1
|
Zolkos S, Geyman BM, Potter S, Moubarak M, Rogers BM, Baillargeon N, Dey S, Ludwig SM, Melton S, Navarro-Pérez E, McElvein A, Balcom PH, Natali SM, Sistla S, Sunderland EM. Substantial Mercury Releases and Local Deposition from Permafrost Peatland Wildfires in Southwestern Alaska. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20654-20664. [PMID: 39526868 DOI: 10.1021/acs.est.4c08765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Increasing wildfire activity at high northern latitudes has the potential to mobilize large amounts of terrestrial mercury (Hg). However, understanding implications for Hg cycling and ecosystems is hindered by sparse research on peatland wildfire Hg emissions. In this study, we used measurements of soil organic carbon (SOC) and Hg, burn depth, and environmental indices derived from satellite remote sensing to develop machine learning models for predicting Hg emissions from major wildfires in the permafrost peatland of the Yukon-Kuskokwim Delta (YKD) in southwestern Alaska. Wildfire Hg emissions during summer 2015─estimated as the product of Hg:SOC (0.38 ± 0.17 ng Hg g C1-), predicted SOC stores (mean [5th-95th] = 9.1 [5.3-11.2] kg C m-2), and burn depth (11.3 [8.2-13.9] cm)─were 556 [164-1138] kg Hg or approximately 6% of Hg emissions from wildfire activity >60°N. Modeling estimates suggest that wildfire nearly doubled summertime Hg deposition within 10 km, despite advection of more than 75% of total emissions beyond Alaska. YKD areal emissions combined with remote sensing estimates of burned area suggest that wildfire Hg emissions from northern peatlands (25.4 [14.9-33.6] Mg y-1) are an important component of the northern Hg budget. Additional research is needed to refine these estimates and understand the implications for Arctic and global Hg cycling.
Collapse
Affiliation(s)
- Scott Zolkos
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Woodwell Climate Research Center, Falmouth, Barnstable, Massachusetts 02540, United States
| | - Benjamin M Geyman
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Stefano Potter
- Woodwell Climate Research Center, Falmouth, Barnstable, Massachusetts 02540, United States
| | - Michael Moubarak
- Department of Biology, Hamilton College, Clinton, Oneida, New York 13323, United States
| | - Brendan M Rogers
- Woodwell Climate Research Center, Falmouth, Barnstable, Massachusetts 02540, United States
| | - Natalie Baillargeon
- Woodwell Climate Research Center, Falmouth, Barnstable, Massachusetts 02540, United States
| | - Sharmila Dey
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah M Ludwig
- Department of Earth and Environmental Science, Columbia University, New York, New York 10027, United States
| | - Sierra Melton
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edauri Navarro-Pérez
- Program of Environmental Life Sciences, School of Life Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Ann McElvein
- University of California Berkeley, Berkeley, California 94720, United States
- ICF International, Reston, Fairfax, Virginia 20190, United States
| | - Prentiss H Balcom
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Susan M Natali
- Woodwell Climate Research Center, Falmouth, Barnstable, Massachusetts 02540, United States
| | - Seeta Sistla
- Department of Natural Resources Management and Environmental Sciences, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Landis JD, Taylor VF, Hintelmann H, Hrenchuk LE. Predicting Behavior and Fate of Atmospheric Mercury in Soils: Age-Dating METAALICUS Hg Isotope Spikes with Fallout Radionuclide Chronometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20009-20018. [PMID: 39487789 DOI: 10.1021/acs.est.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Soils accumulate anthropogenic mercury (Hg) from atmospheric deposition to terrestrial ecosystems. However, possible reemission of gaseous elemental mercury (GEM) back to the atmosphere as well as downward migration of Hg with soil leachate influence soil sequestration of Hg in ways not sufficiently understood in global biogeochemical models. Here, we apply fallout radionuclide (FRN) chronometry to understand soil Hg dynamics by revisiting the METAALICUS experiments 20 years after enriched isotope tracers (198Hg, 200Hg, 201Hg, and 202Hg) were applied to two boreal watersheds in northwestern Ontario, Canada. Hg spikes formed well-defined peaks in organic horizons of both watersheds at depths of 3-6 cm and were accurately dated to the year of spike application in 6 of 7 cases (error = -0.8 ± 1.2 years). A seventh site was depleted by ca. 90% of both the 200Hg spike and background Hg, and the spike was dated 16 years older than its application. Robust FRN age models and mass balances demonstrate that loss of Hg is attributable to its specific physicochemical behavior at this site, but more work is required to attribute this to reemission or leaching. This study demonstrates the potential of FRN chronometry to provide insights into Hg accumulation, mobilization, and fate in forest soils.
Collapse
Affiliation(s)
- Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Vivien F Taylor
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Holger Hintelmann
- Trent Water Quality Centre, University of Trent, Peterborough, Ontario K9J 7B8, Canada
| | - Lee E Hrenchuk
- IISD Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
| |
Collapse
|
3
|
Landis JD, Obrist D, Zhou J, Renshaw CE, McDowell WH, Nytch CJ, Palucis MC, Del Vecchio J, Montano Lopez F, Taylor VF. Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry. Nat Commun 2024; 15:5430. [PMID: 38926366 PMCID: PMC11208417 DOI: 10.1038/s41467-024-49789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments.
