1
|
Harrison SA, Rolph T, Knott M, Dubourg J. FGF21 agonists: An emerging therapeutic for metabolic dysfunction-associated steatohepatitis and beyond. J Hepatol 2024; 81:562-576. [PMID: 38710230 DOI: 10.1016/j.jhep.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
The worldwide epidemics of obesity, hypertriglyceridemia, dyslipidaemia, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) represent a major economic burden on healthcare systems. Patients with at-risk MASH, defined as MASH with moderate or significant fibrosis, are at higher risk of comorbidity/mortality, with a significant risk of cardiovascular diseases and/or major adverse liver outcomes. Despite a high unmet medical need, there is only one drug approved for MASH. Several drug candidates have reached the phase III development stage and could lead to several potential conditional drug approvals in the coming years. Within the armamentarium of future treatment options, FGF21 analogues hold an interesting position thanks to their pleiotropic effects in addition to their significant effect on both MASH resolution and fibrosis improvement. In this review, we summarise preclinical and clinical data from FGF21 analogues for MASH and explore additional potential therapeutic indications.
Collapse
Affiliation(s)
- Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU UK; Pinnacle Clinical Research, San Antonio, Texas, USA
| | - Tim Rolph
- Akero Therapeutics, South San Francisco, California, USA
| | | | | |
Collapse
|
2
|
Negroiu CE, Tudoraşcu RI, Beznă MC, Ungureanu AI, Honţaru SO, Dănoiu S. The role of FGF21 in the interplay between obesity and non-alcoholic fatty liver disease: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:159-172. [PMID: 39020530 PMCID: PMC11384831 DOI: 10.47162/rjme.65.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity poses a significant and escalating challenge in contemporary society, increasing the risk of developing various metabolic disorders such as dyslipidemia, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and certain types of cancer. The current array of therapeutic interventions for obesity remains insufficient, prompting a pressing demand for novel and more effective treatments. In response, scientific attention has turned to the fibroblast growth factor 21 (FGF21) due to its remarkable and diverse impacts on lipid, carbohydrate, and energy metabolism. This comprehensive review aims to delve into the multifaceted aspects of FGF21, encompassing its discovery, synthesis, functional roles, and potential as a biomarker and therapeutic agent, with a specific focus on its implications for NAFLD.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Romania; ; Department of Health Care and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University Center of Piteşti, National University for Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
3
|
Zhang Y, Tian XL, Li JQ, Wu DS, Li Q, Chen B. Mitochondrial dysfunction affects hepatic immune and metabolic remodeling in patients with hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol 2024; 30:881-900. [PMID: 38516248 PMCID: PMC10950637 DOI: 10.3748/wjg.v30.i8.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1β and transforming growth factor-β1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Xiao-Ling Tian
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Jie-Qun Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Dong-Sheng Wu
- Department of Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Qiang Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| |
Collapse
|
4
|
Falamarzi K, Malekpour M, Tafti MF, Azarpira N, Behboodi M, Zarei M. The role of FGF21 and its analogs on liver associated diseases. Front Med (Lausanne) 2022; 9:967375. [PMID: 36457562 PMCID: PMC9705724 DOI: 10.3389/fmed.2022.967375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 07/25/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a member of fibroblast growth factor family, is a hormone-like growth factor that is synthesized mainly in the liver and adipose tissue. FGF21 regulates lipid and glucose metabolism and has substantial roles in decreasing lipogenesis and increasing hepatic insulin sensitivity which causing lipid profile improvement. FGF21 genetic variations also affect nutritional and addictive behaviors such as smoking and alcohol consumption and eating sweets. The role of FGF21 in metabolic associated diseases like diabetes mellitus had been confirmed previously. Recently, several studies have demonstrated a correlation between FGF21 and liver diseases. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease worldwide. NAFLD has a wide range from simple steatosis to steatohepatitis with or without fibrosis and cirrhosis. Elevated serum levels of FGF21 associated with NAFLD and its pathogenesis. Alcoholic fatty liver disease (AFLD), another condition that cause liver injury, significantly increased FGF21 levels as a protective factor; FGF21 can reverse the progression of AFLD and can be a potential therapeutic agent for it. Also, NAFLD and AFLD are the most important risk factors for hepatocellular carcinoma (HCC) which is the fourth deadliest cancer in the world. Several studies showed that lack of FGF21 induced oncogenic condition and worsened HCC. In this review article, we intend to discuss different aspects of FGF21 in NAFLD, AFLD and HCC; including the role of FGF21 in pathophysiology of these conditions, the effects of FGF21 mutations, the possible use of the FGF21 as a biomarker in different stages of these diseases, as well as the usage of FGF21 and its analog molecules in the treatment of these diseases.
