1
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
2
|
Sue N, Thai LM, Saito A, Boyer CK, Fordham AM, Yan C, Davenport A, Tao J, Bensellam M, Cantley J, Shi YC, Stephens SB, Imaizumi K, Biden TJ. Independent activation of CREB3L2 by glucose fills a regulatory gap in mouse β-cells by co-ordinating insulin biosynthesis with secretory granule formation. Mol Metab 2024; 79:101845. [PMID: 38013154 PMCID: PMC10755490 DOI: 10.1016/j.molmet.2023.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE Although individual steps have been characterized, there is little understanding of the overall process whereby glucose co-ordinates the biosynthesis of insulin with its export out of the endoplasmic reticulum (ER) and incorporation into insulin secretory granules (ISGs). Here we investigate a role for the transcription factor CREB3L2 in this context. METHODS MIN6 cells and mouse islets were analysed by immunoblotting after treatment with glucose, fatty acids, thapsigargin and various inhibitors. Knockdown of CREB3L2 was achieved using si or sh constructs by transfection, or viral delivery. In vivo metabolic phenotyping was conducted after deletion of CREB3L2 in β-cells of adult mice using Ins1-CreER+. Islets were isolated for RNAseq and assays of glucose-stimulated insulin secretion (GSIS). Trafficking was monitored in islet monolayers using a GFP-tagged proinsulin construct that allows for synchronised release from the ER. RESULTS With a Km ≈3.5 mM, glucose rapidly (T1/2 0.9 h) increased full length (FL) CREB3L2 followed by a slower rise (T1/2 2.5 h) in its transcriptionally-active cleavage product, P60 CREB3L2. Glucose stimulation repressed the ER stress marker, CHOP, and this was partially reverted by knockdown of CREB3L2. Activation of CREB3L2 by glucose was not due to ER stress, however, but a combination of O-GlcNAcylation, which impaired proteasomal degradation of FL-CREB3L2, and mTORC1 stimulation, which enhanced its conversion to P60. cAMP generation also activated CREB3L2, but independently of glucose. Deletion of CREB3L2 inhibited GSIS ex vivo and, following a high-fat diet (HFD), impaired glucose tolerance and insulin secretion in vivo. RNAseq revealed that CREB3L2 regulated genes controlling trafficking to-and-from the Golgi, as well as a broader cohort associated with β-cell compensation during a HFD. Although post-Golgi trafficking appeared intact, knockdown of CREB3L2 impaired the generation of both nascent ISGs and proinsulin condensates in the Golgi, implying a defect in ER export of proinsulin and/or its processing in the Golgi. CONCLUSION The stimulation of CREB3L2 by glucose defines a novel, rapid and direct mechanism for co-ordinating the synthesis, packaging and storage of insulin, thereby minimizing ER overload and optimizing β-cell function under conditions of high secretory demand. Upregulation of CREB3L2 also potentially contributes to the benefits of GLP1 agonism and might in itself constitute a novel means of treating β-cell failure.
