1
|
Tada T, Oshiro S, Mizutani N, Sato K, Hom NS, Soe PE, Htoon TT, Tin HH, Kirikae T. Emergence of drug-resistant Elizabethkingia anophelis clinical isolates in Myanmar. J Med Microbiol 2024; 73. [PMID: 39387685 DOI: 10.1099/jmm.0.001917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Seven drug-resistant Elizabethkingia anophelis isolates were obtained from inpatients in three medical settings in Myanmar between February 2017 and January 2021. All isolates were resistant to β-lactams and colistin. Among these, four isolates were resistant to amikacin with minimum inhibitory concentration (MIC) of ≥64 µg ml-1. Six of the seven isolates harboured genes encoding intrinsic β-lactamases, including bla B, bla CME and bla GOB, whereas one isolate harboured bla B, bla CME and an incomplete bla GOB gene. Phylogenetic analysis based on whole-genome sequences revealed that several E. anophelis isolates in Myanmar formed their own clusters, whereas others were similar to isolates found in the USA. This is the first report of the emergence of Elizabethkingia species in Myanmar.
Collapse
Affiliation(s)
- Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Oshiro
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Naeko Mizutani
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Koji Sato
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | | | - Pan Ei Soe
- National Health Laboratory, Yangon, Myanmar
| | | | | | - Teruo Kirikae
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
2
|
Feng M, Huang M, Fan Y, Liu G, Zhou S, Zhou J. Clinical Characteristics and Risk Factors for Infection and Death in Critically Ill Patients with Pulmonary Infection with Elizabethkingia Spp. Infect Drug Resist 2024; 17:2673-2683. [PMID: 38953097 PMCID: PMC11216603 DOI: 10.2147/idr.s460640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Elizabethkingia spp. infections have recently increased, and they are difficult to treat because of intrinsic antimicrobial resistance. This study aimed to investigate the clinical characteristics of patients with pulmonary infection with Elizabethkingia spp. and reveal the risk factors for infection and death. Patients and Methods In this retrospective case-control study, patients were divided into infection and control groups based on the bacterial identification results. Patients in the infection group were further divided into survival and death groups according to their hospital outcomes. Clinical characteristics between different groups were compared. We further analyzed antimicrobial susceptibility testing results of the isolated strains. Results A total of the 316 patients were divided into infection (n = 79), 23 of whom died, and control (n = 237) groups. Multivariate logistic regression analysis showed that glucocorticoid consumption (OR: 2.35; 95% CI: 1.14-4.81; P = 0.02), endotracheal intubation (OR: 3.74; 95% CI: 1.62-8.64; P = 0.002), and colistin exposure (OR: 2.50; 95% CI: 1.01-6.29; P = 0.046) were significantly associated with pulmonary infection with Elizabethkingia spp. Advanced age (OR: 1.07, 95% CI: 1.00-1.15; P = 0.046), high acute physiology and chronic health evaluation (APACHE) II score (OR: 1.21; 95% CI: 1.01-1.45; P = 0.037), and low albumin level (OR: 0.73, 95% CI: 0.56-0.96; P = 0.025) were significantly associated with in-hospital mortality of infected patients. Elizabethkingia spp. was highly resistant to cephalosporins, carbapenems, macrolides, and aminoglycoside, and was sensitive to fluoroquinolones, minocycline, and co-trimoxazole in vitro. Conclusion Glucocorticoid consumption, tracheal intubation, and colistin exposure were associated with pulmonary infection with Elizabethkingia spp. for critically ill patients. Patients with advanced age, high APACHE II score, and low albumin level had higher risk of death from infection.
Collapse
Affiliation(s)
- Mengwen Feng
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Min Huang
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuanyuan Fan
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Genyan Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Suming Zhou
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jing Zhou
- Department of Geriatric Intensive Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Lee YL, Hsueh PR. Emerging infections in vulnerable hosts: Stenotrophomonas maltophilia and Elizabethkingia anophelis. Curr Opin Infect Dis 2023; 36:481-494. [PMID: 37548375 DOI: 10.1097/qco.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW This systematic review aimed to explore the recent trends in the epidemiology, risk factors, and antimicrobial susceptibility of two emerging opportunistic pathogens, Stenotrophomonas maltophilia and Elizabethkingia anophelis . RECENT FINDINGS Since 2020, numerous outbreaks of S. maltophilia and E. anophelis have been reported worldwide. Most of these outbreaks have been associated with healthcare facilities, although one outbreak caused by E. anophelis in France was considered a community-associated infection. In terms of antimicrobial susceptibility, trimethoprim/sulfamethoxazole (TMP-SMZ), levofloxacin, and minocycline have exhibited good efficacy against S. maltophilia . Additionally, cefiderocol and a combination of aztreonam and avibactam have shown promising results in in vitro susceptibility testing. For E. anophelis , there is currently no consensus on the optimal treatment. Although some studies have reported good efficacy with rifampin, TMP-SMZ, piperacillin/tazobactam, and cefoperazone/sulbactam, minocycline had the most favourable in vitro susceptibility rates. Cefiderocol may serve as an alternative due to its low minimum inhibitory concentration (MIC) against E. anophelis . The role of vancomycin in treatment is still uncertain, although several successful cases with vancomycin treatment, even with high MIC values, have been reported. SUMMARY Immunocompromised patients are particularly vulnerable to infections caused by S. maltophilia and E. anophelis , but the optimal treatment strategy remains inconclusive. Further research is necessary to determine the most effective use of conventional and novel antimicrobial agents in combatting these multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital
- School of Medicine, Chung Shan Medical University
- PhD Program in Medical Biotechnology, National Chung-Hsing University
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital
- School of Medicine
- PhD Program for Aging, School of Medicine, China Medical University, Taichung
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Mallinckrodt L, Huis In 't Veld R, Rosema S, Voss A, Bathoorn E. Review on infection control strategies to minimize outbreaks of the emerging pathogen Elizabethkingia anophelis. Antimicrob Resist Infect Control 2023; 12:97. [PMID: 37679842 PMCID: PMC10486102 DOI: 10.1186/s13756-023-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Elizabethkingia anophelis is a multi-drug resistant emerging opportunistic pathogen with a high mortality rate, causing healthcare-associated outbreaks worldwide. METHODS We report a case of E. anophelis pleuritis, resulting from transmission through lung transplantation, followed by a literature review of outbreak reports and strategies to minimize E. anophelis transmission in healthcare settings. RESULTS From 1990 to August 2022, 14 confirmed E. anophelis outbreak cohorts and 21 cohorts with suspected E. anophelis outbreaks were reported in literature. A total of 80 scientific reports with recommendations on diagnostics and infection control measures were included and summarized in our study. CONCLUSION Strategies to prevent and reduce spread of E. anophelis include water-free patient rooms, adequate hygiene and disinfection practices, and optimized diagnostic techniques for screening, identification and molecular typing.