Collapse
Affiliation(s)
- Kimia Falamarzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Fallah Tafti
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Behboodi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Zarei
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
5
|
Yan F, Yuan L, Yang F, Wu G, Jiang X. Emerging roles of fibroblast growth factor 21 in critical disease. Front Cardiovasc Med 2022; 9:1053997. [PMID: 36440004 PMCID: PMC9684205 DOI: 10.3389/fcvm.2022.1053997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 03/01/2024] Open
Abstract
In spite of the great progress in the management of critical diseases in recent years, its associated prevalence and mortality of multiple organ failure still remain high. As an endocrine hormone, fibroblast growth factor 21 (FGF21) functions to maintain homeostasis in the whole body. Recent studies have proved that FGF21 has promising potential effects in critical diseases. FGF21 has also been found to have a close relationship with the progression of critical diseases and has a great predictive function for organ failure. The level of FGF21 was elevated in both mouse models and human patients with sepsis or other critical illnesses. Moreover, it is a promising biomarker and has certain therapeutic roles in some critical diseases. We focus on the emerging roles of FGF21 and its potential effects in critical diseases including acute lung injury/acute respiratory distress syndrome (ALI/ARDS), acute myocardial injury (AMI), acute kidney injury (AKI), sepsis, and liver failure in this review. FGF21 has high application value and is worth further studying. Focusing on FGF21 may provide a new perspective for the management of the critical diseases.
Collapse
Affiliation(s)
- Fang Yan
- Department of Geriatrics, Chengdu Fifth People’s Hospital, Geriatric Diseases Institute of Chengdu, Chengdu, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Li Yuan
- Department of Clinical Laboratory Medicine, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Fan Yang
- Department of Endocrinology, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Guicheng Wu
- Department of Hepatology, School of Medicine, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Goreges Hosipital, Chongqing University, Chongqing, China
| | - Xiaobo Jiang
- Department of Cardiology, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
6
|
Serum Fibroblast Growth Factor 19 as a Biomarker in Hepatitis B Virus-Related Liver Disease. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-130652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Past research has found that fibroblast growth factor 19 (FGF19) is associated with several hepatic disorders, such as alcoholic liver disease and primary biliary cirrhosis. However, there is currently a lack of relevant studies on the relationship between FGF19 and hepatitis B virus (HBV)-related liver disease. Objectives: This study aimed to assess the role of serum FGF19 as a new biomarker for HBV-related liver disease and provide scientific data to show the clinical value of this biomarker. Methods: A retrospective study included 37 patients with chronic hepatitis B (CHB), 33 patients with HBV-related cirrhosis (HBV-cirrhosis), and 32 patients with HBV-related hepatocellular carcinoma (HBV-HCC). Furthermore, 33 normal people were randomly selected as healthy controls. The serum levels of FGF19 were measured by ELISA. Results: Serum FGF19 levels were increased sequentially in the CHB group, HBV-cirrhosis group, and HBV-HCC group. Furthermore, serum FGF19 levels positively correlated with alpha-fetoprotein, prothrombin time, international normalized ratio, total bilirubin, direct bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl-transferase, alkaline phosphatase, total bile acid, serum markers for liver fibrosis, ascites, cirrhosis, Child-Pugh classification and model for end-stage liver disease sodium (MELD-Na) score, while negatively correlated with platelet count, prothrombin activity, and albumin. The diagnostic threshold of serum FGF19 for HBV-related HCC was 165.32 pg/mL, with a sensitivity of 81.25% and specificity of 58.57%. Conclusions: Serum FGF19 levels are positively associated with cholestasis, hepatocyte damage, and liver fibrosis but negatively correlated with liver synthetic function and liver functional reserve in HBV-related liver disease. Diverse changes in serum FGF19 may be used as a predictive marker for the progression of HBV-related liver disease. In addition, serum FGF19 has a potential role in monitoring carcinogenesis in patients with HBV-related liver disease.
