1
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
2
|
Sadraeian M, Zhang L, Aavani F, Biazar E, Jin D. Viral inactivation by light. ELIGHT 2022; 2:18. [PMID: 36187558 PMCID: PMC9510523 DOI: 10.1186/s43593-022-00029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Nowadays, viral infections are one of the greatest challenges for medical sciences and human society. While antiviral compounds and chemical inactivation remain inadequate, physical approaches based on irradiation provide new potentials for prevention and treatment of viral infections, without the risk of drug resistance and other unwanted side effects. Light across the electromagnetic spectrum can inactivate the virions using ionizing and non-ionizing radiations. This review highlights the anti-viral utility of radiant methods from the aspects of ionizing radiation, including high energy ultraviolet, gamma ray, X-ray, and neutron, and non-ionizing photo-inactivation, including lasers and blue light.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Le Zhang
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Dayong Jin
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong China
| |
Collapse
|
3
|
Rastogi A, Singh A, Naik K, Mishra A, Chaudhary S, Manohar R, Singh Parmar A. A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS - CoV- 2 (COVID - 19). J Mol Liq 2022; 362:119795. [PMID: 35832289 PMCID: PMC9265145 DOI: 10.1016/j.molliq.2022.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 is a pandemic caused by the SARS-CoV-2 virus, has instigated major health problems and prompted WHO to proclaim a worldwide medical emergency. The knowledge of SARS-CoV-2 fundamental structure, aetiology, its entrance mechanism, membrane hijacking and immune response against the virus, are important parameters to develop effective vaccines and medicines. Liquid crystals integrated nano-techniques and various nanoformulations were applied to tackle the severity of the virus. It was reported that nanoformulations have helped to enhance the effectiveness of presently accessible antiviral medicines or to elicit a fast immunological response against COVID-19 virus. Applications of liquid crystals, nanostructures, nanoformulations and nanotechnology in diagnosis, prevention, treatment and tailored vaccine administration against COVID-19 which will help in establishing the framework for a successful pandemic combat are reviewed. This review also focuses on limitations associated with liquid crystal-nanotechnology based systems and suggests the possible ways to address these limitations. Also, topical advancements in the ground of liquid crystals and nanostructures established diagnostics (nanosensor/biosensor) are discussed in detail.
Collapse
Affiliation(s)
- Ayushi Rastogi
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Department of Humanity and Applied Sciences (Physics), SMS College of Engineering, Institute of Technology, Lucknow 226001, Uttar Pradesh, India
| | - Abhilasha Singh
- Department of Physics, J.S.S Academy of Technical Education, Bangalore 560060, Karnataka, India
| | - Kaustubh Naik
- Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay - 400085, Mumbai, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh 160012, Punjab, India
| | - Rajiv Manohar
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | | |
Collapse
|
4
|
Ding S, Zhang J, Liu C, Li N, Zhang S, Wang Z, Xi M. Investigation of Plasmonic-Enhanced Solar Photothermal Effect of Au NR@PVDF Micro-/Nanofilms. ACS OMEGA 2022; 7:20750-20760. [PMID: 35755366 PMCID: PMC9219058 DOI: 10.1021/acsomega.2c01146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Gold nanospheres (Au NSs) and gold nanorods (Au NRs) are traditional noble metal plasmonic nanomaterials. Particularly, Au NRs with tunable longitudinal plasmon resonance from the visible to the near-infrared (NIR) range were suitable for highly efficient photothermal applications due to the extended light-receiving range. In this work, we synthesized Au NRs and Au NSs of similar volumes and subsequently developed them into Au NR/poly(vinylidene fluoride) (PVDF) and Au NS/PVDF nanofilms, both of which exhibited excellent solar photothermal performance evaluated by solar photothermal experiments. We found that the Au NR/PVDF nanofilm showed a higher solar photothermal performance than the Au NS/PVDF nanofilm. Through detailed analysis, such as morphological characterization, optical measurement, and finite element method (FEM) modeling, we found that the plasmonic coupling effects inside the aggregated Au NR nanoclusters contributed to the spectral blue shifts and intensified the photothermal performance. As compared to Au NS/PVDF nanofilms, the Au NR/PVDF nanofilm exhibited a higher efficient light-to-heat conversion rate because of the extended light-receiving range and high absorbance, as a result of the strong plasmonic interactions inside nanoclusters, which was further validated by monochromatic laser photothermal experiments and FEM simulations. Our work proved that the Au NRs have huge potential for plasmonic solar photothermal applications and are envisioned for novel plasmonic applications.