Collapse
Affiliation(s)
- Lisa Mallinckrodt
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Gelre Hospital, Apeldoorn, The Netherlands
| | - Robert Huis In 't Veld
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Chiang MH, Chang FJ, Kesavan DK, Vasudevan A, Xu H, Lan KL, Huang SW, Shang HS, Chuang YP, Yang YS, Chen TL. Proteomic Network of Antibiotic-Induced Outer Membrane Vesicles Released by Extensively Drug-Resistant Elizabethkingia anophelis. Microbiol Spectr 2022; 10:e0026222. [PMID: 35852325 PMCID: PMC9431301 DOI: 10.1128/spectrum.00262-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Elizabethkingia anophelis, a nonfermenting Gram-negative bacterium, causes life-threatening health care-associated infections. E. anophelis harbors multidrug resistance (MDR) genes and is intrinsically resistant to various classes of antibiotics. Outer membrane vesicles (OMVs) are secreted by Gram-negative bacteria and contain materials involved in bacterial survival and pathogenesis. OMVs specialize and tailor their functions by carrying different components to challenging environments and allowing communication with other microorganisms or hosts. In this study, we sought to understand the characteristics of E. anophelis OMVs under different antibiotic stress conditions. An extensively drug-resistant clinical isolate, E. anophelis C08, was exposed to multiple antibiotics in vitro, and its OMVs were characterized using nanoparticle tracking analysis, transmission electron microscopy, and proteomic analysis. Protein functionality analysis showed that the OMVs were predominantly involved in metabolism, survival, defense, and antibiotic resistance processes, such as the Rag/Sus family, the chaperonin GroEL, prenyltransferase, and an HmuY family protein. Additionally, a protein-protein interaction network demonstrated that OMVs from imipenem-treated E. anophelis showed significant enrichments in the outer membrane, adenyl nucleotide binding, serine-type peptidase activity, the glycosyl compound metabolic process, and cation binding proteins. Collectively, the OMV proteome expression profile indicates that the role of OMVs is immunologically relevant and related to bacterial survival in antibiotic stress environments rather than representing a resistance point. IMPORTANCE Elizabethkingia anophelis is a bacterium often associated with nosocomial infection. This study demonstrated that imipenem-induced E. anophelis outer membrane vesicles (OMVs) are immunologically relevant and crucial for bacterial survival under antibiotic stress conditions rather than being a source of antibiotic resistance. Furthermore, this is the first study to discuss the protein-protein interaction network of the OMVs released by E. anophelis, especially under antibiotic stress. Our findings provide important insights into clinical antibiotic stewardship.
Collapse
Affiliation(s)
- Ming-Hsien Chiang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Ju Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Dinesh Kumar Kesavan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Aparna Vasudevan
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kuo-Lun Lan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ping Chuang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Te-Li Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Andriyanov PA, Zhurilov PA, Kashina DD, Tutrina AI, Liskova EA, Razheva IV, Kolbasov DV, Ermolaeva SA. Antimicrobial Resistance and Comparative Genomic Analysis of Elizabethkingia anophelis subsp. endophytica Isolated from Raw Milk. Antibiotics (Basel) 2022; 11:648. [PMID: 35625292 PMCID: PMC9137776 DOI: 10.3390/antibiotics11050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Elizabethkingia anophelis is an emerging multidrug-resistant pathogen that causes severe nosocomial and community-acquired infections worldwide. We report the first case of E. anophelis isolation in Russia and the first isolation from raw cow's milk. The ML-44 demonstrated resistance to 28 antimicrobials of 33 tested in the disk-diffusion test. Whole genome-based phylogeny showed ML-44 strain clustered together with the F3201 strain isolated from a human patient in Kuwait in 1982. Both strains were a part of the "endophytica" clade. Another clade was formed by subsp. anophelis strains. Each of the E. anophelis compared genomes carried 18 to 21 antibiotic resistance determinants. The ML-44 chromosome harbored nine efflux system genes and three beta-lactamase genes, along with six other antimicrobial resistance genes. In total, 72 virulence genes were revealed. The set of virulence factors was quite similar between different E. anophelis strains and included LPS and capsule encoded genes, type IV pili, oxidative stress response genes, and genes encoding TIVSS and TVISS effectors. The particular interest caused the mip and zmp1 gene homologs, which can be essential for intracellular survival. In sum, our findings suggest that raw milk might be a source of E. anophelis harboring a set of virulence factors and a broad resistance to generally used antimicrobials.