Collapse
Affiliation(s)
- Nancy Sue
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Le May Thai
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Cierra K Boyer
- Fraternal Order of Eagles Diabetes Research Center, Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Ashleigh M Fordham
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Chenxu Yan
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Aimee Davenport
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Jiang Tao
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - James Cantley
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Trevor J Biden
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
3
|
Yoshikawa T, Oguchi A, Toriu N, Sato Y, Kobayashi T, Ogawa O, Haga H, Sakurai S, Yamamoto T, Murakawa Y, Yanagita M. Tertiary Lymphoid Tissues Are Microenvironments with Intensive Interactions between Immune Cells and Proinflammatory Parenchymal Cells in Aged Kidneys. J Am Soc Nephrol 2023; 34:1687-1708. [PMID: 37548710 PMCID: PMC10561819 DOI: 10.1681/asn.0000000000000202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Ectopic lymphoid structures called tertiary lymphoid tissues (TLTs) develop in several kidney diseases and are associated with poor renal prognosis. However, the mechanisms underlying TLT expansion and their effect on renal regeneration remain unclear. The authors report that single-nucleus RNA sequencing and validation experiments demonstrate that TLTs potentially amplify inflammation in aged injured kidneys. Lymphocytes within TLTs promote proinflammatory phenotypes of the surrounding proximal tubules and fibroblasts within the TLTs via proinflammatory cytokine production. These proinflammatory parenchymal cells then interact with immune cells by chemokine or cytokine production. Such cell-cell interactions potentially increase inflammation, expand TLTs, and exacerbate kidney injury. These findings help illuminate renal TLT pathology and suggest potential therapeutic targets. BACKGROUND Ectopic lymphoid structures called tertiary lymphoid tissues (TLTs) develop in several kidney diseases and are associated with poor renal prognosis. However, the mechanisms that expand TLTs and underlie exacerbation of kidney injury remain unclear. METHODS We performed single-nucleus RNA sequencing (snRNA-seq) on aged mouse kidneys with TLTs after ischemia-reperfusion injury. The results were validated using immunostaining, in situ hybridization of murine and human kidneys, and in vitro experiments. RESULTS Using snRNA-seq, we identified proinflammatory and profibrotic Vcam1+ injured proximal tubules (PTs) with NF κ B and IFN-inducible transcription factor activation. VCAM1 + PTs were preferentially localized around TLTs and drove inflammation and fibrosis via the production of multiple chemokines or cytokines. Lymphocytes within TLTs expressed Tnf and Ifng at high levels, which synergistically upregulated VCAM1 and chemokine expression in cultured PT cells. In addition, snRNA-seq also identified proinflammatory and profibrotic fibroblasts, which resided within and outside TLTs, respectively. Proinflammatory fibroblasts exhibited STAT1 activation and various chemokine or cytokine production, including CXCL9/CXCL10 and B cell-activating factor, contributing to lymphocyte recruitment and survival. IFN γ upregulated the expression of these molecules in cultured fibroblasts in a STAT1-dependent manner, indicating potential bidirectional interactions between IFN γ -producing CXCR3 + T cells and proinflammatory fibroblasts within TLTs. The cellular and molecular components described in this study were confirmed in human kidneys with TLTs. CONCLUSIONS These findings suggest that TLTs potentially amplify inflammation by providing a microenvironment that allows intense interactions between renal parenchymal and immune cells. These interactions may serve as novel therapeutic targets in kidney diseases involving TLT formation.
Collapse
Affiliation(s)
- Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Oguchi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- IFOM-ETS, Milan, Italy
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Hanquier Z, Misra J, Baxter R, Maiers JL. Stress and Liver Fibrogenesis: Understanding the Role and Regulation of Stress Response Pathways in Hepatic Stellate Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1363-1376. [PMID: 37422148 PMCID: PMC10548279 DOI: 10.1016/j.ajpath.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 07/10/2023]
Abstract
Stress response pathways are crucial for cells to adapt to physiological and pathologic conditions. Increased transcription and translation in response to stimuli place a strain on the cell, necessitating increased amino acid supply, protein production and folding, and disposal of misfolded proteins. Stress response pathways, such as the unfolded protein response (UPR) and the integrated stress response (ISR), allow cells to adapt to stress and restore homeostasis; however, their role and regulation in pathologic conditions, such as hepatic fibrogenesis, are unclear. Liver injury promotes fibrogenesis through activation of hepatic stellate cells (HSCs), which produce and secrete fibrogenic proteins to promote tissue repair. This process is exacerbated in chronic liver disease, leading to fibrosis and, if unchecked, cirrhosis. Fibrogenic HSCs exhibit activation of both the UPR and ISR, due in part to increased transcriptional and translational demands, and these stress responses play important roles in fibrogenesis. Targeting these pathways to limit fibrogenesis or promote HSC apoptosis is a potential antifibrotic strategy, but it is limited by our lack of mechanistic understanding of how the UPR and ISR regulate HSC activation and fibrogenesis. This article explores the role of the UPR and ISR in the progression of fibrogenesis, and highlights areas that require further investigation to better understand how the UPR and ISR can be targeted to limit hepatic fibrosis progression.