Collapse
Affiliation(s)
- Shenyi Ding
- School
of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jixiang Zhang
- School
of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Cui Liu
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Nian Li
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Shudong Zhang
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenyang Wang
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Min Xi
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- The
Key Laboratory Functional Molecular Solids Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
5
|
Molecular Dynamics Simulations of Shockwave Affected STMV Virus to Measure the Frequencies of the Oscillatory Response. ACOUSTICS 2022. [DOI: 10.3390/acoustics4010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acoustic shockwaves are of interest as a possible means of the selective inactivation of viruses. It has been proposed that such inactivation may be enhanced by driving the virus particles at frequencies matching the characteristic frequency corresponding to acoustic modes of the viral structures, setting up a resonant response. Characteristic frequencies of viruses have been previously studied through opto-mechanical techniques. In contrast to optical excitation, shockwaves may be able to probe acoustic modes without the limitation of optical selection rules. This work explores molecular dynamics simulations of shockwaves interacting with a single STMV virus structure, in full atomistic detail, in order to measure the frequency of the response of the overall structure. Shockwaves of varying energy were set up in a water box containing the STMV structure by assigning water molecules at the edge of the box with an elevated velocity inward—in the direction of the virus. It was found that the structure compressed and stretched in a periodic oscillation of frequency 65 ± 6.5 GHz. This measured frequency did not show strong dependency on the energy of the shockwave perturbing the structure, suggesting the frequency is a characteristic of the structure. The measured frequency is also consistent with values predicted from elastic theory. Additionally, it was found that subjecting the virus to repeated shockwaves led to further deformation of the structure and the magnitude of the overall deformation could be altered by varying the time delay between repeated shockwave pulses.
Collapse
|
6
|
Reinhard BM. Plasmonic Enhancement Strategies for Light-Driven Microbe Inactivation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2325-2335. [PMID: 36313122 PMCID: PMC9611023 DOI: 10.1021/acs.jpcc.1c09951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Light can be an effective antimicrobial. UV-C light, in particular, is now commonly used to sterilize inanimate surfaces, water, and even air. Highly energetic light can, however, also lead to unwanted photodamage and be hazardous. Consequently, conventional light-mediated microbe inactivation is not suitable for all applications. Plasmonic nanostructures can enhance electromagnetic fields in the visible range of the electromagnetic spectrum and show unique light-induced responses that can drive strong antimicrobial effects even for wavelengths that without plasmonic enhancement have little to no antimicrobial impact. Plasmonic nanostructures offer thus a potential strategy to expand the antimicrobial effect of light to wavelength and intensity ranges in which light-associated collateral damages are lower. This Perspective examines selected plasmon-enhanced antimicrobial strategies, elucidates the underlying physico-chemical mechanisms, and discusses applications.
Collapse
Affiliation(s)
- Björn M. Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, United States
- The Photonics Center, Boston University, Boston, MA 02215, United States
| |
Collapse
|
7
|
Tiwari AK, Mishra A, Pandey G, Gupta MK, Pandey PC. Nanotechnology: A Potential Weapon to Fight against COVID-19. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2100159. [PMID: 35440846 PMCID: PMC9011707 DOI: 10.1002/ppsc.202100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Indexed: 05/13/2023]
Abstract
The COVID-19 infections have posed an unprecedented global health emergency, with nearly three million deaths to date, and have caused substantial economic loss globally. Hence, an urgent exploration of effective and safe diagnostic/therapeutic approaches for minimizing the threat of this highly pathogenic coronavirus infection is needed. As an alternative to conventional diagnosis and antiviral agents, nanomaterials have a great potential to cope with the current or even future health emergency situation with a wide range of applications. Fundamentally, nanomaterials are physically and chemically tunable and can be employed for the next generation nanomaterial-based detection of viral antigens and host antibodies in body fluids as antiviral agents, nanovaccine, suppressant of cytokine storm, nanocarrier for efficient delivery of antiviral drugs at infection site or inside the host cells, and can also be a significant tool for better understanding of the gut microbiome and SARS-CoV-2 interaction. The applicability of nanomaterial-based therapeutic options to cope with the current and possible future pandemic is discussed here.