Collapse
Affiliation(s)
- Pavel A. Andriyanov
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Pavel A. Zhurilov
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Daria D. Kashina
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Anastasia I. Tutrina
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Elena A. Liskova
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Irina V. Razheva
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Denis V. Kolbasov
- Federal Research Center for Virology and Microbiology, 601125 Volginsky, Russia;
| | - Svetlana A. Ermolaeva
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| |
Collapse
|
7
|
Zajmi A, Teo J, Yeo CC. Epidemiology and Characteristics of Elizabethkingia spp. Infections in Southeast Asia. Microorganisms 2022; 10:microorganisms10050882. [PMID: 35630327 PMCID: PMC9144721 DOI: 10.3390/microorganisms10050882] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Elizabethkingia spp. is a ubiquitous pathogenic bacterium that has been identified as the causal agent for a variety of conditions such as meningitis, pneumonia, necrotizing fasciitis, endophthalmitis, and sepsis and is emerging as a global threat including in Southeast Asia. Elizabethkingia infections tend to be associated with high mortality rates (18.2–41%) and are mostly observed in neonates and immunocompromised patients. Difficulties in precisely identifying Elizabethkingia at the species level by traditional methods have hampered our understanding of this genus in human infections. In Southeast Asian countries, hospital outbreaks have usually been ascribed to E. meningoseptica, whereas in Singapore, E. anophelis was reported as the main Elizabethkingia spp. associated with hospital settings. Misidentification of Elizabethkingia spp. could, however, underestimate the number of cases attributed to the bacterium, as precise identification requires tools such as MALDI-TOF MS, and particularly whole-genome sequencing, which are not available in most hospital laboratories. Elizabethkingia spp. has an unusual antibiotic resistance pattern for a Gram-negative bacterium with a limited number of horizontal gene transfers, which suggests an intrinsic origin for its multidrug resistance. Efforts to prevent and further understand Elizabethkingia spp. infections and limit its spread must rise to this new challenge.
Collapse
Affiliation(s)
- Asdren Zajmi
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia;
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, Shah Alam 40100, Malaysia
| | - Jeanette Teo
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia;
- Correspondence: ; Tel.: +60-9-627-5506
| |
Collapse
|
8
|
The Evolutionary Trend and Genomic Features of an Emerging Lineage of Elizabethkingia anophelis Strains in Taiwan. Microbiol Spectr 2022; 10:e0168221. [PMID: 35044198 PMCID: PMC8768576 DOI: 10.1128/spectrum.01682-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of Elizabethkingia anophelis bacteremia increased significantly in a tertiary hospital, Changhua Christian Hospital (CCH) since 2013. The infection density was 1.3 and 8.1 cases per 100,000 patient-days between 2005 and 2012 and 2013 and 2020, respectively (P < 0.05). During an outbreak investigation, a specific lineage of E. anophelis strains was identified by the pulsed-field gel electrophoresis analysis. To evaluate the evolution of the specific E. anophelis lineage, whole-genome sequencing was performed, and unique genomic features (GRs) were determined by comparative genomic analysis. The specific E. anophelis lineage was novel compared to worldwide strains ever reported by cg-MLST phylogenic and whole-genome comparative analysis. Multiplex PCR using primers designed from unique GRs were performed for prevalence screening among isolates from the CCH and nationwide isolates from the Taiwan surveillance of Antimicrobial Resistance (TSAR) Program. The proportion of the specific E. anophelis lineage increased from 7.9% (3/38) during 2005-2012 to 89.2% (223/250) during 2013-2020 (P < 0.05). Although E. anophelis usually confers resistance to multiple antibiotics with limited therapeutic options, the E. anophelis strains in the specific lineage had higher ciprofloxacin resistance (100% [226/226] versus 27.4% [17/62], P < 0.05) and was associated with a higher 14-day mortality rates (33.2% [37/226] versus 16.1% [10/62], P < 0.05) than other strains at CCH. A similarly increasing trend was also found in the national TSAR program during 2002-2018 (p for trend <0.05). We concluded that a novel lineage of E. anophelis strains has emerged dominantly in Taiwan. The genomic features are important for further investigations of epidemiology, resistance, virulence, and appropriate treatment. IMPORTANCEElizabethkingia anophelis is an emerging multidrug resistant pathogen caused several global outbreaks recently. E. anophelis was frequently misidentified as E. meningoseptica in the past by conventional culture methods; therefore, the prevalence was often underestimated. Through revised identification, an increasing trend of E. anophelis infection was noted in a tertiary hospital and a dominant lineage of strains was recognized by genotyping. To our best knowledge, the dominant lineage of E. anophelis is novel in comparison to other worldwide strains by whole-genome comparative analysis and several unique genomic regions were found. The whole-genome sequencing data also demonstrated multiple putative virulence factors and genes associated with multidrug resistance. In our study, we identified a specially evolved E. anophelis in Taiwan with increasing nationwide dominance. This study will assist in further epidemiology surveillance and developing corresponsive infection control policies to restrain it potential of global dissemination.
Collapse
|
9
|
Larkin PMK, Mortimer L, Malenfant JH, Gaynor P, Contreras DA, Garner OB, Yang S, Allyn P. Investigation of Phylogeny and Drug Resistance Mechanisms of Elizabethkingia anophelis Isolated from Blood and Lower Respiratory Tract. Microb Drug Resist 2021; 27:1259-1264. [PMID: 33656389 DOI: 10.1089/mdr.2020.0263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Elizabethkingia species are environmental bacteria associated with opportunistic infections in vulnerable populations. Traditionally, Elizabethkingia meningoseptica was considered the predominant pathogenic species. However, commercial identification systems have routinely misidentified Elizabethkingia anophelis as E. meningoseptica, leading to a mischaracterization of clinical strains and an underestimation of the role of E. anophelis in human disease. Elizabethkingia spp. harbor multidrug resistance (MDR) genes that pose challenges for treatment. Differentiation between Elizabethkingia spp. is particularly important due to differences in antimicrobial resistance (AMR) and epidemiological investigation. In this study, we describe a case of MDR E. anophelis isolated from the blood and lower respiratory tract of a patient who was successfully treated with minocycline. These isolates were initially misidentified by matrix assisted laser desorption ionization-time of flight as E. meningoseptica, whereas whole genome sequencing (WGS) confirmed the isolates as E. anophelis with the closest related strain being E. anophelis NUHP1, which was implicated in a 2012 outbreak in Singapore. Several AMR genes (blaBlaB, blaBlaGOB, blaCME, Sul2, erm(F), and catB) were identified by WGS, confirming the mechanisms for MDR. This case emphasizes the utility of WGS for correct speciation, elucidation of resistance genes, and relatedness to other outbreak strains. As E. anophelis is associated with a high mortality and has been found in hospital system sinks, WGS is critically important for determining strain relatedness and tracking outbreaks in the hospital setting.