Collapse
|
7
|
Korkmaz D, Konya P, Demirtürk N. Investigation of the Characteristics of Crimean Congo Hemorrhagic Fever Cases Reported in Afyonkarahisar Province. TURKIYE PARAZITOLOJII DERGISI 2022; 46:224-227. [PMID: 36094125 DOI: 10.4274/tpd.galenos.2022.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Crimean Congo Hemorrhagic Fever (CCHF); fever, widespread pain in the body, deterioration in liver function tests; it is a tick-borne viral infectious disease that can cause bleeding and death in the skin, mucous membranes, and sometimes internal organs. In this study, we retrospectively evaluated the clinical, laboratory, and epidemiological characteristics of CCHF cases diagnosed in Afyonkarahisar. METHODS Demographic and clinical characteristics, laboratory findings, treatments, and prognoses of patients diagnosed with CCHF in Afyonkarahisar were retrospectively analyzed. RESULTS In Afyonkarahisar, it was determined that 35 case reports were made between 2002 and November 2019, the date when the CCHF was first seen in Turkey. A history of tick attachment was detected in 31 subjects. Tick arrest cases were most common in June (12 cases; 34.3%) and July (9 cases; 2.9%). There was a history of living in rural areas in twenty-seven (77.1%) patients, close contact with animals in 12 patients, and a history of contact with animal blood in 4 patients. All the 35 cases that followed resulted in healing and no mortality was observed. CONCLUSION CCHF is an endemic disease that still maintains its importance in our country. The most important factor in the control with the disease is to prevent virus contact to prevent transmission. People living in endemic areas should be informed about the precautions to be taken against tick bites, and awareness should be raised by providing education about the disease.
Collapse
Affiliation(s)
- Derya Korkmaz
- Afyonkarahisar Sağlık Bilimleri Üniversitesi, Sağlık Uygulama ve Araştırma Merkezi, Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Anabilim Dalı, Afyonkarahisar, Türkiye
| | - Petek Konya
- Afyonkarahisar Sağlık Bilimleri Üniversitesi, Sağlık Uygulama ve Araştırma Merkezi, Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Anabilim Dalı, Afyonkarahisar, Türkiye
| | - Neşe Demirtürk
- Afyonkarahisar Sağlık Bilimleri Üniversitesi, Sağlık Uygulama ve Araştırma Merkezi, Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Anabilim Dalı, Afyonkarahisar, Türkiye
| |
Collapse
|
8
|
Berthou F, Sobolewski C, Abegg D, Fournier M, Maeder C, Dolicka D, Correia de Sousa M, Adibekian A, Foti M. Hepatic PTEN Signaling Regulates Systemic Metabolic Homeostasis through Hepatokines-Mediated Liver-to-Peripheral Organs Crosstalk. Int J Mol Sci 2022; 23:ijms23073959. [PMID: 35409319 PMCID: PMC8999584 DOI: 10.3390/ijms23073959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Liver-derived circulating factors deeply affect the metabolism of distal organs. Herein, we took advantage of the hepatocyte-specific PTEN knockout mice (LPTENKO), a model of hepatic steatosis associated with increased muscle insulin sensitivity and decreased adiposity, to identify potential secreted hepatic factors improving metabolic homeostasis. Our results indicated that protein factors, rather than specific metabolites, released by PTEN-deficient hepatocytes trigger an improved muscle insulin sensitivity and a decreased adiposity in LPTENKO. In this regard, a proteomic analysis of conditioned media from PTEN-deficient primary hepatocytes identified seven hepatokines whose expression/secretion was deregulated. Distinct expression patterns of these hepatokines were observed in hepatic tissues from human/mouse with NAFLD. The expression of specific factors was regulated by the PTEN/PI3K, PPAR or AMPK signaling pathways and/or modulated by classical antidiabetic drugs. Finally, loss-of-function studies identified FGF21 and the triad AHSG, ANGPTL4 and LECT2 as key regulators of insulin sensitivity in muscle cells and in adipocytes biogenesis, respectively. These data indicate that hepatic PTEN deficiency and steatosis alter the expression/secretion of hepatokines regulating insulin sensitivity in muscles and the lipid metabolism in adipose tissue. These hepatokines could represent potential therapeutic targets to treat obesity and insulin resistance.
