1
|
Thomann AK, Schmitgen MM, Stephan JC, Knoedler LL, Gass A, Thomann PA, Ebert MP, Reindl W, Wolf RC. Disease-State Dependent Associations Between Intrinsic Brain Function and Symptoms of Fatigue, Depression, and Anxiety in Crohn's Disease. Inflamm Bowel Dis 2025:izae318. [PMID: 39813157 DOI: 10.1093/ibd/izae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Extraintestinal symptoms (EIS) in inflammatory bowel diseases, including fatigue, depression and anxiety, are highly prevalent, but poorly understood. Alterations of brain function may contribute to EIS, but their association with disease activity is unclear. This study analyzed intrinsic neural activity (INA) of individuals with Crohn's disease (CD) in different disease states and examined the relationship between INA and EIS. METHODS Patients with CD (n = 92) and healthy controls (n = 41) underwent functional magnetic resonance brain imaging and completed symptom-specific psychometry. Temporal (amplitude of low-frequency fluctuations, ALFF) and spatial (regional homogeneity, ReHo) markers of INA were compared between CD and controls and between active (patients with active Crohn's disease [aCD]) versus remitted (rCD) disease. Regression analyses explored disease-state-dependent associations between INA and EIS. RESULTS Patients exhibited aberrant INA in frontotemporal, occipital, and thalamic regions. Patients with aCD exhibited lower ALFF in left subcallosal cortex and inferior temporal gyri compared to rCD. Regional homogeneity in aCD was lower in left medial orbital gyrus and higher in right superior frontal, left inferior temporal, and left precentral gyrus. Compared to rCD, aCD showed higher ALFF predominantly in superior, ventro-, and dorsolateral prefrontal regions. Distinct associations between INA and EIS were detected in patients, particularly in the remitted state. CONCLUSIONS Intrinsic brain function in patients with CD varies by disease state, with prominent frontal cortex changes in active disease. These brain activity changes are at least partly related to the magnitude of neuropsychiatric symptoms and highlight a role of disturbed brain-gut interactions in the development of EIS especially in rCD.
Collapse
Affiliation(s)
- Anne Kerstin Thomann
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Mike-Michael Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jule Cara Stephan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Laura-Louise Knoedler
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Achim Gass
- Department of Neurology/Neuroimaging, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - Philipp Arthur Thomann
- Department of Psychiatry and Psychotherapy, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Li Y, Zheng Y, Rong L, Zhou Y, Zhu Z, Xie Q, Liang Z, Zhao X. Altered Function and Structure of the Cerebellum Associated with Gut-Brain Regulation in Crohn's Disease: a Structural and Functional MRI Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2285-2296. [PMID: 39096431 DOI: 10.1007/s12311-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 08/05/2024]
Abstract
This study employed structural and functional magnetic resonance imaging (MRI) to investigate changes in the function and structure of the cerebellum associated with gut-brain axis (GBA) regulation in patients diagnosed with Crohn's disease (CD). The study comprised 20 CD patients, including 12 with active disease (CD-A) and 8 in remission (CD-R), as well as 21 healthy controls. Voxel-based morphometry (VBM) was utilized for structural analysis of cerebellar gray matter volume, while independent component analysis (ICA) was applied for functional analysis of cerebellar functional connectivity (FC). The results showed significant GMV reduction in the left posterior cerebellar lobe across all CD patients compared to HCs, with more pronounced differences in the CD-A subgroup. Additionally, an increase in mean FC of the cerebellar network was observed in all CD patients, particularly in the CD-A subgroup, which demonstrated elevated FC in the vermis and bilateral posterior cerebellum. Correlation analysis revealed a positive relationship between cerebellar FC and the Crohn's Disease Activity Index (CDAI) and a trend toward a negative association with the reciprocal of the Self-rating Depression Scale (SDS) score in CD patients. The study's findings suggest that the cerebellum may play a role in the abnormal regulation of the GBA in CD patients, contributing to a better understanding of the neural mechanisms underlying CD and highlighting the cerebellum's potential role in modulating gut-brain interactions.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yanling Zheng
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lan Rong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhu
- Department of Radiology, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Qian Xie
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Xiaohu Zhao
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Silva JF, de Souza WM, Mello JDC, Ceccato HD, Oliveira PDSP, Ayrizono MDLS, Leal RF. Evidence linking gut-brain axis and Crohn's disease, focusing on neurotrophic dysfunctions and radiological imaging analysis - a systematic review. Am J Transl Res 2024; 16:6029-6040. [PMID: 39544780 PMCID: PMC11558361 DOI: 10.62347/owyy4960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/22/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To conduct a systematic review (SR) to find evidence for a connection between Crohn's disease (CD) and the gut-brain axis (GBA). METHODS This study conducted a systematic review (SR) employing a search strategy and strict inclusion criteria. It was conducted by searching for studies published between 2017 and 2024 in the following databases: PUBMED, PUBMED PMC, BVS-BIREME, SCOPUS, WEB OF SCIENCE, EMBASE, and COCHRANE. RESULTS Fifty original research articles were included. Among these, 20 studies addressed neuroimaging methods to evaluate CD patients' functional or structural brain changes. Neurodegenerative diseases were the second most addressed topic in the studies, with 18 articles related to different diseases such as Parkinson's disease, Alzheimer's disease, dementia, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, and Multiple System Atrophy. Eight articles addressed sleep disorders related to CD; two explored Electroencephalography changes; one investigated Brain-Derived Neurotrophic Factor serum levels and one correlated vagotomy with CD. CONCLUSION Interest in the link between CD and GBA is increasing, but studies remain varied and inconclusive, spanning from epidemiology to brain imaging and neglecting to investigate a mechanistic relationship. This SR underscores the need for further research to better understand the potential role of GBA in the prognosis and etiology of CD, highlighting its complexity.
Collapse
Affiliation(s)
- Julian Furtado Silva
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - William Moraes de Souza
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Juliana Delgado Campos Mello
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Hugo Dugolin Ceccato
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Priscilla de Sene Portel Oliveira
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, School of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Yeske B, Hou J, Chu DY, Adluru N, Nair VA, Beniwal-Patel P, Saha S, Prabhakaran V. Structural brain morphometry differences and similarities between young patients with Crohn's disease in remission and healthy young and old controls. Front Neurosci 2024; 18:1210939. [PMID: 38356645 PMCID: PMC10864509 DOI: 10.3389/fnins.2024.1210939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Crohn's disease (CD), one of the main phenotypes of inflammatory bowel disease (IBD), can affect any part of the gastrointestinal tract. It can impact the function of gastrointestinal secretions, as well as increasing the intestinal permeability leading to an aberrant immunological response and subsequent intestinal inflammation. Studies have reported anatomical and functional brain changes in Crohn's Disease patients (CDs), possibly due to increased inflammatory markers and microglial cells that play key roles in communicating between the brain, gut, and systemic immune system. To date, no studies have demonstrated similarities between morphological brain changes seen in IBD and brain morphometry observed in older healthy controls.. Methods For the present study, twelve young CDs in remission (M = 26.08 years, SD = 4.9 years, 7 male) were recruited from an IBD Clinic. Data from 12 young age-matched healthy controls (HCs) (24.5 years, SD = 3.6 years, 8 male) and 12 older HCs (59 years, SD = 8 years, 8 male), previously collected for a different study under a similar MR protocol, were analyzed as controls. T1 weighted images and structural image processing techniques were used to extract surface-based brain measures, to test our hypothesis that young CDs have different brain surface morphometry than their age-matched young HCs and furthermore, appear more similar to older HCs. The phonemic verbal fluency (VF) task (the Controlled Oral Word Association Test, COWAT) (Benton, 1976) was administered to test verbal cognitive ability and executive control. Results/Discussion On the whole, CDs had more brain regions with differences in brain morphometry measures when compared to the young HCs as compared to the old HCs, suggesting that CD has an effect on the brain that makes it appear more similar to old HCs. Additionally, our study demonstrates this atypical brain morphometry is associated with function on a cognitive task. These results suggest that even younger CDs may be showing some evidence of structural brain changes that demonstrate increased resemblance to older HC brains rather than their similarly aged healthy counterparts.