Collapse
Affiliation(s)
- Paige M K Larkin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Leanne Mortimer
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jason H Malenfant
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA.,Department of Medicine, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Pryce Gaynor
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Deisy A Contreras
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Paul Allyn
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Chang Y, Zhang D, Niu S, Chen Q, Lin Q, Zhang X. MBLs, Rather Than Efflux Pumps, Led to Carbapenem Resistance in Fosfomycin and Aztreonam/Avibactam Resistant Elizabethkingia anophelis. Infect Drug Resist 2021; 14:315-327. [PMID: 33551643 PMCID: PMC7856348 DOI: 10.2147/idr.s294149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/14/2021] [Indexed: 01/23/2023] Open
Abstract
Objective To assess the risk factors associated with infections and in-hospital mortality, antimicrobial susceptibility patterns and carbapenem resistance mechanisms in E. anophelis. Methods This retrospective case-control study was conducted to reveal the risk factors associated with Elizabethkingia anophelis (E. anophelis) infection and in-hospital mortality in a university tertiary hospital in southwest China, using multivariable logistic-regression analyses. Complete 16S rRNA gene sequencing was used to reconfirm the identity of all isolates. We employed the broth microdilution method to investigate the antimicrobial susceptibility profiles. The presence of resistance genes was confirmed by polymerase chain reaction and DNA sequencing. Full-length resistance genes were cloned into the pET-28a vector for further functional studies. Results Our multivariate analysis indicated that coronary artery disease, chronic obstructive pulmonary disease, surgery in the past 6 months, anemia and systemic steroid use were independent risk factors for the acquisition of E. anophelis. Additionally, anemia was the only independent risk factor associated with in-hospital mortality in patients with E. anophelis infections. E. anophelis isolates showed high in-vitro susceptibility towards minocycline (100%) and piperacillin/tazobactam (71.8%), but were resistant to colistin, fosfomycin, ceftazidime/avibactam and aztreonam/avibactam. The PCR revealed the presence of blaGOB and blaBlaB in 37 isolates, and blaCME β-lactamase genes in 36 isolates out of 39 E. anophelis isolates. Additionally, we showed that two metallo-β-lactamases (MBLs) BlaB and GOB, were responsible for carbapenem resistance and the serine-β-lactamase, CME, was functionally involved in resistance to cephalosporins and monobactams. Interestingly, the various putative efflux pumps in E. anophelis were not responsible for resistance. Conclusion Our findings will help clinicians to identify high-risk patients and suggests that minocycline should be considered as a therapeutic option for E. anophelis infections. Additionally, carbapenem resistance in E. anophelis is mainly associated with the MBLs, BlaB and GOB, rather than various putative efflux pumps.
Collapse
Affiliation(s)
- Yanbin Chang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Daiqin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiuxia Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaobing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Burnard D, Gore L, Henderson A, Ranasinghe A, Bergh H, Cottrell K, Sarovich DS, Price EP, Paterson DL, Harris PNA. Comparative Genomics and Antimicrobial Resistance Profiling of Elizabethkingia Isolates Reveal Nosocomial Transmission and In Vitro Susceptibility to Fluoroquinolones, Tetracyclines, and Trimethoprim-Sulfamethoxazole. J Clin Microbiol 2020; 58:e00730-20. [PMID: 32580952 PMCID: PMC7448627 DOI: 10.1128/jcm.00730-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
The Elizabethkingia genus has gained global attention in recent years as containing sporadic, worldwide, nosocomial pathogens. Elizabethkingia spp. are intrinsically multidrug resistant, primarily infect immunocompromised individuals, and are associated with high mortality (∼20 to 40%). As yet, gaps remain in our understanding of transmission, global strain relatedness, antimicrobial resistance, and effective therapy. Over a 16-year period, 22 clinical and 6 hospital environmental isolates were collected from Queensland, Australia. Identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) (Vitek MS) and whole-genome sequencing was compared with a global strain data set. Phylogenomic reconstruction robustly identified 22 Elizabethkingia anophelis, 3 Elizabethkingia miricola, 2 Elizabethkingia meningoseptica, and 1 Elizabethkingia bruuniana isolates, most of which branched as unique lineages. Global analysis revealed that some Australian E. anophelis isolates are genetically closely related to strains from the United States, England, and Asia. Comparative genomics of clinical and environmental strains identified evidence of nosocomial transmission in patients, indicating probable infection from a hospital reservoir. Furthermore, broth microdilution against 39 antimicrobials revealed almost ubiquitous resistance to aminoglycosides, carbapenems, cephalosporins, and penicillins. Like other international strains, our isolates expressed susceptibility to minocycline and levofloxacin and the less common trimethoprim-sulfamethoxazole. Our study demonstrates important new insights into the genetic diversity, environmental persistence, and transmission of and potential effective therapy for Australian Elizabethkingia species.
