1
|
Dermawan JK, Abramson DH, Chiang S, Hensley ML, Tap WD, Movva S, Maki RG, Mandelker D, Antonescu CR. The Impact of Li-Fraumeni and Germline Retinoblastoma Mutations on Leiomyosarcoma Initiation, Outcomes, and Genetic Testing Recommendations. Clin Cancer Res 2024; 30:4780-4790. [PMID: 39150540 PMCID: PMC11479842 DOI: 10.1158/1078-0432.ccr-24-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Leiomyosarcomas (LMS) are clinically and molecularly heterogeneous, occurring mostly in sporadic but also syndromic settings. The role of pathogenic germline variants (PGV) as LMS drivers and their impact on outcomes remains uncertain. EXPERIMENTAL DESIGN We performed a comprehensive clinicopathologic and molecular analysis using a tumor-normal DNA next-generation sequencing assay (Memorial Sloan Kettering-Integrated Mutational Profiling of Actionable Cancer Targets) of germline-associated LMS compared with sporadic LMS. RESULTS Among 285 LMS [120 soft-tissue LMS (STLMS) and 165 uterine LMS (ULMS)] with germline testing, 78 (27%, 43 STLMS and 35 ULMS) cases harbored PGV, with 35/78 (45%) of PGV carriers showing biallelic inactivation of the corresponding gene in the tumor (26 STLMS and nine ULMS). The most frequent germline predispositions were TP53 (Li-Fraumeni syndrome; 17 patients, 16 in STLMS) and RB1 (retinoblastoma; 13 patients, 11 in STLMS). Germline TP53 and somatic RB1 alterations often co-occurred in the tumor andvice versa. Other biallelically inactivated PGV were enriched in DNA damage repair-related genes: CHEK2, MSH2, MSH6, RAD51D, BRCA2, and FANCA. Monoallelic PGV were mostly in ULMS and associated with co-occurring TP53 and RB1 somatic alterations. Patients with STLMS with biallelic but not monoallelic PGV were significantly younger than patients with sporadic STLMS (median ages 38 vs. 52 vs. 58 years). No differences in disease-specific or progression-free survival were observed in germline-associated versus sporadic LMS regardless of biallelic status. CONCLUSIONS Although patients with ULMS had a relatively low proportion of PGV, a high percentage of patients with STLMS with PGV had tumor biallelic status, indicating that PGV drive tumorigenesis in these individuals. These findings have significant implications for genetic testing recommendations.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - David H Abramson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martee L Hensley
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert G Maki
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
2
|
Wei X, Cheng M, Wang L, Teng X, Guo D, Xin X, Chen G, Li S, Li F. Clinicopathological and molecular genetic analysis of 13 cases of primary retroperitoneal Ewing sarcoma. Ann Diagn Pathol 2024; 72:152321. [PMID: 38759563 DOI: 10.1016/j.anndiagpath.2024.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Retroperitoneal Ewing sarcomas (RES) are very rare and mostly described in case reports. The purpose of this study was to retrospectively analyze the clinicopathology, molecular characteristics, biological behavior, and therapeutic information of 13 cases of primary RES with immunohistochemical staining, fluorescence in situ hybridization, RT-PCR and NGS sequencing detection techniques. The thirteen patients included eight males and five females with a mean age of 34 years. Morphologically, the tumors were comprised of small round or epithelial-like cells with vacuolated cytoplasm (6/13,46 %) arranged in diffuse, nested (8/13,62 %) and perivascular (7/13,54 %) patterns. Unusual morphologic patterns, such as meningioma-like swirling structures and sieve-like structures were relatively novel findings. Immunohistochemical studies showed CD99 (12/13; 92 %), CD56 (11/13; 85 %), NKX2.2 (9/13; 69 %), PAX7 (10/11;91 %) and CD117(6/9;67 %) to be positive.12 cases (92 %) demonstrated EWSR1 rearrangement and 3 cases displayed EWSR1::FLI1 fusion by FISH. ERCC4 splice-site variant, a novel pathogenic variant, was discovered for the first time via RNA sequencing. With a median follow-up duration of 14 months (6 to 79 months), 8/13 (62 %) patients died, while 5/13(38 %) survived. Three cases recurred, and five patients developed metastasis to the liver (2 cases), lung (2 cases) and bone (1 case). RES is an aggressive, high-grade tumor, prone to multiple recurrences and metastases, with distinctive morphologic, immunohistochemical, and molecular genetic features. ERCC4 splicing mutation, which is a novel pathogenic variant discovered for the first time, with possible significance for understanding the disease, as well as the development of targeted drugs.
Collapse
Affiliation(s)
- Xuejing Wei
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ming Cheng
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lingling Wang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaojing Teng
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dandan Guo
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Xin
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Siyuan Li
- Key Laboratory for Xinjiang Endemic & Ethnic Diseases, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Feng Li
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Key Laboratory for Xinjiang Endemic & Ethnic Diseases, Shihezi University School of Medicine, Shihezi 832002, China.
| |
Collapse
|
3
|
Naser A, Mohammad A, Younes S, Qashou A, Abduljalil Z, Al-Asbhi H. Possible Genetic Links Between Solitary Fibrous Tumor and Pancreatic Cancer: A Rare Case of Solitary Fibrous Tumor and Pancreatic Cancer Concurrence. Cureus 2024; 16:e68529. [PMID: 39364485 PMCID: PMC11449380 DOI: 10.7759/cureus.68529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is the most prevalent form of pancreatic cancer, originating in the duct lining of the pancreas. The simultaneous occurrence with a solitary fibrous tumor (SFT) represents an unexpected finding. We present a case involving a 64-year-old female with synchronous pancreatic cancer and SFT. The patient initially experienced severe abdominal pain, visible jaundice, and itching. Diagnostic imaging revealed a mass in the head of the pancreas and a soft tissue mass in the right hemipelvis. Further investigations included histological examination, immunohistochemistry, and genetic testing. Subsequently, the patient underwent appropriate management, which involved the excision of both masses and radiochemotherapy. The discussion focuses on the genetic linkages in this rare presentation, aiming to identify treatment connections for both tumors. Throughout this case report, our aim is to contribute to enriching the limited literature with new insights and underscore the importance of identifying genetic linkages between both tumors which may lead to more effective management strategies and better treatment outcomes.
Collapse
Affiliation(s)
- Ayman Naser
- Surgical Oncology, Al Bashir Hospital, Amman, JOR
| | - Ala'a Mohammad
- Faculty of Medicine, Jordan University Hospital, Amman, JOR
| | - Siham Younes
- Faculty of Medicine, Jordan University Hospital, Amman, JOR
| | - Ala'a Qashou
- Faculty of Medicine, Jordan University Hospital, Amman, JOR
| | | | | |
Collapse
|
4
|
Watkins JA, Trotman J, Tadross JA, Harrington J, Hatcher H, Horan G, Prewett S, Wong HH, McDonald S, Tarpey P, Roberts T, Su J, Tischkowitz M, Armstrong R, Amary F, Sosinsky A. Introduction and impact of routine whole genome sequencing in the diagnosis and management of sarcoma. Br J Cancer 2024; 131:860-869. [PMID: 38997407 PMCID: PMC11368954 DOI: 10.1038/s41416-024-02721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Sarcomas are diverse neoplasms with highly variable histological appearances in which diagnosis is often challenging and management options for metastatic/unresectable disease limited. Many sarcomas have distinctive molecular alterations, but the range of alterations is large, variable in type and rapidly increasing, meaning that testing by limited panels is unable to capture the broad spectrum of clinically pertinent genomic drivers required. Paired whole genome sequencing (WGS) in contrast allows comprehensive assessment of small variants, copy number and structural variants along with mutational signature analysis and germline testing. METHODS Introduction of WGS as a diagnostic standard for all eligible patients with known or suspected soft tissue sarcoma over a 2-year period at a soft tissue sarcoma treatment centre. RESULTS WGS resulted in a refinement in the diagnosis in 37% of cases, identification of a target for personalised therapy in 33% of cases, and a germline alteration in 4% of cases. CONCLUSION Introduction of WGS poses logistical and training challenges, but offers significant benefits to this group of patients.
Collapse
Affiliation(s)
- James A Watkins
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Jamie Trotman
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John A Tadross
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jennifer Harrington
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Helen Hatcher
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gail Horan
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah Prewett
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Han H Wong
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah McDonald
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Tarpey
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas Roberts
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jing Su
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Ruth Armstrong
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | |
Collapse
|
5
|
Ibrahim MB, Flanagan J, Ibrahim T, Rouleau E. Unraveling noncoding DNA variants and epimutations: a paradigm shift in hereditary cancer research. Future Oncol 2024; 20:1289-1298. [PMID: 38722139 PMCID: PMC11318707 DOI: 10.2217/fon-2023-0665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 06/12/2024] Open
Abstract
Exhaustive efforts have been dedicated to uncovering genomic aberrations linked to cancer susceptibility. Noncoding sequence variants and epigenetic alterations significantly influence gene regulation and could contribute to cancer development. However, exploring noncoding regions in hereditary cancer susceptibility demands cutting-edge methodologies for functionally characterizing genomic discoveries. Additionally, comprehending the impact on cancer development of variants in noncoding DNA and the epigenome necessitates integrating diverse data through bioinformatic analyses. As novel technologies and analytical methods continue to advance, this realm of research is rapidly gaining traction. Within this mini-review, we delve into future research domains concerning aberrations in noncoding DNA regions, such as pseudoexons, promoter variants and cis-epimutations.
Collapse
Affiliation(s)
- Maria Baz Ibrahim
- Department of Oncogenetics & Tumor Biology, Paul Brousse Hospital, Villejuif, France
| | - James Flanagan
- Department of Surgery & Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 8EE, UK
| | - Tony Ibrahim
- International Department of Medical Oncology, Gustave Roussy, 94805, Villejuif, France
| | - Etienne Rouleau
- Department of Biology & Pathology-Cancer Genetics Laboratory, Gustave Roussy, 94805, Villejuif, France
| |
Collapse
|
6
|
Alonso‐Luna O, Mercado‐Celis GE, Melendez‐Zajgla J, Barquera R, Zapata‐Tarres M, Juárez‐Villegas LE, Mendoza‐Caamal EC, Rey‐Helo E, Borges‐Yañez SA. Germline mutations in pediatric cancer cohort with mixed-ancestry Mexicans. Mol Genet Genomic Med 2024; 12:e2332. [PMID: 38093606 PMCID: PMC10767611 DOI: 10.1002/mgg3.2332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Childhood cancer is one of the primary causes of disease-related death in 5- to 14-year-old children and currently no prevention strategies exist to reduce the incidence of this disease. Childhood cancer has a larger hereditary component compared with cancer in adults. Few genetic studies have been conducted on children with cancer. Additionally, Latin American populations are underrepresented in genomic studies compared with other populations. Therefore, the aim of this study is to analyze germline mutations in a group of mixed-ancestry Mexican pediatric patients with solid and hematological cancers. METHODS We analyzed genetic variants from 40 Mexican childhood cancer patients and their relatives. DNA from saliva or blood samples was used for whole-exome sequencing. All variants were identified following GATK best practices. RESULTS We found that six patients (15%) were carriers of germline mutations in CDKN2A, CHEK2, DICER1, FANCA, MSH6, MUTYH, NF1, and SBDS cancer predisposition genes, and additional new variants predicted to be deleterious by in silico algorithms. A population genetics analysis detected five components consistent with the demographic models assumed for modern mixed-ancestry Mexicans. CONCLUSIONS This report identifies potential genetic risk factors and provides a better understanding of the underlying mechanisms of childhood cancer in this population.
