural antibiotics. Our work could have implications for future delivery of antibiotics to bacteria using this transport system.
Collapse
|
39
|
Gupta MK, Madhanagopal BR, Datta D, Ganesh KN. Structural Design and Synthesis of Bimodal PNA That Simultaneously Binds Two Complementary DNAs To Form Fused Double Duplexes. Org Lett 2020; 22:5255-5260. [PMID: 32551691 DOI: 10.1021/acs.orglett.0c01950] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bimodal PNAs are new PNA constructs designed to bind two different cDNA sequences synchronously to form double duplexes. They are synthesized on solid phase using sequential coupling and click reaction to introduce a second base in each monomer at Cα via alkyltriazole linker. The ternary bimodal PNA:DNA complexes show stability higher than that of individual duplexes. Bimodal PNAs are appropriate to create higher-order fused nucleic acid assemblies.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Bharath Raj Madhanagopal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| |
Collapse
|
40
|
Salerno EV, Miller NA, Konar A, Salchner R, Kieninger C, Wurst K, Spears KG, Kräutler B, Sension RJ. Exceptional Photochemical Stability of the Co-C Bond of Alkynyl Cobalamins, Potential Antivitamins B 12 and Core Elements of B 12-Based Biological Vectors. Inorg Chem 2020; 59:6422-6431. [PMID: 32311266 PMCID: PMC7201400 DOI: 10.1021/acs.inorgchem.0c00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Alkynylcorrinoids
are a class of organometallic B12 derivatives,
recently rediscovered for use as antivitamins B12 and as
core components of B12-based biological vectors. They feature
exceptional photochemical and thermal stability of their characteristic
extra-short Co–C bond. We describe here the synthesis and structure
of 3-hydroxypropynylcobalamin (HOPryCbl) and photochemical experiments
with HOPryCbl, as well as of the related alkynylcobalamins: phenylethynylcobalamin
and difluoro-phenylethynylcobalamin. Ultrafast spectroscopic studies
of the excited state dynamics and mechanism for ground state recovery
demonstrate that the Co–C bond of alkynylcobalamins is stable,
with the Co–N bond and ring deformations mediating internal
conversion and ground state recovery within 100 ps. These studies
provide insights required for the rational design of photostable or
photolabile B12-based cellular vectors. Most alkylcobalamins are photolabile; in contrast, alkynylcobalamins
are photostable. Through time-resolved measurements, we demonstrate
for three alkynylcobalamins that the Co−C bond is stable (i.e.
“locked”), while expansion of the Co−N axial
bond (which is “unlocked”) and ring deformations mediate
internal conversion and ground state recovery within 100 ps. The barrier
for ground state recovery is independent of the R group on the alkynyl
ligand.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Robert Salchner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
41
|
Antibacterial Peptide Nucleic Acids-Facts and Perspectives. Molecules 2020; 25:molecules25030559. [PMID: 32012929 PMCID: PMC7038079 DOI: 10.3390/molecules25030559] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is an escalating, worldwide problem. Due to excessive use of antibiotics, multidrug-resistant bacteria have become a serious threat and a major global healthcare problem of the 21st century. This fact creates an urgent need for new and effective antimicrobials. The common strategies for antibiotic discovery are based on either modifying existing antibiotics or screening compound libraries, but these strategies have not been successful in recent decades. An alternative approach could be to use gene-specific oligonucleotides, such as peptide nucleic acid (PNA) oligomers, that can specifically target any single pathogen. This approach broadens the range of potential targets to any gene with a known sequence in any bacterium, and could significantly reduce the time required to discover new antimicrobials or their redesign, if resistance arises. We review the potential of PNA as an antibacterial molecule. First, we describe the physicochemical properties of PNA and modifications of the PNA backbone and nucleobases. Second, we review the carriers used to transport PNA to bacterial cells. Furthermore, we discuss the PNA targets in antibacterial studies focusing on antisense PNA targeting bacterial mRNA and rRNA.