Collapse
Affiliation(s)
- Delaney Burnard
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, Australia
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Letitia Gore
- Central Microbiology, Pathology Queensland, Queensland Health, Herston, Queensland, Australia
| | - Andrew Henderson
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, Australia
| | - Ama Ranasinghe
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, Australia
| | - Haakon Bergh
- Central Microbiology, Pathology Queensland, Queensland Health, Herston, Queensland, Australia
| | - Kyra Cottrell
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, Australia
| | - Derek S Sarovich
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Erin P Price
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - David L Paterson
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, Australia
- Central Microbiology, Pathology Queensland, Queensland Health, Herston, Queensland, Australia
| |
Collapse
|
12
|
Chen S, Johnson BK, Yu T, Nelson BN, Walker ED. Elizabethkingia anophelis: Physiologic and Transcriptomic Responses to Iron Stress. Front Microbiol 2020; 11:804. [PMID: 32457715 PMCID: PMC7221216 DOI: 10.3389/fmicb.2020.00804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the global gene expression responses of Elizabethkingia anophelis to iron fluxes in the midgut of female Anopheles stephensi mosquitoes fed sucrose or blood, and in iron-poor or iron-rich culture conditions. Of 3,686 transcripts revealed by RNAseq technology, 218 were upregulated while 112 were down-regulated under iron-poor conditions. Hemolysin gene expression was significantly repressed when cells were grown under iron-rich or high temperature (37°C) conditions. Furthermore, hemolysin gene expression was down-regulated after a blood meal, indicating that E. anophelis cells responded to excess iron and its associated physiological stress by limiting iron loading. By contrast, genes encoding respiratory chain proteins were up-regulated under iron-rich conditions, allowing these iron-containing proteins to chelate intracellular free iron. In vivo studies showed that growth of E. anophelis cells increased 3-fold in blood-fed mosquitoes over those in sucrose-fed ones. Deletion of siderophore synthesis genes led to impaired cell growth in both iron-rich and iron-poor media. Mutants showed more susceptibility to H2O2 toxicity and less biofilm formation than did wild-type cells. Mosquitoes with E. anophelis experimentally colonized in their guts produced more eggs than did those treated with erythromycin or left unmanipulated, as controls. Results reveal that E. anophelis bacteria respond to varying iron concentration in the mosquito gut, harvest iron while fending off iron-associated stress, contribute to lysis of red blood cells, and positively influence mosquito host fecundity.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Benjamin K. Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Ting Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Brooke N. Nelson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Nain Z, Abdulla F, Rahman MM, Karim MM, Khan MSA, Sayed SB, Mahmud S, Rahman SMR, Sheam MM, Haque Z, Adhikari UK. Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. J Biomol Struct Dyn 2019; 38:4850-4867. [PMID: 31709929 DOI: 10.1080/07391102.2019.1692072] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Faruq Abdulla
- Department of Statistics, Faculty of Sciences, Islamic University, Kushtia, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Shakil Ahmed Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sifat Bin Sayed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Shafi Mahmud
- Department of Biotechnology and Genetic Engineering, Faculty of Life and Earth Science, Rajshahi University, Rajshahi, Bangladesh
| | - S M Raihan Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Zahurul Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | | |
Collapse
|
14
|
Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical Elizabethkingia meningoseptica strains. PLoS One 2019; 14:e0222648. [PMID: 31600234 PMCID: PMC6786605 DOI: 10.1371/journal.pone.0222648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Three human clinical isolates of bacteria (designated strains Em1, Em2 and Em3) had high average nucleotide identity (ANI) to Elizabethkingia meningoseptica. Their genome sizes (3.89, 4.04 and 4.04 Mb) were comparable to those of other Elizabethkingia species and strains, and exhibited open pan-genome characteristics, with two strains being nearly identical and the third divergent. These strains were susceptible only to trimethoprim/sulfamethoxazole and ciprofloxacin amongst 16 antibiotics in minimum inhibitory tests. The resistome exhibited a high diversity of resistance genes, including 5 different lactamase- and 18 efflux protein- encoding genes. Forty-four genes encoding virulence factors were conserved among the strains. Sialic acid transporters and curli synthesis genes were well conserved in E. meningoseptica but absent in E. anophelis and E. miricola. E. meningoseptica carried several genes contributing to biofilm formation. 58 glycoside hydrolases (GH) and 25 putative polysaccharide utilization loci (PULs) were found. The strains carried numerous genes encoding two-component system proteins (56), transcription factor proteins (187~191), and DNA-binding proteins (6~7). Several prophages and CRISPR/Cas elements were uniquely present in the genomes.
Collapse
|
15
|
Lin JN, Lai CH, Yang CH, Huang YH, Lin HH. Clinical manifestations, molecular characteristics, antimicrobial susceptibility patterns and contributions of target gene mutation to fluoroquinolone resistance in Elizabethkingia anophelis. J Antimicrob Chemother 2019; 73:2497-2502. [PMID: 29846598 DOI: 10.1093/jac/dky197] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/30/2018] [Indexed: 11/14/2022] Open
Abstract
Objectives Elizabethkingia anophelis has recently emerged as a cause of life-threatening infections in humans. We aimed to investigate the clinical and molecular characteristics of E. anophelis. Methods A clinical microbiology laboratory database was searched to identify patients with Elizabethkingia infections between 2005 and 2016. Isolates were re-identified and their species were confirmed using 16S rRNA gene sequencing. Patients with E. anophelis infections were included in this study. Clinical information, antimicrobial susceptibility and mutations in DNA gyrase and topoisomerase IV were analysed. Results A total of 67 patients were identified to have E. anophelis infections, including 47 men and 20 women, with a median age of 61 years. Comorbidity was identified in 85.1% of the patients. Among the 67 E. anophelis isolates, 40 (59.7%) were isolated from blood. The case fatality rate was 28.4%. Inappropriate empirical antimicrobial therapy was an independent risk factor for mortality (adjusted OR = 10.01; 95% CI = 1.20-83.76; P = 0.034). The isolates were 'not susceptible' to multiple antibiotics. All the isolates were susceptible to minocycline. Susceptibilities to ciprofloxacin and levofloxacin were 4.5% and 58.2%, respectively. Mutations in DNA gyrase subunit A were identified in 11 isolates that exhibited high-level fluoroquinolone resistance. Conclusions Minocycline has the potential to be the drug of choice in patients with E. anophelis infections. Additional investigations are needed to determine the optimal antimicrobial agents to treat this life-threatening infection.
