1
|
Ducros L, Lavoie-Rochon AS, Pichaud N, Lamarre SG. Metabolic rate and mitochondrial physiology adjustments in Arctic char (Salvelinus alpinus) during cyclic hypoxia. J Exp Biol 2024; 227:jeb247834. [PMID: 39319396 DOI: 10.1242/jeb.247834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Diel fluctuations of oxygen levels characterize cyclic hypoxia and pose a significant challenge to wild fish populations. Although recent research has been conducted on the effects of hypoxia and reoxygenation, mechanisms by which fish acclimatize to cyclic hypoxia remain unclear, especially in hypoxia-sensitive species. We hypothesized that acclimation to cyclic hypoxia requires a downregulation of aerobic metabolic rate and an upregulation of mitochondrial respiratory capacities to mitigate constraints on aerobic metabolism and the elevated risk of oxidative stress upon reoxygenation. We exposed Arctic char (Salvelinus alpinus) to 10 days of cyclic hypoxia and measured their metabolic rate and mitochondrial physiology to determine how they cope with fluctuating oxygen concentrations. We measured oxygen consumption as a proxy of metabolic rate and observed that Arctic char defend their standard metabolic rate but decrease their routine metabolic rate during hypoxic phases, presumably through the repression of spontaneous swimming activities. At the mitochondrial level, acute cyclic hypoxia increases oxygen consumption without ADP (CI-LEAK) in the liver and heart. Respiration in the presence of ADP (OXPHOS) temporarily increases in the liver and decreases in the heart. Cytochrome c oxidase oxygen affinity also increases at day 3 in the liver. However, no change occurs in the brain, which is likely primarily preserved through preferential perfusion (albeit not measured in this study). Finally, in vivo measurements of reactive oxygen species revealed the absence of an oxidative burst in mitochondria in the cyclic hypoxia group. Our study shows that Arctic char acclimatize to cyclic hypoxia through organ-specific mitochondrial adjustments.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - A S Lavoie-Rochon
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - N Pichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
2
|
Liu K, Xie N. Full-length transcriptome assembly of black amur bream (Megalobrama terminalis) as a reference resource. Mol Biol Rep 2024; 51:1101. [PMID: 39470845 DOI: 10.1007/s11033-024-10056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND The genus Megalobrama holds significant economic value in China, with M. terminalis (Black Amur bream) ranking second in production within this group. However, lacking comprehensive genomic and transcriptomic data has impeded research progress. This study aims to fill this gap through an extensive transcriptomic analysis of M. terminalis. METHODS AND RESULTS We utilized PacBio Isoform Sequencing to generate 558,998 subreads, totaling 45.52 Gb, which yielded 22,141 transcripts after rigorous filtering and clustering. Complementary Illumina short-read sequencing corrected 967,114 errors across these transcripts. Our analysis identified 12,426 non-redundant isoforms, with 11,872 annotated in various databases. Functional annotation indicated 11,841 isoforms matched entries in the NCBI non-redundant protein sequences database. Gene Ontology analysis categorized 10,593 isoforms, revealing strong associations with cellular processes and binding functions. Additionally, 8203 isoforms were mapped to pathways in the Kyoto Encyclopedia of Genes and Genomes, highlighting significant involvement in immune system processes and complement cascades. We notably identified key immune molecules such as alpha-2-macroglobulin and complement component 3, each with multiple isoforms, underscoring their potential roles in the immune response. Our analysis also uncovered 853 alternative splicing events, predominantly involving retained introns, along with 672 transcription factors and 426 long non-coding RNAs. CONCLUSIONS The high-quality reference transcriptome generated in this study provides a valuable resource for comparative genomic studies within the Megalobrama genus, supporting future research to enhance aquaculture stocks.
Collapse
Affiliation(s)
- Kai Liu
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China.