Collapse
Affiliation(s)
- Atul K. Tiwari
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| | - Anupa Mishra
- Department of MicrobiologyDr. R.M.L. Awadh UniversityAyodhyaUttar Pradesh224001India
- Department of MicrobiologySri Raghukul Mahila Vidya PeethCivil Line GondaUttar Pradesh271001India
| | - Govind Pandey
- Department of PaediatricsKing George Medical UniversityLucknowUttar Pradesh226003India
| | - Munesh K. Gupta
- Department of MicrobiologyInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUttar Pradesh221005India
| | - Prem C. Pandey
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| |
Collapse
|
8
|
Tatsuno I, Niimi Y, Tomita M, Terashima H, Hasegawa T, Matsumoto T. Mechanism of transient photothermal inactivation of bacteria using a wavelength-tunable nanosecond pulsed laser. Sci Rep 2021; 11:22310. [PMID: 34785646 PMCID: PMC8595719 DOI: 10.1038/s41598-021-01543-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
There is a great demand for novel disinfection technologies to inactivate various pathogenic viruses and bacteria. In this situation, ultraviolet (UVC) disinfection technologies seem to be promising because biocontaminated air and surfaces are the major media for disease transmission. However, UVC is strongly absorbed by human cells and protein components; therefore, there are concerns about damaging plasma components and causing dermatitis and skin cancer. To avoid these concerns, in this study, we demonstrate that the efficient inactivation of bacteria is achieved by visible pulsed light irradiation. The principle of inactivation is based on transient photothermal heating. First, we provide experimental confirmation that extremely high temperatures above 1000 K can be achieved by pulsed laser irradiation. Evidence of this high temperature is directly confirmed by melting gold nanoparticles (GNPs). Inorganic GNPs are used because of their well-established thermophysical properties. Second, we show inactivation behaviour by pulsed laser irradiation. This inactivation behaviour cannot be explained by a simple optical absorption effect. We experimentally and theoretically clarify this inactivation mechanism based on both optical absorption and scattering effects. We find that scattering and absorption play an important role in inactivation because the input irradiation is inherently scattered by the bacteria; therefore, the dose that bacteria feel is reduced. This scattering effect can be clearly shown by a technique that combines stained Escherichia coli and site selective irradiation obtained by a wavelength tunable pulsed laser. By measuring Live/Dead fluorescence microscopy images, we show that the inactivation attained by the transient photothermal heating is possible to instantaneously and selectively kill microorganisms such as Escherichia coli bacteria. Thus, this method is promising for the site selective inactivation of various pathogenic viruses and bacteria in a safe and simple manner.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yuna Niimi
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroshi Terashima
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| |
Collapse
|
9
|
Rathnasinghe R, Jangra S, Miorin L, Schotsaert M, Yahnke C, Garcίa-Sastre A. The virucidal effects of 405 nm visible light on SARS-CoV-2 and influenza A virus. Sci Rep 2021; 11:19470. [PMID: 34593848 PMCID: PMC8484654 DOI: 10.1038/s41598-021-97797-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
The germicidal potential of specific wavelengths within the electromagnetic spectrum is an area of growing interest. While ultra-violet (UV) based technologies have shown satisfactory virucidal potential, the photo-toxicity in humans coupled with UV associated polymer degradation limit their use in occupied spaces. Alternatively, longer wavelengths with less irradiation energy such as visible light (405 nm) have largely been explored in the context of bactericidal and fungicidal applications. Such studies indicated that 405 nm mediated inactivation is caused by the absorbance of porphyrins within the organism creating reactive oxygen species which result in free radical damage to its DNA and disruption of cellular functions. The virucidal potential of visible-light based technologies has been largely unexplored and speculated to be ineffective given the lack of porphyrins in viruses. The current study demonstrated increased susceptibility of lipid-enveloped respiratory pathogens of importance such as SARS-CoV-2 (causative agent of COVID-19) and influenza A virus to 405 nm, visible light in the absence of exogenous photosensitizers thereby indicating a potential alternative porphyrin-independent mechanism of visible light mediated viral inactivation. These results were obtained using less than expected irradiance levels which are considered safe for humans and commercially achievable. Our results support further exploration of the use of visible light technology for the application of continuous decontamination in occupied areas within hospitals and/or infectious disease laboratories, specifically for the inactivation of respiratory pathogens such as SARS-CoV-2 and Influenza A.
