1
|
Sivaraman K, Liu B, Martinez-Delgado B, Held J, Büttner M, Illig T, Volland S, Gomez-Mariano G, Jedicke N, Yevsa T, Welte T, DeLuca DS, Wrenger S, Olejnicka B, Janciauskiene S. Human Bronchial Epithelial Cell Transcriptome Changes in Response to Serum from Patients with Different Status of Inflammation. Lung 2024; 202:157-170. [PMID: 38494528 PMCID: PMC11009779 DOI: 10.1007/s00408-024-00679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation. METHODS Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1-7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient's serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq. RESULTS Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 "core genes" of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed. CONCLUSION This simple model could be useful to characterize patient serum and epithelial cell properties.
Collapse
Affiliation(s)
- Kokilavani Sivaraman
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Department of Molecular Genetics, Institute of Health Carlos III, Institute for Rare Diseases Research, CIBER of Rare Diseases (CIBERER), Majadahonda, 28220, Madrid, Spain
| | - Julia Held
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Manuela Büttner
- Hannover Medical School, Central Animal Facility, Hannover, Germany
| | - Thomas Illig
- Hannover Medical School, Hannover Unified Biobank, Hannover, Germany
| | - Sonja Volland
- Hannover Medical School, Hannover Unified Biobank, Hannover, Germany
| | - Gema Gomez-Mariano
- Department of Molecular Genetics, Institute of Health Carlos III, Institute for Rare Diseases Research, CIBER of Rare Diseases (CIBERER), Majadahonda, 28220, Madrid, Spain
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - David S DeLuca
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Sabine Wrenger
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Low ZY, Wong KH, Wen Yip AJ, Choo WS. The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100202. [PMID: 37700857 PMCID: PMC10493511 DOI: 10.1016/j.crmicr.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ka Heng Wong
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Abdi AI, Achcar F, Sollelis L, Silva-Filho JL, Mwikali K, Muthui M, Mwangi S, Kimingi HW, Orindi B, Andisi Kivisi C, Alkema M, Chandrasekar A, Bull PC, Bejon P, Modrzynska K, Bousema T, Marti M. Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. eLife 2023; 12:e85140. [PMID: 36916164 PMCID: PMC10059685 DOI: 10.7554/elife.85140] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
The malaria parasite life cycle includes asexual replication in human blood, with a proportion of parasites differentiating to gametocytes required for transmission to mosquitoes. Commitment to differentiate into gametocytes, which is marked by activation of the parasite transcription factor ap2-g, is known to be influenced by host factors but a comprehensive model remains uncertain. Here, we analyze data from 828 children in Kilifi, Kenya with severe, uncomplicated, and asymptomatic malaria infection over 18 years of falling malaria transmission. We examine markers of host immunity and metabolism, and markers of parasite growth and transmission investment. We find that inflammatory responses associated with reduced plasma lysophosphatidylcholine levels are associated with markers of increased investment in parasite sexual reproduction (i.e. transmission investment) and reduced growth (i.e. asexual replication). This association becomes stronger with falling transmission and suggests that parasites can rapidly respond to the within-host environment, which in turn is subject to changing transmission.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
- Pwani University Biosciences Research Centre, Pwani UniversityKilifiKenya
| | - Fiona Achcar
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | - Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | - João Luiz Silva-Filho
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | | | | | | | | | | | - Cheryl Andisi Kivisi
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
- Pwani University Biosciences Research Centre, Pwani UniversityKilifiKenya
| | - Manon Alkema
- Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Amrita Chandrasekar
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
| | - Peter C Bull
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
| | - Katarzyna Modrzynska
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
| | - Teun Bousema
- Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| |