Collapse
|
42
|
Goltermann L, Nielsen PE. PNA Antisense Targeting in Bacteria: Determination of Antibacterial Activity (MIC) of PNA-Peptide Conjugates. Methods Mol Biol 2020; 2105:231-239. [PMID: 32088874 DOI: 10.1007/978-1-0716-0243-0_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antisense PNA-peptide conjugates targeting essential bacterial genes have shown interesting potential for discovery of novel precision antibiotics. In this context, the minimal inhibitory concentration (MIC) assay is used to assess and compare the antimicrobial activity of natural as well as synthetic antimicrobial compounds. Here, we describe the determination of the minimal inhibitory concentration of peptide-PNA conjugates against Escherichia coli. This method can be expanded to include minimal bactericidal concentration (MBC) determination and kill-curve kinetics.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Stasińska AR, Putaj P, Chmielewski MK. Disulfide bridge as a linker in nucleic acids' bioconjugation. Part II: A summary of practical applications. Bioorg Chem 2019; 95:103518. [PMID: 31911308 DOI: 10.1016/j.bioorg.2019.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Disulfide conjugation invariably remains a key tool in research on nucleic acids. This versatile and cost-effective method plays a crucial role in structural studies of DNA and RNA as well as their interactions with other macromolecules in a variety of biological systems. In this article we review applications of disulfide-bridged conjugates of oligonucleotides with other (bio)molecules such as peptides, proteins etc. and present key findings obtained with their help.
Collapse
Affiliation(s)
- Anna R Stasińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Piotr Putaj
- FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland.
| |
Collapse
|
44
|
Jasiński M, Miszkiewicz J, Feig M, Trylska J. Thermal Stability of Peptide Nucleic Acid Complexes. J Phys Chem B 2019; 123:8168-8177. [PMID: 31491077 DOI: 10.1021/acs.jpcb.9b05168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peptide nucleic acid (PNA) is a neutral nucleic acid analogue that base pairs with itself and natural nucleic acids. PNA-nucleic acid complexes are more thermally stable than the corresponding complexes of natural nucleic acids. In addition, PNA is biostable and thus used in many antisense and antigene applications to block functional RNA or DNA via sequence-specific interactions. We have recently developed force field parameters for molecular dynamics (MD) simulations of PNA and PNA-involving duplexes with natural nucleic acids. In this work, we provide the first application of this force field to biologically relevant PNA sequences and their complexes with RNA. We investigated thermal stabilities of short PNA-PNA, PNA-RNA, and RNA-RNA duplexes using UV-monitored thermal denaturation experiments and MD simulations at ambient and elevated temperatures. The simulations show a two-state melting transition and reproduce the thermal stability from melting experiments, with PNA-PNA being the most and RNA-RNA the least stable. The PNA-PNA duplex also displays the highest activation energy for melting. The atomistic details of unfolding of PNA duplexes suggest that all PNA-PNA bases melt concomitantly, whereas the RNA-RNA and PNA-RNA are destabilized from the termini toward the central part of the duplexes.
Collapse
Affiliation(s)
| | | | - Michael Feig
- Department of Biochemistry and Molecular Biology , Michigan State University , 603 Wilson Road , East Lansing , Michigan 48824 , United States
| | | |
Collapse
|
45
|
Barkowsky G, Lemster AL, Pappesch R, Jacob A, Krüger S, Schröder A, Kreikemeyer B, Patenge N. Influence of Different Cell-Penetrating Peptides on the Antimicrobial Efficiency of PNAs in Streptococcus pyogenes. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:444-454. [PMID: 31655262 PMCID: PMC6831891 DOI: 10.1016/j.omtn.2019.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/15/2019] [Accepted: 09/08/2019] [Indexed: 01/31/2023]
Abstract
Streptococcus pyogenes is an exclusively human pathogen causing a wide range of clinical manifestations from mild superficial infections to severe, life-threatening, invasive diseases. S. pyogenes is consistently susceptible toward penicillin, but therapeutic failure of penicillin treatment has been reported frequently. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, is common. To reduce the application of antibiotics for treatment of S. pyogenes infections, it is mandatory to develop novel therapeutic strategies. Antisense peptide nucleic acids (PNAs) are synthetic DNA derivatives widely applied for hybridization-based microbial diagnostics. They have a high potential as therapeutic agents, because PNA antisense targeting of essential genes was shown to reduce growth of several pathogenic bacterial species. Spontaneous cellular uptake of PNAs is restricted in eukaryotes and in bacteria. To overcome this problem, PNAs can be coupled to cell-penetrating peptides (CPPs) that support PNA translocation over the cell membrane. In bacteria, the efficiency of CPP-mediated PNA uptake is species specific. Previously, HIV-1 transactivator of transcription (HIV-1 TAT) peptide-coupled anti-gyrA PNA was shown to inhibit growth of S. pyogenes. Here, we investigate the effect of 18 CPP-coupled anti-gyrA PNAs on S. pyogenes growth and virulence. HIV-1 TAT, oligolysine (K8), and (RXR)4XB peptide-coupled anti-gyrA PNAs efficiently abolished bacterial growth in vitro. Consistently, treatment with these three CPP-PNAs increased survival of larvae in a Galleria mellonella infection model.
