1
|
Yu W, Xiang H, Yue J, Feng X, Duan W, Feng Y, Cheng B, Deng N, Kang W. The multi-scale dissipation mechanism of composite solid electrolyte based on nanofiber elastomer for all-solid-state lithium metal batteries. J Colloid Interface Sci 2024; 682:1073-1084. [PMID: 39662233 DOI: 10.1016/j.jcis.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Developing next generation batteries necessitates a paradigm shift in the way to engineering solutions for materials challenges. In comparison to traditional organic liquid batteries, all-solid-state batteries exhibit some significant advantages such as high safety and energy density, yet solid electrolytes face challenges in responding dimensional changes of electrodes driven by mass transport. Herein, the critical mechanical parameters affecting battery cycling duration are evaluated based on Spearman rank correlation coefficient, decoupling them into strength, ductility, stiffness, toughness, elasticity, etc. Inspired by the statistical results to apply the materials with stress-relief mechanisms, we propose an elastic solid electrolyte based on the multi-scale mechanical dissipation mechanism. The Li6.4La3Zr1.4Ta0.6O12/thermoplastic polyurethanes curled fibrous framework is designed and prepared by side-by-side electrospinning technique, serving as elastic source and ion-transport pathways for the composite with poly(ethylene oxide) matrix. Dominated sequentially by electrolyte deformation, network orientation, extendable fibers and molecular chain unfolding, the prepared elastic electrolyte exhibits excellent resilience, compression and puncture resistance. Meanwhile, the curled fast ion conductor fibers can also provide the transport pathways along the component of transmembrane direction, endowing the composite electrolyte with an ionic conductivity of 1.46 × 10-4 S cm-1 at 30 °C. A low capacity decay of 0.011 % per cycle at 2 C in assembled LiFePO4/Li battery and an excellent lifespan of 1000 cycles at 50 °C in LiNi0.8Mn0.1Co0.1O2/Li battery can be achieved. The elastic electrolyte system presents a promising strategy for enabling stable operation of high-energy all-solid-state lithium batteries.
Collapse
Affiliation(s)
- Wen Yu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hengying Xiang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianing Yue
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaofan Feng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wenwen Duan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Feng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Shandong Chambroad Holding Group Co., Ltd, Economic Development Zone of Boxing County, Binzhou 256500, China.
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
2
|
Nesbitt DQ, Pu X, Turner MW, Zavala AG, Bond L, Oxford JT, Lujan TJ. Age-dependent changes in collagen crosslinks reduce the mechanical toughness of human meniscus. J Orthop Res 2024; 42:1870-1879. [PMID: 38491967 DOI: 10.1002/jor.25824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
The mechanical resilience of the knee meniscus is provided by a group of structural proteins in the extracellular matrix. Aging can alter the quantity and molecular structure of these proteins making the meniscus more susceptible to debilitating tears. In this study, we determined the effect of aging on the quantity of structural proteins and collagen crosslinks in human lateral meniscus, and examined whether the quantity of these molecules was predictive of tensile toughness (area under the stress-strain curve). Two age groups were tested: a young group under 40 and an older group over 65 years old. Using mass spectrometry, we quantified the abundance of proteins and collagen crosslinks in meniscal tissue that was adjacent to the dumbbell-shaped specimens used to measure uniaxial tensile toughness parallel or perpendicular to the circumferential fiber orientation. We found that the enzymatic collagen crosslink deoxypyridinoline had a significant positive correlation with toughness, and reductions in the quantity of this crosslink with aging were associated with a loss of toughness in the ground substance and fibers. The non-enzymatic collagen crosslink carboxymethyl-lysine increased in quantity with aging, and these increases corresponded to reductions in ground substance toughness. For the collagenous (Types I, II, IV, VI, VIII) and non-collagenous structural proteins (elastin, decorin, biglycan, prolargin) analyzed in this study, only the quantity of collagen VIII was predictive of toughness. This study provides valuable insights on the structure-function relationships of the human meniscus, and how aging causes structural adaptations that weaken the tissue's mechanical integrity.
Collapse
Affiliation(s)
- Derek Q Nesbitt
- Biomedical Engineering Doctoral Program, Boise State University, Boise, Idaho, USA
| | - Xinzhu Pu
- Biomolecular Research Institute, College of Arts and Sciences, Boise State University, Boise, Idaho, USA
| | - Matthew W Turner
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Anamaria G Zavala
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, Idaho, USA
| | - Laura Bond
- Biomolecular Research Institute, College of Arts and Sciences, Boise State University, Boise, Idaho, USA
| | - Julia T Oxford
- Biomedical Engineering Doctoral Program, Boise State University, Boise, Idaho, USA
- Biomolecular Research Institute, College of Arts and Sciences, Boise State University, Boise, Idaho, USA
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Trevor J Lujan
- Biomedical Engineering Doctoral Program, Boise State University, Boise, Idaho, USA
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, Idaho, USA
| |
Collapse
|
3
|
Liu X, Deng Y, Liang Z, Qiao D, Zhang W, Wang M, Li F, Liu J, Wu Y, Chen G, Liu Y, Tan W, Xing J, Huang W, Zhao D, Li Y. The alteration of the structure and macroscopic mechanical response of porcine patellar tendon by elastase digestion. Front Bioeng Biotechnol 2024; 12:1374352. [PMID: 38694621 PMCID: PMC11061363 DOI: 10.3389/fbioe.2024.1374352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon. Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology. Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%-80%, the high tensile modulus decreased by 38%-47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly. Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials.
Collapse
Affiliation(s)
- Xiaoyun Liu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuping Deng
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zeyu Liang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Qiao
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentian Zhang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Mian Wang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Orthopaedics, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Feifei Li
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiannan Liu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobing Wu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangxin Chen
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yan Liu
- Department of Anatomy, Gannan Healthcare Vocational College, Ganzhou, China
| | - Wenchang Tan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Xing
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dongliang Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
DiIorio SE, Young B, Parker JB, Griffin MF, Longaker MT. Understanding Tendon Fibroblast Biology and Heterogeneity. Biomedicines 2024; 12:859. [PMID: 38672213 PMCID: PMC11048404 DOI: 10.3390/biomedicines12040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tendon regeneration has emerged as an area of interest due to the challenging healing process of avascular tendon tissue. During tendon healing after injury, the formation of a fibrous scar can limit tendon strength and lead to subsequent complications. The specific biological mechanisms that cause fibrosis across different cellular subtypes within the tendon and across different tendons in the body continue to remain unknown. Herein, we review the current understanding of tendon healing, fibrosis mechanisms, and future directions for treatments. We summarize recent research on the role of fibroblasts throughout tendon healing and describe the functional and cellular heterogeneity of fibroblasts and tendons. The review notes gaps in tendon fibrosis research, with a focus on characterizing distinct fibroblast subpopulations in the tendon. We highlight new techniques in the field that can be used to enhance our understanding of complex tendon pathologies such as fibrosis. Finally, we explore bioengineering tools for tendon regeneration and discuss future areas for innovation. Exploring the heterogeneity of tendon fibroblasts on the cellular level can inform therapeutic strategies for addressing tendon fibrosis and ultimately reduce its clinical burden.
Collapse
Affiliation(s)
- Sarah E. DiIorio
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bill Young
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Jennifer B. Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Zamboulis DE, Marr N, Lenzi L, Birch HL, Screen HRC, Clegg PD, Thorpe CT. The Interfascicular Matrix of Energy Storing Tendons Houses Heterogenous Cell Populations Disproportionately Affected by Aging. Aging Dis 2024; 15:295-310. [PMID: 37307816 PMCID: PMC10796100 DOI: 10.14336/ad.2023.0425-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to injury, with incidence increasing with aging, peaking in the 5th decade of life in the human Achilles tendon. The interfascicular matrix (IFM), which binds tendon fascicles, plays a key role in energy storing tendon mechanics, and aging alterations to the IFM negatively impact tendon function. While the mechanical role of the IFM in tendon function is well-established, the biological role of IFM-resident cell populations remains to be elucidated. Therefore, the aim of this study was to identify IFM-resident cell populations and establish how these populations are affected by aging. Cells from young and old SDFTs were subjected to single cell RNA-sequencing, and immunolabelling for markers of each resulting population used to localise cell clusters. Eleven cell clusters were identified, including tenocytes, endothelial cells, mural cells, and immune cells. One tenocyte cluster localised to the fascicular matrix, whereas nine clusters localised to the IFM. Interfascicular tenocytes and mural cells were preferentially affected by aging, with differential expression of genes related to senescence, dysregulated proteostasis and inflammation. This is the first study to establish heterogeneity in IFM cell populations, and to identify age-related alterations specific to IFM-localised cells.
Collapse
Affiliation(s)
- Danae E. Zamboulis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| | - Neil Marr
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| | - Luca Lenzi
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Helen L. Birch
- Department of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK.
| | - Hazel R. C. Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| | - Peter D. Clegg
- Department of Musculoskeletal and AgingScience, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Chavaunne T. Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| |
Collapse
|
6
|
Malhi BS, Moazamian D, Shin SH, Athertya JS, Silva L, Jerban S, Jang H, Chang E, Ma Y, Carl M, Du J. Bi-Exponential 3D UTE-T1ρ Relaxation Mapping of Ex Vivo Human Knee Patellar Tendon at 3T. Bioengineering (Basel) 2024; 11:66. [PMID: 38247943 PMCID: PMC10813751 DOI: 10.3390/bioengineering11010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Introduction: The objective of this study was to assess the bi-exponential relaxation times and fractions of the short and long components of the human patellar tendon ex vivo using three-dimensional ultrashort echo time T1ρ (3D UTE-T1ρ) imaging. Materials and Methods: Five cadaveric human knee specimens were scanned using a 3D UTE-T1ρ imaging sequence on a 3T MR scanner. A series of 3D UTE-T1ρ images were acquired and fitted using single-component and bi-component models. Single-component exponential fitting was performed to measure the UTE-T1ρ value of the patellar tendon. Bi-component analysis was performed to measure the short and long UTE-T1ρ values and fractions. Results: The single-component analysis showed a mean single-component UTE-T1ρ value of 8.4 ± 1.7 ms for the five knee patellar tendon samples. Improved fitting was achieved with bi-component analysis, which showed a mean short UTE-T1ρ value of 5.5 ± 0.8 ms with a fraction of 77.6 ± 4.8%, and a mean long UTE-T1ρ value of 27.4 ± 3.8 ms with a fraction of 22.4 ± 4.8%. Conclusion: The 3D UTE-T1ρ sequence can detect the single- and bi-exponential decay in the patellar tendon. Bi-component fitting was superior to single-component fitting.