Collapse
Affiliation(s)
- Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Daniel Obrist
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, MA, 01854, USA
- Division of Agriculture and Natural Resources, University of California, Davis, CA, 95616, USA
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Carl E Renshaw
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Christopher J Nytch
- Department of Environmental Sciences, University of Puerto Rico - Rio Piedras, San Juan, PR, 00925, USA
| | - Marisa C Palucis
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | | | | | - Vivien F Taylor
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
4
|
Zhang K, Pu Q, Liu J, Hao Z, Zhang L, Zhang L, Fu X, Meng B, Feng X. Using Mercury Stable Isotopes to Quantify Directional Soil-Atmosphere Hg(0) Exchanges in Rice Paddy Ecosystems: Implications for Hg(0) Emissions to the Atmosphere from Land Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11053-11062. [PMID: 38867369 DOI: 10.1021/acs.est.4c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Gaseous elemental mercury [Hg(0)] emissions from soils constitute a large fraction of global total Hg(0) emissions. Existing studies do not distinguish biotic- and abiotic-mediated emissions and focus only on photoreduction mediated emissions, resulting in an underestimation of soil Hg(0) emissions into the atmosphere. In this study, directional mercury (Hg) reduction pathways in paddy soils were identified using Hg isotopes. Results showed significantly different isotopic compositions of Hg(0) between those produced from photoreduction (δ202Hg = -0.80 ± 0.67‰, Δ199Hg = -0.38 ± 0.18‰), microbial reduction (δ202Hg = -2.18 ± 0.25‰, Δ199Hg = 0.29 ± 0.38‰), and abiotic dark reduction (δ202Hg = -2.31 ± 0.25‰, Δ199Hg = 0.50 ± 0.22‰). Hg(0) exchange fluxes between the atmosphere and the paddy soils were dominated by emissions, with the average flux ranging from 2.2 ± 5.7 to 16.8 ± 21.7 ng m-2 h-1 during different sampling periods. Using an isotopic signature-based ternary mixing model, we revealed that photoreduction is the most important contributor to Hg(0) emissions from paddy soils. Albeit lower, microbial and abiotic dark reduction contributed up to 36 ± 22 and 25 ± 15%, respectively, to Hg(0) emissions on the 110th day. These novel findings can help improve future estimation of soil Hg(0) emissions from rice paddy ecosystems, which involve complex biotic-, abiotic-, and photoreduction processes.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wadle A, Neal-Walthall N, Ndu U, Hsu-Kim H. Distribution and Homogenization of Multiple Mercury Species Inputs to Freshwater Wetland Mesocosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1709-1720. [PMID: 38181227 PMCID: PMC10810159 DOI: 10.1021/acs.est.3c07169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Mercury (Hg)-impaired aquatic ecosystems often receive multiple inputs of different Hg species with varying potentials for transformation and bioaccumulation. Over time, these distinct input pools of Hg homogenize in their relative distributions and bioaccumulation potentials as a result of biogeochemical processes and other aging processes within the ecosystem. This study sought to evaluate the relative time scale for homogenization of multiple Hg inputs to wetlands, information that is relevant for ecosystem management strategies that consider Hg source apportionment. We performed experiments in simulated freshwater wetland mesocosms that were dosed with four isotopically labeled mercury forms: two dissolved forms (Hg2+ and Hg-humic acid) and two particulate forms (nano-HgS and Hg adsorbed to FeS). Over the course of one year, we monitored the four Hg isotope endmembers for their relative distribution between surface water, sediment, and fish in the mesocosms, partitioning between soluble and particulate forms, and conversion to methylated mercury (MeHg). We also evaluated the reactivity and mobility of Hg through sequential selective extractions of sediment and the uptake flux of aqueous Hg in a diffusive gradient in thin-film (DGT) passive samplers. We observed that the four isotope spikes were relatively similar in surface water concentration (ca. 3000 ng/L) immediately after spike addition. At 1-3 months after dosing, Hg concentrations were 1-50 ng/L and were greater for the initially dissolved isotope endmembers than the initially particulate endmembers. In contrast, the Hg isotope endmembers in surface sediments were similar in relative concentration within 2 months after spike addition. However, the uptake fluxes of Hg in DGT samplers, deployed in both the water column and surface sediment, were generally greater for initially dissolved Hg endmembers and lower for initially particulate endmembers. At one year postdosing, the DGT-uptake fluxes were converging toward similar values between the Hg isotope endmembers. However, the relative distribution of isotope endmembers was still significantly different in both the water column and sediment (p < 0.01 according to one-way ANOVA analysis). In contrast, selective sequential extractions resulted in a homogeneous distribution, with >90% of each endmember extracted in the KOH fraction, suggesting that Hg species were associated with sediment organic matter. For MeHg concentrations in surface sediment and fish, the relative contributions from each endmember were significantly different at all sampling time points. Altogether, these results provide insights into the time scales of distribution for different Hg species that enter a wetland ecosystem. While these inputs attain homogeneity in concentration in primary storage compartments (i.e., sediments) within weeks after addition, these input pools remain differentiated for more than one year in terms of reactivity for passive samplers, MeHg concentration, and bioaccumulation.