Collapse
Affiliation(s)
- Benjamin Yeske
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jiancheng Hou
- Center for Cross-Straits Cultural Development, Fujian Normal University, Fuzhou City, Fujian, China
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel Y. Chu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- The Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A. Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Poonam Beniwal-Patel
- Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sumona Saha
- Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin- Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychology and Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Yang L, He P, Zhang L, Li K. Altered resting-state brain functional activities and networks in Crohn's disease: a systematic review. Front Neurosci 2024; 18:1319359. [PMID: 38332859 PMCID: PMC10851432 DOI: 10.3389/fnins.2024.1319359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Background Crohn's disease (CD) is a non-specific chronic inflammatory disease of the gastrointestinal tract and is a phenotype of inflammatory bowel disease (IBD). The current study sought to compile the resting-state functional differences in the brain between CD patients and healthy controls. Methods The online databases PubMed, Web of Science Core, and EMBASE were used to find the published neuroimage studies. The search period was from the beginning through December 15, 2023. The predetermined inclusion and exclusion criteria allowed for the identification of the studies. The studies were assembled by two impartial reviewers, who also assessed their quality and bias. Results This review comprised 16 resting-state fMRI studies in total. The included studies generally had modest levels of bias. According to the research, emotional processing and pain processing were largely linked to increased or decreased brain activity in patients with CD. The DMN, CEN, and limbic systems may have abnormalities in patients with CD, according to research on brain networks. Several brain regions showed functional changes in the active CD group compared to the inactive CD group and the healthy control group, respectively. The abnormalities in brain areas were linked to changes in mood fluctuations (anxiety, melancholy) in patients with CD. Conclusion Functional neuroimaging helps provide a better understanding of the underlying neuropathological processes in patients with CD. In this review, we summarize as follows: First, these findings indicate alterations in brain function in patients with CD, specifically affecting brain regions associated with pain, emotion, cognition, and visceral sensation; second, disease activity may have an impact on brain functions in patients with CD; and third, psychological factors may be associated with altered brain functions in patients with CD.
Collapse
Affiliation(s)
- Ling Yang
- Radiology Department, Chongqing General Hospital, Chongqing, China
- Department of Radiology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Peipei He
- Radiology Department, Chongqing General Hospital, Chongqing, China
| | - Lingqin Zhang
- Radiology Department, Chongqing General Hospital, Chongqing, China
| | - Kang Li
- Radiology Department, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
6
|
Zhang Y, Wu X, Sun J, Yue K, Lu S, Wang B, Liu W, Shi H, Zou L. Exploring changes in brain function in IBD patients using SPCCA: a study of simultaneous EEG-fMRI. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:2646-2670. [PMID: 38454700 DOI: 10.3934/mbe.2024117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Research on functional changes in the brain of inflammatory bowel disease (IBD) patients is emerging around the world, which brings new perspectives to medical research. In this paper, the methods of canonical correlation analysis (CCA), kernel canonical correlation analysis (KCCA), and sparsity preserving canonical correlation analysis (SPCCA) were applied to the fusion of simultaneous EEG-fMRI data from 25 IBD patients and 15 healthy individuals. The CCA, KCCA and SPCCA fusion methods were used for data processing to compare the results obtained by the three methods. The results clearly show that there is a significant difference in the activation intensity between IBD and healthy control (HC), not only in the frontal lobe (p < 0.01) and temporal lobe (p < 0.01) regions, but also in the posterior cingulate gyrus (p < 0.01), gyrus rectus (p < 0.01), and amygdala (p < 0.01) regions, which are usually neglected. The mean difference in the SPCCA activation intensity was 60.1. However, the mean difference in activation intensity was only 36.9 and 49.8 by using CCA and KCCA. In addition, the correlation of the relevant components selected during the SPCCA calculation was high, with correlation components of up to 0.955; alternatively, the correlations obtained from CCA and KCCA calculations were only 0.917 and 0.926, respectively. It can be seen that SPCCA is indeed superior to CCA and KCCA in processing high-dimensional multimodal data. This work reveals the process of analyzing the brain activation state in IBD disease, provides a further perspective for the study of brain function, and opens up a new avenue for studying the SPCCA method and the change in the intensity of brain activation in IBD disease.
Collapse
Affiliation(s)
- Yin Zhang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Xintong Wu
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Department of Radiology, China
| | - Jingwen Sun
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Department of Radiology, China
| | - Kecen Yue
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Department of Radiology, China
| | - Shuangshuang Lu
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Department of Radiology, China
| | - Bingjian Wang
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Department of Radiology, China
| | - Wenjia Liu
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Department of Radiology, China
| | - Haifeng Shi
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Department of Radiology, China
| | - Ling Zou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu 213164, China
- Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
7
|
Thapaliya G, Eldeghaidy S, Radford SJ, Francis ST, Moran GW. An examination of resting-state functional connectivity in patients with active Crohn's disease. Front Neurosci 2023; 17:1265815. [PMID: 38125406 PMCID: PMC10731262 DOI: 10.3389/fnins.2023.1265815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Background Alterations in resting state functional connectivity (rs-FC) in Crohn's Disease (CD) have been documented in default mode network (DMN) and frontal parietal network (FPN) areas, visual, cerebellar, salience and attention resting-state-networks (RSNs), constituting a CD specific neural phenotype. To date, most studies are in patients in remission, with limited studies in active disease. Methods Twenty five active CD cases and 25 age-, BMI- and gender-matched healthy controls (HC) were recruited to a resting-state-functional Magnetic Resonance Imaging (rs-fMRI) study. Active disease was defined as C-reactive protein>5 mg/dL, faecal calprotectin>250 μg/g, or through ileocolonoscopy or MRE. rs-fMRI data were analysed using independent component analysis (ICA) and dual regression. Differences in RSNs between HCs and active CD were assessed, and rs-FC was associated with disease duration and abdominal pain. Results Increased connectivity in the FPN (fusiform gyrus, thalamus, caudate, posterior cingulate cortex, postcentral gyrus) and visual RSN (orbital frontal cortex) were observed in CD versus HC. Decreased activity was observed in the salience network (cerebellum, postcentral gyrus), DMN (parahippocampal gyrus, cerebellum), and cerebellar network (occipital fusiform gyrus, cerebellum) in CD versus HCs. Greater abdominal pain scores were associated with lower connectivity in the precuneus (visual network) and parietal operculum (salience network), and higher connectivity in the cerebellum (frontal network). Greater disease duration was associated with greater connectivity in the middle temporal gyrus and planum temporale (visual network). Conclusion Alterations in rs-FC in active CD in RSNs implicated in cognition, attention, emotion, and pain may represent neural correlates of chronic systemic inflammation, abdominal pain, disease duration, and severity.
Collapse
Affiliation(s)
- Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sally Eldeghaidy
- Division of Food, Nutrition and Dietetics, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Shellie J. Radford
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Susan T. Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Gordon William Moran
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- Translational Medical Sciences Unit, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Hall CV, Radford-Smith G, Savage E, Robinson C, Cocchi L, Moran RJ. Brain signatures of chronic gut inflammation. Front Psychiatry 2023; 14:1250268. [PMID: 38025434 PMCID: PMC10661239 DOI: 10.3389/fpsyt.2023.1250268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Gut inflammation is thought to modify brain activity and behaviour via modulation of the gut-brain axis. However, how relapsing and remitting exposure to peripheral inflammation over the natural history of inflammatory bowel disease (IBD) contributes to altered brain dynamics is poorly understood. Here, we used electroencephalography (EEG) to characterise changes in spontaneous spatiotemporal brain states in Crohn's Disease (CD) (n = 40) and Ulcerative Colitis (UC) (n = 30), compared to healthy individuals (n = 28). We first provide evidence of a significantly perturbed and heterogeneous microbial profile in CD, consistent with previous work showing enduring and long-standing dysbiosis in clinical remission. Results from our brain state assessment show that CD and UC exhibit alterations in the temporal properties of states implicating default-mode network, parietal, and visual regions, reflecting a shift in the predominance from externally to internally-oriented attentional modes. We investigated these dynamics at a finer sub-network resolution, showing a CD-specific and highly selective enhancement of connectivity between the insula and medial prefrontal cortex (mPFC), regions implicated in cognitive-interoceptive appraisal mechanisms. Alongside overall higher anxiety scores in CD, we also provide preliminary support to suggest that the strength of chronic interoceptive hyper-signalling in the brain co-occurs with disease duration. Together, our results demonstrate that a long-standing diagnosis of CD is, in itself, a key factor in determining the risk of developing altered brain network signatures.
