1
|
Yang M, Zhang J, Yan H, Pan Y, Zhou J, Zhong H, Wang J, Cai H, Feng F, Zhao M. A comprehensive review of medium chain monoglycerides on metabolic pathways, nutritional and functional properties, nanotechnology formulations and applications in food system. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38779723 DOI: 10.1080/10408398.2024.2353403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Guangdong Qingyunshan Pharmaceutical Co., Ltd, Shaoguan, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
3
|
Shehat MG, Miller MH, Calder AN, Gilbertson TA, Tigno-Aranjuez JT. Dietary fat differentially modulates the response of bone marrow-derived macrophages to TLR4 and NOD2 agonists. Innate Immun 2023; 29:122-131. [PMID: 37545346 PMCID: PMC10468623 DOI: 10.1177/17534259231193926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Consumption of diets high in fat has been linked to the development of obesity and related metabolic complications. Such associations originate from the enhanced, chronic, low-grade inflammation mediated by macrophages in response to translocated bacteria, bacterial products, or dietary constituents such as fatty acids (FAs). Nucleotide-binding Oligomerization Domain 2 (NOD2) senses muramyl dipeptide (MDP), a component of bacterial peptidoglycan. The inability to sense peptidoglycan through NOD2 has been demonstrated to lead to dysbiosis, increased bacterial translocation, inflammation and metabolic dysfunction. Currently, it is unknown how consumption of HFDs with different FA compositions might influence NOD2-dependent responses. In this study, we subjected WT mice to a control diet or to HFDs comprised of various ratios of unsaturated to saturated fats and determined the macrophage response to TLR4 and NOD2 agonists. A HFD with equal ratios of saturated and unsaturated fats enhanced subsequent responsiveness of macrophages to LPS but not to MDP. However, a high-unsaturated fat diet (HUFD) or a high-saturated fat diet (HSFD) both decreased the responsiveness to NOD2 agonists compared to that observed in control diet (CD) fed mice. These data suggest that dietary fatty acid composition can influence the subsequent macrophage responsiveness to bacterial products.
Collapse
Affiliation(s)
- Michael G. Shehat
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Madelyn H. Miller
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Ashley N. Calder
- Department of Internal Medicine, University of Central Florida, Orlando, FL, USA
| | | | - Justine T. Tigno-Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Pedersen K, Ipsen DH, Skat-Rørdam J, Lykkesfeldt J, Tveden-Nyborg P. Dietary Long-Chain Fatty Acids Accelerate Metabolic Dysfunction in Guinea Pigs with Non-Alcoholic Steatohepatitis. Nutrients 2023; 15:nu15112445. [PMID: 37299406 DOI: 10.3390/nu15112445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The composition of dietary fatty acids may be important for the development and progression of metabolic syndrome and non-alcoholic steatohepatitis (NASH). This study investigated the effect of two high-fat diets based on coconut oil, containing predominantly medium-chain fatty acids (MCFA), or cocoa butter, containing mainly long-chain fatty acids (LCFA), on glucose homeostasis and NASH in guinea pigs following 16 and 32 weeks of diet. At week 16, glucose intolerance was increased in the LCFA animals compared to the MCFA animals (p < 0.001), with both groups differing from the controls by week 32 (p < 0.0001), supported by increased hemoglobin A1c (p < 0.05). NASH was present in both high-fat groups from week 16, with advancing fibrosis appearing more progressive in the LCFA animals at week 16. In agreement, gene expression showed overall increased expression of NASH target genes in the LCFA animals compared to the MCFA animals at weeks 16 and 32 (p < 0.05 and p < 0.0001, respectively). The LCFA animals also displayed increased plasma uric acid at both time points (p < 0.05), a phenomenon linked to NASH in humans. In conclusion, this study reports that a diet high in LCFA promotes metabolic imbalance and may accelerate NASH-associated hepatic fibrosis. This highlights the importance of a critical evaluation of fatty acid composition when investigating NASH-associated endpoints.
Collapse
Affiliation(s)
- Kamilla Pedersen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - David Højland Ipsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Integrated Physiology Research, Obesity and NASH Pharmacology, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Josephine Skat-Rørdam
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
5
|
Fernández-Felipe J, Valencia-Avezuela M, Merino B, Somoza B, Cano V, Sanz-Martos AB, Frago LM, Fernández-Alfonso MS, Ruiz-Gayo M, Chowen JA. Effects of saturated versus unsaturated fatty acids on metabolism, gliosis, and hypothalamic leptin sensitivity in male mice. Nutr Neurosci 2023; 26:173-186. [PMID: 35125071 DOI: 10.1080/1028415x.2022.2029294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Development of obesity and its comorbidities is not only the result of excess energy intake, but also of dietary composition. Understanding how hypothalamic metabolic circuits interpret nutritional signals is fundamental to advance towards effective dietary interventions. OBJECTIVE We aimed to determine the metabolic response to diets enriched in specific fatty acids. METHODS Male mice received a diet enriched in unsaturated fatty acids (UOLF) or saturated fatty acids (SOLF) for 8 weeks. RESULTS UOLF and SOLF mice gained more weight and adiposity, but with no difference between these two groups. Circulating leptin levels increased on both fatty acid-enriched diet, but were higher in UOLF mice, as were leptin mRNA levels in visceral adipose tissue. In contrast, serum non-esterified fatty acid levels only rose in SOLF mice. Hypothalamic mRNA levels of NPY decreased and of POMC increased in both UOLF and SOLF mice, but only SOLF mice showed signs of hypothalamic astrogliosis and affectation of central fatty acid metabolism. Exogenous leptin activated STAT3 in the hypothalamus of all groups, but the activation of AKT and mTOR and the decrease in AMPK activation in observed in controls and UOLF mice was not found in SOLF mice. CONCLUSIONS Diets rich in fatty acids increase body weight and adiposity even if energy intake is not increased, while increased intake of saturated and unsaturated fatty acids differentially modify metabolic parameters that could underlie more long-term comorbidities. Thus, more understanding of how specific nutrients affect metabolism, weight gain, and obesity associated complications is necessary.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Maria Valencia-Avezuela
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Victoria Cano
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Ana B Sanz-Martos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria S Fernández-Alfonso
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia Universidad Complutense de Madrid, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
6
|
Wichai U, Keawsomnuk P, Thongin S, Mukthung C, Boonthip C, Pittayakhajonwut P, Ketsawatsomkron P, Bunyapraphatsara N, Muta K. Cellular responses to 8-methyl nonanoic acid, a degradation by-product of dihydrocapsaicin, in 3T3-L1 adipocytes. BMC Complement Med Ther 2023; 23:18. [PMID: 36681810 PMCID: PMC9862568 DOI: 10.1186/s12906-023-03844-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Capsaicinoids, such as dihydrocapsaicin (DHC), exert the health-promoting effects of chili peppers on energy metabolism. The metabolic responses to capsaicinoids are primarily mediated through transient receptor potential cation channel subfamily V member 1 (TRPV1). However, the varying contributions of their metabolites to beneficial health outcomes remain unclear. 8-methyl nonanoic acid (8-MNA), a methyl-branched medium chain fatty acid (MCFA), is an in vivo degradation by-product of DHC. Since MCFAs have emerged as metabolic modulators in adipocytes, here we examined various cellular responses to 8-MNA in 3T3-L1 adipocytes. METHODS The viability of 3T3-L1 adipocytes exposed to various concentrations of 8-MNA was assessed by the Calcein AM assay. Biochemical assays for lipid accumulation, AMP-activated protein kinase (AMPK) activity, lipolysis and glucose uptake were performed in 3T3-L1 adipocytes treated with 8-MNA during 48-h nutrient starvation or 5-day maturation. RESULTS 8-MNA caused no impact on cell viability. During nutrient starvation, 8-MNA decreased lipid amounts in association with AMPK activation, a molecular event that suppresses lipogenic processes. Moreover, 3T3-L1 adipocytes that were treated with 8-MNA during 5-day maturation exhibited a reduced lipolytic response to isoproterenol and an increased glucose uptake when stimulated with insulin. CONCLUSIONS These results suggest that 8-MNA derived from DHC modulates energy metabolism in adipocytes and also support the idea that the metabolic benefits of chili consumption are partly attributable to 8-MNA.