Collapse
Grants
- 365882 Consejo Nacional de Ciencia y Tecnología, CONACyT, Mexico
- 253316 Consejo Nacional de Ciencia y Tecnología, CONACyT, Mexico
- Fundacion Carlos Slim as part of the inaugural phase of Slim Initiative in Genomic Medicine for the Americas, SIGMA
- Broad Institute of MIT and Harvard
- Instituto Nacional de Medicina Genomica (INMEGEN)
- Division de Estudios de Posgrado e Investigacion de la Facultad de Odontologia
- Programa de Maestria y Doctorado en Ciencias Medicas, Odontologicas y de la Salud, UNAM
- "Aqui nadie se rinde, ANSER (I.A.P)
- Max Planck Institute for Evolutionary Anthropology (MPI-EVA)
- Consejo Nacional de Ciencia y Tecnología, CONACyT, Mexico
- Max Planck Institute for Evolutionary Anthropology (MPI‐EVA)
Collapse
Affiliation(s)
- Oscar Alonso‐Luna
- Programa de Maestria y Doctorado en Ciencias Medicas, Odontologicas y de la SaludCiudad Universitaria, Universidad Nacional Autonoma de MexicoMexico CityMexico
| | | | - Jorge Melendez‐Zajgla
- Laboratorio de Genomica Funcional del CancerInstituto Nacional de Medicina GenomicaMexico CityMexico
| | - Rodrigo Barquera
- Department of ArchaeogeneticsMax Plank Institute for Evolutionary Anthropology (MPI‐EVA)LeipzigGermany
| | | | | | | | | | | |
Collapse
|
7
|
Carvalho NDAD, Santiago KM, Maia JML, Costa FD, Formiga MN, Soares DCDQ, Paixão D, Mello CALD, Costa CMLD, Rocha JCCD, Rivera B, Carraro DM, Torrezan GT. Prevalence and clinical implications of germline pathogenic variants in cancer predisposing genes in young patients across sarcoma subtypes. J Med Genet 2023; 61:61-68. [PMID: 37536918 PMCID: PMC10803955 DOI: 10.1136/jmg-2023-109269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Sarcomas are a rare and diverse group of cancers occurring mainly in young individuals for which an underlying germline genetic cause remains unclear in most cases. METHODS Germline DNA from 177 children, adolescents and young adults with soft tissue or bone sarcomas was tested using multigene panels with 113 or 126 cancer predisposing genes (CPGs) to describe the prevalence of germline pathogenic/likely pathogenic variants (GPVs). Subsequent testing of a subset of tumours for loss of heterozygosity (LOH) evaluation was performed to investigate the clinical and molecular significance of these variants. RESULTS GPVs were detected in 21.5% (38/177) of the patients (15.8% in children and 21.6% in adolescents and young adults), with dominant CPGs being altered in 15.2% overall. These variants were found in genes previously associated with the risk of developing sarcomas (TP53, RB1, NF1, EXT1/2) but also in genes where that risk is still emerging/limited (ERCC2, TSC2 and BRCA2) or unknown (PALB2, RAD50, FANCM and others). The detection rates of GPVs varied from 0% to 33% across sarcoma subtypes and GPV carriers were more likely to present more than one primary tumour than non-carriers (21.1%×6.5%; p=0.012). Loss of the wild-type allele was detected in 48% of tumours from GPV carriers, mostly in genes definitively associated with sarcoma risk. CONCLUSION Our findings reveal that a high proportion of young patients with sarcomas presented a GPV in a CPG, underscoring the urgency of establishing appropriate genetic screening strategies for these individuals and their families.
Collapse
Affiliation(s)
| | - Karina Miranda Santiago
- Clinical and Functional Genomics Group, ACCamargo Cancer Center, Sao Paulo, São Paulo, Brazil
| | | | | | | | | | - Daniele Paixão
- Oncogenetics Department, ACCamargo Cancer Center, Sao Paulo, Brazil
| | | | | | | | - Barbara Rivera
- Molecular Mechanisms and Experimental Therapy in Oncology Program, IDIBELL, Barcelona, Spain
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Québec, Canada
| | - Dirce Maria Carraro
- Clinical and Functional Genomics Group, ACCamargo Cancer Center, Sao Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo, Brazil
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics Group, ACCamargo Cancer Center, Sao Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo, Brazil
| |
Collapse
|
8
|
Arendt ML, Dobson JM. Sarcoma Predisposition in Dogs with a Comparative View to Human Orthologous Disease. Vet Sci 2023; 10:476. [PMID: 37505880 PMCID: PMC10385400 DOI: 10.3390/vetsci10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Sarcomas are malignant tumors arising from the embryonic mesodermal cell lineage. This group of cancers covers a heterogenous set of solid tumors arising from soft tissues or bone. Many features such as histology, biological behavior and molecular characteristics are shared between sarcomas in humans and dogs, suggesting that human sarcoma research can be informative for canine disease, and that dogs with sarcomas can serve as relevant translational cancer models, to aid in the understanding of human disease and cancer biology. In the present paper, risk factors for the development of sarcoma in dogs are reviewed, with a particular focus on recent advances in clinical genetics, and on the identification of simple and complex genetic risk factors with a comparison with what has been found in human orthologous disease.
Collapse
Affiliation(s)
- Maja L Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Jane M Dobson
- Queens Veterinary School Hospital, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
9
|
Borja NA, Silva-Smith R, Huang M, Parekh DJ, Sussman D, Tekin M. Atypical ATMs: Broadening the phenotypic spectrum of ATM-associated hereditary cancer. Front Oncol 2023; 13:1068110. [PMID: 36865800 PMCID: PMC9971806 DOI: 10.3389/fonc.2023.1068110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Heterozygous, loss-of-function germline variants in ATM have been associated with an increased lifetime risk of breast, pancreas, prostate, stomach, ovarian, colorectal, and melanoma cancers. We conducted a retrospective review of thirty-one unrelated patients found to be heterozygous for a germline pathogenic variant in ATM and identified a significant proportion of patients in this cohort with cancers not currently associated with the ATM hereditary cancer syndrome, including carcinomas of the gallbladder, uterus, duodenum, kidney, and lung as well as a vascular sarcoma. A comprehensive review of the literature found 25 relevant studies where 171 individuals with a germline deleterious ATM variant have been diagnosed with the same or similar cancers. The combined data from these studies were then used to estimate the prevalence of germline ATM pathogenic variants in these cancers, which ranged between 0.45% and 2.2%. Analysis of tumor sequencing performed in large cohorts demonstrated that the frequency of deleterious somatic ATM alterations in these atypical cancers equaled or exceeded the alteration frequency in breast cancer and occurred at a significantly higher rate than in other DNA-damage response tumor suppressors, namely BRCA1 and CHEK2. Furthermore, multi-gene analysis of somatic alterations in these atypical cancers demonstrated significant co-occurrence of pathogenic alterations in ATM with BRCA1 and CHEK2, while there was significant mutual exclusivity between pathogenic alterations in ATM and TP53. This indicates that germline ATM pathogenic variants may play a role in cancer initiation and progression in these atypical ATM malignancies, potentially influencing these cancers to be driven toward DNA-damage repair deficiency and away from loss of TP53. As such, these findings provide evidence for broadening of the ATM-cancer susceptibility syndrome phenotype to improve the recognition of affected patients and provide more efficacious, germline-directed therapies.
Collapse
Affiliation(s)
- Nicholas A. Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Rachel Silva-Smith
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marilyn Huang
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Dipen J. Parekh
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Daniel Sussman
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States,John P. Hussmann Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Mustafa Tekin,
| |
Collapse
|
10
|
Liu J, Chang X, Xiao G, Zhong J, Huang B, Zhang J, Gao B, Peng G, Nie X. Case report: Undifferentiated sarcoma with multiple tumors involved in Lynch syndrome: Unexpected favorable outcome to sintilimab combined with chemotherapy. Front Oncol 2022; 12:1014859. [DOI: 10.3389/fonc.2022.1014859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
BackgroundPatients with Lynch syndrome are at an increased risk of developing simultaneous or metachronous tumors, while sarcomas have been occasionally reported. Sarcomas are generally not considered part of the common Lynch syndrome tumor spectrum. However, more and more studies and case reports suggested that sarcoma could be a rare clinical manifestation of Lynch syndrome, leading to new treatment strategies for sarcoma.Case summaryWe report the case of a 74-year-old male patient with Lynch syndrome who had rectal mucinous adenocarcinoma and prostate adenocarcinoma and then developed undifferentiated sarcoma of the left neck two years later. Mismatch repair deficiency (dMMR) was confirmed by immunohistochemical staining for the mismatch repair proteins MSH2, MSH6, MLH1 and PMS2. The result of polymerase chain reaction (PCR) microsatellite instability (MSI) testing of sarcoma showed high-level microsatellite instability (MSI-H). Additionally, a pathogenic germline mutation in MSH2 (c.2459-12A>G) was detected by next-generation sequencing (NGS). Taking into account HE morphology, immunohistochemical phenotype, MSI status, NGS result, medical history and germline MSH2 gene mutation, the pathological diagnosis of left neck biopsy tissue was Lynch syndrome related undifferentiated sarcoma with epithelioid morphology. The patient has been receiving immunotherapy (sintilimab) combined with chemotherapy (tegafur, gimeracil and oteracil potassium capsules) and currently has stable disease. We also reviewed the literature to understand the association between sarcoma and Lynch syndrome.ConclusionSarcoma may now be considered a rare clinical manifestation of Lynch syndrome. Attention and awareness about the association between Lynch syndrome and sarcoma need to be increased. Therefore, timely detection of MMR proteins and validation at the gene level for suspicious patients are the keys to avoiding missed or delayed diagnosis and to identifying patients suited for immunotherapy, which may also help to provide appropriate genetic counseling and follow-up management for patients.