Collapse
|
4
|
He J, Hou S, Xiong C, Hu L, Gong L, Yu J, Zhou X, Chen Q, Yuan Y, He L, Zhu M, Li W, Shi Y, Sun Y, Pan H, Su B, Lu Y, Wu J. Avian influenza A virus H7N9 in China, a role reversal from reassortment receptor to the donator. J Med Virol 2023; 95:e28392. [PMID: 36484390 DOI: 10.1002/jmv.28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Reassortment can introduce one or more gene segments of influenza A viruses (IAVs) into another, resulting in novel subtypes. Since 2013, a new outbreak of human highly pathogenic avian influenza has emerged in the Yangtze River Delta (YRD) and South-Central regions of China. In this study, using Anhui province as an example, we discuss the possible impact of H7N9 IAVs on future influenza epidemics through a series of gene reassortment events. Sixty-one human H7N9 isolates were obtained from five outbreaks in Anhui province from 2013 to 2019. Bioinformatics analyses revealed that all of them were characterized by low pathogenicity and high human or mammalian tropism and had introduced novel avian influenza A virus (AIV) subtypes such as H7N2, H7N6, H9N9, H5N6, H6N6, and H10N6 through gene reassortment. In reassortment events, Anhui isolates may donate one or more segments of HA, NA, and the six internal protein-coding genes for the novel subtype AIVs. Our study revealed that H7N9, H9N2, and H5N1 can serve as stable and persistent gene pools for AIVs in the YRD and South-Central regions of China. Novel AIV subtypes might be generated continuously by reassortment. These AIVs may have obtained human-type receptor-binding abilities from their donors and prefer binding to them, which can cause human epidemics through accidental spillover infections. Facing the continual threat of emerging avian influenza, constant monitoring of AIVs should be conducted closely for agricultural and public health.
Collapse
Affiliation(s)
- Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sai Hou
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Chenglong Xiong
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Linjie Hu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Gong
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Junling Yu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Xiaoyu Zhou
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qingqing Chen
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yuan Yuan
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Lan He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Meng Zhu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Weiwei Li
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yonglin Shi
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yong Sun
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Haifeng Pan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yihan Lu
- School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jiabing Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China.,Public Health Research Institute of Anhui Province, Hefei, Anhui, China.,School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
6
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
7
|
Lanahan MR, Maples RW, Pfeiffer JK. Tradeoffs for a viral mutant with enhanced replication speed. Proc Natl Acad Sci U S A 2021; 118:e2105288118. [PMID: 34282021 PMCID: PMC8325337 DOI: 10.1073/pnas.2105288118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA viruses exist as genetically heterogeneous populations due to high mutation rates, and many of these mutations reduce fitness and/or replication speed. However, it is unknown whether mutations can increase replication speed of a virus already well adapted to replication in cultured cells. By sequentially passaging coxsackievirus B3 in cultured cells and collecting the very earliest progeny, we selected for increased replication speed. We found that a single mutation in a viral capsid protein, VP1-F106L, was sufficient for the fast-replication phenotype. Characterization of this mutant revealed quicker genome release during entry compared to wild-type virus, highlighting a previously unappreciated infection barrier. However, this mutation also reduced capsid stability in vitro and reduced replication and pathogenesis in mice. These results reveal a tradeoff between overall replication speed and fitness. Importantly, this approach-selecting for the earliest viral progeny-could be applied to a variety of viral systems and has the potential to reveal unanticipated inefficiencies in viral replication cycles.