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| |
Collapse
|
3
|
Gao D, Wu Y, Zhan Y, Peng L, Zhao L, Cao S, Xue Z, Wang W. Chronic hypoxia drives the occurrence of ferroptosis in liver of fat greening (Hexagrammos otakii) by activating HIF-1α and promoting iron production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117135. [PMID: 39353379 DOI: 10.1016/j.ecoenv.2024.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Hypoxia caused by global climate change and human activities has become a growing concern eliciting serious effect and damages to aquatic animals. Hexagrammos otakii is usually a victim of hypoxia which caused by high density aquaculture and high nutrient input. The mechanism underlying ferroptosis regulation after hypoxia-stress in liver of H. otakii, however, remains elusive. METHODS For a duration of 15 days, expose the H. otakii to low concentrations of dissolved oxygen (3.4 ± 0.2 mg/L). Detecting alterations in the H. otakii liver tissue by chemical staining, immunohistochemistry, and electron microscopy. The expression variations of relevant genes in the liver of the H. otakii were simultaneously detected using Western blot and qPCR. A correlation analysis was performed between HIF-1α and iron ion expression in the liver of H. otakii following hypoxic stress. RESULTS In this study, we conducted the whole ferroptosis integrated analysis of H. otakii under chronic hypoxic condition. Reactive oxygen species (ROS) are highly accumulated under the hypoxia treatment (Superoxide Dismutase, SOD; Catalase, CAT), and which results in a significantly enhanced of lipid peroxidation (Lipid Peroxidation, LPO; Malondialdehyde, MDA; Aminotransferase, AST; Alanine aminotransferase, ALT) in liver tissue. The HIF-1α signaling is activated to cope with the hypoxia stress through strategies including changing iron ion concentration (Fe3+ and TFR1) to breaking the oxidation balance (GSH and GSH-Px), and enhancing ferroptosis gene expression (GPX4). The expression of genes related to ferroptosis pathway (DMT1, FTH1, STEAP3, ACSL4, γ-GCS, SLC7A11) is significantly upregulated and associated to the expression of iron and HIF-1α. CONCLUSIONS It is demonstrated that the HIF-1α/Fe3+/ROS/GPX4 axis is involved in promoting ferroptosis in fat greening hepatocytes following hypoxia-stress. Ultimately, our findings unveil a process by which hypoxic stress strongly encourages ferroptosis by triggering HIF-1α and boosting iron synthesis.
Collapse
Affiliation(s)
- Dongxu Gao
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yiting Wu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lei Peng
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Ling Zhao
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shengnan Cao
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
4
|
Ott BD, Hulse-Kemp AM, Duke MV, Griffin MJ, Peterson BC, Scheffler BE, Torrans EL, Allen PJ. Hypothalamic transcriptome response to simulated diel earthen pond hypoxia cycles in channel catfish ( Ictalurus punctatus). Physiol Genomics 2024; 56:519-530. [PMID: 38808773 DOI: 10.1152/physiolgenomics.00007.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Commercial culture of channel catfish (Ictalurus punctatus) occurs in earthen ponds that are characterized by diel swings in dissolved oxygen concentration that can fall to severe levels of hypoxia, which can suppress appetite and lead to suboptimal growth. Given the significance of the hypothalamus in regulating these processes in other fishes, an investigation into the hypothalamus transcriptome was conducted to identify specific genes and expression patterns responding to hypoxia. Channel catfish in normoxic water were compared with catfish subjected to 12 h of hypoxia (20% oxygen saturation; 1.8 mg O2/L; 27°C) followed by 12 h of recovery in normoxia to mimic 24 h in a catfish aquaculture pond. Fish were sampled at 0-, 6-, 12-, 18-, and 24-h timepoints, with the 6- and 12-h samplings occurring during hypoxia. A total of 190 genes were differentially expressed during the experiment, with most occurring during hypoxia and returning to baseline values within 6 h of normoxia. Differentially expressed genes were sorted by function into Gene Ontology biological processes and revealed that most were categorized as "response to hypoxia," "sprouting angiogenesis," and "cellular response to xenobiotic stimulus." The patterns of gene expression reported here suggest that transcriptome responses to hypoxia are broad and quickly reversibly with the onset of normoxia. Although no genes commonly reported to modulate appetite were found to be differentially expressed in this experiment, several candidates were identified for future studies investigating the interplay between hypoxia and appetite in channel catfish, including adm, igfbp1a, igfbp7, and stc2b.NEW & NOTEWORTHY Channel catfish are an economically important species that experience diel episodic periods of hypoxia that can reduce appetite. This is the first study to investigate their transcriptome from the hypothalamus in a simulated 24-h span in a commercial catfish pond, with 12 h of hypoxia and 12 h of normoxia. The research revealed functional groups of genes relating to hypoxia, angiogenesis, and glycolysis as well as individual target genes possibly involved in appetite regulation.