Collapse
Affiliation(s)
- Jiun-Nong Lin
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsu Lai
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, Meiho University, Pingtung, Taiwan
| | - Yi-Han Huang
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Lin JN, Lai CH, Yang CH, Huang YH. Elizabethkingia Infections in Humans: From Genomics to Clinics. Microorganisms 2019; 7:microorganisms7090295. [PMID: 31466280 PMCID: PMC6780780 DOI: 10.3390/microorganisms7090295] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
The genus Elizabethkingia has recently emerged as a cause of life-threatening infections in humans, particularly in immunocompromised patients. Several new species in the genus Elizabethkingia have been proposed in the last decade. Numerous studies have indicated that Elizabethkingia anophelis, rather than Elizabethkingia meningoseptica, is the most prevalent pathogen in this genus. Matrix-assisted laser desorption/ionization–time of flight mass spectrometry systems with an extended spectrum database could reliably identify E. anophelis and E. meningoseptica, but they are unable to distinguish the remaining species. Precise species identification relies on molecular techniques, such as housekeeping gene sequencing and whole-genome sequencing. These microorganisms are usually susceptible to minocycline but resistant to most β-lactams, β-lactam/β-lactam inhibitors, carbapenems, and aminoglycosides. They often exhibit variable susceptibility to piperacillin, piperacillin-tazobactam, fluoroquinolones, and trimethoprim-sulfamethoxazole. Accordingly, treatment should be guided by antimicrobial susceptibility testing. Target gene mutations are markedly associated with fluoroquinolone resistance. Knowledge on the genomic characteristics provides valuable insights into in these emerging pathogens.
Collapse
Affiliation(s)
- Jiun-Nong Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan.
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan.
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan.
| | - Chung-Hsu Lai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, Meiho University, Pingtung 912, Taiwan
| | - Yi-Han Huang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| |
Collapse
|
17
|
Snesrud E, McGann P, Walsh E, Ong A, Maybank R, Kwak Y, Campbell J, Jones A, Vore K, Hinkle M, Lesho E. Clinical and Genomic Features of the First Cases of Elizabethkingia anophelis Infection in New York, Including the First Case in a Healthy Infant Without Previous Nosocomial Exposure. J Pediatric Infect Dis Soc 2019; 8:269-271. [PMID: 30107596 DOI: 10.1093/jpids/piy071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/17/2018] [Indexed: 11/14/2022]
Abstract
Elizabethkingia spp are Gram-negative bacteria associated with neonatal meningitis. In 2015-2016, an outbreak of Elizabethkingia anophelis infection that involved 63 patients and 18 deaths occurred in Wisconsin. Despite a multistate investigation, as of September 2016 the source remained undetermined, and experts warned of reemergence. We describe here the first cases of E anophelis infection in New York, including the case of a healthy infant without previous healthcare contact.
Collapse
Affiliation(s)
- Erik Snesrud
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Patrick McGann
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Edward Walsh
- Department of Medicine, University of Rochester School of Medicine, New York
| | - Ana Ong
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Rosslyn Maybank
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Yoon Kwak
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jean Campbell
- Microbiology and Molecular Diagnostics, Rochester Regional Health, New York
| | - Anthony Jones
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Kelly Vore
- Infection Prevention, Rochester Regional Health, New York
| | - Mary Hinkle
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Emil Lesho
- Infectious Diseases Unit, Rochester Regional Health, New York
| |
Collapse
|
18
|
McTaggart LR, Stapleton PJ, Eshaghi A, Soares D, Brisse S, Patel SN, Kus JV. Application of whole genome sequencing to query a potential outbreak of Elizabethkingia anophelis in Ontario, Canada. Access Microbiol 2019; 1:e000017. [PMID: 32974512 PMCID: PMC7470347 DOI: 10.1099/acmi.0.000017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
Abstract
Bioinformatic analysis of whole genome sequence (WGS) data is emerging as a tool to provide powerful insights for clinical microbiology. We used WGS data to investigate the genetic diversity of clinical isolates of the bacterial pathogen Elizabethkingia anophelis to query the existence of a single-strain outbreak in Ontario, Canada. The Public Health Ontario Laboratory (PHOL) provides reference identification of clinical isolates of bacteria for Ontario and prior to 2016 had not identified E. anophelis. In the wake of the Wisconsin outbreak of 2015–2016 for which a source was never elucidated, the identification of E. anophelis from clinical specimens from five Ontario patients gave reason to question the presence of an outbreak. Genomic comparisons based on core genome multi-locus sequence typing conclusively refuted the existence of an outbreak, since the 5 Ontario isolates were genetically dissimilar, representing at least 3 distinct sub-lineages scattered among a set of 39 previously characterized isolates. Further interrogation of the genomic data revealed multiple antimicrobial resistance genes. Retrospective reidentification via rpoB sequence analysis of 22 clinical isolates of Elizabethkingia spp. collected by PHOL from 2010 to 2018 demonstrated that E. anophelis was isolated from clinical specimens as early as 2010. The uptick in E. anophelis in Ontario was not due to an outbreak or increased incidence of the pathogen, but rather enhanced laboratory identification techniques and improved sequence databases. This study demonstrates the usefulness of WGS analysis as a public health tool to quickly rule out the existence of clonally related case clusters of bacterial pathogens indicative of single-strain outbreaks.