Collapse
Affiliation(s)
- Bhavsimran Singh Malhi
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
| | - Dina Moazamian
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
| | - Soo Hyun Shin
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
| | - Jiyo S. Athertya
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
| | - Livia Silva
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
| | - Saeed Jerban
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
| | - Hyungseok Jang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
| | - Eric Chang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Yajun Ma
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
| | - Michael Carl
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
- General Electric Health Care, San Diego, CA 92037, USA
| | - Jiang Du
- Department of Radiology, University of California, La Jolla, San Diego, CA 92037, USA; (B.S.M.); (D.M.); (S.H.S.); (J.S.A.); (L.S.); (S.J.); (H.J.); (E.C.); (Y.M.); (M.C.)
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| |
Collapse
|
7
|
Johnson PA, Ackerman JE, Kurowska-Stolarska M, Coles M, Buckley CD, Dakin SG. Three-dimensional, in-vitro approaches for modelling soft-tissue joint diseases. THE LANCET. RHEUMATOLOGY 2023; 5:e553-e563. [PMID: 38251499 DOI: 10.1016/s2665-9913(23)00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 01/23/2024]
Abstract
Diseases affecting the soft tissues of the joint represent a considerable global health burden, causing pain and disability and increasing the likelihood of developing metabolic comorbidities. Current approaches to investigating the cellular basis of joint diseases, including osteoarthritis, rheumatoid arthritis, tendinopathy, and arthrofibrosis, involve well phenotyped human tissues, animal disease models, and in-vitro tissue culture models. Inherent challenges in preclinical drug discovery have driven the development of state-of-the-art, in-vitro human tissue models to rapidly advance therapeutic target discovery. The clinical potential of such models has been substantiated through successful recapitulation of the pathobiology of cancers, generating accurate predictions of patient responses to therapeutics and providing a basis for equivalent musculoskeletal models. In this Review, we discuss the requirement to develop physiologically relevant three-dimensional (3D) culture systems that could advance understanding of the cellular and molecular basis of diseases that affect the soft tissues of the joint. We discuss the practicalities and challenges associated with modelling the complex extracellular matrix of joint tissues-including cartilage, synovium, tendon, and ligament-highlighting the importance of considering the joint as a whole organ to encompass crosstalk across tissues and between diverse cell types. The design of bespoke in-vitro models for soft-tissue joint diseases has the potential to inform functional studies of the cellular and molecular mechanisms underlying disease onset, progression, and resolution. Use of these models could inform precision therapeutic targeting and advance the field towards personalised medicine for patients with common musculoskeletal diseases.
Collapse
Affiliation(s)
- Peter A Johnson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jessica E Ackerman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Mark Coles
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 PMCID: PMC11659964 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
9
|
Johnston A, Callanan A. Recent Methods for Modifying Mechanical Properties of Tissue-Engineered Scaffolds for Clinical Applications. Biomimetics (Basel) 2023; 8:205. [PMID: 37218791 PMCID: PMC10204517 DOI: 10.3390/biomimetics8020205] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
The limited regenerative capacity of the human body, in conjunction with a shortage of healthy autologous tissue, has created an urgent need for alternative grafting materials. A potential solution is a tissue-engineered graft, a construct which supports and integrates with host tissue. One of the key challenges in fabricating a tissue-engineered graft is achieving mechanical compatibility with the graft site; a disparity in these properties can shape the behaviour of the surrounding native tissue, contributing to the likelihood of graft failure. The purpose of this review is to examine the means by which researchers have altered the mechanical properties of tissue-engineered constructs via hybrid material usage, multi-layer scaffold designs, and surface modifications. A subset of these studies which has investigated the function of their constructs in vivo is also presented, followed by an examination of various tissue-engineered designs which have been clinically translated.
Collapse
Affiliation(s)
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK;
| |
Collapse
|
10
|
Shivapatham G, Richards S, Bamber J, Screen H, Morrissey D. Ultrasound Measurement of Local Deformation in the Human Free Achilles Tendon Produced by Dynamic Muscle-Induced Loading: A Systematic Review. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1499-1509. [PMID: 37149429 DOI: 10.1016/j.ultrasmedbio.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Achilles tendinopathy is the most prevalent lower limb tendinopathy, yet it remains poorly understood, with mismatches between observed structure and reported function. Recent studies have hypothesised that Achilles tendon (AT) healthy function is associated with variable deformation across the tendon width during use, focusing on quantifying sub-tendon deformation. Here, the aim of this work was to synthesise recent advances exploring human free AT tissue-level deformation during use. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, PubMed, Embase, Scopus and Web of Science were systematically searched. Study quality and risk of bias were assessed. Thirteen articles were retained, yielding data on free AT deformation patterns. Seven were categorised as high-quality and six as medium-quality studies. Evidence consistently reports that healthy and young tendons deform non-uniformly, with the deeper layer displacing 18%-80% more than the superficial layer. Non-uniformity decreased by 12%-85% with increasing age and by 42%-91% in the presence of injury. There is limited evidence of large effect that AT deformation patterns during dynamic loading are non-uniform and may act as a biomarker of tendon health, risk of injury and rehabilitation impact. Better considered participant recruitment and improved measurement procedures would particularly improve study quality, to explore links between tendon structure, function, aging and disease in distinct populations.
Collapse
Affiliation(s)
| | - Samuel Richards
- Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK
| | - Jeffrey Bamber
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Hazel Screen
- School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Dylan Morrissey
- Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Lee MH, Tsai HP, Lavy C, Mouthuy PA, Czernuszka J. Time-dependent extracellular matrix alterations of young tendons in response to stress relaxation: a model for the Ponseti method. J R Soc Interface 2023; 20:20220712. [PMID: 37194273 PMCID: PMC10189311 DOI: 10.1098/rsif.2022.0712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/06/2023] [Indexed: 05/18/2023] Open
Abstract
The Ponseti method corrects a clubfoot by manipulation and casting which causes stress relaxation on the tendons. Here, we examined the effect of long-term stress relaxation on tendon extracellular matrix (ECM) by (1) an ex vivo stress relaxation test, (2) an in vitro tenocyte culture with stress relaxation and (3) an in vivo rabbit study. Time-dependent tendon lengthening and ECM alterations including crimp angle reduction and cleaved elastin were observed, which illustrated the mechanism of tissue lengthening behind the treatment-a material-based crimp angle reduction resulted from elastin cleavage. Additionally, in vitro and in vivo results observed restoration of these ECM alterations along with increased elastin level after 7 days of treatment, and the existence of neovascularization and inflammation, indicating the recovery and adaptation from the tendon in reaction to the treatment. Overall, this study provides the scientific background and information that helps explain the Ponseti method.
Collapse
Affiliation(s)
- Mu-Huan Lee
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chris Lavy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
| | - Pierre-Alexis Mouthuy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
| | - Jan Czernuszka
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| |
Collapse
|
12
|
Waugh CM, Mousavizadeh R, Lee J, Screen HRC, Scott A. Mild hypercholesterolemia impacts achilles sub-tendon mechanical properties in young rats. BMC Musculoskelet Disord 2023; 24:282. [PMID: 37046262 PMCID: PMC10091839 DOI: 10.1186/s12891-023-06375-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Hypercholesterolemia is associated with tendon pathology, but the reasons underpinning this relationship are not well understood. Cholesterol can accumulate in the tendon non-collagenous matrix which may affect both global and local tissue mechanics. Changes to the local strain environment within tendon may have significant implications for mechanosensitive tenocytes. Here, we investigated the association between elevated blood cholesterol and presence of tendon lipids in the Achilles tendon. We expected lipids to be localised in the proteoglycan-rich inter-sub-tendon matrix (ISTM), therefore we also sought to examine the impact of this on the biomechanical and viscoelastic properties of the ISTM. METHODS The Achilles tendons of 32 young wild-type (SD) and 32 apolipoprotein E knock-out rats (ApoE-/-) were harvested at 15.6 ± 2.3 weeks of age. 32 specimens underwent histological examination to assess the distribution of lipids throughout sub-tendons and ISTM. The remaining specimens were prepared for biomechanical testing, where the ISTM between the gastrocnemius and soleus sub-tendons was subjected to shear load mechanical testing. A sub-set of tests were video recorded to enable a strain analysis. RESULTS ApoE-/- serum cholesterol was double that of SD rats (mean 2.25 vs. 1.10 mg/ml, p < 0.001) indicating a relatively mild hypercholesterolemia phenotype. Nonetheless, we found histological evidence of esterified lipids in the ISTM and unesterified lipids in the sub-tendons, although the location or intensity of staining was not appreciably different between rat strains. Despite a lack of observable histological differences in lipid content between groups, there were significant differences in the mechanical and viscoelastic behaviour of the Achilles sub-tendon matrix. CONCLUSION Even slightly elevated cholesterol may result in subtle changes to tendon biomechanical properties and hence injury risk. The young age of our cohort and the mild phenotype of our ApoE-/- rats are likely to have limited our findings and so we also conclude that the ApoE-/- rat model is not well suited for investigating the biomechanical impact of tendon xanthomas on Achilles sub-tendon function.
Collapse
Affiliation(s)
- Charlie M Waugh
- Dept. Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver BC, Canada.
