1
|
Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis Model Mech 2023; 16:dmm049132. [PMID: 37334838 DOI: 10.1242/dmm.049132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.
Collapse
Affiliation(s)
- Michaela Omelková
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
- Amplexa Genetics A/S, Odense 5000, Denmark
| | - Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Veronica M Pravata
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sergio Galan Bartual
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Allan Bayat
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Andrew T Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Marios P Stavridis
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells. Int J Mol Sci 2023; 24:8386. [PMID: 37176093 PMCID: PMC10179698 DOI: 10.3390/ijms24098386] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
3
|
Pereckova J, Pekarova M, Szamecova N, Hoferova Z, Kamarytova K, Falk M, Perecko T. Nitro-Oleic Acid Inhibits Stemness Maintenance and Enhances Neural Differentiation of Mouse Embryonic Stem Cells via STAT3 Signaling. Int J Mol Sci 2021; 22:ijms22189981. [PMID: 34576143 PMCID: PMC8468660 DOI: 10.3390/ijms22189981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 09/12/2021] [Indexed: 12/15/2022] Open
Abstract
Nitro-oleic acid (NO2-OA), pluripotent cell-signaling mediator, was recently described as a modulator of the signal transducer and activator of transcription 3 (STAT3) activity. In our study, we discovered new aspects of NO2-OA involvement in the regulation of stem cell pluripotency and differentiation. Murine embryonic stem cells (mESC) or mESC-derived embryoid bodies (EBs) were exposed to NO2-OA or oleic acid (OA) for selected time periods. Our results showed that NO2-OA but not OA caused the loss of pluripotency of mESC cultivated in leukemia inhibitory factor (LIF) rich medium via the decrease of pluripotency markers (NANOG, sex-determining region Y-box 1 transcription factor (SOX2), and octamer-binding transcription factor 4 (OCT4)). The effects of NO2-OA on mESC correlated with reduced phosphorylation of STAT3. Subsequent differentiation led to an increase of the ectodermal marker orthodenticle homolog 2 (Otx2). Similarly, treatment of mESC-derived EBs by NO2-OA resulted in the up-regulation of both neural markers Nestin and β-Tubulin class III (Tubb3). Interestingly, the expression of cardiac-specific genes and beating of EBs were significantly decreased. In conclusion, NO2-OA is able to modulate pluripotency of mESC via the regulation of STAT3 phosphorylation. Further, it attenuates cardiac differentiation on the one hand, and on the other hand, it directs mESC into neural fate.
Collapse
Affiliation(s)
- Jana Pereckova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Correspondence:
| | - Michaela Pekarova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Nikoletta Szamecova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zuzana Hoferova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Kristyna Kamarytova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Falk
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Tomas Perecko
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| |
Collapse
|
4
|
Tan DS, Chen Y, Gao Y, Bednarz A, Wei Y, Malik V, Ho DHH, Weng M, Ho SY, Srivastava Y, Velychko S, Yang X, Fan L, Kim J, Graumann J, Stormo GD, Braun T, Yan J, Schöler HR, Jauch R. Directed Evolution of an Enhanced POU Reprogramming Factor for Cell Fate Engineering. Mol Biol Evol 2021; 38:2854-2868. [PMID: 33720298 PMCID: PMC8233511 DOI: 10.1093/molbev/msab075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factor-driven cell fate engineering in pluripotency induction, transdifferentiation, and forward reprogramming requires efficiency, speed, and maturity for widespread adoption and clinical translation. Here, we used Oct4, Sox2, Klf4, and c-Myc driven pluripotency reprogramming to evaluate methods for enhancing and tailoring cell fate transitions, through directed evolution with iterative screening of pooled mutant libraries and phenotypic selection. We identified an artificially evolved and enhanced POU factor (ePOU) that substantially outperforms wild-type Oct4 in terms of reprogramming speed and efficiency. In contrast to Oct4, not only can ePOU induce pluripotency with Sox2 alone, but it can also do so in the absence of Sox2 in a three-factor ePOU/Klf4/c-Myc cocktail. Biochemical assays combined with genome-wide analyses showed that ePOU possesses a new preference to dimerize on palindromic DNA elements. Yet, the moderate capacity of Oct4 to function as a pioneer factor, its preference to bind octamer DNA and its capability to dimerize with Sox2 and Sox17 proteins remain unchanged in ePOU. Compared with Oct4, ePOU is thermodynamically stabilized and persists longer in reprogramming cells. In consequence, ePOU: 1) differentially activates several genes hitherto not implicated in reprogramming, 2) reveals an unappreciated role of thyrotropin-releasing hormone signaling, and 3) binds a distinct class of retrotransposons. Collectively, these features enable ePOU to accelerate the establishment of the pluripotency network. This demonstrates that the phenotypic selection of novel factor variants from mammalian cells with desired properties is key to advancing cell fate conversions with artificially evolved biomolecules.