Collapse
Affiliation(s)
- Gina Barkowsky
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anna-Lena Lemster
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Roberto Pappesch
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anette Jacob
- Peps4LS GmbH, INF 583, 69120 Heidelberg, Germany; Functional Genome Analysis, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Selina Krüger
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anne Schröder
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany.
| |
Collapse
|
46
|
Systemically Administered Plant Recombinant Holo-Intrinsic Factor Targets the Liver and is not Affected by Endogenous B12 levels. Sci Rep 2019; 9:12269. [PMID: 31439908 PMCID: PMC6706418 DOI: 10.1038/s41598-019-48555-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Precision targeting imaging agents and/or treatment agents to select cells or organs in the body remains a significant need and is an area of intense research. It has been hypothesized that the vitamin B12 (B12) dietary pathway, or components thereof, may be exploitable in this area. The question of whether gastric Intrinsic factor (IF), critical for B12 absorption in the GI tract via the cubilin receptor, could be used as a targeting moiety for the cubilin receptor systemically, has not been investigated. Cubilin is the only known receptor for holo-IF and is found primarily in the kidney and ear (outside of the ileum of the GI) offering significant scope for specific targeting. We utilized plant derived human gastric IF in fluorescent cell and PET based in vivo imaging and biodistribution studies and demonstrated that plant derived IF primarily targets the liver, likely a consequence of the unique glycosylation profile of the IF, and is not affected by endogenous B12 levels.
Collapse
|
47
|
Hansen AM, Bonke G, Hogendorf WFJ, Björkling F, Nielsen J, Kongstad KT, Zabicka D, Tomczak M, Urbas M, Nielsen PE, Franzyk H. Microwave-assisted solid-phase synthesis of antisense acpP peptide nucleic acid-peptide conjugates active against colistin- and tigecycline-resistant E. coli and K. pneumoniae. Eur J Med Chem 2019; 168:134-145. [PMID: 30807888 DOI: 10.1016/j.ejmech.2019.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
Abstract
Recent discovery of potent antibacterial antisense PNA-peptide conjugates encouraged development of a fast and efficient synthesis protocol that facilitates structure-activity studies. The use of an Fmoc/Boc protection scheme for both PNA monomers and amino acid building blocks in combination with microwave-assisted solid-phase synthesis proved to be a convenient procedure for continuous assembly of antisense PNA-peptide conjugates. A validated antisense PNA oligomer (CTCATACTCT; targeting mRNA of the acpP gene) was linked to N-terminally modified drosocin (i.e., RXR-PRPYSPRPTSHPRPIRV; X = aminohexanoic acid) or to a truncated Pip1 peptide (i.e., RXRRXR-IKILFQNRRMKWKK; X = aminohexanoic acid), and determination of the antibacterial effects of the resulting conjugates allowed assessment of the influence of different linkers as well as differences between the L- and D-forms of the peptides. The drosocin-derived compound without a linker moiety exhibited highest antibacterial activity against both wild-type Escherichia coli and Klebsiella pneumoniae (MICs in the range 2-4 μg/mL ∼ 0.3-0.7 μM), while analogues displaying an ethylene glycol (eg1) moiety or a polar maleimide linker also possessed activity toward wild-type K. pneumoniae (MICs of 4-8 μg/mL ∼ 0.6-1.3 μM). Against two colistin-resistant E. coli strains the linker-deficient compound proved most potent (with MICs in the range 2-4 μg/mL ∼ 0.3-0.7 μM). The truncated all-L Pip1 peptide had moderate inherent activity against E. coli, and this was unaltered or reduced upon conjugation to the antisense PNA oligomer. By contrast, this peptide was 8-fold less potent against K. pneumoniae, but in this case some PNA-peptide conjugates exhibited potent antisense activity (MICs of 2-8 μg/mL ∼ 0.3-1.2 μM). Most interestingly, the antibacterial activity of the D-form peptide itself was 2- to 16-fold higher than that of the L-form, even for the colistin- and tigecycline-resistant E. coli strains (MIC of 1-2 μg/mL ∼ 0.25-0.5 μM). Low activity was found for conjugates with a two-mismatch PNA sequence corroborating an antisense mode of action. Conjugates containing a D-form peptide were also significantly less active. In conclusion, we have designed and synthesized antisense PNA-drosocin conjugates with potent antibacterial activity against colistin- and tigecycline-resistant E. coli and K. pneumonia without concomitant hemolytic properties. In addition, a truncated D-form of Pip1 was identified as a peptide exhibiting potent activity against both wild-type and multidrug-resistant E. coli, P. aeruginosa, and A. baumannii (MICs within the range 1-4 μg/mL ∼ 0.25-1 μM) as well as toward wild-type Staphylococcus aureus (MIC of 2-4 μg/mL ∼ 0.5-1.0 μM).