Collapse
Affiliation(s)
- Uthai Wichai
- grid.412029.c0000 0000 9211 2704Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Ploychanok Keawsomnuk
- grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540 Thailand
| | - Saowarose Thongin
- grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540 Thailand
| | - Chaiyot Mukthung
- grid.412029.c0000 0000 9211 2704Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Chatchai Boonthip
- grid.412029.c0000 0000 9211 2704Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Pattama Pittayakhajonwut
- grid.425537.20000 0001 2191 4408National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pimonrat Ketsawatsomkron
- grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540 Thailand
| | - Nuntavan Bunyapraphatsara
- grid.10223.320000 0004 1937 0490Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Kenjiro Muta
- grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540 Thailand
| |
Collapse
|
7
|
Salsinha AS, Rodríguez-Alcalá LM, Pimentel LL, Pintado M. Role of bioactive lipids in obesity. BIOACTIVE LIPIDS 2023:133-167. [DOI: 10.1016/b978-0-12-824043-4.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
9
|
Borcherding N, Jia W, Giwa R, Field RL, Moley JR, Kopecky BJ, Chan MM, Yang BQ, Sabio JM, Walker EC, Osorio O, Bredemeyer AL, Pietka T, Alexander-Brett J, Morley SC, Artyomov MN, Abumrad NA, Schilling J, Lavine K, Crewe C, Brestoff JR. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab 2022; 34:1499-1513.e8. [PMID: 36070756 PMCID: PMC9547954 DOI: 10.1016/j.cmet.2022.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 06/06/2022] [Accepted: 08/15/2022] [Indexed: 02/06/2023]
Abstract
Adipocytes transfer mitochondria to macrophages in white and brown adipose tissues to maintain metabolic homeostasis. In obesity, adipocyte-to-macrophage mitochondria transfer is impaired, and instead, adipocytes release mitochondria into the blood to induce a protective antioxidant response in the heart. We found that adipocyte-to-macrophage mitochondria transfer in white adipose tissue is inhibited in murine obesity elicited by a lard-based high-fat diet, but not a hydrogenated-coconut-oil-based high-fat diet, aging, or a corn-starch diet. The long-chain fatty acids enriched in lard suppress mitochondria capture by macrophages, diverting adipocyte-derived mitochondria into the blood for delivery to other organs, such as the heart. The depletion of macrophages rapidly increased the number of adipocyte-derived mitochondria in the blood. These findings suggest that dietary lipids regulate mitochondria uptake by macrophages locally in white adipose tissue to determine whether adipocyte-derived mitochondria are released into systemic circulation to support the metabolic adaptation of distant organs in response to nutrient stress.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Wentong Jia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rocky Giwa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John R Moley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Benjamin J Kopecky
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mandy M Chan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bin Q Yang
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jessica M Sabio
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Emma C Walker
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Omar Osorio
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Andrea L Bredemeyer
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Terri Pietka
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jennifer Alexander-Brett
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sharon Celeste Morley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Nada A Abumrad
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joel Schilling
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kory Lavine
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Clair Crewe
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
10
|
da Cruz LL, Vesentini G, Sinzato YK, Villaverde AISB, Volpato GT, Damasceno DC. Effects of high-fat diet-induced diabetes on autophagy in the murine liver: A systematic review and meta-analysis. Life Sci 2022; 309:121012. [PMID: 36179817 DOI: 10.1016/j.lfs.2022.121012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 12/09/2022]
Abstract
AIMS We conducted a meta-analysis to investigate whether diabetes induced by a high-fat diet (HFD) has the potential to alter the process of autophagy in the murine liver. METHODS A systematic literature search was performed with electronic databases (PubMed, EMBASE, Web of Science). Study design, population, intervention, outcome, and risk of bias were analyzed. Given the availability of studies, a quantitative meta-analysis including 23 studies was performed. KEY FINDINGS The search found 5754 articles, with 48 matching the eligibility criteria, comprising of 1033 animals. The meta-analysis showed that diabetic murines fed with HFD presented an absence of p62 degradation (SMD 4.63, 95 % CI 2.02 to 7.24, p = 0.0005; I2 = 77 %), higher expression of p-mTOR/mTOR (SMD 5.20, 95 % CI 1.00 to 9.39, p = 0.01; I2 = 78 %), and a decreased p-AMPK/AMPK ratio (SMD -2.02, 95 % CI -3.96 to -0.09, p = 0.04; I2 = 85 %) when compared to nondiabetic murines. When associated with streptozotocin, the animals presented decreased ATG-7 and LC3-II. The meta-regression results showed a decrease in autophagy responses due to increased glycemic levels, fat content, and long-term exposure to HFD, and advanced animal age. The common and species-specific protein responses were also consistent with the inhibition of autophagy. SIGNIFICANCE The normal process of autophagy mechanisms in the liver is less competent after HFD consumption. The destabilization of (auto)phagolysosomes contributes to the perpetuation of diabetes, metabolic dysfunction-associated fatty liver disease, and cell death.