Collapse
Affiliation(s)
- Brian D Ott
- Warmwater Aquaculture Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Mary V Duke
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Matt J Griffin
- Aquatic Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, United States
| | - Brian C Peterson
- National Cold Water Marine Aquaculture Center, Agricultural Research Service, United States Department of Agriculture, Franklin, Maine, United States
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Eugene L Torrans
- Warmwater Aquaculture Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, Mississippi, United States
| | - Peter J Allen
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, Mississippi, United States
| |
Collapse
|
5
|
Ning X, Han B, Shi Y, Qian X, Zhang K, Yin S. Hypoxia stress induces complicated miRNA responses in the gill of Chinese mitten crab (Eriocheir sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106619. [PMID: 37379777 DOI: 10.1016/j.aquatox.2023.106619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Hypoxia caused by global climate change and human activities has become a growing concern eliciting serious damages to aquatic animals. microRNAs (miRNAs) as non-coding regulatory RNAs exert vital effects on hypoxia responses. Chinese mitten crab (Eriocheir sinensis) with the habitat on the sediment surface or the pond bottom is susceptible to oxygen deficiency. However, whether miRNAs are involved in the response of the crabs to hypoxia stress remains enigmas. In this study, we conducted the whole transcriptome-based miRNA-mRNA integrated analysis of Chinese mitten crab gill under hypoxic condition for 3 h and 24 h We found that the acute hypoxia induces complex miRNA responses with the extensive influences on their target genes that engaged in various bio-processes, especially those associated with immunity, metabolism and endocrine. The impact of hypoxia on crab miRNAs is severer, as the exposure lasts longer. In response to the dissolved oxygen fluctuation, the HIF-1 signaling is activated by miRNAs to cope with the hypoxia stress through strategies including balancing inflammatory and autophagy involved in immunity, changing metabolism to reducing energy consumption, and enhancing oxygen-carrying and delivering capacities. The miRNAs and their corresponding target genes engaged in hypoxia response were intertwined into an intricate network. Moreover, the top hub molecular, miR-998-y and miR-275-z, discovered from the network might serve as biomarkers for hypoxia response in crabs. Our study provides the first systemic miRNA profile of Chinese mitten crab induced by hypoxia stress, and the identified miRNAs and the interactive network add new insights into the mechanism of hypoxia response in crabs.
Collapse
Affiliation(s)
- Xianhui Ning
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Bing Han
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yaxuan Shi
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Kai Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
6
|
Cao Q, Zhang H, Li T, He L, Zong J, Shan H, Huang L, Zhang Y, Liu H, Jiang J. Profiling miRNAs of Teleost Fish in Responses to Environmental Stress: A Review. BIOLOGY 2023; 12:biology12030388. [PMID: 36979079 PMCID: PMC10045198 DOI: 10.3390/biology12030388] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
miRNAs are a class of endogenous and evolutionarily conserved noncoding short RNA molecules that post-transcriptionally regulate gene expression through sequence-specific interactions with mRNAs and are capable of controlling gene expression by binding to miRNA targets and interfering with the final protein output. The miRNAs of teleost were firstly reported in zebrafish development, but there are recent studies on the characteristics and functions of miRNAs in fish, especially when compared with mammals. Environmental factors including salinity, oxygen concentration, temperature, feed, pH, environmental chemicals and seawater metal elements may affect the transcriptional and posttranscriptional regulators of miRNAs, contributing to nearly all biological processes. The survival of aquatic fish is constantly challenged by the changes in these environmental factors. Environmental factors can influence miRNA expression, the functions of miRNAs and their target mRNAs. Progress of available information is reported on the environmental effects of the identified miRNAs, miRNA targets and the use of miRNAs in fish.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- MARBEC, University Montpellier, CNRS, IFREMER, IRD, 34090 Montpellier, France
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| | - Hailong Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lishi Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| |
Collapse
|
7
|