Collapse
Affiliation(s)
- Flavien Berthou
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Cyril Sobolewski
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Margot Fournier
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Christine Maeder
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Dobrochna Dolicka
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Marta Correia de Sousa
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(22)-379-52-04
| |
Collapse
|
9
|
Sommakia S, Almaw NH, Lee SH, Ramadurai DKA, Taleb I, Kyriakopoulos CP, Stubben CJ, Ling J, Campbell RA, Alharethi RA, Caine WT, Navankasattusas S, Hoareau GL, Abraham AE, Fang JC, Selzman CH, Drakos SG, Chaudhuri D. FGF21 (Fibroblast Growth Factor 21) Defines a Potential Cardiohepatic Signaling Circuit in End-Stage Heart Failure. Circ Heart Fail 2022; 15:e008910. [PMID: 34865514 PMCID: PMC8930477 DOI: 10.1161/circheartfailure.121.008910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Extrinsic control of cardiomyocyte metabolism is poorly understood in heart failure (HF). FGF21 (Fibroblast growth factor 21), a hormonal regulator of metabolism produced mainly in the liver and adipose tissue, is a prime candidate for such signaling. METHODS To investigate this further, we examined blood and tissue obtained from human subjects with end-stage HF with reduced ejection fraction at the time of left ventricular assist device implantation and correlated serum FGF21 levels with cardiac gene expression, immunohistochemistry, and clinical parameters. RESULTS Circulating FGF21 levels were substantially elevated in HF with reduced ejection fraction, compared with healthy subjects (HF with reduced ejection fraction: 834.4 [95% CI, 628.4-1040.3] pg/mL, n=40; controls: 146.0 [86.3-205.7] pg/mL, n=20, P=1.9×10-5). There was clear FGF21 staining in diseased cardiomyocytes, and circulating FGF21 levels negatively correlated with the expression of cardiac genes involved in ketone metabolism, consistent with cardiac FGF21 signaling. FGF21 gene expression was very low in failing and nonfailing hearts, suggesting extracardiac production of the circulating hormone. Circulating FGF21 levels were correlated with BNP (B-type natriuretic peptide) and total bilirubin, markers of chronic cardiac and hepatic congestion. CONCLUSIONS Circulating FGF21 levels are elevated in HF with reduced ejection fraction and appear to bind to the heart. The liver is likely the main extracardiac source. This supports a model of hepatic FGF21 communication to diseased cardiomyocytes, defining a potential cardiohepatic signaling circuit in human HF.
Collapse
Affiliation(s)
- Salah Sommakia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Naredos H. Almaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Sandra H. Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Dinesh K. A. Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Christos P. Kyriakopoulos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Chris J. Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jing Ling
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Robert A. Campbell
- Department of Internal Medicine, Division of General Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Rami A. Alharethi
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
| | - William T. Caine
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Guillaume L. Hoareau
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, Division of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Anu E. Abraham
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - James C. Fang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Craig H. Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT
| | - Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Iacob SA, Iacob DG. Non-Alcoholic Fatty Liver Disease in HIV/HBV Patients - a Metabolic Imbalance Aggravated by Antiretroviral Therapy and Perpetuated by the Hepatokine/Adipokine Axis Breakdown. Front Endocrinol (Lausanne) 2022; 13:814209. [PMID: 35355551 PMCID: PMC8959898 DOI: 10.3389/fendo.2022.814209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and is one of the most prevalent comorbidities in HIV and HBV infected patients. HIV plays an early and direct role in the development of metabolic syndrome by disrupting the mechanism of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid metabolism, also contribute to the progression of NAFLD either directly or via hepatic organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the pathogenesis of NAFLD is controversial. HBV has been previously associated with a decreased level of triglycerides and with a protective role against the development of steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to these viral agents and by the variable toxicity of the antiretroviral therapy. The current article discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in the development of NAFLD as well as the implications of HIV and HBV infection in the breakdown of the hepatokine/adipokine axis and NAFLD progression.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Diana Gabriela Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, Emergency University Hospital, Bucharest, Romania