Collapse
Affiliation(s)
- Larissa Lopes da Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil; Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Giovana Vesentini
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Ana Izabel Silva Balbin Villaverde
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| |
Collapse
|
11
|
Manjarín R, Dillard K, Coffin M, Hernandez GV, Smith VA, Noland-Lidell T, Gehani TR, Smart HJ, Wheeler K, Sprayberry KA, Edwards MS, Fanter RK, Glanz H, Immoos C, Santiago-Rodriguez TM, Blank JM, Burrin DG, Piccolo BD, Abo-Ismail M, La Frano MR, Maj M. Dietary fat composition shapes bile acid metabolism and severity of liver injury in a pig model of pediatric NAFLD. Am J Physiol Endocrinol Metab 2022; 323:E187-E206. [PMID: 35858244 PMCID: PMC9423774 DOI: 10.1152/ajpendo.00052.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the effect of dietary fatty acid (FA) composition on bile acid (BA) metabolism in a pig model of NAFLD, by using a multiomics approach combined with histology and serum biochemistry. Thirty 20-day-old Iberian pigs pair-housed in pens were randomly assigned to receive 1 of 3 hypercaloric diets for 10 wk: 1) lard-enriched (LAR; n = 5 pens), 2) olive oil-enriched (OLI; n = 5), and 3) coconut oil-enriched (COC; n = 5). Animals were euthanized on week 10 after blood sampling, and liver, colon, and distal ileum (DI) were collected for histology, metabolomics, and transcriptomics. Data were analyzed by multivariate and univariate statistics. Compared with OLI and LAR, COC increased primary and secondary BAs in liver, plasma, and colon. In addition, both COC and OLI reduced circulating fibroblast growth factor 19, increased hepatic necrosis, composite lesion score, and liver enzymes in serum, and upregulated genes involved in hepatocyte proliferation and DNA repair. The severity of liver disease in COC and OLI pigs was associated with increased levels of phosphatidylcholines, medium-chain triacylglycerides, trimethylamine-N-oxide, and long-chain acylcarnitines in the liver, and the expression of profibrotic markers in DI, but not with changes in the composition or size of BA pool. In conclusion, our results indicate a role of dietary FAs in the regulation of BA metabolism and progression of NAFLD. Interventions that aim to modify the composition of dietary FAs, rather than to regulate BA metabolism or signaling, may be more effective in the treatment of NAFLD.NEW & NOTEWORTHY Bile acid homeostasis and signaling is disrupted in NAFLD and may play a central role in the development of the disease. However, there are no studies addressing the impact of diet on bile acid metabolism in patients with NAFLD. In juvenile Iberian pigs, we show that fatty acid composition in high-fat high-fructose diets affects BA levels in liver, plasma, and colon but these changes were not associated with the severity of the disease.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Kayla Dillard
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Morgan Coffin
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Gabriella V Hernandez
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Victoria A Smith
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Trista Noland-Lidell
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Tanvi R Gehani
- Department of Biomedical Engineering, California Polytechnic State University, San Luis Obispo, California
| | - Hayden J Smart
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Kevin Wheeler
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Kimberly A Sprayberry
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Mark S Edwards
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Rob K Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, California
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| | - Hunter Glanz
- Department of Statistics, California Polytechnic State University, San Luis Obispo, California
| | - Chad Immoos
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California
| | | | - Jason M Blank
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Douglas G Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Brian D Piccolo
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mohammed Abo-Ismail
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| | - Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|
12
|
Budi YP, Li YH, Huang C, Wang ME, Lin YC, Jong DS, Chiu CH, Jiang YF. The role of autophagy in high-fat diet-induced insulin resistance of adipose tissues in mice. PeerJ 2022; 10:e13867. [PMID: 35990905 PMCID: PMC9387522 DOI: 10.7717/peerj.13867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Aims Studies have observed changes in autophagic flux in the adipose tissue of type 2 diabetes patients with obesity. However, the role of autophagy in obesity-induced insulin resistance is unclear. We propose to confirm the effect of a high-fat diet (HFD) on autophagy and insulin signaling transduction from adipose tissue to clarify whether altered autophagy-mediated HFD induces insulin resistance, and to elucidate the possible mechanisms in autophagy-regulated adipose insulin sensitivity. Methods Eight-week-old male C57BL/6 mice were fed with HFD to confirm the effect of HFD on autophagy and insulin signaling transduction from adipose tissue. Differentiated 3T3-L1 adipocytes were treated with 1.2 mM fatty acids (FAs) and 50 nM Bafilomycin A1 to determine the autophagic flux. 2.5 mg/kg body weight dose of Chloroquine (CQ) in PBS was locally injected into mouse epididymal adipose (10 and 24 h) and 40 µM of CQ to 3T3-L1 adipocytes for 24 h to evaluate the role of autophagy in insulin signaling transduction. Results The HFD treatment resulted in a significant increase in SQSTM1/p62, Rubicon expression, and C/EBP homologous protein (CHOP) expression, yet the insulin capability to induce Akt (Ser473) and GSK3β (Ser9) phosphorylation were reduced. PHLPP1 and PTEN remain unchanged after CQ injection. In differentiated 3T3-L1 adipocytes treated with CQ, although the amount of phospho-Akt stimulated by insulin in the CQ-treated group was significantly lower, CHOP expressions and cleaved caspase-3 were increased and bafilomycin A1 induced less accumulation of LC3-II protein. Conclusion Long-term high-fat diet promotes insulin resistance, late-stage autophagy inhibition, ER stress, and apoptosis in adipose tissue. Autophagy suppression may not affect insulin signaling transduction via phosphatase expression but indirectly causes insulin resistance through ER stress or apoptosis.