Collapse
Affiliation(s)
- Austin Wadle
- Department
of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, North Carolina 27708, United States
| | - Natalia Neal-Walthall
- Department
of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, North Carolina 27708, United States
| | - Udonna Ndu
- Department
of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, North Carolina 27708, United States
- Harte
Research Institute for Gulf of Mexico Studies, Texas A&M Corpus
Christi, Corpus Christi, Texas 78412, United States
| | - Heileen Hsu-Kim
- Department
of Civil and Environmental Engineering, Duke University, P.O. Box 90287, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Bishop K, Li C, Osterwalder S. Plant demethylation in global mercury cycling. NATURE FOOD 2024; 5:15-16. [PMID: 38177224 DOI: 10.1038/s43016-023-00909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Chuxian Li
- Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Stefan Osterwalder
- Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Li C, Jiskra M, Nilsson MB, Osterwalder S, Zhu W, Mauquoy D, Skyllberg U, Enrico M, Peng H, Song Y, Björn E, Bishop K. Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes. Nat Commun 2023; 14:7389. [PMID: 37968321 PMCID: PMC10652010 DOI: 10.1038/s41467-023-43164-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Peatland vegetation takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remains, however, unclear. Here we present results from a comprehensive study covering concentrations and isotopic signatures of Hg in an open boreal peatland system to identify post-depositional Hg redox transformation processes. Isotope mass balances suggest photoreduction of HgII is the predominant process by which 30% of annually deposited Hg is emitted back to the atmosphere. Isotopic analyses indicate that above the water table, dark abiotic oxidation decreases peat soil gaseous Hg0 concentrations. Below the water table, supersaturation of gaseous Hg is likely created more by direct photoreduction of rainfall rather than by reduction and release of Hg from the peat soil. Identification and quantification of these light-driven and dark redox processes advance our understanding of the fate of Hg in peatlands, including the potential for mobilization and methylation of HgII.
Collapse
Affiliation(s)
- Chuxian Li
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Dmitri Mauquoy
- School Geosciences, University of Aberdeen, Scotland, UK
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maxime Enrico
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, IPREM, Pau, France
| | - Haijun Peng
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yu Song
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Zhou J, Bollen SW, Roy EM, Hollinger DY, Wang T, Lee JT, Obrist D. Comparing ecosystem gaseous elemental mercury fluxes over a deciduous and coniferous forest. Nat Commun 2023; 14:2722. [PMID: 37169778 PMCID: PMC10175444 DOI: 10.1038/s41467-023-38225-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Sources of neurotoxic mercury in forests are dominated by atmospheric gaseous elemental mercury (GEM) deposition, but a dearth of direct GEM exchange measurements causes major uncertainties about processes that determine GEM sinks. Here we present three years of forest-level GEM deposition measurements in a coniferous forest and a deciduous forest in northeastern USA, along with flux partitioning into canopy and forest floor contributions. Annual GEM deposition is 13.4 ± 0.80 μg m-2 (coniferous forest) and 25.1 ± 2.4 μg m-2 (deciduous forest) dominating mercury inputs (62 and 76% of total deposition). GEM uptake dominates in daytime during active vegetation periods and correlates with CO2 assimilation, attributable to plant stomatal uptake of mercury. Non-stomatal GEM deposition occurs in the coniferous canopy during nights and to the forest floor in the deciduous forest and accounts for 24 and 39% of GEM deposition, respectively. Our study shows that GEM deposition includes various pathways and is highly ecosystem-specific, which complicates global constraints of terrestrial GEM sinks.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Silas W Bollen
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA
| | - Eric M Roy
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ting Wang
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA
| | - John T Lee
- School of Forest Resources, University of Maine, Orono, ME, USA
| | - Daniel Obrist
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA.
- University of California, Agriculture and Natural Resources, Davis, CA, USA.