- *Correspondence: Diana Gabriela Iacob,
| |
Collapse
|
11
|
Gojanovich GS, Jacobson DL, Broadwell C, Karalius B, Kirmse B, Geffner ME, Jao J, Van Dyke RB, McFarland EJ, Silio M, Crain M, Gerschenson M. Associations of FGF21 and GDF15 with mitochondrial dysfunction in children living with perinatally-acquired HIV: A cross-sectional evaluation of pediatric AIDS clinical trials group 219/219C. PLoS One 2022; 16:e0261563. [PMID: 34972147 PMCID: PMC8719680 DOI: 10.1371/journal.pone.0261563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In persons living with HIV, mitochondrial disease (MD) is difficult to diagnose, as clinical signs are non-specific with inconsistent patterns. Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are mitokines elevated in MD patients without HIV, and associated with cardiometabolic comorbidities in adults living with HIV. We assessed relationships of these biomarkers with MD in children living with perinatally-acquired HIV infection (CPHIV). SETTING Cross-sectional study of CPHIV from Pediatric ACTG 219/219C classified by Mitochondrial Disease Criteria (MDC) that defines scores 2-4 as "possible" MD. METHODS Each case with MDC equaling 4 (MDC4; n = 23) was matched to one randomly selected control displaying no MDC (MDC0; n = 23) based on calendar date. Unmatched cases with MDC equaling 3 (MDC3; n = 71) were also assessed. Plasma samples proximal to diagnoses were assayed by ELISA. Mitokine distributions were compared using Wilcoxon tests, Spearman correlations were calculated, and associations with MD status were assessed by conditional logistic regression. RESULTS Median FGF21 and GDF15 concentrations, respectively, were highest in MDC4 (143.9 and 1441.1 pg/mL), then MDC3 (104.0 and 726.5 pg/mL), and lowest in controls (89.4 and 484.7 pg/mL). Distributions of FGF21 (paired Wilcoxon rank sum p = 0.002) and GDF15 (paired Wilcoxon rank sum p<0.001) differed in MDC4 vs MDC0. Mitokine concentrations were correlated across all participants (r = 0.33; p<0.001). Unadjusted odds ratios of being MDC4 vs MDC0 were 5.2 [95% confidence interval (CI): 1.06-25.92] for FGF21 and 3.5 (95%CI: 1.19-10.25) for GDF15. Relationships persisted after covariate adjustments. CONCLUSION FGF21 and GDF15 levels may be useful biomarkers to screen for CPHIV with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Greg S. Gojanovich
- University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Denise L. Jacobson
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Carly Broadwell
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Brad Karalius
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Brian Kirmse
- University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Mitchell E. Geffner
- Keck School of Medicine of USC, Los Angeles, California, United States of America
| | - Jennifer Jao
- Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Russell B. Van Dyke
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | | | - Margarita Silio
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Marilyn Crain
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mariana Gerschenson
- University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| | | |
Collapse
|
12
|
Małecki P, Mania A, Tracz J, Łuczak M, Mazur-Melewska K, Figlerowicz M. Adipocytokines as Risk Factors for Development of Nonalcoholic Fatty Liver Disease in Children. J Clin Exp Hepatol 2021; 11:646-653. [PMID: 34866842 PMCID: PMC8617538 DOI: 10.1016/j.jceh.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Noninvasive diagnostics of nonalcoholic fatty liver disease (NAFLD), the most common cause of liver dysfunction in children, are based on imaging, biochemical tests and their compilation. The study aimed to evaluate the serological biomarkers of steatosis, inflammation and liver fibrosis to assess the risk of NAFLD in children. METHODS A total of 73 children were included in the prospective study; 50 of them were diagnosed with NAFLD based on ultrasound, and 23 formed a control group. Basic anthropometric parameters were measured, blood samples were taken for laboratory tests and evaluated proteins were assessed by enzyme-linked immunosorbent assay-adiponectin, tumour necrosis factor alpha, fibroblast growth factor 21, liver fatty acid-binding protein (L-FABP) and interleukin 6. RESULTS Statistically significant differences between the levels of two proteins were found: the adiponectin level was lower in the NAFLD group (12.24 ± 7.01 vs 16.88 ± 9.21 μg/mL, P = 0.024), and L-FABP levels were higher (21.48 ± 20.61 vs 11.74 ± 8.39 ng/mL, P = 0.031). In the group of children with body mass index (BMI)-for-age >1 standard deviation (SD), adiponectin concentration was also significantly lower (12.18 ± 6.43 μg/mL) than in the group with BMI ≤1 SD (17.29 ± 9.42 μg/mL, P = 0.015). The odds ratios and 95% confidence interval for the relation between adiponectin and NAFLD and obesity were 0.868 (0.767-0.982) and 0.838 (0.719-0.977), respectively. CONCLUSION Adiponectin may be useful in evaluating the risk of NAFLD and obesity in children.