Collapse
Affiliation(s)
- Yovita Permata Budi
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chien Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Mu-En Wang
- Department of Pathology, Duke University, North Carolina, Durham, United States of America
| | - Yi-Chun Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taichung, Taiwan
| | - De-Shien Jong
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Schipke J, Brandenberger C, Vital M, Mühlfeld C. Starch and Fiber Contents of Purified Control Diets Differentially Affect Hepatic Lipid Homeostasis and Gut Microbiota Composition. Front Nutr 2022; 9:915082. [PMID: 35873446 PMCID: PMC9301012 DOI: 10.3389/fnut.2022.915082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 01/04/2023] Open
Abstract
Background Interpretation of results from diet-induced-obesity (DIO) studies critically depends on control conditions. Grain-based chows are optimized for rodent nutrition but do not match the defined composition of purified diets used for DIO, severely limiting the comparability. Purified control diets are recommended but often contain high starch and only minor fiber amounts. It is unknown whether this composition leads to metabolic alterations compared with chow and whether the addition of refined fibers at the expense of starch affects these changes. Methods In this experiment, 6-week-old C57BL/6N mice were fed (i) a conventional purified control diet (high-starch, low-fiber; Puri-starch), (ii) an alternative, custom-made purified control diet containing pectin and inulin (medium-starch, higher-fiber; Puri-fiber), or (iii) grain-based chow for 30 weeks (N = 8–10). Results Puri-starch feeding resulted in significantly elevated levels of plasma insulin (p = 0.004), cholesterol (p < 0.001), and transaminases (AST p = 0.002, ALT p = 0.001), hepatic de novo lipogenesis and liver steatosis, and an altered gut microbiota composition compared with chow-fed mice. In contrast, Puri-fiber exerted only minor effects on systemic parameters and liver lipid homeostasis, and promoted a distinct gut microbiota composition. Conclusion Carbohydrate-rich purified diets trigger a metabolic status possibly masking pathological effects of nutrients under study, restricting its use as control condition. The addition of refined fibers is suited to create purified, yet physiological control diets for DIO research.
Collapse
Affiliation(s)
- Julia Schipke
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- *Correspondence: Julia Schipke
| | - Christina Brandenberger
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marius Vital
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
14
|
Wang Y, Zhang T, Liu R, Chang M, Wei W, Jin Q, Wang X. Reviews of medium- and long-chain triglyceride with respect to nutritional benefits and digestion and absorption behavior. Food Res Int 2022; 155:111058. [DOI: 10.1016/j.foodres.2022.111058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
|
15
|
Wang D, Chen J, Sun H, Chen W, Yang X. MCFA alleviate H 2 O 2 -induced oxidative stress in AML12 cells via the ERK1/2/Nrf2 pathway. Lipids 2022; 57:153-162. [PMID: 35262212 DOI: 10.1002/lipd.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/07/2022]
Abstract
Oxidative stress is an important factor in the occurrence and development of liver disease. Medium-chain fatty acids (MCFAs) have potential antioxidant function, whereas the exact underlying mechanism of MCFA in oxidative injury of hepatocytes remains unclear. In our present study, three different MCFAs, 8-carbon octanoic acid (OA), 10-carbon capric acid (CA), and 12-carbon lauric acid (LA), have been performed to observe their protective action for hepatocyte under the H2 O2 challenge. The result showed that MCFA treatment significantly increased the cell viability, T-AOC, and expression of antioxidant-related genes in AML12 cells under oxidative stress condition, and reduced reactive oxygen species (ROS) production. Moreover, MCFA treatment significantly increased the protein expression of Nrf2 and the phosphorylation level of ERK1/2; LA treatment significantly promoted the Nrf2 nuclear translocation. With a further test, the rescue ability of MCFA was blocked by treating with the ERK inhibitor U0126. Overall, our data suggested that MCFA treatment has positive impact on protecting AML12 cells against oxidative stress through ERK1/2/Nrf2 pathway.
Collapse
Affiliation(s)
- Danping Wang
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Jinglong Chen
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Huangbing Sun
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Wenjing Chen
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaojing Yang
- MOE Joint Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
16
|
Decanoic Acid Stimulates Autophagy in D. discoideum. Cells 2021; 10:cells10112946. [PMID: 34831171 PMCID: PMC8616062 DOI: 10.3390/cells10112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Ketogenic diets, used in epilepsy treatment, are considered to work through reduced glucose and ketone generation to regulate a range of cellular process including autophagy induction. Recent studies into the medium-chain triglyceride (MCT) ketogenic diet have suggested that medium-chain fatty acids (MCFAs) provided in the diet, decanoic acid and octanoic acid, cause specific therapeutic effects independent of glucose reduction, although a role in autophagy has not been investigated. Both autophagy and MCFAs have been widely studied in Dictyostelium, with findings providing important advances in the study of autophagy-related pathologies such as neurodegenerative diseases. Here, we utilize this model to analyze a role for MCFAs in regulating autophagy. We show that treatment with decanoic acid but not octanoic acid induces autophagosome formation and modulates autophagic flux in high glucose conditions. To investigate this effect, decanoic acid, but not octanoic acid, was found to induce the expression of autophagy-inducing proteins (Atg1 and Atg8), providing a mechanism for this effect. Finally, we demonstrate a range of related fatty acid derivatives with seizure control activity, 4BCCA, 4EOA, and Epilim (valproic acid), also function to induce autophagosome formation in this model. Thus, our data suggest that decanoic acid and related compounds may provide a less-restrictive therapeutic approach to activate autophagy.
Collapse
|
17
|
Pain E, Shinhmar S, Williams RSB. Using Dictyostelium to Advance Our Understanding of the Role of Medium Chain Fatty Acids in Health and Disease. Front Cell Dev Biol 2021; 9:722066. [PMID: 34589488 PMCID: PMC8473879 DOI: 10.3389/fcell.2021.722066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets have been utilized for many years to improve health, and as a dietary approach for the treatment of a range of diseases, where the mechanism of these low carbohydrate and high fat diets is widely considered to be through the production of metabolic products of fat breakdown, called ketones. One of these diets, the medium chain triglyceride ketogenic diet, involves high fat dietary intake in the form of medium chain fatty acids (MCFAs), decanoic and octanoic acid, and is commonly used in endurance and high intensity exercises but has also demonstrated beneficial effects in the treatment of numerous pathologies including drug resistant epilepsy, cancer, and diabetes. Recent advances, using Dictyostelium discoideum as a model, have controversially proposed several direct molecular mechanisms for decanoic acid in this diet, independent of ketone generation. Studies in this model have identified that decanoic acid reduces phosphoinositide turnover, diacylglycerol kinase (DGK) activity, and also inhibits the mechanistic target of rapamycin complex 1 (mTORC1). These discoveries could potentially impact the treatment of a range of disorders including epilepsy, cancer and bipolar disorder. In this review, we summarize the newly proposed mechanisms for decanoic acid, identified using D. discoideum, and highlight potential roles in health and disease treatment.