Collapse
|
11
|
Bednaršek N, Carter BR, McCabe RM, Feely RA, Howard E, Chavez FP, Elliott M, Fisher JL, Jahncke J, Siegrist Z. Pelagic calcifiers face increased mortality and habitat loss with warming and ocean acidification. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2674. [PMID: 35584131 PMCID: PMC9786838 DOI: 10.1002/eap.2674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 06/15/2023]
Abstract
Global change is impacting the oceans in an unprecedented way, and multiple lines of evidence suggest that species distributions are changing in space and time. There is increasing evidence that multiple environmental stressors act together to constrain species habitat more than expected from warming alone. Here, we conducted a comprehensive study of how temperature and aragonite saturation state act together to limit Limacina helicina, globally distributed pteropods that are ecologically important pelagic calcifiers and an indicator species for ocean change. We co-validated three different approaches to evaluate the impact of ocean warming and acidification (OWA) on the survival and distribution of this species in the California Current Ecosystem. First, we used colocated physical, chemical, and biological data from three large-scale west coast cruises and regional time series; second, we conducted multifactorial experimental incubations to evaluate how OWA impacts pteropod survival; and third, we validated the relationships we found against global distributions of pteropods and carbonate chemistry. OWA experimental work revealed mortality increases under OWA, while regional habitat suitability indices and global distributions of L. helicina suggest that a multi-stressor framework is essential for understanding pteropod distributions. In California Current Ecosystem habitats, where pteropods are living close to their thermal maximum already, additional warming and acidification through unabated fossil fuel emissions (RCP 8.5) are expected to dramatically reduce habitat suitability.
Collapse
Affiliation(s)
- Nina Bednaršek
- Marine Biological StationNational Institute for BiologyLjubljanaSlovenia
- Cooperative Institute for Marine Resources StudiesOregon State UniversityNewportOregonUSA
| | - Brendan R. Carter
- Cooperative Institute for Climate, Ocean, and Ecosystem StudiesUniversity of WashingtonSeattleWashingtonUSA
- NOAA Pacific Marine Environmental LaboratorySeattleWashingtonUSA
| | - Ryan M. McCabe
- Cooperative Institute for Climate, Ocean, and Ecosystem StudiesUniversity of WashingtonSeattleWashingtonUSA
- NOAA Pacific Marine Environmental LaboratorySeattleWashingtonUSA
| | - Richard A. Feely
- Cooperative Institute for Climate, Ocean, and Ecosystem StudiesUniversity of WashingtonSeattleWashingtonUSA
| | - Evan Howard
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
| | | | | | - Jennifer L. Fisher
- Cooperative Institute for Marine Resources StudiesOregon State UniversityNewportOregonUSA
| | - Jaime Jahncke
- Point Blue Conservation SciencePetalumaCaliforniaUSA
| | | |
Collapse
|
12
|
Li B, Su G, Xiao C, Zhang J, Li H, Sun N, Lao G, Yu Y, Ren X, Qi W, Wang X, Liao M. The PB2 co-adaptation of H10N8 avian influenza virus increases the pathogenicity to chickens and mice. Transbound Emerg Dis 2022; 69:1794-1803. [PMID: 34008327 DOI: 10.1111/tbed.14157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Avian influenza (AI) is an important zoonotic disease, which can be transmitted across species barriers to other hosts, especially humans, posing a serious threat to the poultry industry and public health. In recent years, human cases infected with the H10N8, H9N2, and H7N9 of avian influenza viruses (AIVs) have been identified frequently as have the internal genes of H7N9 and H10N8, which are derived from H9N2 viruses. The adaptive mutation of the PB2 gene is an important way for the H10N8, H9N2, and H7N9 AIVs to spread across species to adapt to new hosts. Several well-known adaptive mutations in the PB2 gene, such as E627K, D701N, and A588V, significantly enhanced the virulence of the AIVs in mammals. However, the co-adaptation of AIVs to avian and mammalian hosts is rarely studied. In this study, we found that the mutations of PB2-I292V, PB2-R389K, PB2-A588V, PB2-T598M/V, PB2-L648V, and PB2-T676M substitutions significantly increased after 2012. In addition, in our previous studies, we found that the human-origin and avian-origin of H10N8 AIVs with very high homology also have these six mutation differences in PB2 gene, and the avian-origin H10N8 strain known as JX102 with all the key amino acids on the PB2 protein in the pre-evolutionary stage, so JX102 was chosen as a model strain. Among them, PB2-A588V significantly enhanced the activity of polymerase in avian and mammalian cells. Notably, animal experiments showed that PB2-A588V substitution increased the pathogenicity and transmissibility in chickens and the virulence of mice. The combined mutations of PB2-F6 (including PB2-I292V, PB2-R389K, PB2-A588V, PB2-T598M, PB2-L648V, and PB2-T676M) obtained higher adaptability of AIVs in avians and mammals than that of the single mutation of PB2-A588V, which suggested that the PB2 588 site is a key co-adaptation site and that synergies with other mutation sites can further enhance this co-adaptability. The results of this study show that the emergence of co-adaptation not only increases the threat to avians and mammals but may also contribute to a pandemic among avians and cross the interspecies barrier to mammals.
Collapse
Affiliation(s)
- Bo Li
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agricultural and Rural Affairs of the People's Republic of China, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission of the People's Republic of China, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Guanming Su
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chencheng Xiao
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhang
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agricultural and Rural Affairs of the People's Republic of China, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission of the People's Republic of China, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Huanan Li
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agricultural and Rural Affairs of the People's Republic of China, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission of the People's Republic of China, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Na Sun
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guangjie Lao
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuandi Yu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xingxing Ren
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenbao Qi
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agricultural and Rural Affairs of the People's Republic of China, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission of the People's Republic of China, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiuhui Wang
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Hebei Province Poultry Engineering Technology Research Center, Hebei University of Engineering, Handan, People's Republic of China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agricultural and Rural Affairs of the People's Republic of China, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission of the People's Republic of China, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
13
|
Seligson ND, Tang J, Jin DX, Bennett MP, Elvin JA, Graim K, Hays JL, Millis SZ, Miles WO, Chen JL. Drivers of genomic loss of heterozygosity in leiomyosarcoma are distinct from carcinomas. NPJ Precis Oncol 2022; 6:29. [PMID: 35468996 PMCID: PMC9038792 DOI: 10.1038/s41698-022-00271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Leiomyosarcoma (LMS) is a rare, aggressive, mesenchymal tumor. Subsets of LMS have been identified to harbor genomic alterations associated with homologous recombination deficiency (HRD); particularly alterations in BRCA2. Whereas genomic loss of heterozygosity (gLOH) has been used as a surrogate marker of HRD in other solid tumors, the prognostic or clinical value of gLOH in LMS (gLOH-LMS) remains poorly defined. We explore the genomic drivers associated with gLOH-LMS and their clinical import. Although the distribution of gLOH-LMS scores are similar to that of carcinomas, outside of BRCA2, there was no overlap with previously published gLOH-associated genes from studies in carcinomas. We note that early stage tumors with elevated gLOH demonstrated a longer disease-free interval following resection in LMS patients. Taken together, and despite similarities to carcinomas in gLOH distribution and clinical import, gLOH-LMS are driven by different genomic signals. Additional studies will be required to isolate and confirm the unique differences in biological factors driving these differences.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA.,Department of Pharmacogenomics and Translational Research, Nemours Children's Specialty Care, Jacksonville, FL, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joy Tang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Monica P Bennett
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | | | - Kiley Graim
- Department of Computer and Information Science and Engineering, The University of Florida, Gainesville, FL, USA
| | - John L Hays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
| | | | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - James L Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Retroperitoneal Sarcoma Care in 2021. Cancers (Basel) 2022; 14:cancers14051293. [PMID: 35267600 PMCID: PMC8909774 DOI: 10.3390/cancers14051293] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Soft-tissue sarcomas are biologically heterogenous tumors arising from connective tissues with over 100 subtypes. Although sarcomas account for <1% of all adult malignancies, retroperitoneal sarcomas are a distinct subgroup accounting for <10% of all sarcomatous tumors. There have been considerable advancements in the understanding and treatment of retroperitoneal sarcoma in the last decade, with standard treatment consisting of upfront primary surgical resection. The evidence surrounding the addition of radiation therapy remains controversial. There remains no standard with regards to systemic therapy, including immunotherapy. Adjunctive therapy remains largely dictated by expert consensus and preferences at individual centers or participation in clinical trials. In this 2021 review, we detail the anatomical boundaries of the retroperitoneum, clinical characteristics, contemporary standard of care and well as recent advancements in retroperitoneal sarcoma care. Ongoing international collaborations are encouraged to advance our understanding of this complex disease.
Collapse
|
15
|
Zhong D, Chen D, Zhang G, Lin S, Mei R, Yu X. Screening of Potential Key Biomarkers for Ewing Sarcoma: Evidence from Gene Array Analysis. Int J Gen Med 2022; 15:2575-2588. [PMID: 35342299 PMCID: PMC8943648 DOI: 10.2147/ijgm.s346251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Ewing’s sarcoma (ES) is a common bone cancer in children and adolescents. There are ethnic differences in the incidence and treatment effects. People have made great efforts to clarify the cause; however, the molecular mechanism of ES is still poorly understood. Methods We download the microarray datasets GSE68776, GSE45544 and GSE17674 from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) of the three datasets were screened and enrichment analysis was performed. STRING and Cytoscape were used to carry out module analysis, building a protein–protein interaction (PPI) network. Finally, a series of analyses such as survival analysis and immune infiltration analysis were performed on the selected genes. Results A total of 629 differentially expressed genes were screened, including 206 up-regulated genes and 423 down-regulated genes. The pathways and rich-functions of DEGs include protein activation cascade, carbohydrate binding, cell-cell adhesion junctions, mitotic cell cycle, p53 pathway, and cancer pathways. Then, a total of 10 hub genes were screened out. Biological process analysis showed that these genes were mainly enriched in mitotic nuclear division, protein kinase activity, cell division, cell cycle, and protein phosphorylation. Conclusion Survival analysis and multiple gene comparison analysis showed that CDCA8, MAD2L1 and FANCI may be involved in the occurrence and prognosis of ES. The purpose of our study is to clarify the DEG and key genes, which will help us know more about the molecular mechanisms of ES, provide potential pathway or targets for the diagnosis and treatment.