Collapse
Affiliation(s)
- Zachary Hanquier
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Reese Baxter
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jessica L Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
5
|
Yuxiong W, Faping L, Bin L, Yanghe Z, Yao L, Yunkuo L, Yishu W, Honglan Z. Regulatory mechanisms of the cAMP-responsive element binding protein 3 (CREB3) family in cancers. Biomed Pharmacother 2023; 166:115335. [PMID: 37595431 DOI: 10.1016/j.biopha.2023.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
The CREB3 family of proteins, encompassing CREB3 and its four homologs (CREB3L1, CREB3L2, CREB3L3, and CREB3L4), exerts pivotal control over cellular protein metabolism in response to unfolded protein reactions. Under conditions of endoplasmic reticulum stress, activation of the CREB3 family occurs through regulated intramembrane proteolysis within the endoplasmic reticulum membrane. Perturbations in the function and expression of the CREB3 family have been closely associated with the development of diverse diseases, with a particular emphasis on cancer. Recent investigations have shed light on the indispensable role played by CREB3 family members in modulating the onset and progression of various human cancers. This comprehensive review endeavors to provide an in-depth examination of the involvement of CREB3 family members in distinct human cancer types, accentuating their significance in the pathogenesis of cancer and the manifestation of malignant phenotypes.
Collapse
Affiliation(s)
- Wang Yuxiong
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Li Faping
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Liu Bin
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Zhang Yanghe
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yunkuo
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Wang Yishu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China.
| | - Zhou Honglan
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China,.
| |
Collapse
|
6
|
Sarwar S, Ashraf S, Shafiq M, Malik A, Akhtar S, Arshad R, Jamil M, Gul H, Ullah N. SEC24D gene as a biomarker in human cancers and its association with CD8+ T cell immune cell infiltration. Am J Transl Res 2023; 15:3115-3130. [PMID: 37303662 PMCID: PMC10251021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 04/21/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The SEC24D (SEC24 Homolog D, COPII Coat Complex Component) gene belongs to the SEC24 subfamily of genes. The protein encoded by this gene, along with its other binding partners, mediates the transport of newly-synthesized proteins from the endoplasmic reticulum to the Golgi apparatus. METHODS A pan-cancer analysis of this gene, as well as its diagnostic and prognostic implications, are lacking in the medical literature. First, we analyzed SEC24D gene expression, its prognostic effect, promoter methylation level, genetic alteration landscape, pathways, CD8+ T immune cell infiltration, and gene-drug network in various types of cancer through various online databases and bioinformatic tools. Then, we performed the expression and methylation validation analysis of the SEC24D gene on cell lines using RNA sequencing (RNA-seq) and targeted bisulfite sequencing (bisulfite-seq) techniques. RESULTS Bioinformatic analysis showed that the SEC24D gene was overexpressed in metastasis across Kidney Renal Clear Cell Carcinoma (KIRC), Lung Squamous Cell Carcinoma (LUSC), and Stomach Adenocarcinoma (STAD) patients and was a prognostic risk factor. Then, using RNA sequencing and targeted bisulfite sequencing analysis, it was validated in cell lines that SEC24D was overexpressed and hypomethylated in KIRC patients. Mutational analysis revealed that SEC24D was mutated less frequently in KIRC, LUSC, and STAD patients. It was further observed that CD8+ T cell infiltration levels were increased in SEC24D-overexpressed KIRC, LUSC, and STAD samples. Pathway enrichment analysis of SEC24D-associated genes revealed their participation in two important pathways. Moreover, we suggested a few valuable drugs for treating KIRC, LUSC, and STAD patients with respect to overexpressed SEC24D. CONCLUSION This is the first pan-cancer study that details the oncogenic roles of SEC24D among different cancers.