- School of Engineering and Materials Science, Queen Mary, University of London, London, U.K..
| | - Rouhollah Mousavizadeh
- Dept. Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver BC, Canada
| | - Jenny Lee
- Dept. Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver BC, Canada
| | - Hazel R C Screen
- School of Engineering and Materials Science, Queen Mary, University of London, London, U.K
| | - Alexander Scott
- Dept. Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
13
|
Vinhas A, Almeida AF, Rodrigues MT, Gomes ME. Prospects of magnetically based approaches addressing inflammation in tendon tissues. Adv Drug Deliv Rev 2023; 196:114815. [PMID: 37001644 DOI: 10.1016/j.addr.2023.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Tendon afflictions constitute a significant share of musculoskeletal diseases and represent a primary cause of incapacity worldwide. Unresolved/chronic inflammatory states have been associated with the onset and progression of tendon disorders, contributing to undesirable immune stimulation and detrimental tissue effects. Thus, targeting persistent inflammatory events could assist important developments to solve pathophysiological processes and innovative therapeutics to address impaired healing and accomplish complete tendon regeneration. This review overviews the impact of inflammation and inflammatory mediators in tendon niches, unveiling the importance of tendon cell populations and their signature features, and the influence of microenvironmental factors on inflamed and injured tendons. The demand for non-invasive instructive strategies to manage persistent inflammatory mediators, guide inflammatory pathways, and modulate cellular responses will also be approached by exploring the role of pulsed electromagnetic field (PEMF). PEMF alone or combined with more sophisticated systems triggered by magnetic fields will be considered in the design of successful therapies to control inflammation in tendinopathic conditions.
Collapse
|
14
|
Marr N, Zamboulis DE, Werling D, Felder AA, Dudhia J, Pitsillides AA, Thorpe CT. The tendon interfascicular basement membrane provides a vascular niche for CD146+ cell subpopulations. Front Cell Dev Biol 2023; 10:1094124. [PMID: 36699014 PMCID: PMC9869387 DOI: 10.3389/fcell.2022.1094124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: The interfascicular matrix (IFM; also known as the endotenon) is critical to the mechanical adaptations and response to load in energy-storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT). We hypothesized that the IFM is a tendon progenitor cell niche housing an exclusive cell subpopulation. Methods: Immunolabelling of equine superficial digital flexor tendon was used to identify the interfascicular matrix niche, localising expression patterns of CD31 (endothelial cells), Desmin (smooth muscle cells and pericytes), CD146 (interfascicular matrix cells) and LAMA4 (interfascicular matrix basement membrane marker). Magnetic-activated cell sorting was employed to isolate and compare in vitro properties of CD146+ and CD146- subpopulations. Results: Labelling for CD146 using standard histological and 3D imaging of large intact 3D segments revealed an exclusive interfascicular cell subpopulation that resides in proximity to a basal lamina which forms extensive, interconnected vascular networks. Isolated CD146+ cells exhibited limited mineralisation (osteogenesis) and lipid production (adipogenesis). Discussion: This study demonstrates that the interfascicular matrix is a unique tendon cell niche, containing a vascular-rich network of basement membrane, CD31+ endothelial cells, Desmin+ mural cells, and CD146+ cell populations that are likely essential to tendon structure and/or function. Contrary to our hypothesis, interfascicular CD146+ subpopulations did not exhibit stem cell-like phenotypes. Instead, our results indicate CD146 as a pan-vascular marker within the tendon interfascicular matrix. Together with previous work demonstrating that endogenous tendon CD146+ cells migrate to sites of injury, our data suggest that their mobilisation to promote intrinsic repair involves changes in their relationships with local interfascicular matrix vascular and basement membrane constituents.
Collapse
Affiliation(s)
- Neil Marr
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Danae E. Zamboulis
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, United Kingdom
| | - Alessandro A. Felder
- Research Software Development Group, Advanced Research Computing, University College London, London, United Kingdom
| | - Jayesh Dudhia
- Clinical Sciences and Services, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Chavaunne T. Thorpe
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
15
|
Korcari A, Przybelski SJ, Gingery A, Loiselle AE. Impact of aging on tendon homeostasis, tendinopathy development, and impaired healing. Connect Tissue Res 2023; 64:1-13. [PMID: 35903886 PMCID: PMC9851966 DOI: 10.1080/03008207.2022.2102004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Aging is a complex and progressive process where the tissues of the body demonstrate a decreased ability to maintain homeostasis. During aging, there are substantial cellular and molecular changes, with a subsequent increase in susceptibility to pathological degeneration of normal tissue function. In tendon, aging results in well characterized alterations in extracellular matrix (ECM) structure and composition. In addition, the cellular environment of aged tendons is altered, including a marked decrease in cell density and metabolic activity, as well as an increase in cellular senescence. Collectively, these degenerative changes make aging a key risk factor for the development of tendinopathies and can increase the frequency of tendon injuries. However, inconsistencies in the extent of age-related degenerative impairments in tendons have been reported, likely due to differences in how "old" and "young" age-groups have been defined, differences between anatomically distinct tendons, and differences between animal models that have been utilized to study the impact of aging on tendon homeostasis. In this review, we address these issues by summarizing data by well-defined age categories (young adults, middle-aged, and aged) and from anatomically distinct tendon types. We then summarize in detail how aging affects tendon mechanics, structure, composition, and the cellular environment based on current data and underscore what is currently not known. Finally, we discuss gaps in the current understanding of tendon aging and propose key avenues for future research that can shed light on the specific mechanisms of tendon pathogenesis due to aging.
Collapse
Affiliation(s)
- Antonion Korcari
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | - Anne Gingery
- Division of Orthopedic Surgery Research, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Alayna E Loiselle
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
16
|
Graça AL, Gomez-Florit M, Gomes ME, Docheva D. Tendon Aging. Subcell Biochem 2023; 103:121-147. [PMID: 37120467 DOI: 10.1007/978-3-031-26576-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Tendons are mechanosensitive connective tissues responsible for the connection between muscles and bones by transmitting forces that allow the movement of the body, yet, with advancing age, tendons become more prone to degeneration followed by injuries. Tendon diseases are one of the main causes of incapacity worldwide, leading to changes in tendon composition, structure, and biomechanical properties, as well as a decline in regenerative potential. There is still a great lack of knowledge regarding tendon cellular and molecular biology, interplay between biochemistry and biomechanics, and the complex pathomechanisms involved in tendon diseases. Consequently, this reflects a huge need for basic and clinical research to better elucidate the nature of healthy tendon tissue and also tendon aging process and associated diseases. This chapter concisely describes the effects that the aging process has on tendons at the tissue, cellular, and molecular levels and briefly reviews potential biological predictors of tendon aging. Recent research findings that are herein reviewed and discussed might contribute to the development of precision tendon therapies targeting the elderly population.
Collapse
Affiliation(s)
- Ana Luísa Graça
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Manuela Estima Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
17
|
Mohindra R, Mohindra R, Agrawal DK, Thankam FG. Bioactive extracellular matrix fragments in tendon repair. Cell Tissue Res 2022; 390:131-140. [PMID: 36074173 DOI: 10.1007/s00441-022-03684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Tendinopathy is a common tendon disorder that causes pain, loss of strength and function, and local inflammation mainly characterized by hypoxia, collagen degradation, and extracellular matrix (ECM) disorganization. Generally, ECM degradation and remodeling is tightly regulated; however, hyperactivation of matrix metalloproteases (MMPs) contributes to excessive collagenolysis under pathologic conditions resulting in tendon ECM degradation. This review article focuses on the production, function, and signaling of matrikines for tendon regeneration following injury with insights into the expression, tissue compliance, and cell proliferation exhibited by various matrikines. Furthermore, the regenerative properties suggest translational significance of matrikines to improve the outcomes post-injury by assisting with tendon healing.
Collapse
Affiliation(s)
- Ritika Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Rohit Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
18
|
Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The Role of the Non-Collagenous Extracellular Matrix in Tendon and Ligament Mechanical Behavior: A Review. J Biomech Eng 2022; 144:1128818. [PMID: 34802057 PMCID: PMC8719050 DOI: 10.1115/1.4053086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Tendon is a connective tissue that transmits loads from muscle to bone, while ligament is a similar tissue that stabilizes joint articulation by connecting bone to bone. The 70-90% of tendon and ligament's extracellular matrix (ECM) is composed of a hierarchical collagen structure that provides resistance to deformation primarily in the fiber direction, and the remaining fraction consists of a variety of non-collagenous proteins, proteoglycans, and glycosaminoglycans (GAGs) whose mechanical roles are not well characterized. ECM constituents such as elastin, the proteoglycans decorin, biglycan, lumican, fibromodulin, lubricin, and aggrecan and their associated GAGs, and cartilage oligomeric matrix protein (COMP) have been suggested to contribute to tendon and ligament's characteristic quasi-static and viscoelastic mechanical behavior in tension, shear, and compression. The purpose of this review is to summarize existing literature regarding the contribution of the non-collagenous ECM to tendon and ligament mechanics, and to highlight key gaps in knowledge that future studies may address. Using insights from theoretical mechanics and biology, we discuss the role of the non-collagenous ECM in quasi-static and viscoelastic tensile, compressive, and shear behavior in the fiber direction and orthogonal to the fiber direction. We also address the efficacy of tools that are commonly used to assess these relationships, including enzymatic degradation, mouse knockout models, and computational models. Further work in this field will foster a better understanding of tendon and ligament damage and healing as well as inform strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Lainie E Eisner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Ryan Rosario
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
19
|
Eekhoff JD, Abraham JA, Schott HR, Solon LF, Ulloa GE, Zellers JA, Cannon PC, Lake SP. Fascicular elastin within tendon contributes to the magnitude and modulus gradient of the elastic stress response across tendon type and species. Acta Biomater 2022; 163:91-105. [PMID: 35306182 DOI: 10.1016/j.actbio.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Elastin, the main component of elastic fibers, has been demonstrated to significantly influence tendon mechanics using both elastin degradation studies and elastinopathic mouse models. However, it remains unclear how prior results differ between species and functionally distinct tendons and, in particular, how results translate to human tendon. Differences in function between fascicular and interfascicular elastin are also yet to be fully elucidated. Therefore, this study evaluated the quantity, structure, and mechanical contribution of elastin in functionally distinct tendons across species. Tendons with an energy-storing function had slightly more elastin content than tendons with a positional function, and human tendon had at least twice the elastin content of other species. While distinctions in the organization of elastic fibers between fascicles and the interfascicular matrix were observed, differences in structural arrangement of the elastin network between species and tendon type were limited. Mechanical testing paired with enzyme-induced elastin degradation was used to evaluate the contribution of elastin to tendon mechanics. Across all tendons, elastin degradation affected the elastic stress response by decreasing stress values while increasing the modulus gradient of the stress-strain curve. Only the contributions of elastin to viscoelastic properties varied between tendon type and species, with human tendon and energy-storing tendon being more affected. These data suggest that fascicular elastic fibers contribute to the tensile mechanical response of tendon, likely by regulating collagen engagement under load. Results add to prior findings and provide evidence for a more mechanistic understanding of the role of elastic fibers in tendon. STATEMENT OF SIGNIFICANCE: Elastin has previously been shown to influence the mechanical properties of tendon, and degraded or abnormal elastin networks caused by aging or disease may contribute to pain and an increased risk of injury. However, prior work has not fully determined how elastin contributes differently to tendons with varying functional demands, as well as within distinct regions of tendon. This study determined the effects of elastin degradation on the tensile elastic and viscoelastic responses of tendons with varying functional demands, hierarchical structures, and elastin content. Moreover, volumetric imaging and protein quantification were used to thoroughly characterize the elastin network in each distinct tendon. The results presented herein can inform tendon-specific strategies to maintain or restore native properties in elastin-degraded tissue.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, MSC: 1185-208-125, St. Louis, MO 63130, United States
| | - James A Abraham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, United States
| | - Hayden R Schott
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, United States
| | - Lorenzo F Solon
- Department of Biology, Washington University in St. Louis, United States
| | - Gabriella E Ulloa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, United States
| | - Jennifer A Zellers
- Department of Physical Therapy, Washington University in St. Louis School of Medicine, United States
| | - Paul C Cannon
- Department of Mathematics, Brigham Young University - Idaho, United States
| | - Spencer P Lake
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, MSC: 1185-208-125, St. Louis, MO 63130, United States; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, United States; Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, , United States.