Collapse
Affiliation(s)
- Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Adolfo Garcίa-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Hasanzadeh A, Alamdaran M, Ahmadi S, Nourizadeh H, Bagherzadeh MA, Mofazzal Jahromi MA, Simon P, Karimi M, Hamblin MR. Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. J Control Release 2021; 336:354-374. [PMID: 34175366 PMCID: PMC8226031 DOI: 10.1016/j.jconrel.2021.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in early 2020 soon led to the global pandemic of Coronavirus Disease 2019 (COVID-19). Since then, the clinical and scientific communities have been closely collaborating to develop effective strategies for controlling the ongoing pandemic. The game-changing fields of recent years, nanotechnology and nanomedicine have the potential to not only design new approaches, but also to improve existing methods for the fight against COVID-19. Nanomaterials can be used in the development of highly efficient, reusable personal protective equipment, and antiviral nano-coatings in public settings could prevent the spread of SARS-CoV-2. Smart nanocarriers have accelerated the design of several therapeutic, prophylactic, or immune-mediated approaches against COVID-19. Some nanovaccines have even entered Phase IΙ/IIΙ clinical trials. Several rapid and cost-effective COVID-19 diagnostic techniques have also been devised based on nanobiosensors, lab-on-a-chip systems, or nanopore technology. Here, we provide an overview of the emerging role of nanotechnology in the prevention, diagnosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Alamdaran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Aref Bagherzadeh
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Perikles Simon
- Department of Sport Medicine, Disease Prevention and Rehabilitation, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Shehu IA, Auwal NM, Musa MK, Mukhtar A, Yusuf MS, Yau AA, Muhammad M, Baba Dala Y, Sani SA, Ahmad MS, Islam M. Innovative Nanotechnology a Boon for Fight Against Pandemic COVID–19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.651308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
COVID – 19 is a contagious disease caused by severe acute respiratory syndrome (SARS-CoV2). The rate at which COVID – 19-virus spread from epidemic to pandemic within a short period is quite alarming. As of July 2020, the Dashboard of the World Health Organization (WHO) recorded over 15 million COVID – 19 cases across 213 countries, with mortality of over 620,000. The governments and healthcare agencies responsible for mitigating the virus's spread have adopted several strategies to end the pandemic. However, all hands were on deck to establish the standard treatment modalities of SARS-CoV-2 through inventing new drugs, vaccine candidates, or repurposing the existing medicines and robust diagnostic tools, in addition to other technological innovations. Therefore, nanotechnology’s employment would play a vital role in bringing multidisciplinary ways of developing affordable, reliable, and powerful tools for diagnosis, in addition to personal protection and effective medicines. Additionally, nanosensors' application would significantly aid the diagnoses of the COVID–19 even on asymptomatic patients, and thus would be an essential means for determining its prevalence. Likewise, nanoscale fibers can optimize personal equipment protection and allow their reusability for medical and economic benefits. Accordingly, the literature was intensively reviewed by searching for the combinations of the research keywords in the official scientific databases such as Science Direct, PubMed, and Google Scholar. Hence, this research highlighted the perspective contributions of nanotechnology in the war against the COVID-19 pandemic.