Collapse
Key Words
- ALF, acute liver failure
- ALT, alanine aminotransferase
- AMPK, adenosine monophosphate–activated protein kinase
- APRI, AST to Platelet Ratio Index
- AST, aspartate aminotransferase
- BMI, body mass index
- ER, endoplasmic reticulum
- FFA, free fatty acid
- FGF-21, fibroblast growth factor 21
- HMW, high-molecular-weight
- IR, insulin resistance
- L-FABP, liver fatty acid-binding protein
- LPS, lipopolysaccharide
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- OR, odds ratio
- PNFS, Paediatric NAFLD Fibrosis Scale
- PPAR-α, peroxisome proliferator–activated receptor-α
- SD, standard deviation
- SOCS3, suppressor of cytokine signalling 3
- TNF-α, tumour necrosis factor α
- US-FLI, ultrasound fatty liver indicator
- WHO, World Health Organization
- adipokines
- children
- nonalcoholic fatty liver disease
Collapse
Affiliation(s)
- Paweł Małecki
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Mania
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Tracz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Łuczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
13
|
Christidis G, Karatayli E, Hall RA, Weber SN, Reichert MC, Hohl M, Qiao S, Boehm U, Lütjohann D, Lammert F, Karatayli SC. Fibroblast Growth Factor 21 Response in a Preclinical Alcohol Model of Acute-on-Chronic Liver Injury. Int J Mol Sci 2021; 22:7898. [PMID: 34360670 PMCID: PMC8348955 DOI: 10.3390/ijms22157898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS Fibroblast growth factor (FGF) 21 has recently been shown to play a potential role in bile acid metabolism. We aimed to investigate the FGF21 response in an ethanol-induced acute-on-chronic liver injury (ACLI) model in Abcb4-/- mice with deficiency of the hepatobiliary phospholipid transporter. METHODS Total RNA was extracted from wild-type (WT, C57BL/6J) and Abcb4-/- (KO) mice, which were either fed a control diet (WT-Cont and KO-Cont groups; n = 28/group) or ethanol diet, followed by an acute ethanol binge (WT-EtOH and KO-EtOH groups; n = 28/group). A total of 58 human subjects were recruited into the study, including patients with alcohol-associated liver disease (AALD; n = 31) and healthy controls (n = 27). The hepatic and ileal expressions of genes involved in bile acid metabolism, plasma FGF levels, and bile acid and its precursors 7α- and 27-hydroxycholesterol (7α- and 27-OHC) concentrations were determined. Primary mouse hepatocytes were isolated for cell culture experiments. RESULTS Alcohol feeding significantly induced plasma FGF21 and decreased hepatic Cyp7a1 levels. Hepatic expression levels of Fibroblast growth factor receptor 1 (Fgfr1), Fgfr4, Farnesoid X-activated receptor (Fxr), and Small heterodimer partner (Shp) and plasma FGF15/FGF19 levels did not differ with alcohol challenge. Exogenous FGF21 treatment suppressed Cyp7a1 in a dose-dependent manner in vitro. AALD patients showed markedly higher FGF21 and lower 7α-OHC plasma levels while FGF19 did not differ. CONCLUSIONS The simultaneous upregulation of FGF21 and downregulation of Cyp7a1 expressions upon chronic plus binge alcohol feeding together with the invariant plasma FGF15 and hepatic Shp and Fxr levels suggest the presence of a direct regulatory mechanism of FGF21 on bile acid homeostasis through inhibition of CYP7A1 by an FGF15-independent pathway in this ACLI model. Lay Summary: Alcohol challenge results in the upregulation of FGF21 and repression of Cyp7a1 expressions while circulating FGF15 and hepatic Shp and Fxr levels remain constant both in healthy and pre-injured livers, suggesting the presence of an alternative FGF15-independent regulatory mechanism of FGF21 on bile acid homeostasis through the inhibition of Cyp7a1.
Collapse
Affiliation(s)
- Grigorios Christidis
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Rabea A. Hall
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Susanne N. Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Matthias C. Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Mathias Hohl
- Department of Medicine III, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany;
| | - Sen Qiao
- Department of Pharmacology and Toxicology, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (S.Q.); (U.B.)