| |
Collapse
|
20
|
Thierbach M, Heyne E, Schwarzer M, Koch LG, Britton SL, Wildemann B. Age and Intrinsic Fitness Affect the Female Rotator Cuff Tendon Tissue. Biomedicines 2022; 10:biomedicines10020509. [PMID: 35203717 PMCID: PMC8962357 DOI: 10.3390/biomedicines10020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
The risk of the development of tendon disorders or ruptures increases with age, but it is unclear whether intrinsic fitness during lifetime might also affect tendon properties. To investigate this, a contrasting rat model of high-capacity runners (HCR with high intrinsic fitness) and low-capacity runners (LCR with low intrinsic fitness) was employed. Histological and molecular changes in rotator cuff (RC) tendons from 10 weeks old (young; HCR-10 and LCR-10) and 100 weeks old (old; HCR-100 and LCR-100) female rats were investigated. Age-dependent changes of RC tendons observed in HCR and LCR were increase of weight, decrease of tenocytes and RNA content, reduction of the wavy pattern of collagen and elastic fibers, repressed expression of Col1a1, Eln, Postn, Tnmd, Tgfb3 and Egr1 and reduction of the Col1:Col3 and Col1:Eln ratio. The LCR rats showed less physical activity, increased body weight, signs of metabolic disease and a reduced life expectancy. Their RC tendons revealed increased weight (more than age-dependent) and enlargement of the tenocyte nuclei (consistent with degenerative tendons). Low intrinsic fitness led to repressed expression of a further nine genes (Col3a1, Fbn1, Dcn, Tnc, Scx, Mkx, Bmp1, Tgfb1, Esr1) as well as the rise of the Col1:Col3 and Col1:Eln ratios (related to the lesser expression of Col3a1 and Eln). The intrinsic fitness influences the female RC tendons at least as much as age. Lower intrinsic fitness accelerates aging of RC tendons and leads to further impairment; this could result in decreased healing potential and elasticity and increased stiffness.
Collapse
Affiliation(s)
- Manuela Thierbach
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany;
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, 07747 Jena, Germany; (E.H.); (M.S.)
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, 07747 Jena, Germany; (E.H.); (M.S.)
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH 43606, USA;
| | - Steven L. Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany;
- Correspondence:
| |
Collapse
|
21
|
Chatterjee M, Muljadi PM, Andarawis-Puri N. The role of the tendon ECM in mechanotransduction: disruption and repair following overuse. Connect Tissue Res 2022; 63:28-42. [PMID: 34030531 DOI: 10.1080/03008207.2021.1925663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Tendon overuse injuries are prevalent conditions with limited therapeutic options to halt disease progression. The specialized extracellular matrix (ECM) both enables joint function and mediates mechanical signals to tendon cells, driving biological responses to exercise or injury. With overuse, tendon ECM composition and structure changes at multiple scales, disrupting mechanotransduction and resulting in inadequate repair and disease progression. This review highlights the multiscale ECM changes that occur with tendon overuse and corresponding effects on cell-matrix interactions and cellular response to load.Results: Different functional joint requirements and tendon types experience a wide range of loading profiles, creating varied downstream mechanical stimuli. Distinct ECM structure and mechanical properties within the fascicle matrix, interfascicle matrix, and enthesis and their varied disruption with overuse are considered. The pericellular matrix (PCM) comprising the microscale tendon cell environment has a unique composition that changes with overuse injury and exercise, suggesting an important role in mechanotransduction and promoting repair. Cell-matrix interactions are mediated by structures including cilia, integrins, connexins and cytoskeleton that signal downstream homeostasis, adaptation, or repair. ECM disruption with tendon overuse may cause altered mechanical loading and cell-matrix interactions, resulting in mechanobiological understimulation, apoptosis, and ineffective repair. Current interventions to promote repair of tendon overuse injuries including exercise, targeting cell signaling, and modulating inflammation are considered.Conclusion: Future therapeutics should be assessed with regard of their effects on multiscale mechanotransduction in addition to joint function, with consideration of the central role of ECM.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Patrick M Muljadi
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.,Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
22
|
Ali OJ, Ehrle A, Comerford EJ, Canty-Laird EG, Mead A, Clegg PD, Maddox TW. Intrafascicular chondroid-like bodies in the ageing equine superficial digital flexor tendon comprise glycosaminoglycans and type II collagen. J Orthop Res 2021; 39:2755-2766. [PMID: 33580534 DOI: 10.1002/jor.25002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 02/04/2023]
Abstract
The superficial digital flexor tendon (SDFT) is considered functionally equivalent to the human Achilles tendon. Circular chondroid depositions scattered amongst the fascicles of the equine SDFT are rarely reported. The purpose of this study was the detailed characterization of intrafascicular chondroid-like bodies (ICBs) in the equine SDFT, and the assessment of the effect of ageing on the presence and distribution of these structures. Ultrahigh field magnetic resonance imaging (9.4T) series of SDFT samples of young (1-9 years) and aged (17-25 years) horses were obtained, and three-dimensional reconstruction of ICBs was performed. Morphological evaluation of the ICBs included histology, immunohistochemistry and transmission electron microscopy. The number, size, and position of ICBs was determined and compared between age groups. There was a significant difference (p = .008) in the ICB count between young and old horses with ICBs present in varying number (13-467; median = 47, mean = 132.6), size and distribution in the SDFT of aged horses only. There were significantly more ICBs in the tendon periphery when compared with the tendon core region (p = .010). Histological characterization identified distinctive cells associated with increased glycosaminoglycan and type II collagen extracellular matrix content. Ageing and repetitive strain frequently cause tendon micro-damage before the development of clinical tendinopathy. Documentation of the presence and distribution of ICBs is a first step towards improving our understanding of the impact of these structures on the viscoelastic properties, and ultimately their effect on the risk of age-related tendinopathy in energy-storing tendons.
Collapse
Affiliation(s)
- Othman J Ali
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Sulaymaniyah, Iraq.,Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | - Anna Ehrle
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Eithne J Comerford
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK.,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Ashleigh Mead
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Peter D Clegg
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK.,The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Thomas W Maddox
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| |
Collapse
|
23
|
Morin C, Hellmich C, Nejim Z, Avril S. Fiber Rearrangement and Matrix Compression in Soft Tissues: Multiscale Hypoelasticity and Application to Tendon. Front Bioeng Biotechnol 2021; 9:725047. [PMID: 34712652 PMCID: PMC8546211 DOI: 10.3389/fbioe.2021.725047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that the nonlinear macroscopic mechanical behavior of soft tissue is governed by fiber straightening and re-orientation. Here, we provide a quantitative assessment of this phenomenon, by means of a continuum micromechanics approach. Given the negligibly small bending stiffness of crimped fibers, the latter are represented through a number of hypoelastic straight fiber phases with different orientations, being embedded into a hypoelastic matrix phase. The corresponding representative volume element (RVE) hosting these phases is subjected to “macroscopic” strain rates, which are downscaled to fiber and matrix strain rates on the one hand, and to fiber spins on the other hand. This gives quantitative access to the fiber decrimping (or straightening) phenomenon under non-affine conditions, i.e. in the case where the fiber orientations cannot be simply linked to the macroscopic strain state. In the case of tendinous tissue, such an RVE relates to the fascicle material with 50 μm characteristic length, made up of crimped collagen bundles and a gel-type matrix in-between. The fascicles themselves act as parallel fibers in a similar matrix at the scale of a tissue-related RVE with 500 μm characteristic length. As evidenced by a sensitivity analysis and confirmed by various mechanical tests, it is the initial crimping angle which drives both the degree of straightening and the shape of the macroscopic stress-strain curve, while the final linear portion of this curve depends almost exclusively on the collagen bundle elasticity. Our model also reveals the mechanical cooperation of the tissue’s key microstructural components: while the fibers carry tensile forces, the matrices undergo hydrostatic pressure.