Collapse
|
12
|
An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. NANOSCALE 2021; 13:3374-3411. [PMID: 33538743 PMCID: PMC8349509 DOI: 10.1039/d0nr08353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacterial, viral and fungal infections pose serious threats to human health and well-being. The continuous emergence of acute infectious diseases caused by pathogenic microbes and the rapid development of resistances against conventional antimicrobial drugs necessitates the development of new and effective strategies for the safe elimination of microbes in water, food or on surfaces, as well as for the inactivation of pathogenic microbes in human hosts. The need for new antimicrobials has triggered the development of plasmonic nano-antimicrobials that facilitate both light-dependent and -independent microbe inactivation mechanisms. This review introduces the relevant photophysical mechanisms underlying these plasmonic nano-antimicrobials, and provides an overview of how the photoresponses and materials properties of plasmonic nanostructures can be applied in microbial pathogen inactivation and sensing applications. Through a systematic analysis of the inactivation efficacies of different plasmonic nanostructures, this review outlines the current state-of-the-art in plasmonic nano-antimicrobials and defines the application space for different microbial inactivation strategies. The advantageous optical properties of plasmonic nano-antimicrobials also enhance microbial detection and sensing modalities and thus help to avoid exposure to microbial pathogens. Sensitive and fast plasmonic microbial sensing modalities and their theranostic and targeted therapeutic applications are discussed.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, MA 02215, USA and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Wang Y, Gao Z, Han Z, Liu Y, Yang H, Akkin T, Hogan CJ, Bischof JC. Aggregation affects optical properties and photothermal heating of gold nanospheres. Sci Rep 2021; 11:898. [PMID: 33441620 PMCID: PMC7806971 DOI: 10.1038/s41598-020-79393-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Laser heating of gold nanospheres (GNS) is increasingly prevalent in biomedical applications due to tunable optical properties that determine heating efficiency. Although many geometric parameters (i.e. size, morphology) can affect optical properties of individual GNS and their heating, no specific studies of how GNS aggregation affects heating have been carried out. We posit here that aggregation, which can occur within some biological systems, will significantly impact the optical and therefore heating properties of GNS. To address this, we employed discrete dipole approximation (DDA) simulations, Ultraviolet-Visible spectroscopy (UV-Vis) and laser calorimetry on GNS primary particles with diameters (5, 16, 30 nm) and their aggregates that contain 2 to 30 GNS particles. DDA shows that aggregation can reduce the extinction cross-section on a per particle basis by 17-28%. Experimental measurement by UV-Vis and laser calorimetry on aggregates also show up to a 25% reduction in extinction coefficient and significantly lower heating (~ 10%) compared to dispersed GNS. In addition, comparison of select aggregates shows even larger extinction cross section drops in sparse vs. dense aggregates. This work shows that GNS aggregation can change optical properties and reduce heating and provides a new framework for exploring this effect during laser heating of nanomaterial solutions.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Zhe Gao
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Huan Yang
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Taner Akkin
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Aydogdu MO, Altun E, Chung E, Ren G, Homer-Vanniasinkam S, Chen B, Edirisinghe M. Surface interactions and viability of coronaviruses. J R Soc Interface 2021; 18:20200798. [PMID: 33402019 PMCID: PMC7879773 DOI: 10.1098/rsif.2020.0798] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