Collapse
Affiliation(s)
| | | | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
18
|
Huang C, Hsu HJ, Wang ME, Hsu MC, Wu LS, Jong DS, Jiang YF, Chiu CH. Fatty acids suppress the steroidogenesis of the MA-10 mouse Leydig cell line by downregulating CYP11A1 and inhibiting late-stage autophagy. Sci Rep 2021; 11:12561. [PMID: 34131222 PMCID: PMC8206377 DOI: 10.1038/s41598-021-92008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
Obese men have lower circulating testosterone than men with an optimal body mass index. Elevated fatty acids (FAs) caused by obesity have been reported to suppress the steroidogenesis of Leydig cells. Recent studies have demonstrated that autophagy regulates steroidogenesis in endocrine cells; however, few studies have investigated the molecular mechanisms of FA-impaired steroidogenesis. To study FA regulation in the steroidogenesis of Leydig cells, MA-10 cells were treated with an FA mixture and co-treated with 8-Br-cAMP to stimulate the steroidogenesis capacity. We showed that FAs led to cellular lipid accumulation and decreased steroidogenesis of MA-10 cells, and FA-suppressed steroidogenesis was largely recovered by P5 treatment but not by 22R-OHC treatment, suggesting the primary defect was the deficiency of CYP11A1. To examine the involvement of autophagy in the steroidogenesis of Leydig cells, we treated MA-10 cells with autophagy regulators, including rapamycin, bafilomycin, and chloroquine. Inhibition of late-stage autophagy including FA-upregulated Rubicon suppressed the steroidogenesis of MA-10 cells. More interestingly, Rubicon played a novel regulatory role in the steroidogenesis of MA-10 cells, independent of inhibitors of late-stage autophagy. Collectively, this study provides novel targets to investigate the interaction between FAs and steroidogenesis in steroidogenic cells.
Collapse
Affiliation(s)
- Chien Huang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsiu-Ju Hsu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mu-En Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Meng-Chieh Hsu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leang-Shin Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - De-Shien Jong
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Chih-Hsien Chiu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
19
|
Ramos VDM, Kowaltowski AJ, Kakimoto PA. Autophagy in Hepatic Steatosis: A Structured Review. Front Cell Dev Biol 2021; 9:657389. [PMID: 33937257 PMCID: PMC8081956 DOI: 10.3389/fcell.2021.657389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steatosis is the accumulation of neutral lipids in the cytoplasm. In the liver, it is associated with overeating and a sedentary lifestyle, but may also be a result of xenobiotic toxicity and genetics. Non-alcoholic fatty liver disease (NAFLD) defines an array of liver conditions varying from simple steatosis to inflammation and fibrosis. Over the last years, autophagic processes have been shown to be directly associated with the development and progression of these conditions. However, the precise role of autophagy in steatosis development is still unclear. Specifically, autophagy is necessary for the regulation of basic metabolism in hepatocytes, such as glycogenolysis and gluconeogenesis, response to insulin and glucagon signaling, and cellular responses to free amino acid contents. Also, genetic knockout models for autophagy-related proteins suggest a critical relationship between autophagy and hepatic lipid metabolism, but some results are still ambiguous. While autophagy may seem necessary to support lipid oxidation in some contexts, other evidence suggests that autophagic activity can lead to lipid accumulation instead. This structured literature review aims to critically discuss, compare, and organize results over the last 10 years regarding rodent steatosis models that measured several autophagy markers, with genetic and pharmacological interventions that may help elucidate the molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Pamela A. Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Sall T, Shcherbakova E, Sitkin S, Vakhitov T, Bakulin I, Demyanova E. Molecular mechanisms of non-alcoholic fatty liver disease development. PROFILAKTICHESKAYA MEDITSINA 2021; 24:120. [DOI: 10.17116/profmed202124041120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
|
21
|
Mitsinikos FT, Chac D, Schillingford N, DePaolo RW. Modifying macronutrients is superior to microbiome transplantation in treating nonalcoholic fatty liver disease. Gut Microbes 2020; 12:1-16. [PMID: 32816619 PMCID: PMC7524401 DOI: 10.1080/19490976.2020.1792256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver injury and liver transplantation in Western countries. The pathogenesis of NAFLD includes overnutrition-associated metabolic syndrome or the improper consumption of dietary macro- and micro-nutrients that either support or prevent disease development. This altered nutrient landscape has been linked to shifts within the gut microbiota which can exacerbate liver pathology and the progression of NAFLD. Treatment goals for NAFLD target lifestyle and dietary modifications that restrict calories and adjust macronutrient content. It is not well understood how different macronutrients alter the microbiota and whether the diet-educated microbiota contribute to the resolution of disease. We fed mice a diet high in fat, cholesterol and fructose for 6 weeks and then in two different arms of the study, intervened with either a diet high in saturated and polyunsaturated fats and fiber or low in fats and fiber. In a second set of experiments, we performed microbiota transplants using cecal contents from mice fed one of the intervention diets to assess whether the diet-educated microbiota could impact clinical outcomes in mice fed a NAFLD-inducing diet. Pathology, steatosis, ALT/AST levels, and liver cytokine levels were measured as primary outcomes. We found that despite different microbiota compositions, both of the intervention diets reversed the progression of NAFLD and dampened inflammation. In contrast, transplantation of cecal contents from the intervention diet-fed mice to mice receiving a NAFLD-inducing diet was unable to prevent disease progression, and, in some cases, worsened disease. These data underscore the importance of dietary modifications to treat NAFLD and caution against the use of microbiota transplantation in the absence of dietary and lifestyle modifications.