Collapse
Affiliation(s)
- Duming Zhong
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Dan Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Guangquan Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Shaobai Lin
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Runhong Mei
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xuefeng Yu
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Xuefeng Yu; Runhong Mei, Email ;
| |
Collapse
|
16
|
Fierheller CT, Guitton-Sert L, Alenezi WM, Revil T, Oros KK, Gao Y, Bedard K, Arcand SL, Serruya C, Behl S, Meunier L, Fleury H, Fewings E, Subramanian DN, Nadaf J, Bruce JP, Bell R, Provencher D, Foulkes WD, El Haffaf Z, Mes-Masson AM, Majewski J, Pugh TJ, Tischkowitz M, James PA, Campbell IG, Greenwood CMT, Ragoussis J, Masson JY, Tonin PN. A functionally impaired missense variant identified in French Canadian families implicates FANCI as a candidate ovarian cancer-predisposing gene. Genome Med 2021; 13:186. [PMID: 34861889 PMCID: PMC8642877 DOI: 10.1186/s13073-021-00998-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Familial ovarian cancer (OC) cases not harbouring pathogenic variants in either of the BRCA1 and BRCA2 OC-predisposing genes, which function in homologous recombination (HR) of DNA, could involve pathogenic variants in other DNA repair pathway genes. Methods Whole exome sequencing was used to identify rare variants in HR genes in a BRCA1 and BRCA2 pathogenic variant negative OC family of French Canadian (FC) ancestry, a population exhibiting genetic drift. OC cases and cancer-free individuals from FC and non-FC populations were investigated for carrier frequency of FANCI c.1813C>T; p.L605F, the top-ranking candidate. Gene and protein expression were investigated in cancer cell lines and tissue microarrays, respectively. Results In FC subjects, c.1813C>T was more common in familial (7.1%, 3/42) than sporadic (1.6%, 7/439) OC cases (P = 0.048). Carriers were detected in 2.5% (74/2950) of cancer-free females though female/male carriers were more likely to have a first-degree relative with OC (121/5249, 2.3%; Spearman correlation = 0.037; P = 0.011), suggesting a role in risk. Many of the cancer-free females had host factors known to reduce risk to OC which could influence cancer risk in this population. There was an increased carrier frequency of FANCI c.1813C>T in BRCA1 and BRCA2 pathogenic variant negative OC families, when including the discovery family, compared to cancer-free females (3/23, 13%; OR = 5.8; 95%CI = 1.7–19; P = 0.005). In non-FC subjects, 10 candidate FANCI variants were identified in 4.1% (21/516) of Australian OC cases negative for pathogenic variants in BRCA1 and BRCA2, including 10 carriers of FANCI c.1813C>T. Candidate variants were significantly more common in familial OC than in sporadic OC (P = 0.04). Localization of FANCD2, part of the FANCI-FANCD2 (ID2) binding complex in the Fanconi anaemia (FA) pathway, to sites of induced DNA damage was severely impeded in cells expressing the p.L605F isoform. This isoform was expressed at a reduced level, destabilized by DNA damaging agent treatment in both HeLa and OC cell lines, and exhibited sensitivity to cisplatin but not to a poly (ADP-ribose) polymerase inhibitor. By tissue microarray analyses, FANCI protein was consistently expressed in fallopian tube epithelial cells and only expressed at low-to-moderate levels in 88% (83/94) of OC samples. Conclusions This is the first study to describe candidate OC variants in FANCI, a member of the ID2 complex of the FA DNA repair pathway. Our data suggest that pathogenic FANCI variants may modify OC risk in cancer families. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00998-5.
Collapse
Affiliation(s)
- Caitlin T Fierheller
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada
| | - Laure Guitton-Sert
- Genome Stability Laboratory, CHU de Québec-Université Laval Research Center, Oncology Division, Quebec City, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Wejdan M Alenezi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada.,Department of Medical Laboratory Technology, Taibah University, Medina, Saudi Arabia
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Kathleen K Oros
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yuandi Gao
- Genome Stability Laboratory, CHU de Québec-Université Laval Research Center, Oncology Division, Quebec City, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Karine Bedard
- Laboratoire de Diagnostic Moléculaire, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.,Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Suzanna L Arcand
- Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada
| | - Supriya Behl
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Hubert Fleury
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Eleanor Fewings
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Deepak N Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Javad Nadaf
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rachel Bell
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, Quebec, Canada.,Division of Gynecologic Oncology, Université de Montréal, Montreal, Quebec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zaki El Haffaf
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Paul A James
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Celia M T Greenwood
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec-Université Laval Research Center, Oncology Division, Quebec City, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Patricia N Tonin
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada. .,Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada. .,Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Jordan F, Huber S, Sommer S, Schenkirsch G, Frühwald MC, Trepel M, Claus R, Kuhlen M. A Retrospective 5-Year Single Center Study Highlighting the Risk of Cancer Predisposition in Adolescents and Young Adults. Cancers (Basel) 2021; 13:3033. [PMID: 34204522 PMCID: PMC8234548 DOI: 10.3390/cancers13123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
The knowledge of inherited cancer susceptibility opens a new field of cancer medicine. We conducted a retrospective single-center cohort study. Data of AYA cancer patients registered between January 2014 and December 2018 were analyzed. The median age at cancer diagnosis of 704 patients (343 males, 361 females) was 32 years (range, 15-39 years), median follow-up was 181 days (range, 1-1975 days). Solid tumors were diagnosed in 575 (81.7%) patients, hematologic malignancies in 129 (18.3%) patients. Multiple primary cancers were reported in 36 (5.1%) patients. Malignancies that may be indicators of inherited cancer susceptibility were diagnosed in 2.6% of patients with cancers of the endocrine system, in 73% of cancers of the gastrointestinal system, in 88% of tumors of the central nervous system, in 92% of cancers of the urinary tract, and in 59% of head and neck tumors. In addition, all patients with breast cancer, sarcoma, and peripheral nerve sheath tumor were in need of genetic counselling. In sum, at least 181 of 704 (25.7%) AYA cancer patients presented with malignancies suspicious of harboring pathogenic germline variants. Evaluation of AYA cancer patients for hereditary cancer predisposition needs to be integrated into daily practice.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Hematology and Clinical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany; (F.J.); (S.S.); (M.T.); (R.C.)
| | - Simon Huber
- Paediatrics and Adolescent Medicine, University Medical Center Augsburg, 86156 Augsburg, Germany; (S.H.); (M.C.F.)
| | - Sebastian Sommer
- Department of Hematology and Clinical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany; (F.J.); (S.S.); (M.T.); (R.C.)
| | - Gerhard Schenkirsch
- Comprehensive Cancer Center Augsburg, University Medical Center Augsburg, 86156 Augsburg, Germany;
| | - Michael C. Frühwald
- Paediatrics and Adolescent Medicine, University Medical Center Augsburg, 86156 Augsburg, Germany; (S.H.); (M.C.F.)
| | - Martin Trepel
- Department of Hematology and Clinical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany; (F.J.); (S.S.); (M.T.); (R.C.)
| | - Rainer Claus
- Department of Hematology and Clinical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany; (F.J.); (S.S.); (M.T.); (R.C.)
| | - Michaela Kuhlen
- Paediatrics and Adolescent Medicine, University Medical Center Augsburg, 86156 Augsburg, Germany; (S.H.); (M.C.F.)
| |
Collapse
|
18
|
Hawkins CJ, Miles MA. Mutagenic Consequences of Sublethal Cell Death Signaling. Int J Mol Sci 2021; 22:ijms22116144. [PMID: 34200309 PMCID: PMC8201051 DOI: 10.3390/ijms22116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.
Collapse
Affiliation(s)
- Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
19
|
Petrosino M, Novak L, Pasquo A, Chiaraluce R, Turina P, Capriotti E, Consalvi V. Analysis and Interpretation of the Impact of Missense Variants in Cancer. Int J Mol Sci 2021; 22:ijms22115416. [PMID: 34063805 PMCID: PMC8196604 DOI: 10.3390/ijms22115416] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Large scale genome sequencing allowed the identification of a massive number of genetic variations, whose impact on human health is still unknown. In this review we analyze, by an in silico-based strategy, the impact of missense variants on cancer-related genes, whose effect on protein stability and function was experimentally determined. We collected a set of 164 variants from 11 proteins to analyze the impact of missense mutations at structural and functional levels, and to assess the performance of state-of-the-art methods (FoldX and Meta-SNP) for predicting protein stability change and pathogenicity. The result of our analysis shows that a combination of experimental data on protein stability and in silico pathogenicity predictions allowed the identification of a subset of variants with a high probability of having a deleterious phenotypic effect, as confirmed by the significant enrichment of the subset in variants annotated in the COSMIC database as putative cancer-driving variants. Our analysis suggests that the integration of experimental and computational approaches may contribute to evaluate the risk for complex disorders and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Maria Petrosino
- Dipartimento Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy; (M.P.); (L.N.); (R.C.)
| | - Leonore Novak
- Dipartimento Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy; (M.P.); (L.N.); (R.C.)
| | - Alessandra Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory FSN-TECFIS-DIM, 00044 Frascati, Italy;
| | - Roberta Chiaraluce
- Dipartimento Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy; (M.P.); (L.N.); (R.C.)
| | - Paola Turina
- Dipartimento di Farmacia e Biotecnologie (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Emidio Capriotti
- Dipartimento di Farmacia e Biotecnologie (FaBiT), University of Bologna, 40126 Bologna, Italy;
- Correspondence: (E.C.); (V.C.)
| | - Valerio Consalvi
- Dipartimento Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy; (M.P.); (L.N.); (R.C.)
- Correspondence: (E.C.); (V.C.)
| |
Collapse
|
20
|
Lin B, Li H, Zhang T, Ye X, Yang H, Shen Y. Comprehensive analysis of macrophage-related multigene signature in the tumor microenvironment of head and neck squamous cancer. Aging (Albany NY) 2021; 13:5718-5747. [PMID: 33592580 PMCID: PMC7950226 DOI: 10.18632/aging.202499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/16/2020] [Indexed: 04/13/2023]
Abstract
Macrophages are among the most abundant cells of the tumor microenvironment in head and neck squamous cancer (HNSC). Although the marker gene sets of macrophages have been found, the mechanism by which they affect macrophages and whether they further predict the clinical outcome is unclear. In this study, a univariate COX analysis and a random forest algorithm were used to construct a prognostic model. Differential expression of the key gene, methylation status, function, and signaling pathways were further analyzed. We cross-analyzed multiple databases to detect the relationship between the most critical gene and the infiltration of multiple immune cells, as well as its impact on the prognosis of pan-cancer. FANCE is recognized as hub gene by different algorithms. It was overexpressed in HNSC, and high expression was predictive of better prognosis. It might promote apoptosis through the Wnt/β-catenin pathway. The expression of FANCE is inversely proportional to the infiltration of CD4 + T cells and their subsets, tumor-associated macrophages (TAMs), M2 macrophages, but positively co-expressed with M1 macrophages. In summary, FANCE was identified as the hub gene from the macrophage marker gene set, and it may improve the prognosis of HNSC patients by inhibiting lymphocytes and tumor-associated macrophages infiltration.