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (S.Q.); (U.B.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
- Hannover Health Sciences Campus, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Senem Ceren Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| |
Collapse
|
14
|
Wang H, Yang J, Zhang K, Liu J, Li Y, Su W, Song N. Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets. Front Pharmacol 2021; 12:650388. [PMID: 33935756 PMCID: PMC8082422 DOI: 10.3389/fphar.2021.650388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of primary liver cancer with poor prognosis, and its incidence and mortality rate are increasing worldwide. It is refractory to conventional chemotherapy and radiotherapy owing to its high tumor heterogeneity. Accumulated genetic alterations and aberrant cell signaling pathway have been characterized in HCC. The fibroblast growth factor (FGF) family and their receptors (FGFRs) are involved in diverse biological activities, including embryonic development, proliferation, differentiation, survival, angiogenesis, and migration, etc. Data mining results of The Cancer Genome Atlas demonstrate high levels of FGF and/or FGFR expression in HCC tumors compared with normal tissues. Moreover, substantial evidence indicates that the FGF/FGFR signaling axis plays an important role in various mechanisms that contribute to HCC development. At present, several inhibitors targeting FGF/FGFR, such as multikinase inhibitors, specific FGFR4 inhibitors, and FGF ligand traps, exhibit antitumor activity in preclinical or early development phases in HCC. In this review, we summarize the research progress regarding the molecular implications of FGF/FGFR-mediated signaling and the development of FGFR-targeted therapeutics in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Haijun Wang
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Badakhshi Y, Jin T. Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Crit Rev Clin Lab Sci 2020; 58:311-328. [PMID: 33382006 DOI: 10.1080/10408363.2020.1864278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolic functions of the hepatic hormone fibroblast growth factor 21 (FGF21) have been recognized for more than a decade in studying the responses of human subjects and rodent models to nutritional stresses such as fasting, high-fat diet or ketogenic diet consumption, and ethanol intake. Our interest in the beneficial metabolic effects of FGF21 has risen due to its potential ability to serve as a therapeutic agent for various metabolic disorders, including type 2 diabetes, obesity, and fatty liver diseases, as well as its potential to act as a diagnostic or prognostic biomarker for metabolic and other disorders. Here, we briefly review the FGF21 gene and protein structures, its expression pattern, and cellular signaling cascades that mediate FGF21 production and function. We mainly focus on discussing experimental and clinical literature pertaining to FGF21 as a therapeutic agent. Furthermore, we present several lines of investigation, including a few studies conducted by our team, suggesting that FGF21 expression and function can be regulated by dietary polyphenol interventions. Finally, we discuss the literature debating FGF21 as a potential biomarker in various disorders.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Kolonko A, Musialik J, Chudek J, Bartmańska M, Słabiak-Błaż N, Kujawa-Szewieczek A, Kuczera P, Kwiecień-Furmańczuk K, Więcek A. Changes in Office Blood Pressure Control, Augmentation Index, and Liver Steatosis in Kidney Transplant Patients after Successful Hepatitis C Infection Treatment with Direct Antiviral Agents. J Clin Med 2020; 9:jcm9040948. [PMID: 32235473 PMCID: PMC7230312 DOI: 10.3390/jcm9040948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection in kidney transplant recipients (KTRs) can be successfully treated with direct antiviral agents (DAA). The aim of our study was to analyze different measures of vascular function during and after the DAA treatment. As we have observed the improvement of blood pressure (BP) control in some individuals, we have conducted an analysis of potential explanatory mechanisms behind this finding. Twenty-eight adult KTRs were prospectively evaluated before and 15 months after start of DAA therapy. Attended office BP (OBP), augmentation index (AIx), pulse wave velocity (PWV), flow-mediated dilation (FMD), liver stiffness measurement (LSM), and liver steatosis assessment (controlled attenuation parameter (CAP)) were measured. In half of the patients, improvement of OBP control (decline of systolic BP by at least 20 mmHg or reduction of the number of antihypertensive drugs used) and parallel central aortic pressure parameters, including AIx, was observed. There was a significant decrease in CAP mean values (241 ± 54 vs. 209 ± 30 dB/m, p < 0.05) only in patients with OBP control improvement. Half of our KTRs cohort after successful HCV eradication noted clinically important improvement of both OBP control and central aortic pressure parameters, including AIx. The concomitant decrease of liver steatosis was observed only in the subgroup of patients with improvement of blood pressure control.