| |
Collapse
|
9
|
Wu Y, Xu X, McCarter CPR, Zhang N, Ganzoury MA, Waddington JM, de Lannoy CF. Assessing leached TOC, nutrients and phenols from peatland soils after lab-simulated wildfires: Implications to source water protection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153579. [PMID: 35114220 DOI: 10.1016/j.scitotenv.2022.153579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Pollutant leaching from wildfire-impacted peatland soils (peat) is well-known, but often underestimated when considering boreal ecosystem source water protection and when treating source waters to provide clean drinking water. Burning peat impacts its physical properties and chemical composition, yet the consequences of these transformations to source water quality through pollutant leaching has not been studied in detail. We combusted near-surface boreal peat under simulated peat smoldering conditions at two temperatures (250 °C and 300 °C) and quantified the concentrations of the leached carbon, nutrients and phenols from 5 g peat L-1 reverse osmosis (RO) water suspensions over a 2-day leaching period. For the conditions studied, measured water quality parameters exceeded US surface water guidelines and even exceeded EU and Canadian wastewater/sewer discharge limits including chemical oxygen demand (COD) (125 mg/L), total nitrogen (TN) (15 mg/L), and total phosphorus (TP) (2 mg/L). Phenols were close to or higher than the suggested water supply standard established by US EPA (1 mg/L). Leached carbon, nitrogen and phosphorus mainly came from the organic fraction of peats. Heating peats to 250 °C promoted the leaching of carbon-related pollutants, whereas heating to 300 °C enhanced the leaching of nutrients. Post-heated peats leached higher loads of pollutants in water than pre-heated peats, suggesting that fire-damaged boreal peats may be a critical but underappreciated source of water pollution. A simplified Partial Least Squares (PLS) model based on other easily measured parameters provided a simple method for determining the extent of COD and phenolic pollution in bulk water, relevant for water and wastewater treatment plants. Conclusions from this lab study indicate the need for field measurements of aquatic pollutants downstream of peatland watersheds post-fire as well as increased monitoring and treatment of potable water sources for leachable micropollutants in fire-dominated forested peatlands.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Xuebin Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Chinese Academy of Sciences, Institute of Soil Science, Nanjing, 210008, China
| | - Colin P R McCarter
- School of Earth, Environment & Society, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Nan Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Mohamed A Ganzoury
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | | | | |
Collapse
|
10
|
Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126985. [PMID: 34464861 DOI: 10.1016/j.jhazmat.2021.126985] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| |
Collapse
|
11
|
Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest. Proc Natl Acad Sci U S A 2021; 118:2105477118. [PMID: 34272289 PMCID: PMC8307844 DOI: 10.1073/pnas.2105477118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Direct measurements of atmospheric deposition of gaseous elemental mercury (GEM) over a temperate forest showed a pronounced annual deposition of 25.1 µg ⋅ m−2, which dominated as a source of mercury. GEM deposition was five times greater than wet deposition and three times greater than litterfall deposition, which has been used as a proxy for GEM deposition until now. Measured GEM deposition is driven by combined plant GEM uptake and underlying forest floor GEM uptake. Global forests may be a much larger global GEM sink than currently assumed, which may explain high mercury levels in soils across forests. Forest mercury mobilizes via watershed runoff and bioaccumulates in aquatic biota, ultimately leading to mercury exposures in wildlife and humans. Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 µg ⋅ m−2 (95% CI: 23.2 to 26.7 1 µg ⋅ m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.
Collapse
|
12
|
Ballabio C, Jiskra M, Osterwalder S, Borrelli P, Montanarella L, Panagos P. A spatial assessment of mercury content in the European Union topsoil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144755. [PMID: 33736262 PMCID: PMC8024745 DOI: 10.1016/j.scitotenv.2020.144755] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 05/29/2023]
Abstract
Mapping of surface soil Hg concentrations, a priority pollutant, at continental scale is important in order to identify hotspots of soil Hg distribution (e.g. mining or industrial pollution) and identify factors that influence soil Hg concentrations (e.g. climate, soil properties, vegetation). Here we present soil Hg concentrations from the LUCAS topsoil (0-20 cm) survey including 21,591 samples from 26 European Union countries (one sample every ~200 km2). Deep Neural Network (DNN) learning models were used to map the European soil Hg distribution. DNN estimated a median Hg concentration of 38.3 μg kg-1 (2.6 to 84.7 μg kg-1) excluding contaminated sites. At continental scale, we found that soil Hg concentrations increased with latitude from south to north and with altitude. A GLMM revealed a correlation (R2 = 0.35) of soil Hg concentrations with vegetation activity, normalized difference vegetation index (NDVI), and soil organic carbon content. This observation corroborates the importance of atmospheric Hg0 uptake by plants and the build-up of the soil Hg pool by litterfall over continental scales. The correlation of Hg concentrations with NDVI was amplified by higher soil organic matter content, known to stabilize Hg in soils through thiol bonds. We find a statistically significant relation between soil Hg levels and coal use in large power plants, proving that emissions from power plants are associated with higher mercury deposition in their proximity. In total 209 hotspots were identified, defined as the top percentile in Hg concentration (>422 μg kg-1). 87 sites (42% of all hotspots) were associated with known mining areas. The sources of the other hotspots could not be identified and may relate to unmined geogenic Hg or industrial pollution. The mapping effort in the framework of LUCAS can serve as a starting point to guide local and regional authorities in identifying Hg contamination hotspots in soils.
Collapse
Affiliation(s)
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland.
| | - Stefan Osterwalder
- Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France.
| | - Pasquale Borrelli
- Università degli Studi di Pavia, Dipartimento di Scienze della Terra e dell'Ambiente, Pavia, Italy.
| | | | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
13
|
Etique M, Bouchet S, Byrne JM, ThomasArrigo LK, Kaegi R, Kretzschmar R. Mercury Reduction by Nanoparticulate Vivianite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3399-3407. [PMID: 33554594 PMCID: PMC7931808 DOI: 10.1021/acs.est.0c05203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) is a toxic trace element of global environmental concern which has been increasingly dispersed into the environment since the industrial revolution. In aquatic and terrestrial systems, Hg can be reduced to elemental Hg (Hg0) and escape to the atmosphere or converted to methylmercury (MeHg), a potent neurotoxin that accumulates in food webs. FeII-bearing minerals such as magnetite, green rusts, siderite, and mackinawite are recognized HgII reducers. Another potentially Hg-reducing mineral, which commonly occurs in Fe- and organic/P-rich sediments and soils, is the ferrous iron phosphate mineral vivianite (FeII3(PO4)2·8H2O), but its reaction with HgII has not been studied to date. Here, nanoparticulate vivianite (particle size ∼ 50 nm; FeII content > 98%) was chemically synthesized and characterized by a combination of chemical, spectroscopic, and microscopic analyses. Its ability to reduce HgII was investigated at circumneutral pH under anoxic conditions over a range of FeII/HgII ratios (0.1-1000). For FeII/HgII ratios ≥1, which are representative of natural environments, HgII was very quickly and efficiently reduced to Hg0. The ability of vivianite to reduce HgII was found to be similar to those of carbonate green rust and siderite, two of the most effective Hg-reducing minerals. Our results suggest that vivianite may be involved in abiotic HgII reduction in Fe and organic/P-rich soils and sediments, potentially contributing to Hg evasion while also limiting MeHg formation in these ecosystems.