Collapse
Affiliation(s)
- Bo Lin
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| | - Hao Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tianwen Zhang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
| | - Xin Ye
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
| | - Hongyu Yang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| | - Yuehong Shen
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Milanese JS, Wang E. Germline Genetics in Cancer: The New Frontier. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Yurchenko AA, Padioleau I, Matkarimov BT, Soulier J, Sarasin A, Nikolaev S. XPC deficiency increases risk of hematologic malignancies through mutator phenotype and characteristic mutational signature. Nat Commun 2020; 11:5834. [PMID: 33203900 PMCID: PMC7672101 DOI: 10.1038/s41467-020-19633-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies demonstrated a dramatically increased risk of leukemia in patients with a rare genetic disorder, Xeroderma Pigmentosum group C (XP-C), characterized by constitutive deficiency of global genome nucleotide excision repair (GG-NER). The genetic mechanisms of non-skin cancers in XP-C patients remain unexplored. In this study, we analyze a unique collection of internal XP-C tumor genomes including 6 leukemias and 2 sarcomas. We observe a specific mutational pattern and an average of 25-fold increase of mutation rates in XP-C versus sporadic leukemia which we presume leads to its elevated incidence and early appearance. We describe a strong mutational asymmetry with respect to transcription and the direction of replication in XP-C tumors suggesting association of mutagenesis with bulky purine DNA lesions of probably endogenous origin. These findings suggest existence of a balance between formation and repair of bulky DNA lesions by GG-NER in human body cells which is disrupted in XP-C patients. Xeroderma Pigmentosum group C (XP-C) is a rare genetic disorder characterised by deficient DNA repair leading to skin and internal cancer, but the latter is not well understood molecularly. Here the authors sequence genomes of non-skin cancers from XP-C patients to unravel its mutational patterns.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Ismael Padioleau
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Jean Soulier
- University of Paris, INSERM U944 and CNRS UMR7212, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Alain Sarasin
- CNRS UMR9019 Genome Integrity and Cancers, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Sergey Nikolaev
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.
| |
Collapse
|
23
|
Diessner BJ, Weigel BJ, Murugan P, Zhang L, Poynter JN, Spector LG. Racial and Ethnic Differences in Sarcoma Incidence Are Independent of Census-Tract Socioeconomic Status. Cancer Epidemiol Biomarkers Prev 2020; 29:2141-2148. [PMID: 32928933 PMCID: PMC7641997 DOI: 10.1158/1055-9965.epi-20-0520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Epidemiologic analyses of sarcoma are limited by the heterogeneity and rarity of the disease. Utilizing population-based surveillance data enabled us to evaluate the contribution of census tract-level socioeconomic status (CT-SES) and race/ethnicity on sarcoma incidence rates. METHODS We utilized the Surveillance, Epidemiology, and End Results program to evaluate associations between CT-SES and race/ethnicity on the incidence rates of sarcoma. Incidence rate ratios and 99% confidence intervals were estimated from quasi-Poisson models. All models were stratified by broad age groups (pediatric: <20 years, adult: 20-65 years, older adult: 65+ years) and adjusted for sex, age, and year of diagnosis. Within each age group, we conducted analyses stratified by somatic genome (fusion-positive and fusion-negative sarcomas) and for subtypes with >200 total cases. A P value less than 0.01 was considered statistically significant. RESULTS We included 55,415 sarcoma cases in 35 sarcoma subtype-age group combinations. Increasing CT-SES was statistically significantly associated with 11 subtype-age group combinations, primarily in the older age group strata (8 subtypes), whereas malignant peripheral nerve sheath tumors in adults were associated with decreasing CT-SES. Nearly every sarcoma subtype-age group combination displayed racial/ethnic disparities in incidence that were independent of CT-SES. CONCLUSIONS We found race/ethnicity to be more frequently associated with sarcoma incidence than CT-SES. Our findings suggest that genetic variation associated with ancestry may play a stronger role than area-level SES-related factors in the etiology of sarcoma. IMPACT These findings provide direction for future etiologic studies of sarcomas.
Collapse
Affiliation(s)
- Brandon J Diessner
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
| | - Brenda J Weigel
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Jenny N Poynter
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
24
|
Capasso M, Montella A, Tirelli M, Maiorino T, Cantalupo S, Iolascon A. Genetic Predisposition to Solid Pediatric Cancers. Front Oncol 2020; 10:590033. [PMID: 33194750 PMCID: PMC7656777 DOI: 10.3389/fonc.2020.590033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Progresses over the past years have extensively improved our capacity to use genome-scale analyses—including high-density genotyping and exome and genome sequencing—to identify the genetic basis of pediatric tumors. In particular, exome sequencing has contributed to the evidence that about 10% of children and adolescents with tumors have germline genetic variants associated with cancer predisposition. In this review, we provide an overview of genetic variations predisposing to solid pediatric tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the biological processes affected by the involved mutated genes. A careful description of the genetic basis underlying a large number of syndromes associated with an increased risk of pediatric cancer is also reported. We place particular emphasis on the emerging view that interactions between germline and somatic alterations are a key determinant of cancer development. We propose future research directions, which focus on the biological function of pediatric risk alleles and on the potential links between the germline genome and somatic changes. Finally, the importance of developing new molecular diagnostic tests including all the identified risk germline mutations and of considering the genetic predisposition in screening tests and novel therapies is emphasized.
Collapse
Affiliation(s)
- Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Maiorino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
25
|
Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment. Signal Transduct Target Ther 2020; 5:195. [PMID: 32963243 PMCID: PMC7508862 DOI: 10.1038/s41392-020-00246-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas constitute a rare heterogeneous group of tumors, including a wide variety of histological subtypes. Despite advances in our understanding of the pathophysiology of the disease, first-line sarcoma treatment options are still limited and new treatment approaches are needed. Histone H2AX phosphorylation is a sensitive marker for double strand breaks and has recently emerged as biomarker of DNA damage for new drug development. In this study, we explored the role of H2AX phosphorylation at Ser139 alone or in combination with MAP17 protein, an inducer of DNA damage through ROS increase, as prognostic biomarkers in sarcoma tumors. Next, we proposed doxorubicin and olaparib combination as potential therapeutic strategies against sarcomas displaying high level of both markers. We evaluate retrospectively the levels of pH2AX (Ser139) and MAP17 in a cohort of 69 patients with different sarcoma types and its relationship with clinical and pathological features. We found that the levels of pH2AX and MAP17 were related to clinical features and poor survival. Next, we pursued PARP1 inhibition with olaparib to potentiate the antitumor effect of DNA damaging effect of the DNA damaging agent doxorubicin to achieve an optimal synergy in sarcoma. We demonstrated that the combination of olaparib and doxorubicin was synergistic in vitro, inhibiting cell proliferation and enhancing pH2AX intranuclear accumulation, as a result of DNA damage. The synergism was corroborated in patient-derived xenografts (PDX) where the combination was effective in tumors with high levels of pH2AX and MAP17, suggesting that both biomarkers might potentially identify patients who better benefit from this combined therapy.
Collapse
|
26
|
Collignon C, Brisse HJ, Lemelle L, Cardoen L, Gauthier A, Pierron G, Roussel A, Dumont B, Alimi A, Cordero C, Rouffiange L, Orbach D. [Diagnostic strategy in pediatrics soft tissue sarcomas]. Bull Cancer 2020; 107:963-971. [PMID: 32950242 DOI: 10.1016/j.bulcan.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Soft tissue sarcomas in children are rare tumor, representing around 6 to 7% of children cancer. They spread mostly sporadically (90%) and therefore are rarely associated to an underlying constitutional genetic disease (10%). About half of those sarcomas are rhabdomyosarcomas and the others are a very heterogenous histologic group with various bio-pathologies and prognosis. Clinical presentation is mainly a soft tissue lump often difficult to distinguish from more frequent benign causes (malformative, infectious, benign, or pseudotumor). Inappropriate initial diagnosis work-up has a strong impact on soft tissue sarcomas' prognosis. Adapted complementary investigations (first ultrasound and MRI) are important to compile arguments for a malign origin and to indicate a biopsy. However, predictive value of imaging exams still remains imperfect, and histological analysis by percutaneous image-guided biopsy and sometimes by surgical biopsy is often necessary. Authors realize an update on optimal diagnostic pathway including molecular tests in presence of a soft tissue mass in a child.
Collapse
Affiliation(s)
- Charlotte Collignon
- Institut Curie, centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), 26, rue d'Ulm, 75005 Paris, France.
| | - Hervé J Brisse
- Institut Curie, département d'imagerie, 26, rue d'Ulm, 75005 Paris, France
| | - Lauriane Lemelle
- Institut Curie, centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), 26, rue d'Ulm, 75005 Paris, France
| | - Liesbeth Cardoen
- Institut Curie, département d'imagerie, 26, rue d'Ulm, 75005 Paris, France
| | - Arnaud Gauthier
- Institut Curie, département de médecine diagnostique et théranaustique, 26, rue d'Ulm, 75005 Paris, France
| | - Gaëlle Pierron
- Institut Curie, unité de génétique somatique, 26, rue d'Ulm, 75005 Paris, France
| | - Aphaia Roussel
- Hôpital Robert-Debré, service d'immuno-hématologie, 48, boulevard Sérurier, 75019 Paris, France
| | - Benoit Dumont
- Institut Curie, centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), 26, rue d'Ulm, 75005 Paris, France
| | - Aurélia Alimi
- Institut Curie, centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), 26, rue d'Ulm, 75005 Paris, France
| | - Camille Cordero
- Institut Curie, centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), 26, rue d'Ulm, 75005 Paris, France
| | - Lucie Rouffiange
- Institut Curie, centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), 26, rue d'Ulm, 75005 Paris, France
| | - Daniel Orbach
- Institut Curie, centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), 26, rue d'Ulm, 75005 Paris, France
| |
Collapse
|
27
|
Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Bermisheva MA, Gilyazova IR, Zinnatullina GF, Khusnutdinova EK. Analysis of Rare Variant c.2395C>T (p.Arg799Trp) in Gene ERCC4 in Breast Cancer Patients from Bashkortostan. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Scheinberg T, Young A, Woo H, Goodwin A, Mahon KL, Horvath LG. Mainstream consent programs for genetic counseling in cancer patients: A systematic review. Asia Pac J Clin Oncol 2020; 17:163-177. [PMID: 32309911 DOI: 10.1111/ajco.13334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023]
Abstract
As demand for germline genetic testing for cancer patients increases, novel methods of genetic counseling are required. One such method is the mainstream consent pathway, whereby a member of the oncology team (rather than a genetic specialist) is responsible for counseling, consenting, and arranging genetic testing for cancer patients. We systematically reviewed the literature for evidence evaluating mainstream pathways for patients with breast, ovarian, colorectal, and prostate cancer. Medline, EMBASE, and Cochrane Library were searched for studies that met inclusion and exclusion criteria. Article references were checked for additional studies. Trial databases were searched for ongoing studies. Of the 13 papers that met inclusion criteria, 11 individual study groups were identified (two study groups had two publications each). Ten of the 11 studies evaluated the acceptability, feasibility, and impact of BRCA testing for patients and/or clinicians in different clinical settings in breast and ovarian cancer, while the final study explored the attitudes of colorectal specialists toward genetic testing for colorectal cancer. None involved prostate cancer. Overall, mainstream pathways were acceptable and feasible. Medical oncologist- and nurse-driven pathways were particularly successful, with both patients and clinicians satisfied with this process. Although the content of pretest counseling was less consistent compared with counseling via the traditional model, patients were largely satisfied with the education they received. Further research is required to evaluate the mainstream pathway for men with prostate cancer.