Collapse
Affiliation(s)
| | | | | | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health SciencesKirksville, Missouri, USA
| | - Rabia Arshad
- Faculty of Pharmacy, The University of LahorePakistan
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan, Pakistan
| | - Hadia Gul
- Institute of Biological Sciences Gomal UniversityD. I. Khan, Pakistan
| | - Naimat Ullah
- Institute of Biological Sciences Gomal UniversityD. I. Khan, Pakistan
| |
Collapse
|
7
|
Pittari D, Dalla Torre M, Borini E, Hummel B, Sawarkar R, Semino C, van Anken E, Panina-Bordignon P, Sitia R, Anelli T. CREB3L1 and CREB3L2 control Golgi remodelling during decidualization of endometrial stromal cells. Front Cell Dev Biol 2022; 10:986997. [PMID: 36313580 PMCID: PMC9608648 DOI: 10.3389/fcell.2022.986997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of in vitro decidualizing EnSC. Pathway analysis shows that Gene Ontology terms associated with vesicular trafficking and early secretory pathway compartments are the most represented among those enriched for upregulated genes. Among these, we identified a cluster of co-regulated genes that share CREB3L1 and CREB3L2 binding elements in their promoter regions. Indeed, both CREB3L1 and CREB3L2 transcription factors are up-regulated during decidualization. Simultaneous downregulation of CREB3L1 and CREB3L2 impairs Golgi enlargement, and causes dramatic changes in decidualizing EnSC, including Golgi fragmentation, collagen accumulation in dilated Endoplasmic Reticulum cisternae, and overall decreased protein secretion. Thus, both CREB3L1 and CREB3L2 are required for Golgi reshaping and efficient protein secretion, and, as such, for successful decidualization.
Collapse
Affiliation(s)
- Daniele Pittari
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Dalla Torre
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elena Borini
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, United Kingdom
| | - Claudia Semino
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eelco van Anken
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Sitia
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tiziana Anelli
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
8
|
Single-cell analysis reveals androgen receptor regulates the ER-to-Golgi trafficking pathway with CREB3L2 to drive prostate cancer progression. Oncogene 2021; 40:6479-6493. [PMID: 34611310 DOI: 10.1038/s41388-021-02026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Androgen receptor (AR) plays a central role in driving prostate cancer (PCa) progression. How AR promotes this process is still not completely clear. Herein, we used single-cell transcriptome analysis to reconstruct the transcriptional network of AR in PCa. Our work shows AR directly regulates a set of signature genes in the ER-to-Golgi protein vesicle-mediated transport pathway. The expression of these genes is required for maximum androgen-dependent ER-to-Golgi trafficking, cell growth, and survival. Our analyses also reveal the signature genes are associated with PCa progression and prognosis. Moreover, we find inhibition of the ER-to-Golgi transport process with a small molecule enhanced antiandrogen-mediated tumor suppression of hormone-sensitive and insensitive PCa. Finally, we demonstrate AR collaborates with CREB3L2 in mediating ER-to-Golgi trafficking in PCa. In summary, our findings uncover a critical role for dysregulation of ER-to-Golgi trafficking expression and function in PCa progression, provide detailed mechanistic insights for how AR tightly controls this process, and highlight the prospect of targeting the ER-to-Golgi pathway as a therapeutic strategy for advanced PCa.
Collapse
|
9
|
Comparative Analysis of CREB3 and CREB3L2 Protein Expression in HEK293 Cells. Int J Mol Sci 2021; 22:ijms22052767. [PMID: 33803345 PMCID: PMC7967177 DOI: 10.3390/ijms22052767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
We performed a comparative analysis of two ER-resident CREB3 family proteins, CREB3 and CREB3L2, in HEK293 cells using pharmacological and genome editing approaches and identified several differences between the two. Treatment with brefeldin A (BFA) and monensin induced the cleavage of full-length CREB3 and CREB3L2; however, the level of the full-length CREB3 protein, but not CREB3L2 protein, was not noticeably reduced by the monensin treatment. On the other hand, treatment with tunicamycin (Tm) shifted the molecular weight of the full-length CREB3L2 protein downward but abolished CREB3 protein expression. Thapsigargin (Tg) significantly increased the expression of only full-length CREB3L2 protein concomitant with a slight increase in the level of its cleaved form. Treatment with cycloheximide and MG132 revealed that both endogenous CREB3 and CREB3L2 are proteasome substrates. In addition, kifunensine, an α-mannosidase inhibitor, significantly increased the levels of both full-length forms. Consistent with these findings, cells lacking SEL1L, a crucial ER-associated protein degradation (ERAD) component, showed increased expression of both full-length CREB3 and CREB3L2; however, cycloheximide treatment downregulated full-length CREB3L2 protein expression more rapidly in SEL1L-deficient cells than the full-length CREB3 protein. Finally, we investigated the induction of the expression of several CREB3 and CREB3L2 target genes by Tg and BFA treatments and SEL1L deficiency. In conclusion, this study suggests that both endogenous full-length CREB3 and CREB3L2 are substrates for ER-associated protein degradation but are partially regulated by distinct mechanisms, each of which contributes to unique cellular responses that are distinct from canonical ER signals.