Collapse
Affiliation(s)
- Marjorie Etique
- Soil Chemistry Group, Institute of Biogeochemistry and
Pollutant Dynamics, Department of Environmental Systems Science, ETH
Zürich, Universitätstrasse 16, CHN, 8092 Zürich,
Switzerland
| | - Sylvain Bouchet
- Soil Chemistry Group, Institute of Biogeochemistry and
Pollutant Dynamics, Department of Environmental Systems Science, ETH
Zürich, Universitätstrasse 16, CHN, 8092 Zürich,
Switzerland
| | - James M. Byrne
- School of Earth Sciences, University of
Bristol, Wills Memorial Building, Queens Road, BS8 1RJ Bristol,
U.K.
| | - Laurel K. ThomasArrigo
- Soil Chemistry Group, Institute of Biogeochemistry and
Pollutant Dynamics, Department of Environmental Systems Science, ETH
Zürich, Universitätstrasse 16, CHN, 8092 Zürich,
Switzerland
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic
Science and Technology, Überlandstrasse 133, 8600 Dübendorf,
Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and
Pollutant Dynamics, Department of Environmental Systems Science, ETH
Zürich, Universitätstrasse 16, CHN, 8092 Zürich,
Switzerland
| |
Collapse
|
14
|
Gustin MS, Bank MS, Bishop K, Bowman K, Branfireun B, Chételat J, Eckley CS, Hammerschmidt CR, Lamborg C, Lyman S, Martínez-Cortizas A, Sommar J, Tsui MTK, Zhang T. Mercury biogeochemical cycling: A synthesis of recent scientific advances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139619. [PMID: 32783819 PMCID: PMC7430064 DOI: 10.1016/j.scitotenv.2020.139619] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 05/23/2023]
Abstract
The focus of this paper is to briefly discuss the major advances in scientific thinking regarding: a) processes governing the fate and transport of mercury in the environment; b) advances in measurement methods; and c) how these advances in knowledge fit in within the context of the Minamata Convention on Mercury. Details regarding the information summarized here can be found in the papers associated with this Virtual Special Issue of STOTEN.
Collapse
Affiliation(s)
- Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89439, USA.
| | - Michael S Bank
- Department of Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway; Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01255, USA
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden
| | - Katlin Bowman
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA; University of California Santa Cruz, Ocean Sciences Department, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Brian Branfireun
- Department of Biology and Centre for Environment and Sustainability, Western University, London, Canada
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada
| | - Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA
| | - Chad R Hammerschmidt
- Wright State University, Department of Earth and Environmental Sciences, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Carl Lamborg
- University of California Santa Cruz, Ocean Sciences Department, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Seth Lyman
- Bingham Research Center, Utah State University, 320 N Aggie Blvd., Vernal, UT, USA
| | - Antonio Martínez-Cortizas
- EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Åkerblom S, Nilsson MB, Skyllberg U, Björn E, Jonsson S, Ranneby B, Bishop K. Formation and mobilization of methylmercury across natural and experimental sulfur deposition gradients. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114398. [PMID: 32229372 DOI: 10.1016/j.envpol.2020.114398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
We investigated the influence of sulfate (SO42-) deposition and concentrations on the net formation and solubility of methylmercury (MeHg) in peat soils. We used data from a natural sulfate deposition gradient running 300 km across southern Sweden to test the hypothesis posed by results from an experimental field study in northern Sweden: that increased loading of SO42- both increases net MeHg formation and redistributes methylmercury (MeHg) from the peat soil to its porewater. Sulfur concentrations in peat soils correlated positively with MeHg concentrations in peat porewater, along the deposition gradient similar to the response to added SO42- in the experimental field study. The combined results from the experimental field study and deposition gradient accentuate the multiple, distinct and interacting roles of SO42- deposition in the formation and redistribution of MeHg in the environment.
Collapse
Affiliation(s)
- Staffan Åkerblom
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, SE-756 51, Uppsala, Sweden.