Collapse
Affiliation(s)
- Matthew R Lanahan
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| | - Robert W Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| |
Collapse
|
8
|
The Effects of Genetic Variation on H7N9 Avian Influenza Virus Pathogenicity. Viruses 2020; 12:v12111220. [PMID: 33126529 PMCID: PMC7693985 DOI: 10.3390/v12111220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Since the H7N9 avian influenza virus emerged in China in 2013, there have been five seasonal waves which have shown human infections and caused high fatality rates in infected patients. A multibasic amino acid insertion seen in the HA of current H7N9 viruses occurred through natural evolution and reassortment, and created a high pathogenicity avian influenza (HPAI) virus from the low pathogenicity avian influenza (LPAI) in 2017, and significantly increased pathogenicity in poultry, resulting in widespread HPAI H7N9 in poultry, which along with LPAI H7N9, contributed to the severe fifth seasonal wave in China. H7N9 is a novel reassorted virus from three different subtypes of influenza A viruses (IAVs) which displays a great potential threat to public health and the poultry industry. To date, no sustained human-to-human transmission has been recorded by the WHO. However, the high ability of evolutionary adaptation of H7N9 and lack of pre-existing immunity in humans heightens the pandemic potential. Changes in IAVs proteins can affect the viral transmissibility, receptor binding specificity, pathogenicity, and virulence. The multibasic amino acid insertion, mutations in hemagglutinin, deletion and mutations in neuraminidase, and mutations in PB2 contribute to different virological characteristics. This review summarized the latest research evidence to describe the impacts of viral protein changes in viral adaptation and pathogenicity of H7N9, aiming to provide better insights for developing and enhancing early warning or intervention strategies with the goal of preventing highly pathogenic IAVs circulation in live poultry, and transmission to humans.
Collapse
|
9
|
Abstract
Abstract
At the end of 2019, a new coronavirus infection occurred in the People’s Republic of China with an epicentre in the city of Wuhan. On February 11th, 2020, the World Health Organization assigned the official name of the infection caused by the new coronavirus – COVID-19. COVID-19 has affected people from all over the world given that the infection was noted in 200 countries resulting in annunciation of the pandemic situation. Human corona viruses cause mild to moderate respiratory infections. At the end of 2002, a new coronavirus appeared (SARS-CoV), the causal agent of atypical pneumonia, which caused acute respiratory distress syndrome (ARDS). The initial stage of COVID-19 infection is the penetration of SARS-CoV-2 into target cells that have angiotensin converting enzyme type II receptors. The virus enters the body through the respiratory tract and interacts primarily with toll-like receptors (TLRs). The events in SARS-Cov-2 induced infection follow the next scenario: epithelial cells via TLRs recognize and identify SARS-Cov-2, and after that the information is transmitted to the transcriptional NF-κB, which causes expression of the corresponding genes. Activated in this way, the epithelial cells begin to synthesize various biologically active molecules. The results obtained on preclinical material indicate that ROS generation increases and the antioxidant protection decreases, which plays a major role in the pathogenesis of SARS-CoV, as well as in the progression and severity of this respiratory disease.
Collapse
|
10
|
Abstract
There is growing evidence that COVID-19 not only affects the lungs but beyond that the endothelial system. Recent studies showed that this can lead to microcirculatory impairments and in consequence to functional disorders of all inner organs. The combination of endothelial dysfunction with a generalized inflammatory state and complement elements may together contribute to the overall pro-coagulative state described in COVID-19 patients leading to venular as well as to arteriolar occlusions.
Collapse
Affiliation(s)
- F Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - A Krüger-Genge
- Department of Healthcare, Biomaterials and Cosmeceuticals, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam-Golm, Germany
| | - R P Franke
- Department of Biomaterials, University of Ulm, Ulm, Germany
| | - F Hufert
- Institute of Microbiology & Virology, Brandenburg Medical School Fontane, Senftenberg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Fontane and the University of Potsdam, Potsdam, Germany
| | - J-H Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Bisset AT, Hoyne GF. Evolution and Adaptation of the Avian H7N9 Virus into the Human Host. Microorganisms 2020; 8:E778. [PMID: 32455845 PMCID: PMC7285376 DOI: 10.3390/microorganisms8050778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza viruses arise from animal reservoirs, and have the potential to cause pandemics. In 2013, low pathogenic novel avian influenza A(H7N9) viruses emerged in China, resulting from the reassortment of avian-origin viruses. Following evolutionary changes, highly pathogenic strains of avian influenza A(H7N9) viruses emerged in late 2016. Changes in pathogenicity and virulence of H7N9 viruses have been linked to potential mutations in the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), as well as the viral polymerase basic protein 2 (PB2). Recognizing that effective viral transmission of the influenza A virus (IAV) between humans requires efficient attachment to the upper respiratory tract and replication through the viral polymerase complex, experimental evidence demonstrates the potential H7N9 has for increased binding affinity and replication, following specific amino acid substitutions in HA and PB2. Additionally, the deletion of extended amino acid sequences in the NA stalk length was shown to produce a significant increase in pathogenicity in mice. Research shows that significant changes in transmissibility, pathogenicity and virulence are possible after one or a few amino acid substitutions. This review aims to summarise key findings from that research. To date, all strains of H7N9 viruses remain restricted to avian reservoirs, with no evidence of sustained human-to-human transmission, although mutations in specific viral proteins reveal the efficacy with which these viruses could evolve into a highly virulent and infectious, human-to-human transmitted virus.