Collapse
Affiliation(s)
- Caitlin V. Hall
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Graham Radford-Smith
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Gut Health Research Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Gastroenterology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Emma Savage
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Conor Robinson
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rosalyn J. Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
9
|
Wang J, Liu G, Xu K, Ai K, Huang W, Zhang J. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease. Hum Brain Mapp 2023; 44:5357-5371. [PMID: 37530546 PMCID: PMC10543356 DOI: 10.1002/hbm.26439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
A growing body of evidence from neuroimaging studies suggests that inflammatory bowel disease (IBD) is associated with functional and structural alterations in the central nervous system and that it has a potential link to emotional symptoms, such as anxiety and depression. However, the neurochemical underpinnings of depression symptoms in IBD remain unclear. We hypothesized that changes in cortical gamma-aminobutyric acid (GABA+) and glutamine (Glx) concentrations are related to cortical thickness and resting-state functional connectivity in IBD as compared to healthy controls. To test this, we measured whole-brain cortical thickness and functional connectivity within the medial prefrontal cortex (mPFC), as well as the concentrations of neurotransmitters in the same brain region. We used the edited magnetic resonance spectroscopy (MRS) with the MEGA-PRESS sequence at a 3 T scanner to quantitate the neurotransmitter levels in the mPFC. Subjects with IBD (N = 37) and healthy control subjects (N = 32) were enrolled in the study. Compared with healthy controls, there were significantly decreased GABA+ and Glx concentrations in the mPFC of patients with IBD. The cortical thickness of patients with IBD was thin in two clusters that included the right medial orbitofrontal cortex and the right posterior cingulate cortex. A seed-based functional connectivity analysis indicated that there was higher connectivity of the mPFC with the left precuneus cortex (PC) and the posterior cingulate cortex, and conversely, lower connectivity in the left frontal pole was observed. The functional connectivity between the mPFC and the left PC was negatively correlated with the IBD questionnaire score (r = -0.388, p = 0.018). GABA+ concentrations had a negative correlation with the Hamilton Depression Scale (HAMD) score (r = -0.497, p = 0.002). Glx concentration was negatively correlated with the HAMD score (r = -0.496, p = 0.002) and positively correlated with the Short-Form McGill Pain Questionnaire score (r = 0.330, p = 0.046, uncorrected). There was a significant positive correlation between the ratio of Glx to GABA+ and the HAMD score (r = 0.428, p = 0.008). Mediation analysis revealed that GABA+ significantly mediated the main effect of the relationship between the structural and functional alterations and the severity of depression in patients with IBD. Our study provides initial evidence of neurochemistry that can be used to identify potential mechanisms underlying the modulatory effects of GABA+ on the development of depression in patients with IBD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Guangyao Liu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kun Xu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kai Ai
- Deparment of Clinical and Technical Support, Philips HealthcareXi'anChina
| | - Wenjing Huang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
10
|
Wu X, Ma L, Yin Q, Liu M, Wu K, Wang D. The impact of wearing a KN95 face mask on human brain function: evidence from resting state functional magnetic resonance imaging. Front Neurol 2023; 14:1102335. [PMID: 37273685 PMCID: PMC10237040 DOI: 10.3389/fneur.2023.1102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Background Face masks are widely used in daily life because of the COVID-19 pandemic. The objective of this study was to explore the impact of wearing face masks on brain functions by using resting-state functional MRI (RS-fMRI). Methods Scanning data from 15 healthy subjects (46.20 ± 6.67 years) were collected in this study. Each subject underwent RS-fMRI scans under two comparative conditions, wearing a KN95 mask and natural breathing (no mask). The amplitude of low frequency fluctuation (ALFF) and functional connectivity under the two conditions were analyzed and then compared using the paired t-test. Results Compared with those of the no-mask condition, the ALFF activities when wearing masks were increased significantly in the right middle frontal gyrus, bilateral precuneus, right superior marginal gyrus, left inferior parietal gyrus, and left supplementary motor area and decreased significantly in the anterior cingulate gyrus, right fusiform gyrus, left superior temporal gyrus, bilateral lingual gyrus, and bilateral calcarine cortex (p < 0.05). Taking the posterior cingulate cortex area as a seed point, the correlations with the occipital cortex, prefrontal lobe, and motor sensory cortex were sensitive to wearing masks compared with not wearing masks (p < 0.05). Taking the medial prefrontal cortex region as a seed point, the functional connectivity with the bilateral temporal lobe, bilateral motor sensory cortex, and occipital lobe was influenced by wearing a KN95 mask (p < 0.05). Conclusion This study demonstrated that wearing a KN95 face mask can cause short-term changes in human resting brain function. Both local neural activities and functional connectivity in brain regions were sensitive to mask wearing. However, the neural mechanism causing these changes and its impact on cognitive function still need further investigation.
Collapse
Affiliation(s)
- Xiaomeng Wu
- Philips (China) Investment Co., Ltd, Shanghai, China
| | - Lifei Ma
- Philips (China) Investment Co., Ltd, Shanghai, China
| | - Qiufeng Yin
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kyle Wu
- Philips (China) Investment Co., Ltd, Shanghai, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Goodyear BG, Heidari F, Ingram RJM, Cortese F, Sharifi N, Kaplan GG, Ma C, Panaccione R, Sharkey KA, Swain MG. Multimodal Brain MRI of Deep Gray Matter Changes Associated With Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:405-416. [PMID: 35590449 PMCID: PMC9977255 DOI: 10.1093/ibd/izac089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Behavioral symptoms, including mood disorders, substantially impact the quality of life of patients with inflammatory bowel disease (IBD), even when clinical remission is achieved. Here, we used multimodal magnetic resonance imaging (MRI) to determine if IBD is associated with changes in the structure and function of deep gray matter brain regions that regulate and integrate emotional, cognitive, and stress responses. METHODS Thirty-five patients with ulcerative colitis (UC) or Crohn's disease (CD) and 32 healthy controls underwent 3 Tesla MRIs to assess volume, neural activity, functional connection strength (connectivity), inflammation, and neurodegeneration of key deep gray matter brain regions (thalamus, caudate, pallidum, putamen, amygdala, hippocampus, and hypothalamus) involved in emotional, cognitive and stress processing. Associations with sex, presence of pain, disease activity, and C-reactive protein (CRP) concentration were examined. RESULTS Significantly increased activity and functional connectivity were observed in cognitive and emotional processing brain regions, including parts of the limbic system, basal ganglia, and hypothalamus of IBD patients compared with healthy controls. Inflammatory bowel disease patients exhibited significantly increased volumes of the amygdala and hypothalamus, as well as evidence of neurodegeneration in the putamen and pallidum. Hippocampal neural activity was increased in IBD patients with active disease. The volume of the thalamus was positively correlated with CRP concentration and was increased in females experiencing pain. CONCLUSIONS Patients with IBD exhibit functional and structural changes in the limbic and striatal systems. These changes may be targets for assessing or predicting the response to therapeutic interventions aimed at improving comorbid emotional and cognitive symptoms.
Collapse
Affiliation(s)
- Bradley G Goodyear
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,The Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Faranak Heidari
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Richard J M Ingram
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Filomeno Cortese
- The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Nastaran Sharifi
- The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Gilaad G Kaplan
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Ma
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Remo Panaccione
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,The Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mark G Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Ge L, Liu S, Li S, Yang J, Hu G, Xu C, Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front Immunol 2022; 13:1016578. [PMID: 36275694 PMCID: PMC9583867 DOI: 10.3389/fimmu.2022.1016578] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and Crohn’s disease (CD), is an autoimmune gastrointestinal disease characterized by chronic inflammation and frequent recurrence. Accumulating evidence has confirmed that chronic psychological stress is considered to trigger IBD deterioration and relapse. Moreover, studies have demonstrated that patients with IBD have a higher risk of developing symptoms of anxiety and depression than healthy individuals. However, the underlying mechanism of the link between psychological stress and IBD remains poorly understood. This review used a psychoneuroimmunology perspective to assess possible neuro-visceral integration, immune modulation, and crucial intestinal microbiome changes in IBD. Furthermore, the bidirectionality of the brain–gut axis was emphasized in the context, indicating that IBD pathophysiology increases the inflammatory response in the central nervous system and further contributes to anxiety- and depression-like behavioral comorbidities. This information will help accurately characterize the link between psychological stress and IBD disease activity. Additionally, the clinical application of functional brain imaging, microbiota-targeted treatment, psychotherapy and antidepressants should be considered during the treatment and diagnosis of IBD with behavioral comorbidities. This review elucidates the significance of more high-quality research combined with large clinical sample sizes and multiple diagnostic methods and psychotherapy, which may help to achieve personalized therapeutic strategies for IBD patients based on stress relief.