Collapse
Affiliation(s)
- Claire Morin
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Christian Hellmich
- Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Vienna, Austria
| | - Zeineb Nejim
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France.,Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Vienna, Austria
| |
Collapse
|
24
|
Mlyniec A, Dabrowska S, Heljak M, Weglarz WP, Wojcik K, Ekiert-Radecka M, Obuchowicz R, Swieszkowski W. The dispersion of viscoelastic properties of fascicle bundles within the tendon results from the presence of interfascicular matrix and flow of body fluids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112435. [PMID: 34702520 DOI: 10.1016/j.msec.2021.112435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023]
Abstract
In this work, we investigate differences in the mechanical and structural properties of tendon fascicle bundles dissected from different areas of bovine tendons. The properties of tendon fascicle bundles were investigated by means of uniaxial tests with relaxation periods and hysteresis, dynamic mechanical analysis (DMA), as well as magnetic resonance imaging (MRI). Uniaxial tests with relaxation periods revealed greater elastic modulus, hysteresis, as well as stress drop during the relaxation of samples dissected from the posterior side of the tendon. However, the normalized stress relaxation curves did not show a statistically significant difference in the stress drop between specimens cut from different zones or between different strain levels. Using dynamic mechanical analysis, we found that fascicle bundles dissected from the anterior side of the tendon had lower storage and loss moduli, which could result from altered fluid flow within the interfascicular matrix (IFM). The lower water content, diffusivity, and higher fractional anisotropy of the posterior part of the tendon, as observed using MRI, indicates a different structure of the IFM, which controls the flow of fluids within the tendon. Our results show that the viscoelastic response to dynamic loading is correlated with fluid flow within the IFM, which was confirmed during analysis of the MRI results. In contrast to this, the long-term relaxation of tendon fascicle bundles is controlled by viscoplasticity of the IFM and depends on the spatial distribution of the matrix within the tendon. Comparison of results from tensile tests, DMA, and MRI gives new insight into tendon mechanics and the role of the IFM. These findings may be useful in improving the diagnosis of tendon injury and effectiveness of medical treatments for tendinopathies.
Collapse
Affiliation(s)
- Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Sylwia Dabrowska
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | | | - Kaja Wojcik
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Martyna Ekiert-Radecka
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Rafal Obuchowicz
- Jagiellonian University Collegium Medicum, Department of Radiology, Krakow, Poland
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| |
Collapse
|
25
|
Equine flexor tendon imaging part 1: Recent developments in ultrasonography, with focus on the superficial digital flexor tendon. Vet J 2021; 278:105764. [PMID: 34678500 DOI: 10.1016/j.tvjl.2021.105764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
Flexor tendon injuries are a major cause of lameness in performance horses and have considerable impact on equine welfare and the wider horse industry. Ageing and repetitive strain frequently cause varying degrees of tendon micro-damage prior to the recognition of clinical tendinopathy. Whilst B-mode ultrasonography is most commonly utilised for detection and monitoring of tendon lesions at the metacarpal/metatarsal level, the emphasis of recent research has focused on the identification of subclinical tendon damage in order to prevent further tendon injury and improve outcomes. The introduction of elastography, acoustoelastography and ultrasound tissue characterisation in the field of equine orthopaedics shows promising results and might find wider use in equine practice as clinical development continues. Based on the substantial number of research studies on tendon imaging published over the past decade this literature review aims to examine the currently used ultrasonographic imaging techniques and their limitations, and to introduce and critically appraise new modalities that could potentially change the clinical approach to equine flexor tendon imaging.
Collapse
|
26
|
Marr N, Meeson R, Kelly EF, Fang Y, Peffers MJ, Pitsillides AA, Dudhia J, Thorpe CT. CD146 Delineates an Interfascicular Cell Sub-Population in Tendon That Is Recruited during Injury through Its Ligand Laminin-α4. Int J Mol Sci 2021; 22:9729. [PMID: 34575887 PMCID: PMC8472220 DOI: 10.3390/ijms22189729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022] Open
Abstract
The interfascicular matrix (IFM) binds tendon fascicles and contains a population of morphologically distinct cells. However, the role of IFM-localised cell populations in tendon repair remains to be determined. The basement membrane protein laminin-α4 also localises to the IFM. Laminin-α4 is a ligand for several cell surface receptors, including CD146, a marker of pericyte and progenitor cells. We used a needle injury model in the rat Achilles tendon to test the hypothesis that the IFM is a niche for CD146+ cells that are mobilised in response to tendon damage. We also aimed to establish how expression patterns of circulating non-coding RNAs alter with tendon injury and identify potential RNA-based markers of tendon disease. The results demonstrate the formation of a focal lesion at the injury site, which increased in size and cellularity for up to 21 days post injury. In healthy tendon, CD146+ cells localised to the IFM, compared with injury, where CD146+ cells migrated towards the lesion at days 4 and 7, and populated the lesion 21 days post injury. This was accompanied by increased laminin-α4, suggesting that laminin-α4 facilitates CD146+ cell recruitment at injury sites. We also identified a panel of circulating microRNAs that are dysregulated with tendon injury. We propose that the IFM cell niche mediates the intrinsic response to injury, whereby an injury stimulus induces CD146+ cell migration. Further work is required to fully characterise CD146+ subpopulations within the IFM and establish their precise roles during tendon healing.
Collapse
Affiliation(s)
- Neil Marr
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (N.M.); (A.A.P.)
| | - Richard Meeson
- Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK; (R.M.); (E.F.K.); (J.D.)
| | - Elizabeth F. Kelly
- Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK; (R.M.); (E.F.K.); (J.D.)
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Mandy J. Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool L7 9TX, UK;
| | - Andrew A. Pitsillides
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (N.M.); (A.A.P.)
| | - Jayesh Dudhia
- Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK; (R.M.); (E.F.K.); (J.D.)
| | - Chavaunne T. Thorpe
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (N.M.); (A.A.P.)
| |
Collapse
|
27
|
Patel D, Zamboulis DE, Spiesz EM, Birch HL, Clegg PD, Thorpe CT, Screen HR. Structure-function specialisation of the interfascicular matrix in the human achilles tendon. Acta Biomater 2021; 131:381-390. [PMID: 34271169 PMCID: PMC8388240 DOI: 10.1016/j.actbio.2021.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023]
Abstract
Tendon consists of highly aligned collagen-rich fascicles surrounded by interfascicular matrix (IFM). Some tendons act as energy stores to improve locomotion efficiency, but such tendons commonly obtain debilitating injuries. In equine tendons, energy storing is achieved primarily through specialisation of the IFM. However, no studies have investigated IFM structure-function specialisation in human tendons. Here, we compare the human positional anterior tibial tendon and energy storing Achilles tendons, testing the hypothesis that the Achilles tendon IFM has specialised composition and mechanical properties, which are lost with ageing. Data demonstrate IFM specialisation in the energy storing Achilles, with greater elasticity and fatigue resistance than in the positional anterior tibial tendon. With ageing, alterations occur predominantly to the proteome of the Achilles IFM, which are likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of these key energy storing specialisations and their changes with ageing offers crucial insight towards developing treatments for tendinopathy. Statement of significance Developing effective therapeutics or preventative measures for tendon injury necessitates the understanding of healthy tendon function and mechanics. By establishing structure-function relationships in human tendon and determining how these are affected by ageing, potential targets for therapeutics can be identified. In this study, we have used a combination of mechanical testing, immunolabelling and proteomics analysis to study structure-function specialisations in human tendon. We demonstrate that the interfascicular matrix is specialised for energy storing in the Achilles tendon, and that its proteome is altered with ageing, which is likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of these key energy storing specialisations and their changes with ageing offers crucial insight towards developing treatments and preventative approaches for tendinopathy.
Collapse
|
28
|
Smith RKW, McIlwraith CW. "One Health" in tendinopathy research: Current concepts. J Orthop Res 2021; 39:1596-1602. [PMID: 33713481 DOI: 10.1002/jor.25035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Tendinopathy remains one of the most common musculoskeletal disorders affecting both human and equine athletes and presents a considerable therapeutic challenge. The following workshop report comes from the third Dorothy Havemeyer Symposium of Tendinopathy which provided a unique overview of our current understanding of both the basic science and the clinical challenges for diagnosing and treating tendinopathy in both species. Pathologically, tendon demonstrates alterations in both cellular, molecular, structural, and biomechanical features, leading to a spectrum of pathological endotypes. To develop novel interventions to manage, treat or prevent tendinopathies it is vital to understand the underlying mechanisms that lead to both tendon failure, and also regeneration and resolution of inflammation. The horse shows analogous pathology with both human Achilles tendinopathy (superficial digital flexor tendon) and intrathecal rotator cuff tears (deep digital flexor tendon tears) enabling scientists and clinicians from both medical and veterinary fields to work jointly on matching naturally occurring disease models. The experience in human medicine on the design, conduct, and impact of clinical trials has much to inform clinical trials in horses. There is a need to design appropriate studies to address clear questions, socialize the study to achieve good enrollment, and consider the significance and impact of the clinical question as well as the cost of addressing it. Because economics is often a limitation in equine medicine the use of observational studies, and specifically registries, should be given careful consideration.
Collapse
Affiliation(s)
- Roger K W Smith
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hatfield, Herts, UK
| | - C Wayne McIlwraith
- Department of Clinical Sciences, Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
29
|
O'Brien C, Marr N, Thorpe C. Microdamage in the equine superficial digital flexor tendon. Equine Vet J 2021; 53:417-430. [PMID: 32772396 DOI: 10.1111/evj.13331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
The forelimb superficial digital flexor tendon (SDFT) is an energy-storing tendon that is highly susceptible to injury during activities such as galloping and jumping, such that it is one of the most commonly reported causes of lameness in the performance horse. This review outlines the biomechanical and biothermal effects of strain on the SDFT and how these contribute to the accumulation of microdamage. The effect of age-related alterations on strain response and subsequent injury risk is also considered. Given that tendon is a slowly healing and poorly regenerative tissue, prompt detection of early stages of pathology in vivo and timely adaptations to training protocols are likely to have a greater outcome than advances in treatment. Early screening tools and detection protocols could subsequently be of benefit in identifying subclinical signs of degeneration during the training programme. This provides an opportunity for preventative strategies to be implemented to minimise incidences of SDFT injury and reduce recovery periods in elite performance horses. Therefore, this review will focus on the modalities available to implement early screening and prevention protocols as opposed to methods to diagnose and treat injuries.