The recently emerged coronavirus pandemic (COVID-19) has become a worldwide threat affecting millions of people, causing respiratory system related problems that can end up with extremely serious consequences. As the infection rate rises significantly and this is followed by a dramatic increase in mortality, the whole world is struggling to accommodate change and is trying to adapt to new conditions. While a significant amount of effort is focused on developing a vaccine in order to make a game-changing anti-COVID-19 breakthrough, novel coronavirus (SARS-CoV-2) is also developing mutations rapidly as it transmits just like any other virus and there is always a substantial chance of the invented antibodies becoming ineffective as a function of time, thus failing to inhibit virus-to-cell binding efficiency as the spiked protein keeps evolving. Hence, controlling the transmission of the virus is crucial. Therefore, this review summarizes the viability of coronaviruses on inanimate surfaces under different conditions while addressing the current state of known chemical disinfectants for deactivation of the coronaviruses. The review attempts to bring together a wide spectrum of surface-virus-cleaning agent interactions to help identify material selection for inanimate surfaces that have frequent human contact and cleaning procedures for effective prevention of COVID-19 transmission.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| | - Esra Altun
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| | - Etelka Chung
- Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Guogang Ren
- Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK
| | | | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
15
|
Kohmura Y, Igami N, Tatsuno I, Hasegawa T, Matsumoto T. Transient photothermal inactivation of Escherichia coli stained with visible dyes by using a nanosecond pulsed laser. Sci Rep 2020; 10:17805. [PMID: 33082410 PMCID: PMC7576124 DOI: 10.1038/s41598-020-74714-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Efficient inactivation of Escherichia coli (E. coli) under visible (532 nm) pulsed light irradiation was achieved by fusion of a visible light-absorbing dye with E. coli. Inactivation experiments showed that 3-log inactivation of E. coli was obtained within 20 min under a 50 kJ/cm2 dose. This treatment time and dose magnitude were 10 times faster and 100 times lower, respectively, than the values previously obtained by using a visible femtosecond laser. The mechanism of bacterial death was modeled based on a transient photothermal evaporation effect, where a quantitative evaluation of the temperature increase was given based on the heat transfer equation. As a result of this theoretical analysis, the maximum temperature of the bacteria was correlated with the absorption ratio, pulse energy, and surface-to-volume ratio. An increase in the surface-to-volume ratio with the decreasing size of organic structures leads to the possibility of efficient inactivation of viruses and bacteria under low-dose and non-harmful-visible pulsed light irradiation. Hence, this method can be applied in many fields, such as the instantaneous inactivation of pathogenic viruses and bacteria in a safe and simple manner without damaging large organic structures.
Collapse
Affiliation(s)
- Yuji Kohmura
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.,Lucir Incorporated, Tsukuba, Ibaraki, 300-2667, Japan
| | - Natsuho Igami
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan
| | - Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan. .,Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| |
Collapse
|
16
|
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu LG. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS NANO 2020; 14:6383-6406. [PMID: 32519842 PMCID: PMC7299399 DOI: 10.1021/acsnano.0c03697] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.
Collapse
Affiliation(s)
- Carsten Weiss
- Institute of Biological and Chemical
Systems, Biological Information Processing, Karlsruhe
Institute of Technology, Campus North,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,
Germany
| | - Marie Carriere
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, F-38000
Grenoble, France
| | - Laura Fusco
- Department of Chemical and
Pharmaceutical Sciences, University of
Trieste, 34127 Trieste,
Italy
- Cancer Research Department,
Sidra Medicine, Doha,
Qatar
| | - Ilaria Capua
- One Health Center of Excellence,
University of Florida, Gainesville,
Florida 32611, United States
| | - Jose Angel Regla-Nava
- Division of Inflammation Biology,
La Jolla Institute for Allergy and
Immunology, La Jolla, California 92037,
United States
| | - Matteo Pasquali
- Department of Chemical &
Biomolecular Engineering, Rice University,
Houston, Texas 77251, United States
- Department of Chemistry,
Rice University, Houston, Texas
77251, United States
- Department of Materials Science and
Nanoengineering, Rice University, Houston,
Texas 77251, United States
| | - James A. Scott
- Dalla Lana School of Public Health,
University of Toronto, 223 College
Street, M5T 1R4 Toronto, Ontario, Canada
| | - Flavia Vitale
- Department of Neurology,
Bioengineering, Physical Medicine & Rehabilitation, Center for
Neuroengineering and Therapeutics, University of
Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
- Center for Neurotrauma,
Neurodegeneration, and Restoration, Corporal Michael J.