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Sofi Jonsson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden; Department of Environmental Science and Analytical Chemistry, SE-11418 Stockholm University Stockholm, Sweden
| | - Bo Ranneby
- Department of Forest Economics, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, SE-756 51, Uppsala, Sweden
| |
Collapse
|
16
|
Sommar J, Osterwalder S, Zhu W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137648. [PMID: 32182462 DOI: 10.1016/j.scitotenv.2020.137648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
The atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg0) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle. Of these dynamics including e.g. red-ox reactions, methylation-demethylation and dry-wet deposition, poorly constrained atmosphere-surface Hg0 fluxes especially limit predictability of the timescales of its global biogeochemical cycle. This review focuses on Hg0 flux field observational studies, namely the theory, applications, strengths, and limitations of the various experimental methodologies applied to gauge the exchange flux and decipher active sub-processes. We present an in-depth review, a comprehensive literature synthesis, and methodological and instrumentation advances for terrestrial and marine Hg0 flux studies in recent years. In particular, we outline the theory of a wide range of measurement techniques and detail the operational protocols. Today, the most frequently used measurement techniques to determine the net Hg0 flux (>95% of the published flux data) are dynamic flux chambers for small-scale and micrometeorological approaches for large-scale measurements. Furthermore, top-down approaches based on Hg0 concentration measurements have been applied as tools to better constrain Hg emissions as an independent way to e.g. challenge emission inventories. This review is an up-dated, thoroughly revised edition of Sommar et al. 2013 (DOI: 10.1080/10643389.2012.671733). To the tabulation of >100 cited flux studies 1988-2009 given in the former publication, we have here listed corresponding studies published during the last decade with a few exceptions (2008-2019). During that decade, Hg stable isotope ratios of samples involved in atmosphere-terrestrial interaction is at hand and provide in combination with concentration and/or flux measurements novel constraints to quantitatively and qualitatively assess the bi-directional Hg0 flux. Recent efforts in the development of relaxed eddy accumulation and eddy covariance Hg0 flux methods bear the potential to facilitate long-term, ecosystem-scale flux measurements to reduce the prevailing large uncertainties in Hg0 flux estimates. Standardization of methods for Hg0 flux measurements is crucial to investigate how land-use change and how climate warming impact ecosystem-specific Hg0 sink-source characteristics and to validate frequently applied model parameterizations describing the regional and global scale Hg cycle.
Collapse
Affiliation(s)
- Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
17
|
Bishop K, Shanley JB, Riscassi A, de Wit HA, Eklöf K, Meng B, Mitchell C, Osterwalder S, Schuster PF, Webster J, Zhu W. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137647. [PMID: 32197286 DOI: 10.1016/j.scitotenv.2020.137647] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
This review documents recent advances in terrestrial mercury cycling. Terrestrial mercury (Hg) research has matured in some areas, and is developing rapidly in others. We summarize the state of the science circa 2010 as a starting point, and then present the advances during the last decade in three areas: land use, sulfate deposition, and climate change. The advances are presented in the framework of three Hg "gateways" to the terrestrial environment: inputs from the atmosphere, uptake in food, and runoff with surface water. Among the most notable advances: These and other advances reported here are of value in evaluating the effectiveness of the Minamata Convention on reducing environmental Hg exposure to humans and wildlife.
Collapse
Affiliation(s)
- Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | | | - Ami Riscassi
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Charlottesville, VA 22904-4123, USA.
| | - Heleen A de Wit
- Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349, Norway.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Carl Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble 18 INP, 38000 Grenoble, France.
| | - Paul F Schuster
- U.S. Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303-1066, USA.
| | - Jackson Webster
- Department of Civil Engineering, California State University, 400 W. 1st Street, 21 95929-0930 Chico, CA, USA.
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.
| |
Collapse
|
18
|
Wang B, Nilsson MB, Eklöf K, Hu H, Ehnvall B, Bravo AG, Zhong S, Åkeblom S, Björn E, Bertilsson S, Skyllberg U, Bishop K. Opposing spatial trends in methylmercury and total mercury along a peatland chronosequence trophic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137306. [PMID: 32087589 DOI: 10.1016/j.scitotenv.2020.137306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Peatlands are abundant elements of boreal landscapes where inorganic mercury (IHg) can be transformed into bioaccumulating and highly toxic methylmercury (MeHg). We studied fifteen peatlands divided into three age classes (young, intermediate and old) along a geographically constrained chronosequence to determine the role of biogeochemical factors and nutrient availability in controlling the formation of MeHg. In the 10 cm soil layer just below the average annual growing season water table, concentrations of MeHg and %MeHg (of total Hg) were higher in younger, more mesotrophic peatlands than in older, more oligotrophic peatlands. In contrast, total mercury (THg) concentrations were higher in the older peatlands. Partial least squares (PLS) analysis indicates that the net MeHg production was positively correlated to trophic demands of vegetation and an increased availability of potential electron acceptors and donors for Hg methylating microorganisms. An important question for further studies will be to elucidate why there is less THg in the younger peatlands compared to the older peatlands, even though the age of the superficial peat itself is similar for all sites. We hypothesize that ecosystem features which enhance microbial processes involved in Hg methylation also promote Hg reduction that makes previously deposited Hg more available for evasion back to the atmosphere.