Collapse
Affiliation(s)
- Fontini Tania Mitsinikos
- Department of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - Denise Chac
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nicholas Schillingford
- Department of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - R. William DePaolo
- Department of Medicine, University of Washington, Seattle, WA, USA,Center for Microbiome Sciences & Therapeutics, Seattle, WA, USA,CONTACT R. William DePaolo Associate Professor of Medicine
| |
Collapse
|
22
|
Lauric Acid versus Palmitic Acid: Effects on Adipose Tissue Inflammation, Insulin Resistance, and Non-Alcoholic Fatty Liver Disease in Obesity. BIOLOGY 2020; 9:biology9110346. [PMID: 33105887 PMCID: PMC7690582 DOI: 10.3390/biology9110346] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary The aim of this study was to compare the effect of palmitic acid (PA), a long-chain fatty acid, and lauric acid (LA), a medium-chain fatty acid, on obesity-related metabolic disorders. We used a mouse model of diet-induced obesity and fed them a modified high fat diet supplemented with 3% PA or LA for 12 wk. An LA diet led to an increase in visceral fat mass with a reduction in inflammation compared to the PA diet. We also noted that PA significantly increased systemic insulin resistance whereas LA showed only a trend towards an increase compared to lean control mice. The expression of a protein involved in muscle glucose uptake was higher in LA-treated mice compared to the PA-treated group, indicating improved muscle glucose uptake in LA-fed mice. Analysis of liver samples showed that hepatic steatosis was higher in both PA and LA-fed mice compared to lean controls. Markers of liver inflammation were not altered significantly in mice receiving PA or LA. Our data suggest that compared to PA, LA exerts less adverse effects on metabolic disorders and this could be due to the differential effects of these fatty acids in fat and muscle. Abstract Coconut oil, rich in medium-chain saturated fatty acids (MCSFA), in particular, lauric acid (LA), is known to exert beneficial metabolic effects. Although LA is the most abundant saturated fatty acid in coconut oil, the specific role of LA in altering obesity-related metabolic disorders remains unknown. Here, we examined the effects of supplementing a high fat (HF) diet with purified LA on obesity-associated metabolic derangements in comparison with palmitic acid (PA), a long-chain saturated fatty acid. Male C57BL/6 mice were fed a control chow diet (CD) or an HF diet supplemented with 3% LA (HF + LA) or PA (HF + PA) for 12 wk. Markers of adipose tissue (AT) inflammation, systemic insulin resistance (IR), and hepatic steatosis, were assessed. The body weight and total fat mass were significantly higher in both HF + LA and HF + PA diet-fed groups compared to CD controls. However, the visceral adipose tissue (VAT) mass was significantly higher (p < 0.001) in HF + LA-fed mice compared to both CD as well as HF + PA-fed mice. Interestingly, markers of AT inflammation were promoted to a lesser extent in HF + LA-fed mice compared to HF + PA-fed mice. Thus, immunohistochemical analysis of VAT showed an increase in MCP-1 and IL-6 staining in HF + PA-fed mice but not in HF + LA-fed mice compared to CD controls. Further, the mRNA levels of macrophage and inflammatory markers were significantly higher in HF + PA-fed mice (p < 0.001) whereas these markers were increased to a lesser extent in HF + LA-fed group. Of note, the insulin tolerance test revealed that IR was significantly increased only in HF + PA-fed mice but not in HF + LA-fed group compared to CD controls. While liver triglycerides were increased significantly in both HF + PA and HF + LA-fed mice, liver weight and plasma markers of liver injury such as alanine aminotransferase and aspartate aminotransferase were increased significantly only in HF + PA-fed mice but not in HF + LA-fed mice. Taken together, our data suggest that although both LA and PA increased AT inflammation, systemic IR, and liver injury, the extent of metabolic derangements caused by LA was less compared to PA in the setting of high fat feeding.
Collapse
|
23
|
Perakakis N, Joshi A, Peradze N, Stefanakis K, Li G, Feigh M, Veidal SS, Rosen G, Fleming M, Mantzoros CS. The Selective Peroxisome Proliferator-Activated Receptor Gamma Modulator CHS-131 Improves Liver Histopathology and Metabolism in a Mouse Model of Obesity and Nonalcoholic Steatohepatitis. Hepatol Commun 2020; 4:1302-1315. [PMID: 32923834 PMCID: PMC7471426 DOI: 10.1002/hep4.1558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
CHS-131 is a selective peroxisome proliferator-activated receptor gamma modulator with antidiabetic effects and less fluid retention and weight gain compared to thiazolidinediones in phase II clinical trials. We investigated the effects of CHS-131 on metabolic parameters and liver histopathology in a diet-induced obese (DIO) and biopsy-confirmed mouse model of nonalcoholic steatohepatitis (NASH). Male C57BL/6JRj mice were fed the amylin liver NASH diet (40% fat with trans-fat, 20% fructose, and 2% cholesterol). After 36 weeks, only animals with biopsy-confirmed steatosis and fibrosis were included and stratified into treatment groups (n = 12-13) to receive for the next 12 weeks (1) low-dose CHS-131 (10 mg/kg), (2) high-dose CHS-131 (30 mg/kg), or (3) vehicle. Metabolic parameters, liver pathology, metabolomics/lipidomics, markers of liver function and liver, and subcutaneous and visceral adipose tissue gene expression profiles were assessed. CHS-131 did not affect body weight, fat mass, lean mass, water mass, or food intake in DIO-NASH mice with fibrosis. CHS-131 improved fasting insulin levels and insulin sensitivity as assessed by the intraperitoneal insulin tolerance test. CHS-131 improved total plasma cholesterol, triglycerides, alanine aminotransferase, and aspartate aminotransferase and increased plasma adiponectin levels. CHS-131 (high dose) improved liver histology and markers of hepatic fibrosis. DIO-NASH mice treated with CHS-131 demonstrated a hepatic shift to diacylglycerols and triacylglycerols with a lower number of carbons, increased expression of genes stimulating fatty acid oxidation and browning, and decreased expression of genes promoting fatty acid synthesis, triglyceride synthesis, and inflammation in adipose tissue. Conclusion: CHS-131 improves liver histology in a DIO and biopsy-confirmed mouse model of NASH by altering the hepatic lipidome, reducing insulin resistance, and improving lipid metabolism and inflammation in adipose tissue.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal MedicineBoston VA Healthcare SystemBostonMA
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Aditya Joshi
- Department of Internal MedicineBoston VA Healthcare SystemBostonMA
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Natia Peradze
- Department of Internal MedicineBoston VA Healthcare SystemBostonMA
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Konstantinos Stefanakis
- Department of Internal MedicineBoston VA Healthcare SystemBostonMA
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | | | | | | | | | | | - Christos S. Mantzoros
- Department of Internal MedicineBoston VA Healthcare SystemBostonMA
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| |
Collapse
|
24
|
Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells 2020; 9:cells9030590. [PMID: 32131439 PMCID: PMC7140508 DOI: 10.3390/cells9030590] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by lipid accumulation in hepatocytes in the absence of excessive alcohol consumption. The global prevalence of NAFLD is constantly increasing. NAFLD is a disease spectrum comprising distinct stages with different prognoses. Non-alcoholic steatohepatitis (NASH) is a progressive condition, characterized by liver inflammation and hepatocyte ballooning, with or without fibrosis. The natural history of NAFLD is negatively influenced by NASH onset and by the progression towards advanced fibrosis. Pathogenetic mechanisms and cellular interactions leading to NASH and fibrosis involve hepatocytes, liver macrophages, myofibroblast cell subpopulations, and the resident progenitor cell niche. These cells are implied in the regenerative trajectories following liver injury, and impairment or perturbation of these mechanisms could lead to NASH and fibrosis. Recent evidence underlines the contribution of extra-hepatic organs/tissues (e.g., gut, adipose tissue) in influencing NASH development by interacting with hepatic cells through various molecular pathways. The present review aims to summarize the role of hepatic parenchymal and non-parenchymal cells, their mutual influence, and the possible interactions with extra-hepatic tissues and organs in the pathogenesis of NAFLD.