Collapse
Affiliation(s)
- Anna Mette Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Gitte Bonke
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Wouter Frederik Johan Hogendorf
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - John Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Dorota Zabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Malgorzata Urbas
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark.
| |
Collapse
|
48
|
Giedyk M, Jackowska A, Równicki M, Kolanowska M, Trylska J, Gryko D. Vitamin B 12 transports modified RNA into E. coli and S. Typhimurium cells. Chem Commun (Camb) 2019; 55:763-766. [PMID: 30480264 DOI: 10.1039/c8cc05064c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Specifically designed, antisense oligonucleotides are promising candidates for antibacterial drugs. They suppress the correct expression of bacterial genes by complementary binding to essential sequences of bacterial DNA or RNA. The main obstacle in fully utilizing their potential as therapeutic agents comes from the fact that bacteria do not uptake oligonucleotides from their environment. Herein, we report that vitamin B12 can transport oligonucleotides into Escherichia coli and Salmonella typhimurium cells. 5'-Aminocobalamin with an alkyne linker and azide-modified oligonucleotides enabled the synthesis of vitamin B12-2'OMeRNA conjugates using an efficient "click" methodology. Inhibition of protein expression in E. coli and S. Typhimurium cells indicates an unprecedented transport of 2'OMeRNA oligomers into bacterial cells via the vitamin B12 delivery pathway.
Collapse
Affiliation(s)
- Maciej Giedyk
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Aleksandra J. Wierzba
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Sidra Hassan
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dorota Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
50
|
Równicki M, Pieńko T, Czarnecki J, Kolanowska M, Bartosik D, Trylska J. Artificial Activation of Escherichia coli mazEF and hipBA Toxin-Antitoxin Systems by Antisense Peptide Nucleic Acids as an Antibacterial Strategy. Front Microbiol 2018; 9:2870. [PMID: 30534121 PMCID: PMC6275173 DOI: 10.3389/fmicb.2018.02870] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
The search for new, non-standard targets is currently a high priority in the design of new antibacterial compounds. Bacterial toxin-antitoxin systems (TAs) are genetic modules that encode a toxin protein that causes growth arrest by interfering with essential cellular processes, and a cognate antitoxin, which neutralizes the toxin activity. TAs have no human analogs, are highly abundant in bacterial genomes, and therefore represent attractive alternative targets for antimicrobial drugs. This study demonstrates how artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems using sequence-specific antisense peptide nucleic acid oligomers is an innovative antibacterial strategy. The growth arrest observed in E. coli resulted from the inhibition of translation of the antitoxins by the antisense oligomers. Furthermore, two other targets, related to the activities of mazEF and hipBA, were identified as promising sites of action for antibacterials. These results show that TAs are susceptible to sequence-specific antisense agents and provide a proof-of-concept for their further exploitation in antimicrobial strategies.
Collapse
Affiliation(s)
- Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Unit of Bacterial Genome Plasticity, Department of Genomes and Genetics, Pasteur Institute, Paris, France
| | - Monika Kolanowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|