Adzigbli L, Sokolov EP, Wimmers K, Sokolova IM, Ponsuksili S. Effects of hypoxia and reoxygenation on mitochondrial functions and transcriptional profiles of isolated brain and muscle porcine cells. Sci Rep 2022; 12:19881. [PMID: 36400902 PMCID: PMC9674649 DOI: 10.1038/s41598-022-24386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Oxygen fluctuations might occur in mammalian tissues under physiological (e.g. at high altitudes) or pathological (e.g. ischemia-reperfusion) conditions. Mitochondria are the key target and potential amplifiers of hypoxia-reoxygenation (H-R) stress. Understanding the mitochondrial responses to H-R stress is important for identifying adaptive mechanisms and potential therapeutic solutions for pathologies associated with oxygen fluctuations. We explored metabolic response to H-R stress in two tissue types (muscle and brain) with different degrees of hypoxia tolerance in a domestic pig Sus scrofa focusing on the cellular responses independent of the systemic regulatory mechanisms. Isolated cells from the skeletal muscle (masseter) and brain (thalamus) were exposed to acute short-term (15 min) hypoxia followed by reoxygenation. The mitochondrial oxygen consumption, reactive oxygen species (ROS) production rates and transcriptional profiles of hypoxia-responsive mRNA and miRNA were determined. Mitochondria of the porcine brain cells showed a decrease in the resting respiration and ATP synthesis capacity whereas the mitochondria from the muscle cells showed robust respiration and less susceptibility to H-R stress. ROS production was not affected by the short-term H-R stress in the brain or muscle cells. Transcriptionally, prolyl hydroxylase domain protein EGLN3 was upregulated during hypoxia and suppressed during reoxygenation in porcine muscle cells. The decline in EGLN3 mRNA during reoxygenation was accompanied by an upregulation of hypoxia-inducible factor subunit α (HIF1A) transcripts in the muscle cells. However, in the brain cells, HIF1A mRNA levels were suppressed during reoxygenation. Other functionally important transcripts and miRNAs involved in antioxidant response, apoptosis, inflammation, and substrate oxidation were also differentially expressed between the muscle and brain cells. Suppression of miRNA levels during acute intermittent hypoxia was stronger in the brain cells affecting ~ 55% of all studied miRNA transcripts than in the muscle cells (~ 25% of miRNA) signifying transcriptional derepression of the respective mRNA targets. Our study provides insights into the potential molecular and physiological mechanisms contributing to different hypoxia sensitivity of the studied tissues and can serve as a starting point to better understand the biological processes associated with hypoxia stress, e.g. during ischemia and reperfusion.
Collapse
Affiliation(s)
- Linda Adzigbli
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.
| |
Collapse
|
8
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
9
|
Stunf Pukl S. Are miRNAs Dynamic Biomarkers in Keratoconus? A Review of the Literature. Genes (Basel) 2022; 13:genes13040588. [PMID: 35456395 PMCID: PMC9025197 DOI: 10.3390/genes13040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Aim: A review of miRNA (microRNA) profiling studies in keratoconus. Methods: Literature search strategy—PubMed central database, using miRNA or microRNA and keratoconus as keywords. Results: Eleven experimental or clinical studies on humans regarding miRNA and keratoconus, published in English between 2009 and 2020 were retrieved. Conclusion: The publications regarding the role of miRNAs in keratoconus are scarce and diverse but provide some valuable information about potential new mechanisms of keratoconus development and progression. The cornea expresses almost 300 different miRNAs, 18 of which are specific, and miR-184 is by far the most abundant, with expression restricted to central basal and suprabasal epithelial cells. Mutations in the seed region of MIR184 were proved to be rare and nonspecific in patients with isolated keratoconus. Overall, in keratoconus, a total of 29 miRNAs were upregulated, and 11 were downregulated. It appeared that miR-143-3p, miR-182-5p, and miR-92a-3p were highly expressed, while the miRNAs connected to cell–cell junction, cell division, and motor activity were downregulated. In less advanced forms, altered expression of four miRNAs—miR-151a-3p, miR-194-5p, miR-195-5p, miR-185-5p—was proved in the cone epithelium; in contrast, in advanced keratoconus, the expression of miR-151a-3p and miR-194-5p remained altered, changes in the expression of miR-195 and miR-185 were not reported, and the expression of miR-138-5p, miR-146b-5p, miR-28-5p, and miR-181a-2-3p was also altered in the corneal epithelium. Keratoconus is a dynamic process of corneal stromal thinning that might result from a dynamic miRNA expression in the corneal epithelium exposed to environmental and behavioral factors causing repetitive traumas. Further experimental studies are needed to prove this hypothesis.