Collapse
|
10
|
MicroRNA-92b-3p promotes the progression of liver fibrosis by targeting CREB3L2 through the JAK/STAT signaling pathway. Pathol Res Pract 2021; 219:153367. [PMID: 33618248 DOI: 10.1016/j.prp.2021.153367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022]
Abstract
Liver fibrosis is a common feature of almost all chronic liver diseases, which eventually leads to cirrhosis and even hepatocellular carcinoma (HCC). The current study showed that miR-92b plays an important role in the progression of HCC but its role in liver fibrosis is still unclear. Here we aimed to explore the role and underlying molecular mechanism of miR-92b-3p in the activated hepatic stellate cells (HSCs) and the pathological process of hepatic fibrosis. We found that miR-92b-3p was highly expressed both in fibrotic liver tissues from patients and model mice and in activated LX-2 cells stimulated with TGF-β1. However, the expression of miR-92b-3p was downregulated in inactivated LX-2 cells treated with adipogenic differentiation mixture (MDI). In addition, we found that miR-92b-3p mimic could promote the activation, proliferation, and migration of LX-2 and HSC-T6 cells, while miR-92b-3p inhibitor could reverse this process. From the TargetScan databases, we found that CREB3L2 is a potential target of miR-92b-3p and the luciferase assay revealed the suppressed CREB3L2 expression by miR-92b-3p. Mechanistically, we found that miR-92b-3p promotes the activation of HSCs and thereby the progression of liver fibrosis by activating JAK/STAT pathway via targeting CREB3L2, providing a new target for the diagnosis and treatment of liver fibrosis.
Collapse
|
11
|
Abstract
The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; ,
| | - V Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
12
|
Qin M, Zhang Z, Zhu W, Mack J, Soy RC, Nyokong T, Liang X. Modulation of the optical properties of chiral porphyrin dimers by introducing bridged chiral amide-bonds. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The d/l-enantiomers of a series of three Zn(II)tetraarylporphyrin dimers were synthesized and isolated by incorporating a bridging amide-bonded xanthene moiety at the para-position of one of the meso-aryl rings. The electronic structures and optical properties were modulated by incorporating chiral amino acid moieties into the amide-bonding moieties of the xanthene bridge that contain methyl, tolyl and 2-methylindole substituents. A cofacial dimer was formed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) resulting in a significant red shift of the B band, due to a relative destabilization of the HOMO, which has large MO coefficients on the pyrrole nitrogens. The sign sequences observed in the B band region of the CD spectra due to the presence of the chiral amino acid moieties were modified due to this change in geometry. Significant CD intensity is also observed in the B band region of the CD spectra of anion radical species during in situ spectroelectrochemical measurements.
Collapse
Affiliation(s)
- Mingfeng Qin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhen Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Rodah C. Soy
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
13
|
Combining Auxin-Induced Degradation and RNAi Screening Identifies Novel Genes Involved in Lipid Bilayer Stress Sensing in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:3921-3928. [PMID: 32958476 PMCID: PMC7642917 DOI: 10.1534/g3.120.401635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alteration of the lipid composition of biological membranes interferes with their function and can cause tissue damage by triggering apoptosis. Upon lipid bilayer stress, the endoplasmic reticulum mounts a stress response similar to the unfolded protein response. However, only a few genes are known to regulate lipid bilayer stress. We performed a suppressor screen that combined the auxin-inducible degradation (AID) system with conventional RNAi in C. elegans to identify members of the lipid bilayer stress response. AID-mediated degradation of the mediator MDT-15, a protein required for the upregulation of fatty acid desaturases, induced the activation of lipid bilayer stress-sensitive reporters. We screened through most C. elegans kinases and transcription factors by feeding RNAi. We discovered nine genes that suppressed the lipid bilayer stress response in C. elegans. These suppressor genes included drl-1/MAP3K3, gsk-3/GSK3, let-607/CREB3, ire-1/IRE1, and skn-1/NRF1,2,3. Our candidate suppressor genes suggest a network of transcription factors and the integration of multiple tissues for a centralized lipotoxicity response in the intestine. Thus, we demonstrated proof-of-concept for combining AID and RNAi as a new screening strategy and identified eight conserved genes that had not previously been implicated in the lipid bilayer stress response.