Collapse
Affiliation(s)
- Tahlia Scheinberg
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia.,Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alison Young
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia.,Sydney Catalyst Translational Research Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Henry Woo
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia.,Urology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Annabel Goodwin
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Medical Oncology, Concord Repatriation General Hospital, Concord, New South Wales, Australia.,Cancer Genetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Kate L Mahon
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia.,Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Lisa G Horvath
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia.,Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
30
|
Genetic Testing for Cancer Predisposition Syndromes in Adolescents and Young Adults (AYAs). CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Švara T, Gombač M, Poli A, Račnik J, Zadravec M. Spontaneous Tumors and Non-Neoplastic Proliferative Lesions in Pet Degus ( Octodon degus). Vet Sci 2020; 7:vetsci7010032. [PMID: 32183187 PMCID: PMC7158670 DOI: 10.3390/vetsci7010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, degus (Octodon degus), rodents native to South America, have been becoming increasingly popular as pet animals. Data about neoplastic diseases in this species are still sparse and mainly limited to single-case reports. The aim of this study was to present neoplastic and non-neoplastic proliferative changes in 16/100 pet degus examined at the Veterinary Faculty University of Ljubljana from 2010 to 2015 and to describe the clinic-pathological features of these lesions. Twenty different lesions of the integumentary, musculoskeletal, genitourinary and gastrointestinal systems were diagnosed: amongst these were 13 malignant tumors, six benign tumors, and one non-neoplastic lesion. Cutaneous fibrosarcoma was the most common tumor (7/16 degus). It was detected more often in females (6/7 degus) and lesions were located mainly in hind limbs. The gastrointestinal tract was frequently affected, namely with two malignant neoplasms - an intestinal lymphoma and a mesenteric mesothelioma, four benign tumors - two biliary cystadenomas, an oral squamous papilloma and a hepatocellular adenoma, and a single non-neoplastic proliferative lesion. In one animal, two organic systems were involved in neoplastic lesions.
Collapse
Affiliation(s)
- Tanja Švara
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.Š.); (M.G.)
| | - Mitja Gombač
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.Š.); (M.G.)
| | - Alessandro Poli
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy
- Correspondence:
| | - Jožko Račnik
- Clinic for Birds, Small mammals and Reptiles, Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.Z.)
| | - Marko Zadravec
- Clinic for Birds, Small mammals and Reptiles, Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.Z.)
| |
Collapse
|
32
|
NF1 patient missense variants predict a role for ATM in modifying neurofibroma initiation. Acta Neuropathol 2020; 139:157-174. [PMID: 31664505 DOI: 10.1007/s00401-019-02086-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023]
Abstract
In Neurofibromatosis type 1, NF1 gene mutations in Schwann cells (SC) drive benign plexiform neurofibroma (PNF), and no additional SC changes explain patient-to-patient variability in tumor number. Evidence from twin studies suggests that variable expressivity might be caused by unidentified modifier genes. Whole exome sequencing of SC and fibroblast DNA from the same resected PNFs confirmed biallelic SC NF1 mutations; non-NF1 somatic SC variants were variable and present at low read number. We identified frequent germline variants as possible neurofibroma modifier genes. Genes harboring variants were validated in two additional cohorts of NF1 patients and by variant burden test. Genes including CUBN, CELSR2, COL14A1, ATR and ATM also showed decreased gene expression in some neurofibromas. ATM-relevant DNA repair defects were also present in a subset of neurofibromas with ATM variants, and in some neurofibroma SC. Heterozygous ATM G2023R or homozygous S707P variants reduced ATM protein expression in heterologous cells. In mice, genetic Atm heterozygosity promoted Schwann cell precursor self-renewal and increased tumor formation in vivo, suggesting that ATM variants contribute to neurofibroma initiation. We identify germline variants, rare in the general population, overrepresented in NF1 patients with neurofibromas. ATM and other identified genes are candidate modifiers of PNF pathogenesis.
Collapse
|
33
|
Kuhlen M, Wieczorek D, Siebert R, Frühwald MC. How I approach hereditary cancer predisposition in a child with cancer. Pediatr Blood Cancer 2019; 66:e27916. [PMID: 31342632 DOI: 10.1002/pbc.27916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Approximately 10% of all children with cancer are affected by a monogenic cancer predisposition syndrome. This has important implications for both the child and her/his family. The assessment of hereditary cancer predisposition is a challenging task for clinicians and genetic counselors in daily routine. It includes consideration of tumor genetics, specific features of the patient, and the medical/family history. To keep up with the pace of this rapidly evolving and increasingly complex field of genetic susceptibility, we suggest a systematic approach for the evaluation of the child with cancer and her/his family by an interdisciplinary team specialized in hereditary cancer predisposition.
Collapse
Affiliation(s)
- Michaela Kuhlen
- University Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Michael C Frühwald
- University Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| |
Collapse
|
34
|
Milanese JS, Tibiche C, Zou J, Meng Z, Nantel A, Drouin S, Marcotte R, Wang E. Germline variants associated with leukocyte genes predict tumor recurrence in breast cancer patients. NPJ Precis Oncol 2019; 3:28. [PMID: 31701019 PMCID: PMC6825127 DOI: 10.1038/s41698-019-0100-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Germline variants such as BRCA1/2 play an important role in tumorigenesis and clinical outcomes of cancer patients. However, only a small fraction (i.e., 5-10%) of inherited variants has been associated with clinical outcomes (e.g., BRCA1/2, APC, TP53, PTEN and so on). The challenge remains in using these inherited germline variants to predict clinical outcomes of cancer patient population. In an attempt to solve this issue, we applied our recently developed algorithm, eTumorMetastasis, which constructs predictive models, on exome sequencing data to ER+ breast (n = 755) cancer patients. Gene signatures derived from the genes containing functionally germline variants significantly distinguished recurred and non-recurred patients in two ER+ breast cancer independent cohorts (n = 200 and 295, P = 1.4 × 10-3). Furthermore, we compared our results with the widely known Oncotype DX test (i.e., Oncotype DX breast cancer recurrence score) and outperformed prediction for both high- and low-risk groups. Finally, we found that recurred patients possessed a higher rate of germline variants. In addition, the inherited germline variants from these gene signatures were predominately enriched in T cell function, antigen presentation, and cytokine interactions, likely impairing the adaptive and innate immune response thus favoring a pro-tumorigenic environment. Hence, germline genomic information could be used for developing non-invasive genomic tests for predicting patients' outcomes in breast cancer.
Collapse
Affiliation(s)
| | - Chabane Tibiche
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Jinfeng Zou
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Zhigang Meng
- Department of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Chinese Academy of Agricultural Science, No. 12 Zhongguangcun South Street, Haidian District, Beijing, 100086 China
| | - Andre Nantel
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Simon Drouin
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Richard Marcotte
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue W, Montreal, QC H3A 1A3 Canada
| | - Edwin Wang
- Department of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Alberta Children’s Hospital Research Institute and Arnie Charbonneau Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
35
|
Imbert-Bouteille M, Gauthier-Villars M, Leroux D, Meunier I, Aerts I, Lumbroso-Le Rouic L, Lejeune S, Delnatte C, Abadie C, Pujol P, Houdayer C, Corsini C. Osteosarcoma without prior retinoblastoma related to RB1 low-penetrance germline pathogenic variants: A novel type of RB1-related hereditary predisposition syndrome? Mol Genet Genomic Med 2019; 7:e913. [PMID: 31568710 PMCID: PMC6900371 DOI: 10.1002/mgg3.913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
Background Retinoblastoma (Rb) is a rare intraocular malignant tumor in children with high overall survival. Predisposition to Rb is linked to RB1 germline mutations with high penetrance, but rare RB1 low‐penetrance variants are also known. Rb survivors are at risk of second primary malignancies (SPMs), mostly osteosarcoma and soft‐tissue sarcoma. Nevertheless, the risk of primary osteosarcoma developing without prior Rb has not been reported in RB1 germline mutation carriers. Methods We report a patient in whom osteosarcoma developed at age 17 as a first primary malignancy within a family context of sarcoma. Results Unexpectedly, genetic testing identified a low‐penetrance germline mutation in RB1 [NM_000321.2: c.45_76dup; p.(Pro26Leufs*50)]. In eight additional similar cases from published and unpublished reports of families, first primary osteosarcomas and sarcomas mostly developed in RB1 low‐penetrance mutation carriers without prior Rb. Conclusion We propose that first primary sarcoma and osteosarcoma could be a novel clinical presentation of a RB1‐related hereditary predisposition syndrome linked to RB1 low‐penetrance germline mutations. In these families, careful screening of primary non‐Rb cancer and SPMs is required by maintaining enhanced clinical vigilance. Implementing lifelong periodic whole‐body MRI screening might be a complementary strategy for unaffected carrier relatives in these families.