Collapse
Affiliation(s)
- Baolin Wang
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden.
| | - Betty Ehnvall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| | - Shunqing Zhong
- College of City and Tourism, Hengyang Normal University, 421002 Hengyang, China
| | - Staffan Åkeblom
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236 Uppsala, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| |
Collapse
|
19
|
Yu Q, Luo Y, Xu G, Wu Q, Wang S, Hao J, Duan L. Subtropical Forests Act as Mercury Sinks but as Net Sources of Gaseous Elemental Mercury in South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2772-2779. [PMID: 32048839 DOI: 10.1021/acs.est.9b06715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Comprehensive mercury (Hg) budgets were constructed in two typical subtropical forests in southern China in 2014 to quantify Hg (gaseous elemental Hg, Hg0, and reactive Hg, HgII) input and output fluxes and Hg retention in forests, consequently exploring the roles of subtropical forests in the global Hg cycle. At site Qianyanzhou, representing a background region with an enhanced atmospheric Hg0 concentration, the total HgII deposition (67.7 μg·m-2·year-1, 73% as dry HgII deposition) was found to be slightly higher than the Hg0 emission above the canopy (58.5 μg·m-2·year-1), indicating that the forest is a minor Hg sink but a significant net Hg0 source on a yearly basis. In contrast, the forest in the moderately polluted region (site Huitong) acted as a significant Hg sink but a minor net Hg0 source with a higher HgII deposition (73.7 μg·m-2·year-1) and relatively negligible Hg0 emission (2.65 μg·m-2·year-1). The decreasing atmospheric Hg0 concentrations declined the total Hg sink based on the Hg budgets synthesized of this and previous studies and may promote forest Hg0 emissions. Consequently, it was expected that the re-emission of historically deposited Hg may be enhanced from subtropical forests by recent decreases in atmospheric Hg0 concentrations throughout China.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yao Luo
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangyi Xu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| | - Jiming Hao
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| | - Lei Duan
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Jiang T, Wang D, Meng B, Chi J, Laudon H, Liu J. The concentrations and characteristics of dissolved organic matter in high-latitude lakes determine its ambient reducing capacity. WATER RESEARCH 2020; 169:115217. [PMID: 31675608 DOI: 10.1016/j.watres.2019.115217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The reducing capacity (RC) of natural organic matter plays an important role in the carbon cycle and biogeochemical fates of environmental contaminants in the aquatic system. However, the electron donation potentials of dissolved organic matter (DOM) from high-latitude lakes are still uncertain. In this study, we collected DOM samples from high-latitude lakes across the Arctic and boreal regions in Sweden and Norway to investigate the effects of the DOM concentration and characteristics on its ambient reducing capacity (ARC). Mercury (Hg(II)) abiotic reduction in darkness was used to determine the ARC. The results showed that the DOM in Arctic lakes is less terrestrial-dominant than in reference sites (i.e., forest lakes). Between the two categories of Arctic lakes, tundra lakes are more terrestrial-influenced compared to mountain lakes. Additionally, terrestrial-originated DOM is a main controlling factor for enhancing the ambient reducing capacity, whereas the DOM concentration, i.e., dissolved organic carbon (DOC), resulted in variations in the Hg/DOC ratios that also cause the variations of the observed ARC values. Thus, comparisons of the ARC values can be conducted while oxidant/DOC ratios are kept the same and reported through the method using heavy metals as a chemical probe. After correction for Hg/DOC ratio interference, the ambient reducing capacity of DOM followed the order: boreal forest lakes > Arctic tundra lakes > Arctic mountain lakes. This study highlights that the DOM concentration should also be considered when estimating the ARC as compared to the previous that mainly focusing on the properties of DOM such as its origins. As climate change is projected to be severe in high latitudes, this study demonstrates a significant connection between aquatic DOM geochemical reactivity and terrestrial inputs, which is crucial for a better prediction of the role of DOM in high-latitude lakes in the context of climate change.
Collapse
Affiliation(s)
- Tao Jiang
- State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.
| | - Dingyong Wang
- State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Jinshu Chi
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Jiang Liu
- State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
21
|
Lim AG, Sonke JE, Krickov IV, Manasypov RM, Loiko SV, Pokrovsky OS. Enhanced particulate Hg export at the permafrost boundary, western Siberia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113083. [PMID: 31473386 DOI: 10.1016/j.envpol.2019.113083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Arctic permafrost soils contain large amounts of organic carbon and the pollutant mercury (Hg). Arctic warming and associated changes in hydrology, biogeochemistry and ecology risk mobilizing soil Hg to rivers and to the Arctic Ocean, yet little is known about the quantity, timing and mechanisms involved. Here we investigate seasonal particulate Hg (PHg) and organic carbon (POC) export in 32 small and medium rivers across a 1700 km latitudinal permafrost transect of the western Siberian Lowland. The PHg concentrations in suspended matter increased with decreasing watershed size. This underlines the significance of POC-rich small streams and wetlands in PHg export from watersheds. Maximum PHg concentrations and export fluxes were located in rivers at the beginning of permafrost zone (sporadic permafrost). We suggest this reflects enhanced Hg mobilization at the permafrost boundary, due to maximal depth of the thawed peat layer. Both the thickness of the active (unfrozen) peat layer and PHg run-off progressively move to the north during the summer and fall seasons, thus leading to maximal PHg export at the sporadic to discontinuous permafrost zone. The discharge-weighed PHg:POC ratio in western Siberian rivers (2.7 ± 0.5 μg Hg: g C) extrapolated to the whole Ob River basin yields a PHg flux of 1.5 ± 0.3 Mg y-1, consistent with previous estimates. For current climate warming and permafrost thaw scenarios in western Siberia, we predict that a northward shift of permafrost boundaries and increase of active layer depth may enhance the PHg export by small rivers to the Arctic Ocean by a factor of two over the next 10-50 years.