Collapse
|
14
|
Chen TY, Liu Y, Chen L, Luo J, Zhang C, Shen XF. Identification of the potential biomarkers in patients with glioma: a weighted gene co-expression network analysis. Carcinogenesis 2020; 41:743-750. [PMID: 31761927 PMCID: PMC7351128 DOI: 10.1093/carcin/bgz194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/13/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Glioma is the most common brain tumor with high mortality. However, there are still challenges for the timely and accurate diagnosis and effective treatment of the tumor. One hundred and twenty-one samples with grades II, III and IV from the Gene Expression Omnibus database were used to construct gene co-expression networks to identify hub modules closely related to glioma grade, and performed pathway enrichment analysis on genes from significant modules. In gene co-expression network constructed by 2345 differentially expressed genes from 121 gene expression profiles for glioma, we identified the black and blue modules that associated with grading. The module preservation analysis based on 118 samples indicates that the two modules were replicable. Enrichment analysis showed that the extracellular matrix genes were enriched for blue module, while cell division genes were enriched for black module. According to survival analysis, 21 hub genes were significantly up-regulated and one gene was significantly down-regulated. What’s more, IKBIP, SEC24D, and FAM46A are the genes with little attention among the 22 hub genes. In this study, IKBIP, SEC24D, and FAM46A related to glioma were mentioned for the first time to the current knowledge, which might provide a new idea for us to study the disease in the future. IKBIP, SEC24D and FAM46A among the 22 hub genes identified that are related to the malignancy degree of glioma might be used as new biomarkers to improve the diagnosis, treatment and prognosis of glioma.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China
| | - Yang Liu
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China
| | - Liang Chen
- Department of Neurosurgery, Shiyan, China
| | - Jie Luo
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China.,Department of Neurosurgery, Shiyan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China
| | - Xian-Feng Shen
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China.,Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
15
|
Pan Y, Ballance H, Meng H, Gonzalez N, Kim SM, Abdurehman L, York B, Chen X, Schnytzer Y, Levy O, Dacso CC, McClung CA, O’Malley BW, Liu S, Zhu B. 12-h clock regulation of genetic information flow by XBP1s. PLoS Biol 2020; 18:e3000580. [PMID: 31935211 PMCID: PMC6959563 DOI: 10.1371/journal.pbio.3000580] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Our group recently characterized a cell-autonomous mammalian 12-h clock independent from the circadian clock, but its function and mechanism of regulation remain poorly understood. Here, we show that in mouse liver, transcriptional regulation significantly contributes to the establishment of 12-h rhythms of mRNA expression in a manner dependent on Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, the motif stringency of XBP1s promoter binding sites dictates XBP1s’s ability to drive 12-h rhythms of nascent mRNA transcription at dawn and dusk, which are enriched for basal transcription regulation, mRNA processing and export, ribosome biogenesis, translation initiation, and protein processing/sorting in the Endoplasmic Reticulum (ER)-Golgi in a temporal order consistent with the progressive molecular processing sequence described by the central dogma information flow (CEDIF). We further identified GA-binding proteins (GABPs) as putative novel transcriptional regulators driving 12-h rhythms of gene expression with more diverse phases. These 12-h rhythms of gene expression are cell autonomous and evolutionarily conserved in marine animals possessing a circatidal clock. Our results demonstrate an evolutionarily conserved, intricate network of transcriptional control of the mammalian 12-h clock that mediates diverse biological pathways. We speculate that the 12-h clock is coopted to accommodate elevated gene expression and processing in mammals at the two rush hours, with the particular genes processed at each rush hour regulated by the circadian and/or tissue-specific pathways. Distinct from the well-known 24-hour circadian clock, this study shows that the mammalian 12-hour clock upregulates genetic information flow capacity during the two "rush hours" (dawn and dusk) in a manner dependent on the transcription factor XBP1s.