Collapse
Affiliation(s)
- Li Ge
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuman Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sha Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangran Hu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wengang Song,
| |
Collapse
|
13
|
Wils P, Caron B, D’Amico F, Danese S, Peyrin-Biroulet L. Abdominal Pain in Inflammatory Bowel Diseases: A Clinical Challenge. J Clin Med 2022; 11:4269. [PMID: 35893357 PMCID: PMC9331632 DOI: 10.3390/jcm11154269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Up to 60% of inflammatory bowel disease (IBD) patients experience abdominal pain in their lifetime regardless of disease activity. Pain negatively affects different areas of daily life and particularly impacts the quality of life of IBD patients. This review provides a comprehensive overview of the multifactorial etiology implicated in the chronic abdominal pain of IBD patients including peripheral sensitization by inflammation, coexistent irritable bowel syndrome, visceral hypersensitivity, alteration of the brain-gut axis, and the multiple factors contributing to pain persistence. Despite the optimal management of intestinal inflammation, chronic abdominal pain can persist, and pharmacological and non-pharmacological approaches are necessary. Integrating psychological support in care models in IBD could decrease disease burden and health care costs. Consequently, a multidisciplinary approach similar to that used for other chronic pain conditions should be recommended.
Collapse
Affiliation(s)
- Pauline Wils
- Department of Gastroenterology, Claude Huriez Hospital, University of Lille, F-59000 Lille, France
| | - Bénédicte Caron
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, F-54000 Nancy, France; (B.C.); (L.P.-B.)
- Department of Gastroenterology, University of Lorraine, Inserm, NGERE, F-54000 Nancy, France
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.D.); (S.D.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, F-54000 Nancy, France; (B.C.); (L.P.-B.)
- Department of Gastroenterology, University of Lorraine, Inserm, NGERE, F-54000 Nancy, France
| |
Collapse
|
14
|
Tse CS, Singh S, Sandborn WJ. A Framework for Clinical Trials of Neurobiological Interventions That Target the Gut-Brain Axis in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:788-800. [PMID: 34244749 DOI: 10.1093/ibd/izab153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 12/09/2022]
Abstract
A growing body of evidence from preclinical, translational, and clinical studies supports a bidirectional relationship within the gut-brain axis that contributes to neurobiological symptoms including anxiety, depression, fatigue, stress, and sleep disturbance. These symptoms have a significant impact on health-related quality of life and functional ability in individuals with inflammatory bowel disease. Clinical studies that generate high-quality evidence on pharmacological and nonpharmacological (eg, psychosocial, behavioral) interventions are needed to ultimately improve access to safe and effective therapies that have a meaningful impact on patients and to guide medical and regulatory decisions. This review outlines a framework for designing and conducting randomized controlled trials for interventions that target neurobiological symptoms in patients with inflammatory bowel disease based on the most recent guidance published within the past 5 years from policy makers, clinicians specialized in inflammatory bowel disease, patient-reported outcomes methodologists, health economists, patient advocates, industry representatives, ethicists, and clinical trial experts.
Collapse
Affiliation(s)
- Chung Sang Tse
- Division of Gastroenterology, University of California San Diego, San Diego, California, USA
| | - Siddharth Singh
- Division of Gastroenterology, University of California San Diego, San Diego, California, USA
| | - William J Sandborn
- Division of Gastroenterology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
15
|
Mickael ME, Bhaumik S, Chakraborti A, Umfress AA, van Groen T, Macaluso M, Totenhagen J, Sorace AG, Bibb JA, Standaert DG, Basu R. RORγt-Expressing Pathogenic CD4 + T Cells Cause Brain Inflammation during Chronic Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2054-2066. [PMID: 35379749 PMCID: PMC10103644 DOI: 10.4049/jimmunol.2100869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
Abstract
Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.
Collapse
Affiliation(s)
| | - Suniti Bhaumik
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Ayanabha Chakraborti
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Alan A Umfress
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew Macaluso
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; and
| | - James A Bibb
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Rajatava Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL;
| |
Collapse
|
16
|
Teng Y, Yin T, Yang Y, Sun R, Tian Z, Ma P, He Z, Qu Y, Huang L, Chen Y, Zeng F. The Role of Medial Prefrontal Cortex in Acupuncture Treatment for Functional Dyspepsia. Front Neurosci 2022; 16:801899. [PMID: 35464313 PMCID: PMC9022633 DOI: 10.3389/fnins.2022.801899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Acupuncture is an effective therapy for functional dyspepsia (FD). However, the efficacy of acupuncture in the treatment of FD varies among individuals in clinical practice. This study aimed to reveal the brain response patterns in acupuncture higher response/lower response FD patients. Firstly, we performed a within-group comparison of brain function activity before and after acupuncture treatment in 115 FD patients and analyzed the correlation between brain function activity changes and clinical improvements. Secondly, 115 subjects were divided into the acupuncture higher response group or the lower response group based on the median clinical improvement values. The changes in functional brain activity after acupuncture treatment were investigated in these two groups, respectively. Finally, the identified brain regions associated with the clinical improvements were set as regions of interest (ROI), and the ROI-to-voxel functional connectivity comparisons were also performed in both groups, respectively. The results demonstrated that the functional activities of the left cerebellum inferior, right middle temporal gyrus, and right medial prefrontal cortex (mPFC) were increased, and the left Heschl and right middle cingulate cortex were decreased in 115 FD patients after acupuncture treatment. The functional connectivity changes of mPFC were correlated with improving the Nepean Dyspepsia Symptom Index. The significant increase in mPFC functional activity was also found in acupuncture higher response FD patients but not in lower response FD patients. The functional connectivity between the mPFC and default mode network (DMN) was significantly diminished in the higher response group but not in the lower response group. In conclusion, this study suggested that modulating the functional activity of the mPFC and its connectivity to the DMN may be one of the important mechanisms of acupuncture for treating FD with a higher response.
Collapse
Affiliation(s)
- Yuke Teng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruirui Sun
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilei Tian
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peihong Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoxuan He
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Qu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuyang Huang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- International Education School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yuan Chen,
| | - Fang Zeng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Fang Zeng, ;
| |
Collapse
|
17
|
Nass BYS, Dibbets P, Markus CR. Impact of the COVID‐19 pandemic on inflammatory bowel disease: The role of emotional stress and social isolation. Stress Health 2022; 38:222-233. [PMID: 34273129 PMCID: PMC8420478 DOI: 10.1002/smi.3080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic health condition exacerbated by negative emotional stress experiences. In the current study, we examined whether the outbreak of the COVID-19 pandemic coincided with an increase in stress experiences and accordingly an aggravation of disease activity in IBD patients. Sixty-three IBD patients (30 Crohn's disease or CD, 33 ulcerative colitis) completed an online survey during the COVID-19-related lockdown, assessing clinical disease activity, disease-related quality of life, presence of functional gastrointestinal symptoms, social isolation and stress experiences. Scores were then compared to pre-lockdown baseline screening. The pandemic yielded a significant baseline-to-lockdown increase in emotional stress and social isolation. Stress increments, particularly those occasioned by interpersonal tension and excessive interpersonal proximity, were associated with a worsening of functional gastrointestinal symptoms. Exacerbations of loneliness coincided with an escalation of CD activity, functional gastrointestinal symptoms and a decline in subjective health. Lastly, COVID-19 anxiety was significantly related to CD symptom severity and social dysfunction. The findings show that shifts in IBD expression are closely linked to changes in emotional stress experiences and interpersonal relatedness. As such, they contribute to a better understanding of inter-individual differences in IBD progression and provide leads for therapeutic interventions.