Collapse
Affiliation(s)
- Spela Stunf Pukl
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; ; Tel.: +386-41-382-487
- Eye Hospital, University Clinical Center Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Li J, Zhang G, Yin D, Li Y, Zhang Y, Cheng J, Zhang K, Ji J, Wang T, Jia Y, Yin S. Integrated application of multi-omics strategies provides insights into the environmental hypoxia response in Pelteobagrus vachelli muscle. Mol Cell Proteomics 2022; 21:100196. [PMID: 35031490 PMCID: PMC8938323 DOI: 10.1016/j.mcpro.2022.100196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Increasing pressures on aquatic ecosystems because of pollutants, nutrient enrichment, and global warming have severely depleted oxygen concentrations. This sudden and significant lack of oxygen has resulted in persistent increases in fish mortality rates. Revealing the molecular mechanism of fish hypoxia adaptation will help researchers to find markers for hypoxia induced by environmental stress. Here, we used a multiomics approach to identify several hypoxia-associated miRNAs, mRNAs, proteins, and metabolites involved in diverse biological pathways in the muscles of Pelteobagrus vachelli. Our findings revealed significant hypoxia-associated changes in muscles over 4 h of hypoxia exposure and discrete tissue-specific patterns. We have previously reported that P. vachelli livers exhibit increased anaerobic glycolysis, heme synthesis, erythropoiesis, and inhibit apoptosis when exposed to hypoxia for 4 h. However, the opposite was observed in muscles. According to our comprehensive analysis, fishes show an acute response to hypoxia, including activation of catabolic pathways to generate more energy, reduction of biosynthesis to decrease energy consumption, and shifting from aerobic to anaerobic metabolic contributions. Also, we found that hypoxia induced muscle dysfunction by impairing mitochondrial function, activating inflammasomes, and apoptosis. The hypoxia-induced mitochondrial dysfunction enhanced oxidative stress, apoptosis, and further triggered interleukin-1β production via inflammasome activation. In turn, interleukin-1β further impaired mitochondrial function or apoptosis by suppressing downstream mitochondrial biosynthesis–related proteins, thus resulting in a vicious cycle of inflammasome activation and mitochondrial dysfunction. Our findings contribute meaningful insights into the molecular mechanisms of hypoxia, and the methods and study design can be utilized across different fish species. First multiomics analysis of mRNA, miRNA, protein, and metabolite in fishes. Liver and muscle were tissue-specific induced by hypoxia. About 70 genes and 16 miRNAs related to hypoxia adaptation were detected. Hypoxia affects muscle function by mediating energy metabolism via HIF pathway.
Collapse
Affiliation(s)
- Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China
| | - Guosong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China.
| | - Danqing Yin
- School of Computer Science, University of Sydney, Sydney, 2006, Australia
| | - Yao Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yiran Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jinghao Cheng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yongyi Jia
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Huang JS, Li HJ, Guo ZX, Zhang JD, Wang WZ, Wang ZL, Amenyogbe E, Chen G. Identification and expression analysis of cobia (Rachycentron canadum) liver-related miRNAs under hypoxia stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1951-1967. [PMID: 34633578 DOI: 10.1007/s10695-021-01017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
At present, due to the influence of global warming, seasonal change, diurnal variation, and eutrophication of the water body, hypoxia has become one of the major factors limiting the stable development of cobia (Rachycentron canadum) culture. In this study, the miRNAs involved in hypoxia stress were screened, and the target genes of miRNAs were annotated and analyzed. The results showed that a total of 184 conservative microRNA (miRNA) and 121 newly predicted miRNA were obtained by sequencing the liver of control (C) and hypoxic (dissolved oxygen, DO (2.64 ± 0.25) mg/L; 3 h) (S) groups. The pathways involved in energy metabolism included starch and sucrose metabolism (ko00500), glycosaminoglycan degradation (ko00531), and galactose metabolism (ko00052). The results indicate that the body maintains physiological activities by regulating some important pathways at the transcriptional level under hypoxia stress, such as the conversion of aerobic metabolism and anaerobic metabolism, the reduction of energy consumption, and the promotion of red blood cell proliferation to maintain the homeostasis of the body.