Collapse
Affiliation(s)
- Yinghong Pan
- UPMC Genome Center, Pittsburgh, Pennsylvania, United States of America
| | - Heather Ballance
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Huan Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Naomi Gonzalez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sam-Moon Kim
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Leymaan Abdurehman
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yisrael Schnytzer
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Oren Levy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Clifford C. Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SL); (BZ)
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, United States of America
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SL); (BZ)
| |
Collapse
|
16
|
Sicari D, Igbaria A, Chevet E. Control of Protein Homeostasis in the Early Secretory Pathway: Current Status and Challenges. Cells 2019; 8:E1347. [PMID: 31671908 PMCID: PMC6912474 DOI: 10.3390/cells8111347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
: Discrimination between properly folded proteins and those that do not reach this state is necessary for cells to achieve functionality. Eukaryotic cells have evolved several mechanisms to ensure secretory protein quality control, which allows efficiency and fidelity in protein production. Among the actors involved in such process, both endoplasmic reticulum (ER) and the Golgi complex play prominent roles in protein synthesis, biogenesis and secretion. ER and Golgi functions ensure that only properly folded proteins are allowed to flow through the secretory pathway while improperly folded proteins have to be eliminated to not impinge on cellular functions. Thus, complex quality control and degradation machineries are crucial to prevent the toxic accumulation of improperly folded proteins. However, in some instances, improperly folded proteins can escape the quality control systems thereby contributing to several human diseases. Herein, we summarize how the early secretory pathways copes with the accumulation of improperly folded proteins, and how insufficient handling can cause the development of several human diseases. Finally, we detail the genetic and pharmacologic approaches that could be used as potential therapeutic tools to treat these diseases.
Collapse
Affiliation(s)
- Daria Sicari
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Aeid Igbaria
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Eric Chevet
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| |
Collapse
|
17
|
Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2. Nat Commun 2019; 10:3960. [PMID: 31481663 PMCID: PMC6722061 DOI: 10.1038/s41467-019-11894-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Translation is a basic cellular process and its capacity is adapted to cell function. In particular, secretory cells achieve high protein synthesis levels without triggering the protein stress response. It is unknown how and when translation capacity is increased during differentiation. Here, we show that the transcription factor Creb3l2 is a scaling factor for translation capacity in pituitary secretory cells and that it directly binds ~75% of regulatory and effector genes for translation. In parallel with this cell-autonomous mechanism, implementation of the physiological UPR pathway prevents triggering the protein stress response. Knockout mice for Tpit, a pituitary differentiation factor, show that Creb3l2 expression and its downstream regulatory network are dependent on Tpit. Further, Creb3l2 acts by direct targeting of translation effector genes in parallel with signaling pathways that otherwise regulate protein synthesis. Expression of Creb3l2 may be a useful means to enhance production of therapeutic proteins.
Collapse
|
18
|
Sampieri L, Di Giusto P, Alvarez C. CREB3 Transcription Factors: ER-Golgi Stress Transducers as Hubs for Cellular Homeostasis. Front Cell Dev Biol 2019; 7:123. [PMID: 31334233 PMCID: PMC6616197 DOI: 10.3389/fcell.2019.00123] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
CREB3 family of transcription factors are ER localized proteins that belong to the bZIP family. They are transported from the ER to the Golgi, cleaved by S1P and S2P proteases and the released N-terminal domains act as transcription factors. CREB3 family members regulate the expression of a large variety of genes and according to their tissue-specific expression profiles they play, among others, roles in acute phase response, lipid metabolism, development, survival, differentiation, organelle autoregulation, and protein secretion. They have been implicated in the ER and Golgi stress responses as regulators of the cell secretory capacity and cell specific cargos. In this review we provide an overview of the diverse functions of each member of the family (CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4) with special focus on their role in the central nervous system.