Collapse
Affiliation(s)
- Boukje Yentl Sundari Nass
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Dr. Rath Health FoundationHeerlenThe Netherlands
| | - Pauline Dibbets
- Clinical Psychological ScienceMaastricht UniversityMaastrichtThe Netherlands
| | - C. Rob Markus
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
18
|
Huang M, Li X, Fan W, Li J, Zhu L, Lei P, Wu L, Sun Q, Zou Y, Han P. Alterations of Regional Homogeneity in Crohn's Disease With Psychological Disorders: A Resting-State fMRI Study. Front Neurol 2022; 13:817556. [PMID: 35185768 PMCID: PMC8847745 DOI: 10.3389/fneur.2022.817556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal psychological processing in the central nervous system has been found in Crohn's disease (CD) patients. Resting-state functional magnetic resonance images of 57 inactive and 58 active CD patients, and 92 healthy controls (HC) were obtained. The psychological assessment used a psychological questionnaire that was collected within 1 week before functional MRI examination. We investigated the neural basis of CD patients and the correlation among regional homogeneity (ReHo), clinical features and psychological assessment scores. We found that more severe psychological assessment disorder scores were observed in the active CD group than in the inactive CD group and HC group (P<0.001). Compared with HC, the active CD patients exhibited higher ReHo values in the frontal superior medial, frontal middle and lower values in the postcentral, supplementary motor area, and temporal middle. Meanwhile, inactive CD patients exhibited higher ReHo values in the frontal middle and lower ReHo values in the precentral, postcentral and putamen (all voxel P< 0.001, cluster P<0.01, corrected). The values of the frontal superior medial, postcentral and supplementary motor area were correlation with psychological assessment scores (r = 0.38, −0.41, −0.32, P = 0.001, 0.014, 0.003), and the clinical features of simple endoscopic score for Crohn's disease and erythrocyte sedimentation rate were negatively correlated with psychological assessment scores in active CD patients (r = −0.35, −0.34, P = 0.06, 0.08). These results provide evidence for abnormal resting-state brain activity in CD and suggest that the psychological of CD may play a critical role in brain function.
Collapse
Affiliation(s)
- Mengting Huang
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xin Li
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Li
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Liangru Zhu
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Lei
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Linxia Wu
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Sun
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yan Zou
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Yan Zou
| | - Ping Han
- Department of Radiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- *Correspondence: Ping Han
| |
Collapse
|
19
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
20
|
Prüß MS, Bayer A, Bayer KE, Schumann M, Atreya R, Mekle R, Fiebach JB, Siegmund B, Neeb L. Functional Brain Changes Due to Chronic Abdominal Pain in Inflammatory Bowel Disease: A Case-Control Magnetic Resonance Imaging Study. Clin Transl Gastroenterol 2022; 13:e00453. [PMID: 35060939 PMCID: PMC8865502 DOI: 10.14309/ctg.0000000000000453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Various chronic pain conditions go along with functional and structural brain changes. This study aimed to investigate functional and structural brain changes by magnetic resonance imaging (MRI) in inflammatory bowel disease (IBD) patients with chronic abdominal pain. METHODS Sixty-four subjects were included in the final analysis (32 IBD patients with chronic abdominal pain; 32 age-matched and sex-matched controls). All patients suffered from chronic abdominal pain, defined as a score of ≥3/10 on the visual analog scale for at least 3 months in the past 6 months. Besides structural MRI, resting state functional MRI was used to compare functional connectivity of 10 networks between groups. RESULTS Patients with IBD showed no structural brain alterations but a significantly increased resting state functional connectivity of the secondary somatosensory cortex within the salience network. DISCUSSION Because the secondary somatosensory cortex saves sensory stimuli and compares novel information with latter experiences, these functions may be maladaptive in IBD patients with abdominal pain.
Collapse
Affiliation(s)
- Magdalena S. Prüß
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Arian Bayer
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kian-Elias Bayer
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Schumann
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Raja Atreya
- Medical Department I, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Mekle
- Neuroradiology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jochen B. Fiebach
- Neuroradiology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Britta Siegmund
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lars Neeb
- Department of Neurology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Bakshi N, Hart AL, Lee MC, Williams ACDC, Lackner JM, Norton C, Croft P. Chronic pain in patients with inflammatory bowel disease. Pain 2021; 162:2466-2471. [PMID: 34534174 PMCID: PMC8442739 DOI: 10.1097/j.pain.0000000000002304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Nikul Bakshi
- Research Department, Crohn's and Colitis UK, Hatfield, United Kingdom
| | | | - Michael C. Lee
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Amanda C de C. Williams
- Research Department of Clinical, Educational and Health Psychology, University College London, and Pain Management Centre, University College Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jeffrey M. Lackner
- Division of Behavioral Medicine, Department of Medicine, University at Buffalo, SUNY, Buffalo, NY, United States
| | - Christine Norton
- Division of Care for Long-Term Conditions, Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College, London, United Kingdom
| | - Peter Croft
- Primary Care Centre Versus Arthritis and Centre for Prognosis Research, Keele University, Keele, United Kingdom
| |
Collapse
|
22
|
Li L, Ma J, Xu J, Zheng Y, Xie Q, Rong L, Liang Z. Brain functional changes in patients with Crohn's disease: A resting-state fMRI study. Brain Behav 2021; 11:e2243. [PMID: 34124857 PMCID: PMC8413760 DOI: 10.1002/brb3.2243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Crohn's disease (CD) is a chronic recurrent intestinal inflammatory disease, often accompanied by poor adaptation and excessive stress response. However, the potential neurological mechanisms of these symptoms have not yet been studied in-depth. OBJECTIVE To investigate alterations in brain activity in patients with Crohn's disease and study the relationship between altered regions and clinical indices. METHODS A total of 15 CD patients and 26 matched healthy controls were recruited. All participants underwent fMRI scans. The amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) assessed differences in spontaneous regional brain activity. Differences between the groups were selected as seeds for functional connectivity (FC) analyses. Correlations between disease duration and ALFF/ReHo/FC values in abnormal regions were analyzed. RESULTS Patients with CD had significantly higher ALFF values in the left superior frontal gyrus, anterior cingulate cortex, and supplementary motor area, and lower values in the left hippocampus. They also had higher ReHo values in the left anterior cingulate cortex, supplementary motor area, putamen, and the bilateral superior frontal gyri. FC strength in the left precentral and middle temporal gyri was found to be increased when the left superior frontal gyrus was used as the seed point. FC strength was also observed to be increased in the left postcentral, middle frontal gyri, inferior frontal orbital cortex, and right rolandic operculum when the left anterior cingulate cortex was used as the seed point. CONCLUSION CD demonstrated abnormal neural activity and FC in various regions primarily associated with emotional, pain and cognitive-related functions, which provides more information to further understand the neural mechanisms of the disease.
Collapse
Affiliation(s)
- Lu Li
- Department of Radiology, Jing'an District Centre Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Jie Ma
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yan‐Ling Zheng
- Department of Radiology, Jing'an District Centre Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Qian Xie
- Department of Radiology, Jing'an District Centre Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Lan Rong
- Department of Gastroenterology, Huashan HospitalFudan UniversityShanghaiChina
| | - Zong‐Hui Liang
- Department of Radiology, Jing'an District Centre Hospital of ShanghaiFudan UniversityShanghaiChina
| |
Collapse
|
23
|
Thomann AK, Schmitgen MM, Kmuche D, Ebert MP, Thomann PA, Szabo K, Gass A, Griebe M, Reindl W, Wolf RC. Exploring joint patterns of brain structure and function in inflammatory bowel diseases using multimodal data fusion. Neurogastroenterol Motil 2021; 33:e14078. [PMID: 33368950 DOI: 10.1111/nmo.14078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND A growing number of neuroimaging studies suggest distinct neural changes in inflammatory bowel diseases (IBDs). Whether such changes may show similar spatial patterns across distinct neural features within and between specific IBD is unclear. To address this question, we used multivariate multimodal data fusion analysis to investigate structure/function modulation in remitted patients with Crohn's disease (CD) and ulcerative colitis (UC). METHODS Patients with IBD (n = 46; n = 31 with CD, n = 15 with UC) in stable remission and 17 healthy controls (HC) underwent structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI) as well as cognitive testing. Anxiety, depression, and fatigue were assessed using self-rating questionnaires. sMRI data were analyzed via voxel-based morphometry (VBM) and rs-fMRI data via amplitude of low-frequency fluctuations (ALFFs) and regional homogeneity (ReHo). Detection of cross-information between VBM, ALFF, and ReHo was conducted by means of a joint independent component analysis (jICA), followed by group-inference statistics. KEY RESULTS Joint independent component analysis detected structural alterations in middle frontal and temporal regions (VBM), and functional changes in the superior frontal gyrus (ReHo) and the medial as well as inferior frontal, inferior temporal, rectal, and subcallosal gyrus (ALFF). One joint component of extracted features of the three modalities differed significantly between IBD patients and controls (p = 0.03), and most distinctly between HC and patients with UC. CONCLUSIONS AND INFERENCES Using a multivariate data fusion technique, this study provides further evidence to brain alterations in IBD. The data suggest distinct neural differences between CD and UC, particularly in frontotemporal regions.