Collapse
Affiliation(s)
- Jian-Sheng Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Hong-Juan Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhi-Xiong Guo
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jian-Dong Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Wei-Zheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhong-Liang Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Eric Amenyogbe
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Gang Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China.
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China.
| |
Collapse
|
12
|
Dieng MM, Diawara A, Manikandan V, Tamim El Jarkass H, Sermé SS, Sombié S, Barry A, Coulibaly SA, Diarra A, Drou N, Arnoux M, Yousif A, Tiono AB, Sirima SB, Soulama I, Idaghdour Y. Integrative genomic analysis reveals mechanisms of immune evasion in P. falciparum malaria. Nat Commun 2020; 11:5093. [PMID: 33037226 PMCID: PMC7547729 DOI: 10.1038/s41467-020-18915-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023] Open
Abstract
The mechanisms behind the ability of Plasmodium falciparum to evade host immune system are poorly understood and are a major roadblock in achieving malaria elimination. Here, we use integrative genomic profiling and a longitudinal pediatric cohort in Burkina Faso to demonstrate the role of post-transcriptional regulation in host immune response in malaria. We report a strong signature of miRNA expression differentiation associated with P. falciparum infection (127 out of 320 miRNAs, B-H FDR 5%) and parasitemia (72 miRNAs, B-H FDR 5%). Integrative miRNA-mRNA analysis implicates several infection-responsive miRNAs (e.g., miR-16-5p, miR-15a-5p and miR-181c-5p) promoting lymphocyte cell death. miRNA cis-eQTL analysis using whole-genome sequencing data identified 1,376 genetic variants associated with the expression of 34 miRNAs (B-H FDR 5%). We report a protective effect of rs114136945 minor allele on parasitemia mediated through miR-598-3p expression. These results highlight the impact of post-transcriptional regulation, immune cell death processes and host genetic regulatory control in malaria.
Collapse
Affiliation(s)
- Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Hala Tamim El Jarkass
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Samuel Sindié Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nizar Drou
- Bioinformatics Core, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ayman Yousif
- Bioinformatics Core, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
13
|
Qi M, Wu Q, Liu T, Hou Y, Miao Y, Hu M, Liu Q. Hepatopancreas Transcriptome Profiling Analysis Reveals Physiological Responses to Acute Hypoxia and Reoxygenation in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Front Physiol 2020; 11:1110. [PMID: 33041847 PMCID: PMC7518031 DOI: 10.3389/fphys.2020.01110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
The Qingtian paddy field carp (Cyprinus carpio var qingtianensis) is a local carp cultivated in the rice field of Qingtian county, Zhejiang province, China. Its high tolerance to hypoxia makes it an ideal organism for studying the molecular regulation mechanism during hypoxia process as well as reoxygenation following hypoxia in fish. In this study, we counted the differentially expressed genes (DEGs) altered during hypoxic exposure and reoxygenation process. The results indicated that 2236 genes (1506 up-regulated genes and 730 down-regulated genes) were differentially expressed between the control and hypoxic groups. The results from Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that 1152 of 2236 genes were enriched, and those genes participated in energy metabolism, reactive oxygen species (ROS) elimination, acceleration of cell apoptosis, inhibition of growth, and other processes. We found activation of the pentose phosphate pathway in hypoxia treatment, suggesting that carbohydrates not only provide energy for metabolism but also provide NADPH for protecting the body from oxidative damage and ribosomes for promoting RNA synthesis. During reoxygenation, 4509 genes (1865 up-regulated genes and 2644 down-regulated genes) were differentially expressed. The results of KEGG enrichment analysis indicated that 2392 of 4509 genes were enriched, and participated in pyruvate and lactic acid metabolism, synthesis of amino acids and lipids, inhibition of cell apoptosis, regulation of cell growth and differentiation, and other processes. These differentially expressed genes effectively alleviate the body acidosis and promote the normal growth and development of the body. Through the analysis of KEGG pathway enrichment, we observed that the physiological regulation of Qingtian paddy field carp during the processes of hypoxia and reoxygenation is not a simple and reversible process. This work first reported the adaptive mechanism of hypoxia and the recovery mechanism of reoxygenation after hypoxia in common carp, and also provided new insights for the physiological regulation of fish under hypoxia treatment.