Collapse
Affiliation(s)
| | | | | | - Isabelle Meunier
- National Centre for Rare Diseases, Hereditary Retinal and Optic Nerve Disorders, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Isabelle Aerts
- Department of Pediatric Oncology, Institut Curie, University Paris Descartes, Paris, France
| | | | | | - Capucine Delnatte
- Oncogenetics, Institut de Cancérologie de l'Ouest site René Gauducheau, Saint Herblain, France
| | - Caroline Abadie
- Oncogenetics, Institut de Cancérologie de l'Ouest site René Gauducheau, Saint Herblain, France
| | - Pascal Pujol
- Medical Genetics Department, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Claude Houdayer
- Department of Tumour Biology, Institut Curie, University Paris Descartes, Paris, France.,Genetics Department, F76000 and Normandy Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Carole Corsini
- Medical Genetics Department, CHU Montpellier, Univ Montpellier, Montpellier, France
| |
Collapse
|
36
|
Venier RE, Maurer LM, Kessler EM, Ranganathan S, McGough RL, Weiss KR, Malek MM, Meade J, Tersak JM, Bailey KM. A germline BARD1 mutation in a patient with Ewing Sarcoma: Implications for familial testing and counseling. Pediatr Blood Cancer 2019; 66:e27824. [PMID: 31157509 DOI: 10.1002/pbc.27824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Rosemarie E Venier
- School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lisa M Maurer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elena M Kessler
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Richard L McGough
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kurt R Weiss
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marcus M Malek
- Division of Pediatric General and Thoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Julia Meade
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean M Tersak
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kelly M Bailey
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Negri GL, Grande BM, Delaidelli A, El-Naggar A, Cochrane D, Lau CC, Triche TJ, Moore RA, Jones SJ, Montpetit A, Marra MA, Malkin D, Morin RD, Sorensen PH. Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. J Pathol 2019; 249:319-331. [PMID: 31236944 DOI: 10.1002/path.5319] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Abstract
Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gian Luca Negri
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Amal El-Naggar
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Dawn Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Ching C Lau
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Timothy J Triche
- Department of Pathology and Laboratory Medicine, Childrens Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pathology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Alexandre Montpetit
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - David Malkin
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Ow SGW, Tan KT, Yang H, Yap HL, Sapari NSB, Ong PY, Soong R, Lee SC. Next Generation Sequencing Reveals Novel Mutations in Mismatch Repair Genes and Other Cancer Predisposition Genes in Asian Patients with Suspected Lynch Syndrome. Clin Colorectal Cancer 2019; 18:e324-e334. [PMID: 31350202 DOI: 10.1016/j.clcc.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although at least 5 genes are implicated in Lynch Syndrome (LS), up to 50% of suspected cases are owing to undefined genes. We utilized next generation sequencing (NGS) to characterize the mutation profile of patients with cancer (CA) suspected to have LS. PATIENTS AND METHODS We enrolled 174 Asian patients with CA from our CA Genetics Clinic from 2000 to 2014 suspected to have LS, and obtained germline DNA for NGS using TruSight Cancer. Frameshift, nonsense, and known deleterious mutations were considered pathogenic. Polymorphisms ≤ 1% frequency in 1000 Genomes (Asian) were classified using established databases. RESULTS Of the 174 probands, 80.5% were Chinese, the median age at CA diagnosis was 45 years (range, 18-82 years), and 84.5% and 8.6% had colon and LS-like CA, respectively. Forty-seven of 100 evaluable colon CA probands had LS-like histopathologic features. Nineteen of 174 had family history fulfilling Amsterdam I/II Criteria, whereas the rest fulfilled Bethesda Guidelines. Thirty-one of 174 harbored pathogenic mutations with 10 in LS genes only, 20 in non-LS genes only, and 1 in both. Of the 11 with LS gene mutations, MLH1 was most commonly involved (n = 7), followed by MSH2, MSH6, and PMS2. Nine of 174 had pathogenic mutations diagnostic of alternative hereditary syndromes including 2 each in CDH1, APC, and BRCA1, and 1 each in BRCA2, SMAD4, and MUTYH. Ten unique mutations were detected in low-to-moderate penetrance genes: 6 individuals had a recurring novel KIT:c.2836C>T nonsense mutation (n = 3) or ERCC4:c.2169C>A nonsense mutation (n = 3) without LS gene mutation, which is of clinical interest. CONCLUSIONS In this Asian study, NGS proved to be feasible in screening for causative mutations in patients with CA suspected to have LS.
Collapse
Affiliation(s)
- Samuel G W Ow
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Kar Tong Tan
- Cancer Science Institute, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Singapore
| | - Hui-Ling Yap
- Cancer Science Institute, National University of Singapore, Singapore
| | | | - Pei Yi Ong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute, National University of Singapore, Singapore; Department of Pathology, National University of Singapore, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore; Cancer Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
39
|
Wang Y, Yu M, Yang JX, Cao DY, Zhang Y, Zhou HM, Yuan Z, Shen K. Genomic Comparison of Endometrioid Endometrial Carcinoma and Its Precancerous Lesions in Chinese Patients by High-Depth Next Generation Sequencing. Front Oncol 2019; 9:123. [PMID: 30886832 PMCID: PMC6410638 DOI: 10.3389/fonc.2019.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Endometrial intraepithelial neoplasia (EIN), also known as endometrial atypical hyperplasia (EAH) is believed to be the precursor lesion of endometrioid endometrial carcinoma (EEC). Many genetic factors play important roles in the process of carcinogenesis, however, the key genetic alterations from dysplasia to endometrial cancer remains poorly understood. Germline mutations in Lynch syndrome genes are associated with hereditary endometrial carcinoma. The role of other cancer susceptibility genes is unclear. The aim of this study was to investigate the genomic alterations of premalignant endometrial lesion and EEC, and to determine the prevalence of cancer predisposition gene mutations in an unselected endometrial carcinoma patient cohort. Here, we applied a comprehensive cancer gene panel (363 cancer-related genes) to capture the exomes of cancer-related genes. Samples were collected from 79 patients with EEC and 36 patients with EIN. Our results demonstrate that EIN harbors most of the driver events reported in EEC and for the first time we reported a high frequency of the amplification of VEGFB gene in endometrial cancer. Moreover, we identified four novel candidate cancer-associated genes (CTCF, ARHGAP35, NF1, and KDR) which may be crucial in the carcinogenesis of EEC. In addition, we identified 2 patients who had a deleterious germline mutation in Lynch syndrome genes (MLH1 and MLH2), and another 8 patients harbored germline mutations of 6 non-Lynch syndrome genes (MUTYH, GALNT12, POLE, MPL, ATM, and ERCC4) which may be associated with endometrial cancer. Larger series will have to be investigated to assess the risks and the proportion of endometrial cancers attributable to other genes.
Collapse
Affiliation(s)
- Yao Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Xin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong-Yan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Mei Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Yuan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Milanese JS, Wang E. Germline mutations and their clinical applications in cancer. BREAST CANCER MANAGEMENT 2019. [DOI: 10.2217/bmt-2019-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jean-Sébastien Milanese
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave, Montreal, H4P 2R2, Canada
| | - Edwin Wang
- Department of Biochemistry & Molecular Biology, Medical Genetics, & Oncology, University of Calgary, 3330 Hospital Dr NW, Calgary, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute & Arnie Charbonneau Cancer Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, T2N 4N1, Canada
| |
Collapse
|
41
|
Systematic Review of the Current Status of Human Sarcoma Cell Lines. Cells 2019; 8:cells8020157. [PMID: 30781855 PMCID: PMC6406745 DOI: 10.3390/cells8020157] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are rare mesenchymal malignant tumors with unique biological and clinical features. Given their diversity, heterogeneity, complexity, and rarity, the clinical management of sarcomas is quite challenging. Cell lines have been used as indispensable tools for both basic research and pre-clinical studies. However, empirically, sarcoma cell lines are not readily available. To understand the present status of sarcoma cell lines and identify their current challenges, we systematically reviewed reports on sarcoma cell lines. We searched the cell line database, Cellosaurus, and categorized the sarcoma cell lines according to the WHO classification. We identified the number and availability of sarcoma cell lines with a specific histology. We found 844 sarcoma cell lines in the Cellosaurus database, and 819 of them were named according to the WHO classification. Among the 819 cell lines, 36 multiple and nine single cell lines are available for histology. No cell lines were reported for 133 of the histological subtypes. Among the 844 cell lines, 148 are currently available in public cell banks, with 692 already published. We conclude that there needs to be a larger number of cell lines, with various histological subtypes, to better benefit sarcoma research.
Collapse
|
42
|
Hsu JS, Zhang R, Yeung F, Tang CSM, Wong JKL, So MT, Xia H, Sham P, Tam PK, Li M, Wong KKY, Garcia-Barcelo MM. Cancer gene mutations in congenital pulmonary airway malformation patients. ERJ Open Res 2019; 5:00196-2018. [PMID: 30740464 PMCID: PMC6360213 DOI: 10.1183/23120541.00196-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Background Newborns affected with congenital pulmonary airway malformations (CPAMs) may present with severe respiratory distress or remain asymptomatic. While surgical resection is the definitive treatment for symptomatic CPAMs, prophylactic elective surgery may be recommended for asymptomatic CPAMs owing to the risk of tumour development. However, the implementation of prophylactic surgery is quite controversial on the grounds that more evidence linking CPAMs and cancer is needed. The large gap in knowledge of CPAM pathogenesis results in uncertainties and controversies in disease management. As developmental genes control postnatal cell growth and contribute to cancer development, we hypothesised that CPAMs may be underlain by germline mutations in genes governing airways development. Methods Sequencing of the exome of 19 patients and their unaffected parents. Results A more than expected number of mutations in cancer genes (false discovery rate q-value <5.01×10−5) was observed. The co-occurrence, in the same patient, of damaging variants in genes encoding interacting proteins is intriguing, the most striking being thyroglobulin (TG) and its receptor, megalin (LRP2). Both genes are highly relevant in lung development and cancer. Conclusions The overall excess of mutations in cancer genes may account for the reported association of CPAMs with carcinomas and provide some evidence to argue for prophylactic surgery by some surgeons. Congenital pulmonary airway malformation (CPAM) patients have more than expected numbers of damaging variants in genes involved in lung carcinoma; this may provide evidence for clinicians choosing to adopt prophylactic excision in CPAMhttp://ow.ly/h1AE30n4DIe
Collapse
Affiliation(s)
- Jacob Shujui Hsu
- Dept of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Centre for Genomics Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ruizhong Zhang
- Dept of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fanny Yeung
- Dept of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Clara S M Tang
- Dept of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John K L Wong
- Dept of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Ting So
- Dept of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huimin Xia
- Dept of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Pak Sham
- Dept of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Centre for Genomics Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul K Tam
- Dept of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Miaoxin Li
- Dept of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Centre for Genomics Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kenneth K Y Wong
- Dept of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
43
|
Chan SH, Chew W, Ishak NDB, Lim WK, Li ST, Tan SH, Teo JX, Shaw T, Chang K, Chen Y, Iyer P, Tan EEK, Seng MSF, Chan MY, Tan AM, Low SYY, Soh SY, Loh AHP, Ngeow J. Clinical relevance of screening checklists for detecting cancer predisposition syndromes in Asian childhood tumours. NPJ Genom Med 2018; 3:30. [PMID: 30455982 PMCID: PMC6237849 DOI: 10.1038/s41525-018-0070-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023] Open
Abstract
Assessment of cancer predisposition syndromes (CPS) in childhood tumours is challenging to paediatric oncologists due to inconsistent recognizable clinical phenotypes and family histories, especially in cohorts with unknown prevalence of germline mutations. Screening checklists were developed to facilitate CPS detection in paediatric patients; however, their clinical value have yet been validated. Our study aims to assess the utility of clinical screening checklists validated by genetic sequencing in an Asian cohort of childhood tumours. We evaluated 102 patients under age 18 years recruited over a period of 31 months. Patient records were reviewed against two published checklists and germline mutations in 100 cancer-associated genes were profiled through a combination of whole-exome sequencing and multiplex ligation-dependent probe amplification on blood-derived genomic DNA. Pathogenic germline mutations were identified in ten (10%) patients across six known cancer predisposition genes: TP53, DICER1, NF1, FH, SDHD and VHL. Fifty-four (53%) patients screened positive on both checklists, including all ten pathogenic germline carriers. TP53 was most frequently mutated, affecting five children with adrenocortical carcinoma, sarcomas and diffuse astrocytoma. Disparity in prevalence of germline mutations across tumour types suggested variable genetic susceptibility and implied potential contribution of novel susceptibility genes. Only five (50%) children with pathogenic germline mutations had a family history of cancer. We conclude that CPS screening checklists are adequately sensitive to detect at-risk children and are relevant for clinical application. In addition, our study showed that 10% of Asian paediatric solid tumours have a heritable component, consistent with other populations.