Collapse
Affiliation(s)
| | - Neil Marr
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Chavaunne Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
30
|
Godinho MS, Thorpe CT, Greenwald SE, Screen HR. Elastase treatment of tendon specifically impacts the mechanical properties of the interfascicular matrix. Acta Biomater 2021; 123:187-196. [PMID: 33508509 PMCID: PMC7935645 DOI: 10.1016/j.actbio.2021.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
The tendon interfascicular matrix (IFM) binds tendon fascicles together. As a result of its low stiffness behaviour under small loads, it enables non-uniform loading and increased overall extensibility of tendon by facilitating fascicle sliding. This function is particularly important in energy storing tendons, with previous studies demonstrating enhanced extensibility, recovery and fatigue resistance in the IFM of energy storing compared to positional tendons. However, the compositional specialisations within the IFM that confer this behaviour remain to be elucidated. It is well established that the IFM is rich in elastin, therefore we sought to test the hypothesis that elastin depletion (following elastase treatment) will significantly impact IFM, but not fascicle, mechanical properties, reducing IFM resilience in all samples, but to a greater extent in younger tendons, which have a higher elastin content. Using a combination of quasi-static and fatigue testing, and optical imaging, we confirmed our hypothesis, demonstrating that elastin depletion resulted in significant decreases in IFM viscoelasticity, fatigue resistance and recoverability compared to untreated samples, with no significant changes to fascicle mechanics. Ageing had little effect on fascicle or IFM response to elastase treatment. This study offers a first insight into the functional importance of elastin in regional specific tendon mechanics. It highlights the important contribution of elastin to IFM mechanical properties, demonstrating that maintenance of a functional elastin network within the IFM is essential to maintain IFM and thus tendon integrity. Statement of significance Developing effective treatments or preventative measures for musculoskeletal tissue injuries necessitates the understanding of healthy tissue function and mechanics. By establishing the contribution of specific proteins to tissue mechanical behaviour, key targets for therapeutics can be identified. Tendon injury is increasingly prevalent and chronically debilitating, with no effective treatments available. Here, we investigate how elastin modulates tendon mechanical behaviour, using enzymatic digestion combined with local mechanical characterisation, and demonstrate for the first time that removing elastin from tendon affects the mechanical properties of the interfascicular matrix specifically, resulting in decreased recoverability and fatigue resistance. These findings provide a new level of insight into tendon hierarchical mechanics, important for directing development of novel therapeutics for tendon injury.
Collapse
|
31
|
Characterization of the structure, vascularity, and stem/progenitor cell populations in porcine Achilles tendon (PAT). Cell Tissue Res 2021; 384:367-387. [PMID: 33496880 DOI: 10.1007/s00441-020-03379-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 01/26/2023]
Abstract
This study aimed to characterize porcine Achilles tendon (PAT) in terms of its structural components, vascularity, and resident tendon cells. We found that PAT is composed of a paratenon sheath, a core of fascicles, and an endotenon/interfascicular matrix (IFM) that encases the fascicle bundles. We analyzed each of these three tendon components structurally using tissue sections and by isolating cells from each component and analyzing in vitro. Many blood vessel-like tissues were present in the paratenon and IFM but not in fascicles, and the vessels in the paratenon and IFM appeared to be inter-connected. Cells isolated from the paratenon and IFM displayed characteristics of vascular stem/progenitor cells expressing the markers CD105, CD31, with α-smooth muscle actin (α-SMA) localized surrounding blood vessels. The isolated cells from paratenon and IFM also harbored abundant stem/progenitor cells as evidenced by their ability to form colonies and express stem cell markers including CD73 and CD146. Furthermore, we demonstrate that both paratenon and IFM-isolated cells were capable of undergoing multi-differentiation. In addition, both paratenon and IFM cells expressed elastin, osteocalcin, tubulin polymerization promoting protein (TPPP), and collagen IV, whereas fascicle cells expressed none of these markers, except collagen I. The neurotransmitter substance P (SP) was also found in the paratenon and IFM-localized surrounding blood vessels. The findings of this study will help us to better understand the vascular and cellular mechanisms of tendon homeostasis, injury, healing, and regeneration.
Collapse
|
32
|
Eekhoff JD, Steenbock H, Berke IM, Brinckmann J, Yanagisawa H, Wagenseil JE, Lake SP. Dysregulated assembly of elastic fibers in fibulin-5 knockout mice results in a tendon-specific increase in elastic modulus. J Mech Behav Biomed Mater 2021; 113:104134. [PMID: 33045519 PMCID: PMC8146012 DOI: 10.1016/j.jmbbm.2020.104134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Elastic fiber assembly is coordinated in part by fibulin-5, a matricellular protein. When fibulin-5 is not available to guide elastogenesis, elastin forms into disconnected globules instead of the dense elastic fiber core found in healthy tissues. Despite the growing evidence for a significant role of elastic fibers in tendon mechanics and the clinical relevance to cutis laxa, a human disease which can be caused by a mutation in the gene encoding fibulin-5, it is unknown how malformed elastic fibers affect tendon function. Therefore, this study investigated the effects of dysregulated elastic fiber assembly in tendons from fibulin-5 knockout mice in comparison to wild-type controls. Due to evidence for a more prominent role of elastic fibers in tendons with higher functional demands, both the energy-storing Achilles tendon and the more positional tibialis anterior tendon were evaluated. The linear modulus of knockout Achilles tendons was increased compared to controls, yet there was no discernible change in mechanical properties of the tibialis anterior tendon across genotypes. Transmission electron microscopy confirmed the presence of malformed elastic fibers in knockout tendons while no other changes to tendon composition or structure were found. The mechanism behind the increase in linear modulus in fibulin-5 knockout Achilles tendons may be greater collagen engagement due to decreased regulation of strain-induced structural reorganization. These findings support the theory of a significant, functionally distinct role of elastic fibers in tendon mechanics.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis, USA
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Germany
| | - Ian M Berke
- Department of Biomedical Engineering, Washington University in St. Louis, USA
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Germany
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Spencer P Lake
- Department of Biomedical Engineering, Washington University in St. Louis, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; Department of Orthopaedic Surgery, Washington University in St. Louis, USA.
| |
Collapse
|
33
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
34
|
Zellers JA, Eekhoff JD, Tang SY, Hastings MK, Lake SP. Clinical complications of tendon tissue mechanics due to collagen cross-linking in diabetes. THE SCIENCE, ETIOLOGY AND MECHANOBIOLOGY OF DIABETES AND ITS COMPLICATIONS 2021:201-226. [DOI: 10.1016/b978-0-12-821070-3.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Hill JR, Eekhoff JD, Brophy RH, Lake SP. Elastic fibers in orthopedics: Form and function in tendons and ligaments, clinical implications, and future directions. J Orthop Res 2020; 38:2305-2317. [PMID: 32293749 PMCID: PMC7572591 DOI: 10.1002/jor.24695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Elastic fibers are an essential component of the extracellular matrix of connective tissues. The focus of both clinical management and scientific investigation of elastic fiber disorders has centered on the cardiovascular manifestations due to their significant impact on morbidity and mortality. As such, the current understanding of the orthopedic conditions experienced by these patients is limited. The musculoskeletal implications of more subtle elastic fiber abnormalities, whether due to allelic variants or age-related tissue degeneration, are also not well understood. Recent advances have begun to uncover the effects of elastic fiber deficiency on tendon and ligament biomechanics; future research must further elucidate mechanisms governing the role of elastic fibers in these tissues. The identification of population-based genetic variations in elastic fibers will also be essential. Minoxidil administration, modulation of protein expression with micro-RNA molecules, and direct injection of recombinant elastic fiber precursors have demonstrated promise for therapeutic intervention, but further work is required prior to consideration for orthopedic clinical application. This review provides an overview of the role of elastic fibers in musculoskeletal tissue, summarizes current knowledge of the orthopedic manifestations of elastic fiber abnormalities, and identifies opportunities for future investigation and clinical application.
Collapse
Affiliation(s)
- J. Ryan Hill
- Department of Orthopaedic Surgery, Washington University in St. Louis, 425 S. Euclid Avenue, Suite 5505, St. Louis, MO 63110
| | - Jeremy D. Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Washington University in St. Louis, 425 S. Euclid Avenue, Suite 5505, St. Louis, MO 63110
| | - Spencer P. Lake
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130,Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|
36
|
Zamboulis DE, Thorpe CT, Ashraf Kharaz Y, Birch HL, Screen HR, Clegg PD. Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix. eLife 2020; 9:58075. [PMID: 33063662 PMCID: PMC7593091 DOI: 10.7554/elife.58075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Mature connective tissues demonstrate highly specialised properties, remarkably adapted to meet their functional requirements. Tissue adaptation to environmental cues can occur throughout life and poor adaptation commonly results in injury. However, the temporal nature and drivers of functional adaptation remain undefined. Here, we explore functional adaptation and specialisation of mechanically loaded tissues using tendon; a simple aligned biological composite, in which the collagen (fascicle) and surrounding predominantly non-collagenous matrix (interfascicular matrix) can be interrogated independently. Using an equine model of late development, we report the first phase-specific analysis of biomechanical, structural, and compositional changes seen in functional adaptation, demonstrating adaptation occurs postnatally, following mechanical loading, and is almost exclusively localised to the non-collagenous interfascicular matrix. These novel data redefine adaptation in connective tissue, highlighting the fundamental importance of non-collagenous matrix and suggesting that regenerative medicine strategies should change focus from the fibrous to the non-collagenous matrix of tissue.