Collapse
Affiliation(s)
- Ming Qi
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Qianqian Wu
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Tao Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yiling Hou
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yixin Miao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Menghong Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Qiang J, Zhu XW, He J, Tao YF, Bao JW, Zhu JH, Xu P. miR-34a Regulates the Activity of HIF-1a and P53 Signaling Pathways by Promoting GLUT1 in Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) Under Hypoxia Stress. Front Physiol 2020; 11:670. [PMID: 32612542 PMCID: PMC7308589 DOI: 10.3389/fphys.2020.00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
In fish under hypoxia stress, homeostasis can become imbalanced, leading to tissue and organ damage and decreased survival. Therefore, it is useful to explore the molecular and physiological regulation mechanisms that function in fish under hypoxia stress. The microRNA miR-34a is involved in fat and glycogen metabolism, and in apoptosis. In this study, we first verified that GLUT1, the gene encoding glucose transporter 1, is a potential target gene of miR-34a in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) by dual luciferase reporter assays. Then, we clarified the regulatory relationship between miR-34a and GLUT1 by qRT-PCR analyses. We analyzed the regulatory effects of knockdown or promotion of GLUT1 expression in vitro and in vivo in GIFT under hypoxia stress. The results confirm that GLUT1 is a target gene of miR-34a in GIFT. Down-regulation of miR-34a significantly promoted GLUT1 expression. Knockdown of GLUT1 reduced the glycogen content in GIFT liver cells, inhibited HIF-1a gene expression, up-regulated the expression of genes involved in P53 signaling pathways (P53 and CASPASE-3 genes), and accelerated hepatocyte apoptosis under hypoxia stress. Compared with the control group, the group injected in the tail vein with miR-34a antagomir showed up-regulated expression of GLUT1 in the liver, increased liver glycogen content at 96 h of hypoxia stress, down-regulated expression of P53 and CASPASE-3, and decreased serum aspartate aminotransferase and alanine aminotransferase enzyme activities. Our results provide information about the molecular regulation mechanism of miRNAs and their target genes in fish during the response to hypoxia stress.
Collapse
Affiliation(s)
- Jun Qiang
- Fisheries College of Guangdong Ocean University, Zhanjiang, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xiao-Wen Zhu
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jin-Wen Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun-Hao Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
15
|
Zeng L, Ai CX, Zhang JS, Li WC. Pre-hypoxia exposure inhibited copper toxicity by improving energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134961. [PMID: 31787300 DOI: 10.1016/j.scitotenv.2019.134961] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 05/14/2023]
Abstract
This study investigated the effects of moderate hypoxia pre-exposure on energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea exposed to Cu. Fish were pre-exposed to either normoxia or hypoxia (~3.0 mg L-1, 42% O2 saturation) for 48 h, and subsequently were subjected to either control (without Cu addition) or Cu (168 μg L-1) under normoxic conditions for another 48 h. Copper exposure under normoxia induced Cu toxicity that increased mortality, the production of reactive oxygen species (ROS) and malondialdehyde, and aberrant hepatic mitochondrial ultrastructure. Interestingly, hypoxia pre-exposure improved energy metabolism, antioxidant ability and mitophagy response, and reduced the Cu content to inhibit Cu toxicity, reflecting the enhanced survival rate and reduced oxidative damage. In these processes, hypoxia-inducible factor-1α (HIF-1α), transcription factors NFE2-related nuclear factor 2 (Nrf2), and forkhead box O-3 (FoxO3) mRNA levels were correlated with expression of genes related to energy metabolism, antioxidant defence and mitophagy, respectively, indicating HIF-1α, Nrf2, and FoxO3 are required for the induction of their respective target genes. Overall, moderate hypoxia pre-exposure was able to generate adaptive responses to mitigate Cu-induced toxicological effects, underlining a central role of hormesis.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jian-She Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Wen-Cheng Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
16
|
Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett 2020; 25:18. [PMID: 32190062 PMCID: PMC7071609 DOI: 10.1186/s11658-020-00212-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
17
|