Collapse
Affiliation(s)
- Artem G Lim
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, 634050, Russia
| | - Jeroen E Sonke
- Geosciences and Environment Toulouse, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France
| | - Ivan V Krickov
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, 634050, Russia
| | - Rinat M Manasypov
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, 634050, Russia
| | - Sergey V Loiko
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, 634050, Russia
| | - Oleg S Pokrovsky
- Geosciences and Environment Toulouse, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France; N. Laverov Federal Center for Integrated Arctic Research, IEPS, Russian Academy of Sciences, 163000, Arkhangelsk, Russia.
| |
Collapse
|
22
|
Poulin BA, Ryan JN, Tate MT, Krabbenhoft DP, Hines ME, Barkay T, Schaefer J, Aiken GR. Geochemical Factors Controlling Dissolved Elemental Mercury and Methylmercury Formation in Alaskan Wetlands of Varying Trophic Status. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6203-6213. [PMID: 31090422 DOI: 10.1021/acs.est.8b06041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The transformations of aqueous inorganic divalent mercury (Hg(II)i) to volatile dissolved gaseous mercury (Hg(0)(aq)) and toxic methylmercury (MeHg) govern mercury bioavailability and fate in northern ecosystems. This study quantified concentrations of aqueous mercury species (Hg(II)i, Hg(0)(aq), MeHg) and relevant geochemical constituents in pore waters of eight Alaskan wetlands that differ in trophic status (i.e., bog-to-fen gradient) to gain insight on processes controlling dark Hg(II)i reduction and Hg(II)i methylation. Regardless of wetland trophic status, positive correlations were observed between pore water Hg(II)i and dissolved organic carbon (DOC) concentrations. The concentration ratio of Hg(0)(aq) to Hg(II)i exhibited an inverse relationship to Hg(II)i concentration. A ubiquitous pathway for Hg(0)(aq) formation was not identified based on geochemical data, but we surmise that dissolved organic matter (DOM) influences mercury retention in wetland pore waters by complexing Hg(II)i and decreasing the concentration of volatile Hg(0)(aq) relative to Hg(II)i. There was no evidence of Hg(0)(aq) abundance directly limiting mercury methylation. The concentration of MeHg relative to Hg(II)i was greatest in wetlands of intermediate trophic status, and geochemical data suggest mercury methylation pathways vary between wetlands. Our insights on geochemical factors influencing aqueous mercury speciation should be considered in context of the long-term fate of mercury in northern wetlands.
Collapse
Affiliation(s)
- Brett A Poulin
- U.S. Geological Survey , Boulder , Colorado 80303 , United States
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Joseph N Ryan
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Michael T Tate
- U.S. Geological Survey , Middleton , Wisconsin 53562 , United States
| | | | - Mark E Hines
- Department of Biological Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Jeffra Schaefer
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - George R Aiken
- U.S. Geological Survey , Boulder , Colorado 80303 , United States
| |
Collapse
|
23
|
Shetaya WH, Huang JH, Osterwalder S, Mestrot A, Bigalke M, Alewell C. Sorption kinetics of isotopically labelled divalent mercury ( 196Hg 2+) in soil. CHEMOSPHERE 2019; 221:193-202. [PMID: 30639815 DOI: 10.1016/j.chemosphere.2019.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Understanding the sorption kinetics of Hg2+ is the key to predicting its reactivity in soils which is indispensable for environmental risk assessment. The temporal change in the solubility of 196Hg2+ spikes (6 mg kg-1) added to a range of soils with different properties was investigated and modelled. The sorption of 196Hg2+ displayed a biphasic pattern with a rapid initial (short-term) phase followed by a slower (time-dependent) one. The overall reaction rate constants ranged from 0.003 to 4.9 h-1 and were significantly correlated (r = 0.94) to soil organic carbon (SOC). Elovich and Spherical Diffusion expressions compellingly fitted the observed 196Hg2+ sorption kinetics highlighting their flexibility to describe reactions occurring over multiple phases and wide timeframes. A parameterized Elovich model from soil variables indicated that the short-term sorption is solely controlled by SOC while the time-dependent sorption appeared independent of SOC and decreased at higher pH values and Al(OH)3 and MnO2 concentrations. This is consistent with a rapid chemical reaction of Hg2+ with soil organic matter (SOM) which is followed by a noticeably slower phase likely occurring through physical pathways e.g. pore diffusion of Hg2+ into spherical soil aggregates and progressive incorporation of soluble organic-Hg into solid phase. The model lines predicted that in soils with >4% SOC, Hg2+ is removed from soil solution over seconds to minutes; however, in soils with <2% SOC and higher pH values, Hg2+ may remain soluble for months and beyond with a considerable associated risk of re-emission or migration to the surrounding environments.
Collapse
Affiliation(s)
- Waleed H Shetaya
- Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland; Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Jen-How Huang
- Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Stefan Osterwalder
- Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Christine Alewell
- Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| |
Collapse
|