Collapse
Affiliation(s)
- Lisa R. McTaggart
- Public Health Ontario, 661 University Avenue, Toronto, ON, Canada M5G 1M1
| | - Patrick J. Stapleton
- Public Health Ontario, 661 University Avenue, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - AliReza Eshaghi
- Public Health Ontario, 661 University Avenue, Toronto, ON, Canada M5G 1M1
| | - Deirdre Soares
- Public Health Ontario, 661 University Avenue, Toronto, ON, Canada M5G 1M1
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, F-75724 Paris, France
| | - Samir N. Patel
- Public Health Ontario, 661 University Avenue, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Julianne V. Kus
- Public Health Ontario, 661 University Avenue, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Julianne V. Kus,
| |
Collapse
|
19
|
In Silico Identification of Three Types of Integrative and Conjugative Elements in Elizabethkingia anophelis Strains Isolated from around the World. mSphere 2019; 4:4/2/e00040-19. [PMID: 30944210 PMCID: PMC6449604 DOI: 10.1128/msphere.00040-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Elizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE. Elizabethkingia anophelis is an emerging global multidrug-resistant opportunistic pathogen. We assessed the diversity among 13 complete genomes and 23 draft genomes of E. anophelis strains derived from various environmental settings and human infections from different geographic regions around the world from 1950s to the present. Putative integrative and conjugative elements (ICEs) were identified in 31/36 (86.1%) strains in the study. A total of 52 putative ICEs (including eight degenerated elements lacking integrases) were identified and categorized into three types based on the architecture of the conjugation module and the phylogeny of the relaxase, coupling protein, TraG, and TraJ protein sequences. The type II and III ICEs were found to integrate adjacent to tRNA genes, while type I ICEs integrate into intergenic regions or into a gene. The ICEs carry various cargo genes, including transcription regulator genes and genes conferring antibiotic resistance. The adaptive immune CRISPR-Cas system was found in nine strains, including five strains in which CRISPR-Cas machinery and ICEs coexist at different locations on the same chromosome. One ICE-derived spacer was present in the CRISPR locus in one strain. ICE distribution in the strains showed no geographic or temporal patterns. The ICEs in E. anophelis differ in architecture and sequence from CTnDOT, a well-studied ICE prevalent in Bacteroides spp. The categorization of ICEs will facilitate further investigations of the impact of ICE on virulence, genome epidemiology, and adaptive genomics of E. anophelis. IMPORTANCEElizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE.
Collapse
|
20
|
Wang M, Gao H, Lin N, Zhang Y, Huang N, Walker ED, Ming D, Chen S, Hu S. The antibiotic resistance and pathogenicity of a multidrug-resistant Elizabethkingia anophelis isolate. Microbiologyopen 2019; 8:e804. [PMID: 30891912 PMCID: PMC6854844 DOI: 10.1002/mbo3.804] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Elizabethkingia anophelis 12012‐2 PRCM was isolated from a patient with multiple organ dysfunction syndrome and lower respiratory tract infection in China. Minimum inhibitory concentration (MIC) analysis demonstrated that it was resistant to 20 antibiotics including trimethoprim/sulfamethoxazole and ciprofloxacin, which were effective for the elimination of other Elizabethkingia infections. To investigate multidrug resistance and pathogenicity mechanisms, we analyzed genome features of 12012‐2 PRCM and compared them to the other Elizabethkingia species. The draft genome size was 4.02 Mb with a GC content of 32%, comparable to that of other E. anophelis strains. Phylogenetic analysis showed that E. anophelis 12012‐2 PRCM formed a sister group with E. anophelis 502, distinct from clades formed by other clinical and environmental E. anophelis isolates. E. anophelis 12012‐2 PRCM contained multiple copies of β‐lactamase genes as well as genes predicted to function in antimicrobial efflux. It also contained 92 genes that were potentially involved in virulence, disease, and defense, and were associated with resistance and pathogenicity. Comparative genomic analysis showed high homology among three clinical and two environmental E. anophelis strains having a variety of similar antibiotic resistance and virulence factor genes, and similar genomic structure. Applications of this analysis will contribute to understanding the antibiotic resistance and pathogenic mechanisms of E. anophelis infections, which will assist in the management of infections as it increases in prevalence.
Collapse
Affiliation(s)
- Mingxi Wang
- Yun Leung Laboratory for Molecular Diagnostics, School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Hongzhi Gao
- Clinical Center for Molecular Diagnosis and Therapy, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Nanfei Lin
- Clinical Center for Molecular Diagnosis and Therapy, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Yaping Zhang
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Nan Huang
- Quanzhou Medical College, Quanzhou, Fujian, China
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Desong Ming
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Jian MJ, Cheng YH, Chung HY, Cheng YH, Yang HY, Hsu CS, Perng CL, Shang HS. Fluoroquinolone resistance in carbapenem-resistant Elizabethkingia anophelis: phenotypic and genotypic characteristics of clinical isolates with topoisomerase mutations and comparative genomic analysis. J Antimicrob Chemother 2019; 74:1503-1510. [DOI: 10.1093/jac/dkz045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/15/2018] [Accepted: 01/11/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
MDR Elizabethkingia anophelis strains are implicated in an increasing number of healthcare-associated infections worldwide, including a recent cluster of E. anophelis infections in the Midwestern USA associated with significant morbidity and mortality. However, there is minimal information on the antimicrobial susceptibilities of E. anophelis strains or their antimicrobial resistance to carbapenems and fluoroquinolones.
Objectives
Our aim was to examine the susceptibilities and genetic profiles of clinical isolates of E. anophelis from our hospital, characterize their carbapenemase genes and production of MBLs, and determine the mechanism of fluoroquinolone resistance.
Methods
A total of 115 non-duplicated isolates of E. anophelis were examined. MICs of antimicrobial agents were determined using the Sensititre 96-well broth microdilution panel method. QRDR mutations and MBL genes were identified using PCR. MBL production was screened for using a combined disc test.
Results
All E. anophelis isolates harboured the blaGOB and blaB genes with resistance to carbapenems. Antibiotic susceptibility testing indicated different resistance patterns to ciprofloxacin and levofloxacin in most isolates. Sequencing analysis confirmed that a concurrent GyrA amino acid substitution (Ser83Ile or Ser83Arg) in the hotspots of respective QRDRs was primarily responsible for high-level ciprofloxacin/levofloxacin resistance. Only one isolate had no mutation but a high fluoroquinolone MIC.