Crescenz Veterans Affairs Medical Center,
Philadelphia, Pennsylvania 19104, United
States
| | | | - Cecilia Mattevi
- Department of Materials,
Imperial College London, London SW7
2AZ, United Kingdom
| | | | - Arben Merkoçi
- Nanobioelectronics & Biosensors
Group, Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and BIST, Campus UAB,
08193 Bellaterra, Spain
- ICREA -
Institució Catalana de Recerca i Estudis
Avançats, ES-08010 Barcelona,
Spain
| | - Ennio Tasciotti
- Orthopedics and Sports Medicine,
Houston Methodist Hospital, Houston,
Texas 77030, United States
- Department of Plastic Surgery,
MD Anderson, Houston, Texas 77230,
United States
| | - Açelya Yilmazer
- Stem Cell Institute,
Ankara University, Ankara, 06100
Turkey
- Department of Biomedical Engineering,
Faculty of Engineering, Ankara University,
Ankara, 06100 Turkey
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute,
and Materials Science and Engineering Department, Drexel
University, Philadelphia, Pennsylvania 19104,
United States
| | - Francesco Stellacci
- Institute of Materials,
Ecole Polytechnique Federale de Lausanne
(EPFL), 1015 Lausanne,
Switzerland
- Interfaculty Bioengineering Institute,
Ecole Polytechnique Fédérale de
Lausanne (EPFL), 1015 Lausanne,
Switzerland
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences,
University of Padua, 35122 Padova,
Italy
| |
Collapse
|
17
|
Liu Y, Kangas J, Wang Y, Khosla K, Pasek-Allen J, Saunders A, Oldenburg S, Bischof J. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. NANOSCALE 2020; 12:12346-12356. [PMID: 32490463 PMCID: PMC7513936 DOI: 10.1039/d0nr01614d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pulsed laser (ms, 1064 nm) gold nanoparticle (GNP) heating has been used recently to achieve fast (>10 000 000 °C min-1) warming of vitrified droplets using gold nanorods (GNRs) as photon-absorbers. To maximize the viability of biomaterials in vitrified droplets, the droplets must be warmed as uniformly as possible. A potential approach to such warming is to use an appropriate combination of photon-absorption and -scattering to distribute heat more uniformly throughout a droplet. To investigate this, 2 plasmonic gold nanorods (GNRs), 1 hollow gold nanoshell, and 2 silica-core gold nanoshells (GNSs) were synthesized and characterized under 1064 nm laser irradiation in water, propylene glycol, and protein-rich (egg white) solutions. Using a modified cuvette laser calorimetry experiment with complementary Monte Carlo modeling, the GNSs were found to have higher per-particle absorption and scattering cross sections, while the GNRs had higher photothermal conversion efficiency, absorption efficiency, and Au mass normalized absorption cross sections. In the characterization, the GNSs with larger scattering-to-absorption ratios could have ∼30% over-estimation of photothermal conversion efficiency if scattering and reabsorption inside the solution were not considered, while GNRs with lower ratios were less impacted. Combined Monte Carlo and COMSOL simulations were used to predict the specific absorption rate (W m-3) and heating behavior of GNP-loaded hemispherical droplets, thereby demonstrating that the GNS case with higher scattering-to-absorption ratio achieved more uniform heating than the GNR case. Interestingly, further tuning of the scattering and absorption coefficients of the hemispherical GNP-loaded droplet within the model suggests the ability to obtain an optimal scattering-to-absorption ratio for uniform heating. These results show the importance of considering the reabsorption of scattered light to accurately characterize the photothermal conversion efficiency of GNP solutions during laser irradiation. We also show that the relative scattering and absorption properties of the nanoparticles can be designed to promote both rapid and uniform laser rewarming of vitrified droplets for application in cryopreservation.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Berchtikou A, Greschner AA, Tijssen P, Gauthier MA, Ozaki T. Accelerated inactivation of M13 bacteriophage using millijoule femtosecond lasers. JOURNAL OF BIOPHOTONICS 2020; 13:e201900001. [PMID: 31654474 DOI: 10.1002/jbio.201900001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 05/20/2023]