Collapse
Affiliation(s)
- Anne Kerstin Thomann
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mike Michael Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Dagny Kmuche
- Department of Neurology, University Medical Center Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Kristina Szabo
- Department of Neurology, University Medical Center Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Achim Gass
- Department of Neurology, University Medical Center Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Griebe
- Department of Neurology, University Medical Center Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
24
|
Structural and functional changes in the brain of patients with Crohn's disease: an activation likelihood estimation meta-analysis. Brain Imaging Behav 2021; 15:807-818. [PMID: 32333318 DOI: 10.1007/s11682-020-00291-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple reports for brain functional and structural alterations in patients with Crohn's disease (CD) were published. The current study aimed to meta-analyze the existing neuroimaging data and hence produce a brain map revealing areas with functional and structural differences between patients with CD and healthy controls. Original studies published until 2019 were identified from Scopus, Web of Science and PubMed databases, and included into the analysis if they reported relevant results from task-related or resting state functional magnetic resonance imaging (fMRI or rsfMRI) or voxel-based morphometry (VBM), in the form of standardized brain coordinates based on whole-brain analysis. The brain coordinates and sample size of significant results were extracted from eligible studies to be meta-analyzed with the activation likelihood estimation method using the GingerALE software. Sixteen original studies comprised of a total of 865 participants fulfilled the inclusion criteria. Compared to healthy controls, patients with CD had reduced resting state brain connectivity in the paracentral lobule and cingulate gyrus as well as reduced grey matter volume in the medial frontal gyrus. No significant results were found vice versa. These neural correlates allow a better understanding on the effects of CD on the pain expectation, emotion, and quality of life of patients and potentially serve as useful biomarkers for evaluating treatment efficacy.
Collapse
|
25
|
Kong N, Gao C, Xu M, Gao X. Changes in the anterior cingulate cortex in Crohn's disease: A neuroimaging perspective. Brain Behav 2021; 11:e02003. [PMID: 33314765 PMCID: PMC7994700 DOI: 10.1002/brb3.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Evidence suggests that Crohn's disease (CD) pathophysiology goes beyond the gastrointestinal tract and is also strongly associated with the brain. In particular, the anterior cingulate cortex (ACC), which plays an integral role in the first brain as part of the default mode network (DMN) and pain matrix, shows abnormalities using multiple neuroimaging modalities. This review summarizes nine related studies that investigated changes in the ACC using structural magnetic resonance imaging, resting-state functional magnetic resonance imaging, and magnetic resonance spectroscopy. METHODS An extensive PubMed literature search was conducted from 1980 to August 2020. In a review of the articles identified, particular attention was paid to analysis methods, technical protocol characteristics, and specific changes in the ACC. RESULTS In terms of morphology, a decrease in gray matter volume and cortical thickness was observed along with an increase in local gyrification index. In terms of function, functional connectivity (FC) within the DMN was increased. FC between the ACC and the amygdala was decreased. Higher amplitudes of low-frequency fluctuation and graph theory results, including connectivity strength, clustering coefficient, and local efficiency, were detected. In terms of neurotransmitter changes, the concentrations of glutamate increased along with a decrease in gamma-aminobutyric acid, providing a rational explanation for abdominal pain. These changes may be attributed to stress, pain, and negative emotions, as well as changes in gut microbiota. CONCLUSIONS For patients with CD, the ACC demonstrates structural, functional, and metabolic changes. In terms of clinical findings, the ACC plays an important role in the onset of depression/anxiety and abdominal pain. Therefore, successful modulation of this pathway may guide treatment.
Collapse
Affiliation(s)
- Ning Kong
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuning Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2020; 42:389-417. [PMID: 33030712 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
|
27
|
Thomann AK, Mak JWY, Zhang JW, Wuestenberg T, Ebert MP, Sung JJY, Bernstein ÇN, Reindl W, Ng SC. Review article: bugs, inflammation and mood-a microbiota-based approach to psychiatric symptoms in inflammatory bowel diseases. Aliment Pharmacol Ther 2020; 52:247-266. [PMID: 32525605 DOI: 10.1111/apt.15787] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/13/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Psychiatric co-morbidities including depression and anxiety are common in inflammatory bowel diseases (IBD). Emerging evidence suggests that interactions between the gut microbiota and brain may play a role in the pathogenesis of psychiatric symptoms in IBD. AIM To review the literature on microbiota-brain-gut interactions in gut inflammation, psychosocial stress and mental disorders and to discuss the putative mediating role of gut microbiota in the development of psychiatric symptoms or co-morbidities in IBD. METHODS A literature search was conducted on Ovid and Pubmed to select relevant animal and human studies reporting an association between IBD, mental disorders and gut microbiota. RESULTS Gut microbial alterations are frequently reported in subjects with IBD and with mental disorders. Both have been associated with reduced faecal bacterial diversity, decreased taxa within the phylum Firmicutes and increased Gammaproteobacteria. In animal studies, microbial perturbations induce behavioural changes and modulate inflammation in mice. Anxiety- and depression-like behaviours in animals can be transferred via faecal microbiota. In humans, modulation of the gut microbiota with probiotics is associated with behavioural and mood changes. Recent data show correlations in changes of faecal and mucosal microbiota and psychological distress in patients with IBD independent of disease activity. CONCLUSION Both IBD and mental disorders are associated with gut microbial alterations. Preclinical and preliminary human studies have shown a mediating role of the gut microbiota in intestinal inflammation and anxiety, depression and stress. Targeting the gut microbiota may represent a useful therapeutic approach for the treatment of psychiatric co-morbidities in IBD.
Collapse
Affiliation(s)
- Anne K Thomann
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joyce W Y Mak
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Jing Wan Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Torsten Wuestenberg
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Charite, Berlin, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | | | - Wolfgang Reindl
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong.,Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
28
|
Mallio CA, Piervincenzi C, Carducci F, Quintiliani L, Parizel PM, Pantano P, Quattrocchi CC. Within-network brain connectivity in Crohn's disease patients with gadolinium deposition in the cerebellum. Neuroradiology 2020; 62:833-841. [PMID: 32246178 DOI: 10.1007/s00234-020-02415-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Patients with Crohn's disease (CD) undergo multiple gadolinium-based contrast agent injections across their lifespan to enhance signal intensity of the intestinal wall and differentiate active from quiescent inflammatory disease. Thus, CD patients are prone to gadolinium accumulation in the brain and represent a non-neurological population to explore gadolinium-related brain toxicity. Possible effects are expected to be greater on the cerebellar network due to the high propensity of the dentate nucleus to accumulate gadolinium. Herein, we provide a whole-brain network analysis of resting-state fMRI dynamics in long-term quiescent CD patients with normal renal function and MRI evidence of gadolinium deposition in the brain. METHODS Fifteen patients with CD and 16 healthy age- and gender-matched controls were enrolled in this study. Relevant resting-state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data. An unpaired two-sample t test (with age and sex as nuisance variables) was used to investigate between different RSNs. Clusters were determined by using threshold-free cluster enhancement and a family-wise error corrected cluster significance threshold of p < 0.05. RESULTS Patients showed significantly decreased resting-state functional connectivity (p < 0.05, FWE corrected) of several regions of the right frontoparietal (FPR) and the dorsal attention (DAN) RSNs. No differences between the two groups were found in the functional connectivity maps of all the other RSNs, including the cerebellar network. CONCLUSION Our findings suggest a non-significant impact of gadolinium deposition on within-network cerebellar functional connectivity of long-term quiescent CD patients.