Collapse
Affiliation(s)
- Andrew T. Bisset
- School of Health Sciences, University of Notre Dame Australia, Fremantle WA 6160, Australia;
| | - Gerard F. Hoyne
- School of Health Sciences, University of Notre Dame Australia, Fremantle WA 6160, Australia;
- Institute for Health Research, University of Notre Dame Australia, Fremantle WA 6160, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia
| |
Collapse
|
12
|
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med 2020; 9:E1417. [PMID: 32403217 PMCID: PMC7290769 DOI: 10.3390/jcm9051417] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The symptoms most commonly reported by patients affected by coronavirus disease (COVID-19) include cough, fever, and shortness of breath. However, other major events usually observed in COVID-19 patients (e.g., high blood pressure, arterial and venous thromboembolism, kidney disease, neurologic disorders, and diabetes mellitus) indicate that the virus is targeting the endothelium, one of the largest organs in the human body. Herein, we report a systematic and comprehensive evaluation of both clinical and preclinical evidence supporting the hypothesis that the endothelium is a key target organ in COVID-19, providing a mechanistic rationale behind its systemic manifestations.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
- Department of Medical Sciences, International University of Health and Medical Sciences “Saint Camillus”, 00131 Rome, Italy
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| |
Collapse
|
13
|
Misra RS, Nayak JL. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection. Pathogens 2019; 8:pathogens8040265. [PMID: 31779153 PMCID: PMC6963306 DOI: 10.3390/pathogens8040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14623, USA
- Correspondence:
| | - Jennifer L Nayak
- Department of Pediatrics Division of Pediatric Infectious Diseases, The University of Rochester Medical Center, Rochester, NY 14623, USA;
| |
Collapse
|
14
|
Holwerda M, Kelly J, Laloli L, Stürmer I, Portmann J, Stalder H, Dijkman R. Determining the Replication Kinetics and Cellular Tropism of Influenza D Virus on Primary Well-Differentiated Human Airway Epithelial Cells. Viruses 2019; 11:v11040377. [PMID: 31022887 PMCID: PMC6521319 DOI: 10.3390/v11040377] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022] Open
Abstract
Influenza viruses are notorious pathogens that frequently cross the species barrier with often severe consequences for both animal and human health. In 2011, a novel member of the Orthomyxoviridae family, Influenza D virus (IDV), was identified in the respiratory tract of swine. Epidemiological surveys revealed that IDV is distributed worldwide among livestock and that IDV-directed antibodies are detected in humans with occupational exposure to livestock. To identify the transmission capability of IDV to humans, we determined the viral replication kinetics and cell tropism using an in vitro respiratory epithelium model of humans. The inoculation of IDV revealed efficient replication kinetics and apical progeny virus release at different body temperatures. Intriguingly, the replication characteristics of IDV revealed higher replication kinetics compared to Influenza C virus, despite sharing the cell tropism preference for ciliated cells. Collectively, these results might indicate why IDV-directed antibodies are detected among humans with occupational exposure to livestock.
Collapse
Affiliation(s)
- Melle Holwerda
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Jenna Kelly
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Laura Laloli
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Isabel Stürmer
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Jasmine Portmann
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Hanspeter Stalder
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Ronald Dijkman
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|