Abstract
Irradiation of femtosecond (fs) pulse lasers in the visible and near-infrared ranges have been proposed as a promising approach for inactivating viruses. However, in order to achieve significant virus inactivation, past works have required relatively long irradiation times (1 hour or longer), even for small volumes. Given its advantages compared with other techniques, there is an urgent need to shorten the time required to inactivate viruses using fs laser technology. In this study, we investigate the inactivation of purified M13 bacteriophage in phosphate-buffered saline with large active volume (1 cm3 ), and short exposure time (several minutes), using lasers with 20 mJ/pulse energy at various wavelengths (800, 400 nm or both 800 and 400 nm combined). For an exposure time of 15 and 2 minute, the use of a 400 nm wavelength laser results in a high load reduction of 5.8 ± 0.3 and 2.9 ± 0.15, respectively, on the log10 scale of viability. We show that virus inactivation using the 400 nm laser is much more efficient compared with that using an 800 nm laser, or the simultaneous irradiation of 400 and 800 nm lasers. Higher pathogen inactivation is observed for lasers with shorter pulse duration, whereas at longer pulse durations, the inactivation is reduced. For millijoule-energy fs laser irradiation, the M13 bacteriophage inactivation, via the reduction of the functionality of M13 bacteriophages, is accompanied with relatively small amounts of genetic damage.
Collapse
Affiliation(s)
- Aziz Berchtikou
- INRS-Centre Énergie Matériaux Télécommunications, Québec, Canada
| | | | - Peter Tijssen
- INRS-Centre Institut Armand-Frappier, Québec, Canada
| | - Marc A Gauthier
- INRS-Centre Énergie Matériaux Télécommunications, Québec, Canada
| | - Tsuneyuki Ozaki
- INRS-Centre Énergie Matériaux Télécommunications, Québec, Canada
| |
Collapse
|
19
|
An X, Naowarojna N, Liu P, Reinhard BM. Hybrid Plasmonic Photoreactors as Visible Light-Mediated Bactericides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:106-116. [PMID: 31800205 DOI: 10.1021/acsami.9b14834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic compounds and complexes, such as tris(bipyridine)ruthenium(II), [Ru(bpy)3]2+, have recently attracted attention as light-mediated bactericides that can help to address the need for new antibacterial strategies. We demonstrate in this work that the bactericidal efficacy of [Ru(bpy)3]2+ and the control of its antibacterial function can be significantly enhanced through combination with a plasmonic nanoantenna. We report strong, visible light-controlled bacterial inactivation with a nanocomposite design that incorporates [Ru(bpy)3]2+ as a photocatalyst and a Ag nanoparticle (NP) core as a light-concentrating nanoantenna into a plasmonic hybrid photoreactor. The hybrid photoreactor platform is facilitated by a self-assembled lipid membrane that encapsulates the Ag NP and binds the photocatalyst. The lipid membrane renders the nanocomposite biocompatible in the absence of resonant illumination. Upon illumination, the plasmon-enhanced photoexcitation of the metal-to-ligand charge-transfer band of [Ru(bpy)3]2+ prepares the reactive excited state of the complex that oxidizes the nanocomposite membrane and increases its permeability. The photooxidation induces the release of [Ru(bpy)3]2+, Ag+, and peroxidized lipids into the ambient medium, where they interact synergistically to inactivate bacteria. We measured a 7 order of magnitude decrease in Gram-positive Arthrobacter sp. and a 4 order of magnitude decrease in Gram-negative Escherichia coli colony forming units with the photoreactor bactericides after visible light illumination for 1 h. In both cases, the photoreactor exceeds the bactericidal standard of a log reduction value of 3 and surpasses the antibacterial effect of free Ag NPs or [Ru(bpy)3]2+ by >4 orders of magnitude. We also implement the inactivation of a bacterial thin film in a proof-of-concept study.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Nathchar Naowarojna
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Pinghua Liu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|