Collapse
Affiliation(s)
- Carlo A Mallio
- Departmental Faculty of Medicine and Surgery, Unit of Diagnostic Imaging and Interventional Radiology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
| | | | - Filippo Carducci
- Department of Physiology and Pharmacology, Neuroimaging Laboratory, Università La Sapienza, Rome, Italy
| | - Livia Quintiliani
- Departmental Faculty of Medicine and Surgery, Unit of Diagnostic Imaging and Interventional Radiology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital, Edegem, Belgium
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Radiology, IRCCS NEUROMED, Pozzilli, Italy
| | - Carlo C Quattrocchi
- Departmental Faculty of Medicine and Surgery, Unit of Diagnostic Imaging and Interventional Radiology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
29
|
Collins SM. Interrogating the Gut-Brain Axis in the Context of Inflammatory Bowel Disease: A Translational Approach. Inflamm Bowel Dis 2020; 26:493-501. [PMID: 31970390 PMCID: PMC7054772 DOI: 10.1093/ibd/izaa004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Indexed: 12/14/2022]
Abstract
This review examines preclinical and clinical studies relevant to our understanding of how the bidirectional gut-brain axis influences the natural history of inflammatory bowel disease. Preclinical studies provide proof of concept that preexisting behavioral illness, such as depression, results in increased susceptibility to inflammatory stimuli and that commonly used classes of antidepressants protect against this vulnerability. However, clinical studies suggesting behavioral illness as a risk factor for IBD and a protective role for antidepressants have relied primarily on symptom-reporting rather than objective measurements of inflammation. In terms of gut-to-brain signaling, there is emerging evidence from preclinical and clinical observation that intestinal inflammation alters brain functions, including the induction of mood disorders, alteration of circadian rhythm both centrally and peripherally, and changes in appetitive behaviors. Furthermore, preclinical studies suggest that effective treatment of intestinal inflammation improves associated behavioral impairment. Taken together, the findings of this review encourage a holistic approach to the management of patients with IBD, accommodating lifestyle issues that include the avoidance of sleep deprivation, optimized nutrition, and the monitoring and appropriate management of behavioral disorders. The review also acknowledges the need for better-designed clinical studies evaluating the impact of behavioral disorders and their treatments on the natural history of IBD, utilizing hard end points to assess changes in the inflammatory process as opposed to reliance on symptom-based assessments. The findings of the review also encourage a better understanding of changes in brain function and circadian rhythm induced by intestinal inflammation.
Collapse
Affiliation(s)
- Stephen M Collins
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Division of Gastroenterology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada,Address correspondence to: Stephen M. Collins, MBBS, FRCPC, FRSC, Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, Room 3N8B, McMaster University Medical Centre, Hamilton, Ontario, CANADA L8N 3Z5. E-mail:
| |
Collapse
|
30
|
Kornelsen J, Wilson A, Labus JS, Witges K, Mayer EA, Bernstein CN. Brain Resting-State Network Alterations Associated With Crohn's Disease. Front Neurol 2020; 11:48. [PMID: 32132964 PMCID: PMC7040490 DOI: 10.3389/fneur.2020.00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is associated with aspects of brain anatomy and activity. In this preliminary MRI study, we investigated differences in brain structure and in functional connectivity (FC) of brain regions in 35 participants with Crohn's disease (CD) and 21 healthy controls (HC). Voxel-based morphometry (VBM) analysis was performed to contrast CD and HC structural images. Region of interest (ROI) analyses were run to assess FC for resting-state network nodes. Independent component analysis (ICA) identified whole brain differences in FC associated with resting-state networks. Though no structural differences were found, ROI analyses showed increased FC between the frontoparietal (FP) network and salience network (SN), and decreased FC between nodes of the default mode network (DMN). ICA results revealed changes involving cerebellar (CER), visual (VIS), and SN components. Differences in FC associated with sex were observed for both ROI analysis and ICA. Taken together, these changes are consistent with an influence of CD on the brain and serve to direct future research hypotheses.
Collapse
Affiliation(s)
- Jennifer Kornelsen
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.,IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Alyssia Wilson
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jennifer S Labus
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kelcie Witges
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Charles N Bernstein
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
31
|
Hou J, Dodd K, Nair VA, Rajan S, Beniwal-Patel P, Saha S, Prabhakaran V. Alterations in brain white matter microstructural properties in patients with Crohn's disease in remission. Sci Rep 2020; 10:2145. [PMID: 32034257 PMCID: PMC7005825 DOI: 10.1038/s41598-020-59098-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Patients with inflammatory bowel disease have been shown to have abnormal brain morphometry or function, which are associated with psychological symptoms such as stress, depression or anxiety. The present work recruited 20 Crohn’s disease patients in remission (CDs) and 20 age-gender-handedness-education matched healthy controls (HCs) and compared their brain white matter microstructural properties using Diffusion Tensor Imaging (DTI). Additionally, we examined the correlations between the microstructural properties and cognition (verbal fluency language task, VF) and affect (anxiety) in both groups as well as disease duration in CDs. Results showed that CDs exhibited significant alterations in microstructural properties compared to HCs in various white matter tracts relevant to language function despite no significant difference in VF scores. Furthermore, CDs’ microstructural changes exhibited correlations with anxiety level and disease duration. These findings suggest that CD patients may experience changes in white matter microstructural properties which may be a biomarker of neuropsychiatric comorbidities of CD.
Collapse
Affiliation(s)
- Jiancheng Hou
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Keith Dodd
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Shruti Rajan
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Poonam Beniwal-Patel
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, USA
| | - Sumona Saha
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
32
|
Labanski A, Langhorst J, Engler H, Elsenbruch S. Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: A transdisciplinary challenge. Psychoneuroendocrinology 2020; 111:104501. [PMID: 31715444 DOI: 10.1016/j.psyneuen.2019.104501] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
The broad role of stress in the brain-gut axis is widely acknowledged, with implications for multiple prevalent health conditions that are characterized by chronic gastrointestinal symptoms. These include the functional gastrointestinal disorders (FGID), such as irritable bowel syndrome and functional dyspepsia, as well as inflammatory bowel diseases (IBD) like ulcerative colitis and Crohn's disease. Although the afferent and efferent pathways linking the gut and the brain are modulated by stress, the fields of neurogastroenterology and psychoneuroendocrinology (PNE)/ psychoneuroimmunology (PNI) remain only loosely connected. We aim to contribute to bringing these fields closer together by drawing attention to a fascinating, evolving research area, targeting an audience with a strong interest in the role of stress in health and disease. To this end, this review introduces the concept of the brain-gut axis and its major pathways, and provides a brief introduction to epidemiological and clinical aspects of FGIDs and IBD. From an interdisciplinary PNE/PNI perspective, we then detail current knowledge regarding the role of chronic and acute stress in the pathophysiology of FGID and IBD. We provide an overview of evidence regarding non-pharmacological treatment approaches that target central or peripheral stress mechanisms, and conclude with future directions, particularly those arising from recent advances in the neurosciences and discoveries surrounding the gut microbiota.