Collapse
Affiliation(s)
- Sock Hoai Chan
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Winston Chew
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Nur Diana Binte Ishak
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Weng Khong Lim
- 2SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, 169856 Singapore
| | - Shao-Tzu Li
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Sheng Hui Tan
- 3VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Jing Xian Teo
- 2SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, 169856 Singapore
| | - Tarryn Shaw
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Kenneth Chang
- 4Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Yong Chen
- 5Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Prasad Iyer
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Enrica Ee Kar Tan
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Michaela Su-Fern Seng
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Mei Yoke Chan
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Ah Moy Tan
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Sharon Yin Yee Low
- 7Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433 Singapore.,8SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, 308433 Singapore
| | - Shui Yen Soh
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Amos Hong Pheng Loh
- 3VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, 229899 Singapore.,5Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Joanne Ngeow
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore.,9Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857 Singapore.,10Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232 Singapore.,11Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673 Singapore
| |
Collapse
|
44
|
Toh MR, Chiang JB, Chong ST, Chan SH, Ishak NDB, Courtney E, Lee WH, Syed Abdillah Al SMFB, Carson Allen J, Lim KH, Davila S, Tan P, Lim WK, Tan IBH, Ngeow J. Germline Pathogenic Variants in Homologous Recombination and DNA Repair Genes in an Asian Cohort of Young-Onset Colorectal Cancer. JNCI Cancer Spectr 2018; 2:pky054. [PMID: 31360874 PMCID: PMC6649855 DOI: 10.1093/jncics/pky054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Growing evidence suggests a role for cancer susceptibility genes such as BRCA2 and PALB2 in young-onset colorectal cancers. Using a cohort of young colorectal cancer patients, we sought to identify and provide functional evidence for germline pathogenic variants of DNA repair genes not typically associated with colorectal cancer. METHODS We recruited 88 patients with young-onset colorectal cancers seen at a general oncology center. Whole-exome sequencing was performed to identify variants in DNA repair and colorectal cancer predisposition genes. Pathogenic BRCA2 and PALB2 variants were analyzed using immunoblot and immunofluorescence on patient-derived lymphoblastoid cells. RESULTS In general, our cohort displayed characteristic features of young-onset colorectal cancers. Most patients had left-sided tumors and were diagnosed at late stages. Four patients had familial adenomatous polyposis, as well as pathogenic APC variants. We identified 12 pathogenic variants evenly distributed between DNA repair and colorectal cancer predisposition genes. Six patients had pathogenic variants in colorectal cancer genes: APC (n = 4) and MUTYH monoallelic (n = 2). Another six had pathogenic variants in DNA repair genes: ATM (n = 1), BRCA2 (n = 1), PALB2 (n = 1), NTHL1 (n = 1), and WRN (n = 2). Pathogenic variants BRCA2 c.9154C>T and PALB2 c.1059delA showed deficient homologous recombination repair, evident from the impaired RAD51 nuclear localization and foci formation. CONCLUSION A substantial portion of pathogenic variants in young-onset colorectal cancer was found in DNA repair genes not previously associated with colorectal cancer. This may have implications for the management of patients. Further studies are needed to ascertain the enrichment of pathogenic DNA repair gene variants in colorectal cancers.
Collapse
Affiliation(s)
- Ming Ren Toh
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jian Bang Chiang
- Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | - Siao Ting Chong
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | - Sock Hoai Chan
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | | | - Eliza Courtney
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | - Wei Hao Lee
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | | | | | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Sonia Davila
- Singhealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 169856, Singapore
| | - Patrick Tan
- Singhealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 169856, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Cancer Science Institute of Singapore, National University Singapore, Singapore 117599, Singapore
| | - Weng Khong Lim
- Singhealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 169856, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Iain Bee Huat Tan
- Division of Molecular and Cellular Research, National Cancer Center, Singapore 169610, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Joanne Ngeow
- Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| |
Collapse
|
45
|
Miles MA, Hawkins CJ. Mutagenic assessment of chemotherapy and Smac mimetic drugs in cells with defective DNA damage response pathways. Sci Rep 2018; 8:14421. [PMID: 30258062 PMCID: PMC6158240 DOI: 10.1038/s41598-018-32517-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
DNA damaging therapies can spur the formation of therapy-related cancers, due to mis-repair of lesions they create in non-cancerous cells. This risk may be amplified in patients with impaired DNA damage responses. We disabled key DNA damage response pathways using genetic and pharmacological approaches, and assessed the impact of these deficiencies on the mutagenicity of chemotherapy drugs or the "Smac mimetic" GDC-0152, which kills tumor cells by targeting XIAP, cIAP1 and 2. Doxorubicin and cisplatin provoked mutations in more surviving cells deficient in ATM, p53 or the homologous recombination effector RAD51 than in wild type cells, but suppressing non-homologous end joining (NHEJ) by disabling DNA-PKcs prevented chemotherapy-induced mutagenesis. Vincristine-induced mutagenesis required p53 and DNA-PKcs but was not affected by ATM status, consistent with it provoking ATM-independent p53-mediated activation of caspases and CAD, which creates DNA lesions in surviving cells that could be mis-repaired by NHEJ. Encouragingly, GDC-0152 failed to stimulate mutations in cells with proficient or defective DNA damage response pathways. This study highlights the elevated oncogenic risk associated with treating DNA repair-deficient patients with genotoxic anti-cancer therapies, and suggests a potential advantage for Smac mimetic drugs over traditional therapies: a reduced risk of therapy-related cancers.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia.
| |
Collapse
|
46
|
Jung E, Fiore M, Gronchi A, Grignol V, Pollock RE, Chong SS, Chopra S, Hamilton AS, Tseng WW. Second Primary Malignancies in Patients with Well-differentiated/Dedifferentiated Liposarcoma. Anticancer Res 2018; 38:3535-3542. [PMID: 29848707 DOI: 10.21873/anticanres.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Well-differentiated/dedifferentiated (WD/DD) liposarcoma is a rare malignancy of putative adipocyte origin. To our knowledge, there have only been isolated case reports describing second primary cancer in patients with this disease. We report on a combined case series of such patients and explore the frequency of this occurrence using a national cancer database. MATERIALS AND METHODS Demographics and clinicopathological data were collected from patients with WD/DD liposarcoma who were found to have a concurrent or subsequent second primary cancer, at one of three sarcoma referral centers from 2014-2016. The Surveillance, Epidemiology and End Results (SEER) database was also queried to identify adult patients diagnosed with WD/DD liposarcoma between 1973-2012. Observed/expected (O/E) ratios of second primary malignancies among these cases were calculated by comparison to the age-adjusted cancer incidence in the general population using SEER*stat software. RESULTS In total, 26 out of 312 consecutive patients (8.3%) with WD/DD liposarcoma at our centers had a second primary cancer identified within 2 years of liposarcoma diagnosis. In the SEER database, among 1,845 patients with WD/DD liposarcoma, 75 (4.1%) had a second cancer within 2 years after liposarcoma diagnosis (O/E ratio=1.81, 99% confidence interval(CI)=1.33-2.40). Patients less than 50 years old at the time of liposarcoma diagnosis had a higher O/E ratio for second primary malignancy compared to older patients. A total of 269 patients (14.6%) developed a second cancer (O/E=1.33, 99% CI=1.15-1.54). CONCLUSION In some patients with WD/DD liposarcoma, there appears to be an increased risk of having a second primary cancer. Further validation and investigation is needed, as this finding may have implications (e.g. closer screening) for patients with this disease.
Collapse
Affiliation(s)
- Eric Jung
- Department of Surgery, University of Southern California, Keck School of Medicine, Los Angeles, CA, U.S.A
| | - Marco Fiore
- Department of Surgery, IRCCS Foundation National Tumor Institute, Milan, Italy
| | - Alessandro Gronchi
- Department of Surgery, IRCCS Foundation National Tumor Institute, Milan, Italy
| | - Valerie Grignol
- Department of Surgery, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, U.S.A
| | - Raphael E Pollock
- Department of Surgery, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, U.S.A
| | - Susan S Chong
- Department of Surgery, University of Southern California, Keck School of Medicine, Los Angeles, CA, U.S.A
| | - Shefali Chopra
- Discovery Research Program, Department of Pathology and Laboratory Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - Ann S Hamilton
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, U.S.A
| | - William W Tseng
- Department of Surgery, University of Southern California, Keck School of Medicine, Los Angeles, CA, U.S.A.
| |
Collapse
|
47
|
Le Nail LR, Brennan M, Rosset P, Deschaseaux F, Piloquet P, Pichon O, Le Caignec C, Crenn V, Layrolle P, Hérault O, De Pinieux G, Trichet V. Comparison of Tumor- and Bone Marrow-Derived Mesenchymal Stromal/Stem Cells from Patients with High-Grade Osteosarcoma. Int J Mol Sci 2018; 19:E707. [PMID: 29494553 PMCID: PMC5877568 DOI: 10.3390/ijms19030707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments.
Collapse
Affiliation(s)
- Louis-Romée Le Nail
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Meadhbh Brennan
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Philippe Rosset
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Service de Chirurgie Orthopédique 2, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Frédéric Deschaseaux
- STROMA Lab, INSERM U1031, Etablissement Français du Sang Occitanie, Université de Toulouse, 31432 Toulouse, France.
| | - Philippe Piloquet
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Olivier Pichon
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Cédric Le Caignec
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Faculté de Médecine de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Vincent Crenn
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Universitaire de Nantes, Service de Chirurgie Orthopédique, Faculté de Médecine de Nantes, Université de Nantes, 44034 CEDEX 1 Nantes, France.
| | - Pierre Layrolle
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
| | - Olivier Hérault
- Centre Hospitalier Régional Universitaire de Tours, Service d'Hématologie Biologique, 37044 CEDEX 9 Tours, France.
- National Center for Scientific Research (CNRS) GDR 3697, 75020 Paris, France.
- National Center for Scientific Research (CNRS) ERL 7001 LNOx, 37032 CEDEX 1 Tours, Université de Tours, 37044 Tours, France.
| | - Gonzague De Pinieux
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- Centre Hospitalier Régional Universitaire de Tours, Hôpital Trousseau, Service d'Anatomie Pathologique, Faculté de Médecine de Tours, Université de Tours, 37044 CEDEX 9 Tours, France.
| | - Valérie Trichet
- Laboratoire d'étude des sarcomes osseux et remodelage des tissus calcifiés, INSERM UMR 1238, Université de Nantes, PhyOS, 44034 Nantes CEDEX 1, France.
- National Center for Scientific Research (CNRS) GDR 3697, 75020 Paris, France.
| |
Collapse
|