Collapse
|
25
|
Huang C, Wang HY, Wang ME, Hsu MC, Wu YHS, Jiang YF, Wu LS, Jong DS, Chiu CH. Kisspeptin-Activated Autophagy Independently Suppresses Non-Glucose-Stimulated Insulin Secretion from Pancreatic β-Cells. Sci Rep 2019; 9:17451. [PMID: 31767891 PMCID: PMC6877614 DOI: 10.1038/s41598-019-53826-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Previous studies have demonstrated the important role of kisspeptin in impaired glucose-stimulated insulin secretion (GSIS). In addition, it was reported that the activation of autophagy in pancreatic β-cells decreases insulin secretion by selectively degrading insulin granules. However, it is currently unknown whether kisspeptin suppresses GSIS in β-cells by activating autophagy. To investigate the involvement of autophagy in kisspeptin-regulated insulin secretion, we overexpressed Kiss1 in NIT-1 cells to mimic the long-term exposure of pancreatic β-cells to kisspeptin during type 2 diabetes (T2D). Interestingly, our data showed that although kisspeptin potently decreases the intracellular proinsulin and insulin ((pro)insulin) content and insulin secretion of NIT-1 cells, autophagy inhibition using bafilomycin A1 and Atg5 siRNAs only rescues basal insulin secretion, not kisspeptin-impaired GSIS. We also generated a novel in vivo model to investigate the long-term exposure of kisspeptin by osmotic pump. The in vivo data demonstrated that kisspeptin lowers GSIS and (pro)insulin levels and also activated pancreatic autophagy in mice. Collectively, our data demonstrated that kisspeptin suppresses both GSIS and non-glucose-stimulated insulin secretion of pancreatic β-cells, but only non-glucose-stimulated insulin secretion depends on activated autophagic degradation of (pro)insulin. Our study provides novel insights for the development of impaired insulin secretion during T2D progression.
Collapse
Affiliation(s)
- Chien Huang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao-Yi Wang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mu-En Wang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Pathology, Duke University School of Medicine, Duke Cancer Institute, Duke University, Durham, NC, 27514, USA
| | - Meng-Chieh Hsu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Hsieng Samuel Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Leang-Shin Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - De-Shien Jong
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsien Chiu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
26
|
Zhao M, Cai H, Jiang Z, Li Y, Zhong H, Zhang H, Feng F. Glycerol-Monolaurate-Mediated Attenuation of Metabolic Syndrome is Associated with the Modulation of Gut Microbiota in High-Fat-Diet-Fed Mice. Mol Nutr Food Res 2019; 63:e1801417. [PMID: 31318165 DOI: 10.1002/mnfr.201801417] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/09/2019] [Indexed: 02/06/2023]
Abstract
SCOPE The gut microbiota plays an important role in the development of diet-induced obesity and metabolic syndrome. Glycerol monolaurate (GML), a widely consumed food emulsifier, is reported to promote metabolic disorder and gut microbiota dysbiosis in low-dose supplementation upon low-fat-diet feeding. However, little is known about whether GML produce the same effects in mice fed a high-fat diet (HFD). METHODS AND RESULTS C57BL/6 mice are fed a HFD with or without GML supplementation (150, 300, and 450 mg kg-1 ) for 10 weeks. The results demonstrated that higher GML treatment (450 mg kg-1 ) ameliorates HFD-induced metabolic disorders, supported by prevented visceral fat deposition, improved hyperlipidemia, modulated hepatic lipid metabolism, and reduced serum proinflammatory cytokine, TNF-α. Additionally, all doses of GML attenuated circulating lipopolysaccharide load and insulin resistance. Notably, GML ameliorates HFD-induced gut microbiota dysbiosis, with increases in Bacteroides uniformis, Akkermansia, Bifidobacterium, and Lactobacillus and decreases in Escherichia coli, Lactococcus, and Flexispira. Spearman's correlation analysis indicates that these enriched specific genera are significantly associated with the metabolic improvements of GML. CONCLUSION The findings identify the links between gut microbiota and GML-induced metabolic improvements, suggesting that the attenuation of HFD-induced metabolic disorders by higher GML supplementation may occur through targeting gut microbiota.
Collapse
Affiliation(s)
- Minjie Zhao
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Haiying Cai
- Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Zengliang Jiang
- Institute of Basic Medical Sciences, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhong
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Plaza A, Antonazzi M, Blanco-Urgoiti J, Del Olmo N, Ruiz-Gayo M. Potential Role of Leptin in Cardiac Steatosis Induced by Highly Saturated Fat Intake during Adolescence. Mol Nutr Food Res 2019; 63:e1900110. [PMID: 31298470 DOI: 10.1002/mnfr.201900110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Indexed: 01/06/2023]
Abstract
SCOPE To identify the age-dependent effect of diets containing elevated amounts of either saturated or unsaturated fatty acids on cardiac steatosis in mice. METHODS AND RESULTS Five- and eight-week-old C57BL/6J mice cohorts are given free access to either a saturated or an unsaturated fatty-acid-enriched diet during 8 weeks. Body weight (BW) and food intake are monitored during this period. Cardiac lipid content, carnitine palmitoyltransferase-I (CPT-I) activity, and the amount of uncoupling proteins 2 and 3 (UCP2 and UCP3) are analyzed and correlated with blood leptin concentration. Leptin and PPARγ gene expression is quantified in white adipose tissue (WAT). Both diets have a similar effect on food intake, BW, and adiposity, independently of the age. Nevertheless, cardiac steatosis is specifically identified in adolescent mice consuming the saturated diet. These animals also display lower activity of cardiac CPT-I, a down-regulation of cardiac UCP2, together with lower concentration of plasma leptin. Accordingly, leptin gene expression is reduced in the visceral WAT. CONCLUSION Consumption of diets containing elevated amounts of saturated fat during adolescence and early adult life promotes cardiac steatosis in mice. An insufficient endocrine activity of WAT, in terms of leptin production, may account for such an effect.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Marco Antonazzi
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | | | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| |
Collapse
|
28
|
Current Models of Fatty Liver Disease; New Insights, Therapeutic Targets and Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:33-58. [PMID: 30919331 DOI: 10.1007/978-3-030-12668-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to steatosis with inflammation and fibrosis. NAFLD is currently the most prevalent chronic liver disease worldwide, with a global prevalence of 25%, and is soon projected to be the leading cause for liver transplantation in the US. Alarmingly, few effective pharmacotherapeutic approaches are currently available to block or attenuate development and progression of NAFLD. Preclinical models are critical for unraveling the complex and multi-factorial etiology of NAFLD and for testing potential therapeutics. Here we review preclinical models that have been instrumental in highlighting molecular and cellular mechanisms underlying the pathogenesis of NAFLD and in facilitating early proof-of-concept investigations into novel intervention strategies.