Conclusions
Our study identified a strong correlation between antibiotic susceptibility profiles and mechanisms of fluoroquinolone resistance among carbapenem-resistant E. anophelis isolates, providing an important foundation for continued surveillance and epidemiological analyses of emerging E. anophelis opportunistic infections. Minocycline or ciprofloxacin has the potential for treatment of severe E. anophelis infections.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsuan Cheng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Yi Yang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sin Hsu
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Sheng Shang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
22
|
Genomic Features, Comparative Genomics, and Antimicrobial Susceptibility Patterns of Elizabethkingia bruuniana. Sci Rep 2019; 9:2267. [PMID: 30783197 PMCID: PMC6381114 DOI: 10.1038/s41598-019-38998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Elizabethkingia bruuniana is a novel species of the Elizabethkingia genus. There is scant information on this microorganism. Here, we report the whole-genome features and antimicrobial susceptibility patterns of E. bruuniana strain EM798-26. Elizabethkingia strain EM798-26 was initially identified as E. miricola. This isolate contained a circular genome of 4,393,011 bp. The whole-genome sequence-based phylogeny revealed that Elizabethkingia strain EM798-26 was in the same group of the type strain E. bruuniana G0146T. Both in silico DNA-DNA hybridization and average nucleotide identity analysis clearly demonstrated that Elizabethkingia strain EM798-26 was a species of E. bruuniana. The pan-genome analysis identified 2,875 gene families in the core genome and 5,199 gene families in the pan genome of eight publicly available E. bruuniana genome sequences. The unique genes accounted for 0.2–12.1% of the pan genome in each E. bruuniana. A total of 59 potential virulence factor homologs were predicted in the whole-genome of E. bruuniana strain EM798–26. This isolate was nonsusceptible to multiple antibiotics, but susceptible to aminoglycosides, minocycline, and levofloxacin. The whole-genome sequence analysis of E. bruuniana EM798-26 revealed 29 homologs of antibiotic resistance-related genes. This study presents the genomic features of E. bruuniana. Knowledge of the genomic characteristics provides valuable insights into a novel species.
Collapse
|
23
|
Jian MJ, Perng CL, Sun JR, Cheng YH, Chung HY, Cheng YH, Lee SY, Kuo SC, Shang HS. Multicentre MDR Elizabethkingia anophelis isolates: Novel random amplified polymorphic DNA with capillary electrophoresis systems to rapid molecular typing compared to genomic epidemiology analysis. Sci Rep 2019; 9:1806. [PMID: 30755714 PMCID: PMC6372666 DOI: 10.1038/s41598-019-38819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/08/2019] [Indexed: 11/25/2022] Open
Abstract
Elizabethkingia species are ubiquitous bacteria that uncommonly cause human infection. Elizabethkingia anophelis was first identified in 2011 from the mosquito Anopheles gambiae. The currently available bacterial typing systems vary greatly with respect to labour, cost, reliability, and ability to discriminate among bacterial strains. Polymerase chain reaction (PCR)-based fingerprinting using random amplified polymorphic DNA (RAPD) is commonly used to identify genetic markers. To our knowledge, no system coupling RAPD-PCR and capillary gel electrophoresis (CGE) has been utilized for the epidemiological typing of E. anophelis. Thus, the aim of the present study was to establish a reliable and reproducible molecular typing technique for E. anophelis isolates based on a multi-centre assessment of bacteraemia patients. Here, we used a rapid CGE-light-emitting diode-induced fluorescence (LEDIF)-based method in conjunction with RAPD-PCR to genotype E. anophelis with a high level of discrimination. All clinical isolates of E. anophelis were found to be typeable, and isolates from two hospitals formed two distinct clusters. The results demonstrated the potential of coupling RAPD and CGE as a rapid and efficient molecular typing tool, providing a reliable method for surveillance and epidemiological investigations of bacterial infections. The proposed method shows promise as a novel, cost-effective, high-throughput, first-pass typing method.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cherng-Lih Perng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsuan Cheng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yi Lee
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hung-Sheng Shang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan. .,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
24
|
Johnson WL, Ramachandran A, Torres NJ, Nicholson AC, Whitney AM, Bell M, Villarma A, Humrighouse BW, Sheth M, Dowd SE, McQuiston JR, Gustafson JE. The draft genomes of Elizabethkingia anophelis of equine origin are genetically similar to three isolates from human clinical specimens. PLoS One 2018; 13:e0200731. [PMID: 30024943 PMCID: PMC6053191 DOI: 10.1371/journal.pone.0200731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
We report the isolation and characterization of two Elizabethkingia anophelis strains (OSUVM-1 and OSUVM-2) isolated from sources associated with horses in Oklahoma. Both strains appeared susceptible to fluoroquinolones and demonstrated high MICs to all cell wall active antimicrobials including vancomycin, along with aminoglycosides, fusidic acid, chloramphenicol, and tetracycline. Typical of the Elizabethkingia, both draft genomes contained multiple copies of β-lactamase genes as well as genes predicted to function in antimicrobial efflux. Phylogenetic analysis of the draft genomes revealed that OSUVM-1 and OSUVM-2 differ by only 6 SNPs and are in a clade with 3 strains of Elizabethkingia anophelis that were responsible for human infections. These findings therefore raise the possibility that Elizabethkingia might have the potential to move between humans and animals in a manner similar to known zoonotic pathogens.
Collapse
Affiliation(s)
- William L. Johnson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail: (AR); (JEG)
| | - Nathanial J. Torres
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ainsley C. Nicholson
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anne M. Whitney
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa Bell
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aaron Villarma
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ben W. Humrighouse
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mili Sheth
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Scot E. Dowd
- Molecular Research DNA Laboratory, Shallowater, Texas, United States of America
| | - John R. McQuiston
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John E. Gustafson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail: (AR); (JEG)
| |
Collapse
|