Collapse
Affiliation(s)
- Alexandra Labanski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jost Langhorst
- Chair for Integrative Medicine, University of Duisburg-Essen, Essen, Germany; Clinic for Internal and Integrative Medicine, Klinikum Bamberg, Bamberg, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
33
|
Thomann AK, Reindl W, Wüstenberg T, Kmuche D, Ebert MP, Szabo K, Wolf RC, Hirjak D, Niesler B, Griebe M, Thomann PA. Aberrant brain structural large-scale connectome in Crohn's disease. Neurogastroenterol Motil 2019; 31:e13593. [PMID: 30983094 DOI: 10.1111/nmo.13593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/18/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Disturbed brain-gut interactions and a bidirectional relationship between inflammation and psychiatric symptoms such as anxiety and depression are being discussed in patients with inflammatory bowel diseases (IBD). Alterations of brain structure and function in IBD have been reported with heterogeneous results. Whether these changes reflect independent localized deficits or rather a systematic disruption in the anatomical organization of large-scale brain networks remains unclear. The present study investigated the gray matter structural connectome in patients with Crohn's disease (CD). METHODS Sixty participants (30 with quiescent CD and 30 matched healthy controls [HC]) underwent high-resolution brain MRI at 3 Tesla. Well-established graph theoretical metrics were analyzed at the global and regional network level and compared between groups. KEY RESULTS The networks in both groups followed a small-world organization, that is, an architecture that is simultaneously highly segregated and integrated. However, transitivity, a measure of global network segregation, was significantly reduced in patients (P = 0.003). Regionally, patients showed a reduction of nodal betweenness centrality in the right insula and cuneus and the left superior frontal cortex and reduced nodal degree within the left-hemispheric cingulate and the left lateral and right medial orbitofrontal cortex. CONCLUSION AND INFERENCES These findings lend support to the hypothesis that CD is accompanied by alterations in both global network organization and regional connectivity. A deeper understanding of neural central networks in IBD may facilitate the development of complementary strategies in the treatment of "extraintestinal" comorbid conditions such as depression or anxiety.
Collapse
Affiliation(s)
- Anne K Thomann
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Dagny Kmuche
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristina Szabo
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany.,Interdisciplinary Center of Neuroscience, Heidelberg University, Heidelberg, Germany
| | - Martin Griebe
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp A Thomann
- Center for Mental Health, Odenwald District Healthcare Centre, Erbach, Germany
| |
Collapse
|
34
|
Nair VA, Dodd K, Rajan S, Santhanubosu A, Beniwal-Patel P, Saha S, Prabhakaran V. A Verbal Fluency Task-Based Brain Activation fMRI Study in Patients with Crohn's Disease in Remission. J Neuroimaging 2019; 29:630-639. [PMID: 31134699 DOI: 10.1111/jon.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE In this pilot study, we investigated functional brain activation changes in patients with Crohn's disease (CD) in remission compared to age and gender-matched healthy controls (HCs). METHODS Data from 20 patients with CD in remission (age range 19-63 years) and 20 HCs (matched in age and gender) were analyzed. Task functional MRI (fMRI) data were collected while participants performed a cognitive (phonemic verbal fluency) task in the scanner. All participants also performed the same task outside the scanner. RESULTS Task fMRI results showed greater bi-hemispheric activation in CD patients compared to controls. Because this pattern is commonly reported with normal aging, we performed further analyses to investigate fMRI responses in a subset of the younger CD patients (N = 12, age < = 35 years) compared to matched young HCs (age < = 35 years), and an older cohort of HCs (age > = 50 years). Results showed that task activation patterns were similar between young CD patients and older HCs, and that both groups differed significantly from younger HCs. Activation intensity in specific brain regions for patients was associated with disease duration. CONCLUSIONS These results suggest that CD patients in remission may show accelerated signs of aging in terms of brain responses to a typical cognitive task. Future work with larger sample size will need to replicate these results as well as investigate the influence of factors, such as chronicity of the disease and medication effects on task-associated brain activation patterns in this patient population.
Collapse
Affiliation(s)
- Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Keith Dodd
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Shruti Rajan
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Anu Santhanubosu
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Poonam Beniwal-Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Sumona Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
35
|
Hou J, Mohanty R, Nair VA, Dodd K, Beniwal-Patel P, Saha S, Prabhakaran V. Alterations in resting-state functional connectivity in patients with Crohn's disease in remission. Sci Rep 2019; 9:7412. [PMID: 31092855 PMCID: PMC6520362 DOI: 10.1038/s41598-019-43878-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/04/2019] [Indexed: 01/19/2023] Open
Abstract
Previous studies have found neural alterations in regions involved in cognitive and affective functions among Crohn's disease (CD) patients. The present work recruited 18 CD patients and 18 age-gender matched healthy controls (HC) and specifically compared differences in resting-state functional connectivity (RSFC) within the executive control network (ECN) which has been implicated in cognitive function and default mode network (DMN), which has been implicated in affective function. Additionally, we examined the correlations between RSFC in ECN and verbal fluency (VF) in both groups as well as RSFC in DMN and anxiety level in the CD group. Results showed significantly increased RSFC between the right middle frontal gyrus and right inferior parietal lobule in ECN, as well as increased RSFC between the right precuneus and right posterior cingulate cortex in DMN, among CD patients compared to HC. However, the correlations between ECN/DMN and behavioral scores in each group were not significant, which was possibility due to the limited sample size. These findings suggest that CD patients may experience changes in the connectivity patterns in ECN and DMN. Increased connectivity observed on these networks could be a potential biomarker of a neuropsychiatric manifestation of CD.
Collapse
Affiliation(s)
- Jiancheng Hou
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Rosaleena Mohanty
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Keith Dodd
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Poonam Beniwal-Patel
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, USA
| | - Sumona Saha
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
36
|
Neeb L, Bayer A, Bayer KE, Farmer A, Fiebach JB, Siegmund B, Volz MS. Transcranial direct current stimulation in inflammatory bowel disease patients modifies resting-state functional connectivity: A RCT. Brain Stimul 2019; 12:978-980. [PMID: 30905546 DOI: 10.1016/j.brs.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic pain is known to be associated with functional and structural changes in the brain. Inflammatory bowel disease (IBD) presents with chronic abdominal pain in almost 35% of all patients. This study investigates structural and functional changes in magnetic resonance imaging (MRI) after transcranial direct current stimulation (tDCS) applied to ameliorate pain in IBD. METHODS This phase-III, placebo-controlled, randomized study included 36 patients with IBD and chronic pain. MRI scans were performed before and following tDCS, which was applied for 5 days. RESULTS/CONCLUSION For the first time, this study revealed an association of changes in resting-state functional MRI and pain reduction in IBD. There was a significant increase in functional connectivity after active tDCS within the visual medial and the right frontoparietal network being connected with the amygdala, the insula, and the primary somatosensory cortex indicating central pain mechanisms in IBD. Moreover, tDCS offers a novel therapeutic strategy for abdominal pain.
Collapse
Affiliation(s)
- Lars Neeb
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Arian Bayer
- Medizinische Klinik M. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Kian-Elias Bayer
- Medizinische Klinik M. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Annabelle Farmer
- Medizinische Klinik M. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - Britta Siegmund
- Medizinische Klinik M. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Magdalena Sarah Volz
- Medizinische Klinik M. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin Institute of Health, 10178, Berlin, Germany.
| |
Collapse
|
37
|
Mallio CA, Piervincenzi C, Gianolio E, Cirimele V, Papparella LG, Marano M, Quintiliani L, Aime S, Carducci F, Parizel PM, Quattrocchi CC. Absence of dentate nucleus resting-state functional connectivity changes in nonneurological patients with gadolinium-related hyperintensity on T1
-weighted images. J Magn Reson Imaging 2019; 50:445-455. [DOI: 10.1002/jmri.26669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Carlo A. Mallio
- Departmental Faculty of Medicine and Surgery; Università Campus Bio-Medico di Roma; Rome Italy
| | - Claudia Piervincenzi
- Department of Physiology and Pharmacology, Neuroimaging Laboratory; Università La Sapienza; Rome Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences; Università di Torino; Torino Italy
| | - Vincenzo Cirimele
- Departmental Faculty of Medicine and Surgery; Università Campus Bio-Medico di Roma; Rome Italy
| | - Luigi G. Papparella
- Departmental Faculty of Medicine and Surgery; Università Campus Bio-Medico di Roma; Rome Italy
| | - Massimo Marano
- Departmental Faculty of Medicine and Surgery; Università Campus Bio-Medico di Roma; Rome Italy
| | - Livia Quintiliani
- Departmental Faculty of Medicine and Surgery; Università Campus Bio-Medico di Roma; Rome Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences; Università di Torino; Torino Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology, Neuroimaging Laboratory; Università La Sapienza; Rome Italy
| | - Paul M. Parizel
- Department of Radiology; Antwerp University Hospital; Edegem Belgium
| | - Carlo C. Quattrocchi
- Departmental Faculty of Medicine and Surgery; Università Campus Bio-Medico di Roma; Rome Italy
| |
Collapse
|