Collapse
Affiliation(s)
- Danae E Zamboulis
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, United Kingdom
| | - Yalda Ashraf Kharaz
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Helen L Birch
- University College London, Department of Orthopaedics and Musculoskeletal Science, Stanmore Campus, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Hazel Rc Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
38
|
Svärd A, Hammerman M, Eliasson P. Elastin levels are higher in healing tendons than in intact tendons and influence tissue compliance. FASEB J 2020; 34:13409-13418. [PMID: 32794252 DOI: 10.1096/fj.202001255r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Elastic fibers containing elastin play an important role in tendon functionality, but the knowledge on presence and function of elastin during tendon healing is limited. The aim of this study was to investigate elastin content and distribution in intact and healing Achilles tendons and to understand how elastin influence the viscoelastic properties of tendons. The right Achilles tendon was completely transected in 81 Sprague-Dawley rats. Elastin content was quantified in intact and healing tendons (7, 14, and 28 days post-surgery) and elastin distribution was visualized by immunohistochemistry at 14 days post-surgery. Degradation of elastin by elastase incubation was used to study the role of elastin on viscoelastic properties. Mechanical testing was either performed as a cyclic test (20× 10 N) or as a creep test. We found significantly higher levels of elastin in healing tendons at all time-points compared to intact tendons (4% in healing tendons 28 days post-surgery vs 2% in intact tendons). The elastin was more widely distributed throughout the extracellular matrix in the healing tendons in contrast to the intact tendon where the distribution was not so pronounced. Elastase incubation reduced the elastin levels by approximately 30% and led to a 40%-50% reduction in creep. This reduction was seen in both intact and healing tendons. Our results show that healing tendons contain more elastin and is more compliable than intact tendons. The role of elastin in tendon healing and tissue compliance indicates a protective role of elastic fibers to prevent re-injuries during early tendon healing. PLAIN LANGUAGE SUMMARY: Tendons transfer high loads from muscles to bones during locomotion. They are primarily made by the protein collagen, a protein that provide strength to the tissues. Besides collagen, tendons also contain other building blocks such as, for example, elastic fibers. Elastic fibers contain elastin and elastin is important for the extensibility of the tendon. When a tendon is injured and ruptured the tissue heals through scar formation. This scar tissue is different from a normal intact tendon and it is important to understand how the tendons heal. Little is known about the presence and function of elastin during healing of tendon injuries. We have shown, in animal experiments, that healing tendons have higher amounts of elastin compared to intact tendons. The elastin is also spread throughout the tissue. When we reduced the levels of this protein, we discovered altered mechanical properties of the tendon. The healing tendon can normally extend quite a lot, but after elastin removal this extensibility was less obvious. The ability of the healing tissue to extend is probably important to protect the tendon from re-injuries during the first months after rupture. We therefore propose that the tendons heal with a large amount of elastin to prevent re-ruptures during early locomotion.
Collapse
Affiliation(s)
- Anna Svärd
- Division of Surgery, Orthopedics and Oncology, Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden.,Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden.,Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Pernilla Eliasson
- Division of Surgery, Orthopedics and Oncology, Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| |
Collapse
|
39
|
Gains CC, Correia JC, Baan GC, Noort W, Screen HRC, Maas H. Force Transmission Between the Gastrocnemius and Soleus Sub-Tendons of the Achilles Tendon in Rat. Front Bioeng Biotechnol 2020; 8:700. [PMID: 32766214 PMCID: PMC7379440 DOI: 10.3389/fbioe.2020.00700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 01/19/2023] Open
Abstract
The Achilles tendon (AT) is comprised of three distinct sub-tendons bound together by the inter-subtendon matrix (ISTM). The interactions between sub-tendons will have important implications for AT function. The aim of this study was to investigate the extent to which the ISTM facilitates relative sliding between sub-tendons, and serves as a pathway for force transmission between the gastrocnemius (GAS) and soleus (SOL) sub-tendons of the rat AT. In this study, ATs were harvested from Wistar rats, and the mechanical behavior and composition of the ISTM were explored. To determine force transmission between sub-tendons, the proximal and distal ends of the GAS and SOL sub-tendons were secured, and the forces at each of these locations were measured during proximal loading of the GAS. To determine the ISTM mechanical behavior, only the proximal GAS and distal SOL were secured, and the ISTM was loaded in shear. Finally, for compositional analysis, histological examination assessed the distribution of matrix proteins throughout sub-tendons and the ISTM. The results revealed distinct differences between the forces at the proximal and distal ends of both sub-tendons when proximal loading was applied to the GAS, indicating force transmission between GAS and SOL sub-tendons. Inter-subtendon matrix tests demonstrated an extended initial low stiffness toe region to enable some sub-tendon sliding, coupled with high stiffness linear region such that force transmission between sub-tendons is ensured. Histological data demonstrate an enrichment of collagen III, elastin, lubricin and hyaluronic acid in the ISTM. We conclude that ISTM composition and mechanical behavior are specialized to allow some independent sub-tendon movement, whilst still ensuring capacity for force transmission between the sub-tendons of the AT.
Collapse
Affiliation(s)
- Connor C Gains
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Janaina C Correia
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Guus C Baan
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Hazel R C Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
40
|
Wu YT, Wu YT, Huang TC, Su FC, Jou IM, Wu CC. Sequential inflammation model for Achilles tendinopathy by elastin degradation with treadmill exercise. J Orthop Translat 2020; 23:113-121. [PMID: 32642426 PMCID: PMC7322491 DOI: 10.1016/j.jot.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background & objective Tendinopathy is a tendon disease with abnormal mechanical loading to induce chronic repetitive injury. However, lack of a comparable animal model to demonstrate clinical progressions has hindered the understanding of anatomical and pathological changes. The major extracellular matrix (ECM) in the tendon consists of abundant type I collagen (COL) and minimal amount of elastin (ELN). Methods To study the ECM breakdown and inflammation, rat Achilles tendon was harvested and ex vivo incubated with specific enzymes of elastase (ELNase) or collagenase (COLase). Results The ELNase broke down ELN, loosened the tendon structure, and increased the COL composition. Increases in cyclooxygenase-2 expression levels in tenocytes were revealed to induce inflammation with either ELNase or COLase. However, incubation of COLase for 12 hours severely digested the tendon. To create a proper ELN degradation in rats, the present study used high-frequency ultrasound to guide the injection of ELNase at the paratendon tissue of the Achilles tendon. The effect of mechanically triggered inflammatory responses was investigated by applying treadmill exercise (15 m/min for 20 min per day). After ELNase injection for 14 and 28 days, a significant loss of ELN was observed, and exercise further facilitated the pathological transition of COL. The dynamics of inflammatory cell recruitments was revealed by specific staining of CD-11b (neutrophils) and CD-68 (macrophage) after in vivo injection of ELNase or COLase for 1, 3, 7, 14, and 28 days. The combination of ELNase and exercise caused early recruitment of neutrophil on day 1 and sequential expression of macrophage on day 7 in peritendinous tissue. Conclusion These results suggested that ELN degradation with repetitive mechanical loading may present a suitable model for the pathogenesis of tendinopathy. The Translational potential of this article This discover the role of elastin degradation in tendinopathy and the interaction of exercise in the histological changes. The established the pathological model mimicking the pathogenesis to the human disease by injecting the elastase using ultrasound guidance and then applying treadmill exercise. The loss of elastin and change of collagen composition in clinical tendinopathy samples were observed in the rats. In addition, the sequential inflammation cascades were observed in the histological outcomes with combination of elastase injection and treadmill exercise. Thus, this model may be used to test the clinical treatment of tendinopathy in different stages.
Collapse
Affiliation(s)
- Yi-Ting Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Taiwan.,Department of Nursing, Tzu Hui Institute of Technology, Taiwan
| | - Yen-Ting Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan
| | - Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Hospital, Taiwan.,Department of Orthopedics, E-Da Hospital, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan.,Department of Biomedical Engineering, National Cheng Kung University, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Taiwan
| |
Collapse
|
41
|
Marr N, Hopkinson M, Hibbert AP, Pitsillides AA, Thorpe CT. Bimodal Whole-Mount Imaging of Tendon Using Confocal Microscopy and X-ray Micro-Computed Tomography. Biol Proced Online 2020; 22:13. [PMID: 32624710 PMCID: PMC7329428 DOI: 10.1186/s12575-020-00126-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background Three-dimensional imaging modalities for optically dense connective tissues such as tendons are limited and typically have a single imaging methodological endpoint. Here, we have developed a bimodal procedure utilising fluorescence-based confocal microscopy and x-ray micro-computed tomography for the imaging of adult tendons to visualise and analyse extracellular sub-structure and cellular composition in small and large animal species. Results Using fluorescent immunolabelling and optical clearing, we visualised the expression of the novel cross-species marker of tendon basement membrane, laminin-α4 in 3D throughout whole rat Achilles tendons and equine superficial digital flexor tendon 5 mm segments. This revealed a complex network of laminin-α4 within the tendon core that predominantly localises to the interfascicular matrix compartment. Furthermore, we implemented a chemical drying process capable of creating contrast densities enabling visualisation and quantification of both fascicular and interfascicular matrix volume and thickness by x-ray micro-computed tomography. We also demonstrated that both modalities can be combined using reverse clarification of fluorescently labelled tissues prior to chemical drying to enable bimodal imaging of a single sample. Conclusions Whole-mount imaging of tendon allowed us to identify the presence of an extensive network of laminin-α4 within tendon, the complexity of which cannot be appreciated using traditional 2D imaging techniques. Creating contrast for x-ray micro-computed tomography imaging of tendon using chemical drying is not only simple and rapid, but also markedly improves on previously published methods. Combining these methods provides the ability to gain spatio-temporal information and quantify tendon substructures to elucidate the relationship between morphology and function.