Collapse
|
29
|
Rumora AE, LoGrasso G, Haidar JA, Dolkowski JJ, Lentz SI, Feldman EL. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res 2018; 60:58-70. [PMID: 30442656 DOI: 10.1194/jlr.m086843] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Dyslipidemia associated with T2D leads to diabetic neuropathy, a complication characterized by sensory neuronal dysfunction and peripheral nerve damage. Sensory dorsal root ganglion (DRG) neurons are dependent on axonal mitochondrial energy production facilitated by mitochondrial transport mechanisms that distribute mitochondria throughout the axon. Because long-chain saturated FAs (SFAs) damage DRG neurons and medium-chain SFAs are reported to improve neuronal function, we evaluated the impact of SFA chain length on mitochondrial trafficking, mitochondrial function, and apoptosis. DRG neurons were exposed to SFAs with C12:0-C18:0 chain lengths and evaluated for changes in mitochondrial trafficking, mitochondrial polarization, and apoptosis. DRG neurons treated with C16:0 and C18:0 SFAs showed a significant decrease in the percentage of motile mitochondria and velocity of mitochondrial trafficking, whereas C12:0 and C14:0 SFAs had no impact on motility. Treatment with C16:0 and C18:0 SFAs exhibited mitochondrial depolarization correlating with impaired mitochondrial motility; the C12:0- and C14:0-treated neurons retained mitochondrial polarization. The reduction in mitochondrial trafficking and function in C16:0- and C18:0-treated DRG neurons correlated with apoptosis that was blocked in C12:0 and C14:0 SFA treatments. These results suggest that SFA chain length plays an important role in regulating axonal mitochondrial trafficking and function in DRG neurons.
Collapse
Affiliation(s)
- Amy E Rumora
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Giovanni LoGrasso
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Julia A Haidar
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Justin J Dolkowski
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Stephen I Lentz
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Eva L Feldman
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Akazawa Y, Nakao K. To die or not to die: death signaling in nonalcoholic fatty liver disease. J Gastroenterol 2018; 53:893-906. [PMID: 29574534 PMCID: PMC6061666 DOI: 10.1007/s00535-018-1451-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging liver disease worldwide. In subset of patients, NAFLD progresses to its advanced form, nonalcoholic steatohepatitis (NASH), which is accompanied with inflammation and fibrosis. Saturated free fatty acid-induced hepatocyte apoptosis is a feature of NASH. Death signaling in NASH does not always result in apoptosis, but can alternatively lead to the survival of cells presenting signs of pro-inflammatory and pro-fibrotic signals. With the current lack of established treatments for NASH, it is important to understand the molecular mechanisms responsible for disease development and progression. This review focuses on the latest findings in hepatocyte death signaling and discusses possible targets for intervention, including caspases, death receptor and c-Jun N-terminal kinase 1 signaling, oxidative stress, and endoplasmic reticulum stress, as well as epigenomic factors.
Collapse
Affiliation(s)
- Yuko Akazawa
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, 852-8501, Nagasaki, Japan.
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, 852-8501, Nagasaki, Japan.
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, 852-8501, Nagasaki, Japan
| |
Collapse
|
31
|
Di Fazio P, Matrood S. Targeting autophagy in liver cancer. Transl Gastroenterol Hepatol 2018; 3:39. [PMID: 30148224 PMCID: PMC6088143 DOI: 10.21037/tgh.2018.06.09] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a catabolic cellular process conserved in animals. It is characterized by the main role of recycling all the non-functional products of the cells. Once, autophagy players detect non-functioning sub-cellular organelles and proteins, they start the so-called nucleation process. The organelles will be surrounded by a double membrane vesicle mainly constituted by endoplasmic reticulum (ER) membrane and autophagy proteins, e.g., MAP1LC3B, Beclin-1, VPS34, Unc-51 like autophagy activating kinase (ULK1) and ubiquitination-related proteins. Then the autophagic membrane will go through an elongation phase involving additional autophagy players. Once the autophagic vesicle is complete, the sub-cellular organelles will be isolated from the rest of the cytosol and driven to the final fusion with lysosomes. Here, the digestion process will end. Alteration and or impairment of autophagy have been shown to be correlated with development of diseases affecting the central nervous system, e.g., Alzheimer and other neurodegenerative diseases. Nonetheless, autophagy defect is responsible for tumorigenesis in blood and solid malignancies, in particular liver cancer. Malignancies of the liver are determined by several genetics and epigenetics mechanisms triggering the up-regulation of survival mechanisms and resistance to cell death. Furthermore, liver cancer could result from pathologic conditions like cirrhosis and fibrosis related to virus infection, aflatoxin, alcohol consumption and high fat diet together with insulin resistance. The role exerted by autophagy in the pathogenesis of the liver and tumor development has been evidenced in recent years. The alteration of autophagy assumes a fundamental role for liver tumorigenesis determining an accumulation of non-functional proteins and organelles that trigger oxidative stress leading to genotoxic stress and gene alterations. Furthermore, the absence of this degradation mechanism could prompt the cells to alter their metabolic status and turn into malignant cells. Interestingly, the heterozygous loss of function of Beclin-1 is able to trigger liver tumorigenesis or even the simple accumulation of proteins caused by the block of the final autolysosome fusion and degradation process is responsible for liver cancer development. This review highlights the importance of targeting the autophagy process in liver cancer in order to restore its function and to promote autophagy-mediated cell demise.
Collapse
Affiliation(s)
- Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, Marburg, Germany
| | - Sami Matrood
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, Marburg, Germany
| |
Collapse
|