Collapse
Affiliation(s)
- Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Di Giusto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
19
|
Liu Z, Zhou J, Wang Z, Zhou Z. Analysis of SEC24D Gene in Breast Cancer Based on UALCAN Database. Open Life Sci 2019; 14:707-711. [PMID: 33817210 PMCID: PMC7874789 DOI: 10.1515/biol-2019-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To analyze the expression and its clinical significance of the SEC24D gene in breast cancer. METHODS The dataset of breast cancer were searched in the UALCAN database, and the data obtained were mined and combined with literature analysis. RESULTS The mRNA expression of the SEC24D gene in breast cancer tissues was significantly higher than that of breast normal tissues from the UALCAN database (P < 0.05). The promoter methylation levels of the SEC24D gene in breast cancer tissues were lower than that of breast normal tissues (P < 0.05). Survival analysis showed that the relapse-free survival of breast cancer patients with a higher expression of SEC24D gene was significantly worse than those patients with a lower expression of SEC24D (P < 0.05). CONCLUSION The SEC24D gene has a high expression in breast cancer tissues and its expression level was related to the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Radiology, Affiliated Hospital of North China University of Science and Technology, Tangshan063000, P.R. China
| | - Jing Zhou
- Department of Endocrinology, Tangshan Hospital of Traditional Chinese Medicine, Tangshan063000, P.R. China
| | - Zhibao Wang
- Department of Radiology, The No.2 Hospital of Baoding, Baoding071051, P.R. China
| | - Zhiqiang Zhou
- Department of Radiology, The No.2 Hospital of Baoding, Baoding071051, P.R. China
| |
Collapse
|
20
|
Zhu D, Yang C, Shen P, Chen L, Chen J, Sun X, Duan L, Zhang L, Zhu J, Duan Y. rSjP40 suppresses hepatic stellate cell activation by promoting microRNA-155 expression and inhibiting STAT5 and FOXO3a expression. J Cell Mol Med 2018; 22:5486-5493. [PMID: 30091834 PMCID: PMC6201359 DOI: 10.1111/jcmm.13819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023] Open
Abstract
Activation of hepatic stellate cells (HSCs) is the central event of the evolution of hepatic fibrosis. Schistosomiasis is one of the pathogenic factors which could induce hepatic fibrosis. Previous studies have shown that recombinant Schistosoma japonicum egg antigen P40 (rSjP40) can inhibit the activation and proliferation of HSCs. MicroRNA‐155 is one of the multifunctional noncoding RNA, which is involved in a series of important biological processes including cell development, proliferation, differentiation and apoptosis. Here, we try to observe the role of microRNA‐155 in rSjP40‐inhibited HSC activation and explore its potential mechanisms. We found that microRNA‐155 was raised in rSjP40‐treated HSCs, and further studies have shown that rSjP40 enhanced microRNA‐155 expression by inhibiting STAT5 transcription. Up‐regulated microRNA‐155 can down‐regulate the expression of FOXO3a and then participate in rSjP40‐inhibited expression of α‐smooth muscle actin (α‐SMA) and collagen I. Furthermore, we observed microRNA‐155 inhibitor could partially restore the down‐regulation of FOXO3a, α‐SMA and collagen I expression in LX‐2 cells induced by rSjP40. Therefore, our research provides further insight into the mechanism by which rSjP40 could inhibit HSC activation via miR‐155.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Chunzhao Yang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Pei Shen
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, China
| | - Li Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinhua Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
21
|
Raote I, Ortega-Bellido M, Santos AJ, Foresti O, Zhang C, Garcia-Parajo MF, Campelo F, Malhotra V. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife 2018. [PMID: 29513218 PMCID: PMC5851698 DOI: 10.7554/elife.32723] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collagen export from the endoplasmic reticulum (ER) requires TANGO1, COPII coats, and retrograde fusion of ERGIC membranes. How do these components come together to produce a transport carrier commensurate with the bulky cargo collagen? TANGO1 is known to form a ring that corrals COPII coats, and we show here how this ring or fence is assembled. Our data reveal that a TANGO1 ring is organized by its radial interaction with COPII, and lateral interactions with cTAGE5, TANGO1-short or itself. Of particular interest is the finding that TANGO1 recruits ERGIC membranes for collagen export via the NRZ (NBAS/RINT1/ZW10) tether complex. Therefore, TANGO1 couples retrograde membrane flow to anterograde cargo transport. Without the NRZ complex, the TANGO1 ring does not assemble, suggesting its role in nucleating or stabilising this process. Thus, coordinated capture of COPII coats, cTAGE5, TANGO1-short, and tethers by TANGO1 assembles a collagen export machine at the ER.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Ortega-Bellido
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - António Jm Santos
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Chong Zhang
- SIMBIOsys Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|