Bertucci A, Pierron F, Ye T, Gonzalez P, Couture P, Baudrimont M. Identification and expression of microRNAs in european eels Anguilla anguilla from two natural sites with different pollution levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:274-283. [PMID: 30999204 DOI: 10.1016/j.envpol.2019.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/25/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA that control multiple biological processes through negative post-transcriptional regulation of gene expression. Recently a role of miRNAs in the response of aquatic organisms to environmental toxicants emerged. Toxicant-induced changes in miRNA expression might then represent novel biomarkers to evaluate the health status of these organisms. In this study, we aimed to identify the miRNA repertoire in the liver of the European eel Anguilla anguilla and to compare their differential expression between a polluted site located in the Gironde Estuary and a pristine site in Arcachon Bay (France). A total of 299 mature miRNAs were identified. In polluted water, 19 miRNAs were up-regulated and 22 were down-regulated. We predicted that these differentially expressed miRNAs could target 490 genes that were involved in ribosome biogenesis, response to hormones, response to chemical and chromatin modification. Moreover, we observed only few examples (29) of negative correlation between the expression levels of miRNAs and their targets suggesting that, in the system studied, miRNAs might not only regulate gene expression directly by degrading mRNA but also by inhibiting protein translation or by regulating other epigenetic processes. This study is the first example of in situ investigation of the role of miRNAs in the response of a fish species to water quality. Our findings provide new insights into the involvement of epigenetic mechanisms in the response of animals chronically exposed to pollution and pave the way for the utilization of miRNAs in aquatic ecotoxicology.
Collapse
Affiliation(s)
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, 33615, Pessac, France
| | - Tao Ye
- IGBMC - CNRS UMR 7104 - Inserm U 964, 1 BP 10142, 67404, Illkirch Cedex, France
| | | | - Patrice Couture
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue De La Couronne, Québec, QC, G1K 9A9, Canada
| | | |
Collapse
|
18
|
Wang W, Zhong P, Yi JQ, Xu AX, Lin WY, Guo ZC, Wang CG, Sun CB, Chan S. Potential role for microRNA in facilitating physiological adaptation to hypoxia in the Pacific whiteleg shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 84:361-369. [PMID: 30291981 DOI: 10.1016/j.fsi.2018.09.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia is one of the most common physiological stressors in shrimp farming. Post-transcriptional regulation by microRNAs has been recognized as a ubiquitous strategy to enable transient phenotypic plasticity and adaptation to stressful environment, but involvement of microRNAs in hypoxia stress response of penaeid shrimp remains elusive. In this study, small RNA sequencing and comparative transcriptomic analysis was conducted to construct a comprehensive microRNA dataset for the whiteleg shrimp Litopenaeus vannamei exposed to hypoxia challenge. A total of 3324 known miRNAs and 8 putative novel miRNAs were identified, providing a valuable resource for future investigation on the functional mechanism of miRNAs in shrimp. Upon hypoxia, 1213 miRNAs showed significant differential expression, and many well-known miRNAs involved in hypoxia tolerance such as miR-210, let-7, miR-143 and miR-101 were identified. Remarkably, the vast majority of these miRNAs were up-regulated, suggesting that up-regulation of miRNAs may represent an effective strategy to inhibit protein translation under stressful hypoxic condition. The differentially expressed miRNAs were potentially targeting a wide variety of genes, including those with essential roles in hypoxia tolerance such as HIF1a and p53. GO and KEGG enrichment analysis further revealed that a broad range of biological processes and metabolic pathways were over-represented. Several GO terms associated with gene transcription and translation and KEGG pathways related to cytoskeleton remodeling, immune defense and signaling transduction were enriched, highlighting the crucial roles of these cellular events in the adaptation to hypoxia. Taken together, our study revealed that the differentially expressed miRNAs may regulate host response to hypoxia by modulating the expression of stress response genes such as HIF1a and p53 and affecting key cellular events involved in hypoxia adaptation. The findings would expand our knowledge of the biochemical and molecular underpinnings of hypoxia response strategies used by penaeid shrimp, and contribute to a better understanding of the molecular mechanisms of hypoxia tolerance in decapod crustaceans.
Collapse
Affiliation(s)
- Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Ping Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Jun-Qiao Yi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Ai-Xuan Xu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Wen-Yi Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Zhen-Cong Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Cheng-Gui Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Cheng-Bo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China.
| | - Siuming Chan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|