Collapse
Affiliation(s)
- Aureliusz Kolonko
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24, 40-027 Katowice, Poland; (J.M.); (M.B.); (N.S.-B.); (A.K.-S.); (P.K.)
- Correspondence: ; Tel.: +48-322591429; Fax: +48-322553726
| | - Joanna Musialik
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24, 40-027 Katowice, Poland; (J.M.); (M.B.); (N.S.-B.); (A.K.-S.); (P.K.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Medical University of Silesia, Reymonta 8, 40-035 Katowice, Poland;
| | - Magdalena Bartmańska
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24, 40-027 Katowice, Poland; (J.M.); (M.B.); (N.S.-B.); (A.K.-S.); (P.K.)
| | - Natalia Słabiak-Błaż
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24, 40-027 Katowice, Poland; (J.M.); (M.B.); (N.S.-B.); (A.K.-S.); (P.K.)
| | - Agata Kujawa-Szewieczek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24, 40-027 Katowice, Poland; (J.M.); (M.B.); (N.S.-B.); (A.K.-S.); (P.K.)
| | - Piotr Kuczera
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24, 40-027 Katowice, Poland; (J.M.); (M.B.); (N.S.-B.); (A.K.-S.); (P.K.)
| | - Katarzyna Kwiecień-Furmańczuk
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24, 40-027 Katowice, Poland; (J.M.); (M.B.); (N.S.-B.); (A.K.-S.); (P.K.)
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24, 40-027 Katowice, Poland; (J.M.); (M.B.); (N.S.-B.); (A.K.-S.); (P.K.)
| |
Collapse
|
17
|
Mak LY, Lee CH, Cheung KS, Wong DKH, Liu F, Hui RWH, Fung J, Xu A, Lam KSL, Yuen MF, Seto WK. Association of adipokines with hepatic steatosis and fibrosis in chronic hepatitis B patients on long-term nucleoside analogue. Liver Int 2019; 39:1217-1225. [PMID: 30912255 DOI: 10.1111/liv.14104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/10/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS It is unknown how concomitant hepatic steatosis affects disease progression in chronic hepatitis B (CHB). Adipokines such as fibroblast growth factor 21 (FGF21) and adipocyte fatty acid-binding protein (AFABP) have been associated with non-alcoholic fatty liver disease. We determined the significance of these metabolic markers in CHB-related liver injury. METHODS We recruited CHB patients on antiviral treatment for transient elastography assessment to determine liver stiffness (advanced fibrosis/cirrhosis, F3/F4, defined by EASL-ALEH criteria) and controlled attenuation parameter (hepatic steatosis, defined as ≥ 248 dB/m). Plasma FGF-21, AFABP and adiponectin levels were measured. RESULTS A total of 415 patients [mean age 59.6 years, 71.6% male, median treatment duration 6.2 years] were recruited. Patients with F3/F4 (N = 151) had lower FGF-21 (11.7 vs 13.6 pg/mL, P = 0.055), higher AFABP (126.8 vs 84.1 pg/mL, P < 0.001) and HOMA-IR (7.1 vs 5.1, P = 0.004) levels compared to those without F3/F4 (N = 264). Multivariate analysis showed that FGF-21 level was associated with hepatic steatosis (OR 1.005, 95% CI 1.001-1.009) and F3/F4 (OR 0.993, 95% CI 0.989-0.998), while AFABP level (OR 1.001, 95% CI 1-1.002), body mass index (BMI) (OR 1.107, 95% CI 1.037-1.182) and presence of diabetes mellitus (OR 2.059, 95% CI 1.206-3.516) were associated with F3/F4. With the combined presence of BMI ≥ 25 kg/m2 , diabetes and AFABP > 105.9 pg/mL, the odds ratio for F3/F4 was 3.712 (95% CI 1.364-10.105, P = 0.010). CONCLUSIONS Low FGF-21 and high AFABP levels were associated with advanced fibrosis/cirrhosis in CHB patients on antiviral treatment. Plasma AFABP, together with other metabolic risk factors, may aid identification of patients lacking fibrosis improvement during antiviral treatment.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Chi-Ho Lee
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Ka-Shing Cheung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Danny Ka-Ho Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Fen Liu
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Rex Wan-Hin Hui
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - James Fung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Karen Siu-Ling Lam
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Wai-Kay Seto
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|