Collapse
Affiliation(s)
- Neil Marr
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, UK
| | - Mark Hopkinson
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, UK
| | - Andrew P Hibbert
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, UK
| | - Andrew A Pitsillides
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, UK
| |
Collapse
|
42
|
Choi H, Simpson D, Wang D, Prescott M, Pitsillides AA, Dudhia J, Clegg PD, Ping P, Thorpe CT. Heterogeneity of proteome dynamics between connective tissue phases of adult tendon. eLife 2020; 9:e55262. [PMID: 32393437 PMCID: PMC7217697 DOI: 10.7554/elife.55262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Maintenance of connective tissue integrity is fundamental to sustain function, requiring protein turnover to repair damaged tissue. However, connective tissue proteome dynamics remain largely undefined, as do differences in turnover rates of individual proteins in the collagen and glycoprotein phases of connective tissue extracellular matrix (ECM). Here, we investigate proteome dynamics in the collagen and glycoprotein phases of connective tissues by exploiting the spatially distinct fascicular (collagen-rich) and interfascicular (glycoprotein-rich) ECM phases of tendon. Using isotope labelling, mass spectrometry and bioinformatics, we calculate turnover rates of individual proteins within rat Achilles tendon and its ECM phases. Our results demonstrate complex proteome dynamics in tendon, with ~1000 fold differences in protein turnover rates, and overall faster protein turnover within the glycoprotein-rich interfascicular matrix compared to the collagen-rich fascicular matrix. These data provide insights into the complexity of proteome dynamics in tendon, likely required to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Howard Choi
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Deborah Simpson
- Centre for Proteome Research, Biosciences Building, Institute of Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Ding Wang
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Mark Prescott
- Centre for Proteome Research, Biosciences Building, Institute of Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeLondonUnited Kingdom
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary CollegeHatfieldUnited Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of LiverpoolLiverpoolUnited Kingdom
| | - Peipei Ping
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Chavaunne T Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeLondonUnited Kingdom
| |
Collapse
|
43
|
Durgam S, Singh B, Cole SL, Brokken MT, Stewart M. Quantitative Assessment of Tendon Hierarchical Structure by Combined Second Harmonic Generation and Immunofluorescence Microscopy. Tissue Eng Part C Methods 2020; 26:253-262. [PMID: 32228165 DOI: 10.1089/ten.tec.2020.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histological evaluation of healing tendons is primarily focused on monitoring restoration of longitudinal collagen alignment, although the elastic property of energy-storing flexor tendons is largely attributed to interfascicular sliding facilitated by the interfascicular matrix (IFM). The objectives of this study were to explore the utility of second harmonic generation (SHG) imaging to objectively assess cross-sectional tendon fascicle architecture, to combine SHG microscopy with elastin immunofluorescence to assess the ultrastructure of collagen and elastin in longitudinal and transverse sections, and lastly, to quantify changes in IFM elastin and fascicle collagen alignment of normal and collagenase-injured flexor tendons. Paraffin-embedded transverse and longitudinal histological sections (10-μm thickness) derived from normal and collagenase-injured (6- and 16-week time-points) equine superficial digital flexor tendons were de-paraffinized, treated with Tris EDTA at 80°C for epitope retrieval, and incubated with mouse monoclonal anti-elastin antibody (1:100 dilution) overnight. Anti-mouse IgG Alexa Flour 546 secondary antibody was applied, and sections were mounted with ProLong Gold reagent with 4',6-diamidino-2-phenylindole (DAPI). Nuclei (DAPI) and elastin (Alexa Fluor 546) signals were captured by using standard confocal imaging with 405 and 543 nm excitation wavelengths, respectively. The SHG signal was captured by using a tunable Ti:Sapphire laser tuned to 950 nm to visualize type I collagen. Quantitative measurements of fascicle cross-sectional area (CSA), IFM thickness in transverse SHG-DAPI merged z-stacks, fascicle/IFM elastin area fraction (%), and elastin-collagen alignment in longitudinal SHG-elastin merged z-stacks were conducted by using ImageJ software. Using this methodology, fascicle CSA, IFM thickness, and IFM elastin area fraction (%) at 6 weeks (∼2.25-fold; ∼2.8-fold; 60% decrease; p < 0.001) and 16 weeks (∼2-fold; ∼1.5-fold; 70% decrease; p < 0.001) after collagenase injection, respectively, were found to be significantly different from normal tendon. IFM elastin and fascicle collagen alignment characterized via fast Fourier transform (FFT) frequency plots at 16 weeks demonstrated that collagen re-alignment was more advanced than that of elastin. The integration of SHG-derived quantitative measurements in transverse and longitudinal tendon sections supports comprehensive assessment of tendon structure. Our findings demonstrate the importance of including IFM and non-collagenous proteins in tendon histological evaluations, tasks that can be effectively carried out by using SHG and immunofluorescence microscopy. Impact statement This work demonstrated that second harmonic generation microscopy in conjunction with elastin immunofluorescence provided a comprehensive assessment of multiscale structural re-organization in healing tendon than when restricted to longitudinal collagen fiber alignment alone. Utilizing this approach for tendon histomorphometry is ideal not only to improve our understanding of hierarchical structural changes that occur after tendon injury and during remodeling but also to monitor the efficacy of therapeutic approaches.
Collapse
Affiliation(s)
- Sushmitha Durgam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Singh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sara L Cole
- Campus Microscopy Imaging Facility, The Ohio State University, Columbus, Ohio, USA
| | - Matthew T Brokken
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Matthew Stewart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
44
|
No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904511. [PMID: 31814177 DOI: 10.1002/adma.201904511] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Engineering synthetic scaffolds to repair and regenerate ruptured native tendon and ligament (T/L) tissues is a significant engineering challenge due to the need to satisfy both the unique biological and biomechanical properties of these tissues. Long-term clinical outcomes of synthetic scaffolds relying solely on high uniaxial tensile strength are poor with high rates of implant rupture and synovitis. Ideal biomaterials for T/L repair and regeneration need to possess the appropriate biological and biomechanical properties necessary for the successful repair and regeneration of ruptured tendon and ligament tissues.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
45
|
Ristaniemi A, Torniainen J, Stenroth L, Finnilä M, Paakkonen T, Töyräs J, Korhonen R. Comparison of water, hydroxyproline, uronic acid and elastin contents of bovine knee ligaments and patellar tendon and their relationships with biomechanical properties. J Mech Behav Biomed Mater 2020; 104:103639. [DOI: 10.1016/j.jmbbm.2020.103639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
|
46
|
Taye N, Karoulias SZ, Hubmacher D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res 2020; 38:23-35. [PMID: 31410892 PMCID: PMC6917864 DOI: 10.1002/jor.24440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Extracellular matrix (ECM) determines the physiological function of all tissues, including musculoskeletal tissues. In tendon, ECM provides overall tissue architecture, which is tailored to match the biomechanical requirements of their physiological function, that is, force transmission from muscle to bone. Tendon ECM also constitutes the microenvironment that allows tendon-resident cells to maintain their phenotype and that transmits biomechanical forces from the macro-level to the micro-level. The structure and function of adult tendons is largely determined by the hierarchical organization of collagen type I fibrils. However, non-collagenous ECM proteins such as small leucine-rich proteoglycans (SLRPs), ADAMTS proteases, and cross-linking enzymes play critical roles in collagen fibrillogenesis and guide the hierarchical bundling of collagen fibrils into tendon fascicles. Other non-collagenous ECM proteins such as the less abundant collagens, fibrillins, or elastin, contribute to tendon formation or determine some of their biomechanical properties. The interfascicular matrix or endotenon and the outer layer of tendons, the epi- and paratenon, includes collagens and non-collagenous ECM proteins, but their function is less well understood. The ECM proteins in the epi- and paratenon may provide the appropriate microenvironment to maintain the identity of distinct tendon cell populations that are thought to play a role during repair processes after injury. The aim of this review is to provide an overview of the role of non-collagenous ECM proteins and less abundant collagens in tendon development and homeostasis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:23-35, 2020.
Collapse
Affiliation(s)
- Nandaraj Taye
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Stylianos Z. Karoulias
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| |
Collapse
|
47
|
Mechanical properties and collagen fiber orientation of tendon in young and elderly. Clin Biomech (Bristol, Avon) 2020; 71:5-10. [PMID: 31675513 DOI: 10.1016/j.clinbiomech.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/09/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this study was to investigate differences in the mechanical properties and collagen fiber orientation of tendon structures between young and elderly groups. METHODS The mechanical properties of tendon structures in medial gastrocnemius muscle were measured using ultrasonography during ramp and ballistic contractions. Tendon collagen fiber orientation was estimated from coefficient of variation (CV) of echogenicity on transverse ultrasonic images of Achilles tendon. FINDINGS Differences in elongation between ramp and ballistic contractions of elderly were significantly smaller than those of young group at 20-80% of MVC. During ramp contraction, hysteresis of elderly was significantly higher than that of young, whereas no difference in hysteresis during ballistic contraction was found between the two groups. Difference in hysteresis between ramp and ballistic contractions of elderly tended to be lower than that of young group. Mean echogenicity of elderly was significantly higher than that of young group, whereas no difference in CV of echogenicity was found between the two groups. INTERPRETATION These results suggest that smaller differences in elongation and hysteresis between ramp and ballistic contractions of elderly may be related to decreased water content within tendons. Furthermore, no difference in collagen fiber orientation of tendons was noted between the two groups.
Collapse
|
48
|
Ryan CNM, Zeugolis DI. Engineering the Tenogenic Niche In Vitro with Microenvironmental Tools. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina N. M. Ryan
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| |
Collapse
|
49
|
Hijazi KM, Singfield KL, Veres SP. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous. J Mech Behav Biomed Mater 2019; 97:30-40. [DOI: 10.1016/j.jmbbm.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023]
|
50
|
Kimmerling KA, McQuilling JP, Staples MC, Mowry KC. Tenocyte cell density, migration, and extracellular matrix deposition with amniotic suspension allograft. J Orthop Res 2019; 37:412-420. [PMID: 30378182 PMCID: PMC6587843 DOI: 10.1002/jor.24173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/22/2018] [Indexed: 02/04/2023]
Abstract
Amniotic suspension allografts (ASA), derived from placental tissues, contain particulated amniotic membrane and amniotic fluid cells. Recently, ASA and other placental-derived allografts have been used in orthopaedic applications, including tendinopathies and tendon injuries. The purpose of this study was to determine the potential effects of ASA on tenocyte cell density, migration, and responses to inflammatory stimuli. Tenocyte cell density was measured using AlamarBlue over multiple time points, while migration was determined using a Boyden chamber assay. Deposition of ECM markers were measured using BioColor kits. Gene expression and protein production of cytokines and growth factors following stimulus with pro-inflammatory IL-1β and TNF-α was measured using qPCR and ELISAs. Conditioned media (CM) was made from ASA and used for all assays in this study. In vitro, ASA CM treatment significantly promoted tenocyte increases in cell density and migration compared to assay media controls. ASA CM also increased the deposition of extracellular matrix (ECM) proteins, including collagen, elastin, and sGAG. Following inflammatory stimulation and treatment with ASA CM, tenocytes downregulated IL-8 gene expression, a pro-inflammatory cytokine normally elevated during the inflammatory phase of tendon healing. Additionally, tenocytes treated with ASA CM had significantly lower protein levels of TGF-β1 compared to controls. This study evaluated ASA and its effect on tenocytes; specifically, treatment with ASA resulted in increased cell density, more robust migration and matrix deposition, and some alteration of inflammatory targets. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:412-420, 2019.
Collapse
Affiliation(s)
| | | | - Miranda C. Staples
- Milestone Research Organization4901 Morena Blvd, Suite 132San DiegoCalifornia92117
| | - Katie C. Mowry
- Organogenesis Inc.2641 Rocky Ridge LaneBirmingham, AL 35216
| |
Collapse
|