Collapse
Affiliation(s)
- Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yanpu Chen
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ya Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anastasia Bednarz
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Department of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Yuanjie Wei
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Vikas Malik
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Derek Hoi-Hang Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sik Yin Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yogesh Srivastava
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergiy Velychko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Xiaoxiao Yang
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ligang Fan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.,School of Medicine, Northwest University, Xi'an, China
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Mass Spectrometry Service Group, Bad Nauheim, Germany
| | - Gary D Stormo
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jian Yan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.,School of Medicine, Northwest University, Xi'an, China
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Cellular Functions of OCT-3/4 Regulated by Ubiquitination in Proliferating Cells. Cancers (Basel) 2020; 12:cancers12030663. [PMID: 32178477 PMCID: PMC7139964 DOI: 10.3390/cancers12030663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Octamer-binding transcription factor 3/4 (OCT-3/4), which is involved in the tumorigenesis of somatic cancers, has diverse functions during cancer development. Overexpression of OCT-3/4 has been detected in various human somatic tumors, indicating that OCT-3/4 activation may contribute to the development and progression of cancers. Stem cells can undergo self-renewal, pluripotency, and reprogramming with the help of at least four transcription factors, OCT-3/4, SRY box-containing gene 2 (SOX2), Krüppel-like factor 4 (KLF4), and c-MYC. Of these, OCT-3/4 plays a critical role in maintenance of undifferentiated state of embryonic stem cells (ESCs) and in production of induced pluripotent stem cells (iPSCs). Stem cells can undergo partitioning through mitosis and separate into specific cell types, three embryonic germ layers: the endoderm, the mesoderm, and the trophectoderm. It has been demonstrated that the stability of OCT-3/4 is mediated by the ubiquitin-proteasome system (UPS), which is one of the key cellular mechanisms for cellular homeostasis. The framework of the mechanism is simple, but the proteolytic machinery is complicated. Ubiquitination promotes protein degradation, and ubiquitination of OCT-3/4 leads to regulation of cellular proliferation and differentiation. Therefore, it is expected that OCT-3/4 may play a key role in proliferation and differentiation of proliferating cells.
Collapse
|
6
|
Kidder BL. Derivation of LIF-Independent Embryonic Stem Cells Using Inducible OCT4 Expression. Methods Mol Biol 2020; 2117:229-234. [PMID: 31960382 DOI: 10.1007/978-1-0716-0301-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pluripotent mouse embryonic stem (ES) cells, which are derived from the inner cell mass (ICM) of preimplantation stage embryos, are capable of self-renewing indefinitely in the presence of the external signal leukemia inhibitory factor (LIF), activation of Wnt signaling through inhibition of GSK3, and inhibition of MAP kinase/ERK kinase signaling. The OCT4 transcription factor is expressed highly in pluripotent cells and is a central transcriptional regulator of the pluripotent state. Here, we describe a protocol to culture ES cells in LIF-independent and serum-free media using an inducible OCT4 (iOCT4) ES cell model system. This protocol is sufficient to sustain ES cell self-renewal in vitro in defined conditions in the absence of external signals. LIF-independent iOCT4 ES cells are fully capable of differentiating following deactivation of the inducible OCT4 transgene.
Collapse
Affiliation(s)
- Benjamin L Kidder
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Bhuvanalakshmi G, Gamit N, Patil M, Arfuso F, Sethi G, Dharmarajan A, Kumar AP, Warrier S. Stemness, Pluripotentiality, and Wnt Antagonism: sFRP4, a Wnt antagonist Mediates Pluripotency and Stemness in Glioblastoma. Cancers (Basel) 2018; 11:E25. [PMID: 30591679 PMCID: PMC6356444 DOI: 10.3390/cancers11010025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chemotherapeutic resistance of glioblastoma has been attributed to a self-renewing subpopulation, the glioma stem cells (GSCs), which is known to be maintained by the Wnt β-catenin pathway. Our previous findings demonstrated that exogeneous addition of the Wnt antagonist, secreted fizzled-related protein 4 (sFRP4) hampered stem cell properties in GSCs. METHODS To understand the molecular mechanism of sFRP4, we overexpressed sFRP4 (sFRP4 OE) in three human glioblastoma cell lines U87MG, U138MG, and U373MG. We also performed chromatin immunoprecipitation (ChIP) sequencing of sFRP4 OE and RNA sequencing of sFRP4 OE and sFRP4 knocked down U87 cells. RESULTS We observed nuclear localization of sFRP4, suggesting an unknown nuclear role. ChIP-sequencing of sFRP4 pulldown DNA revealed a homeobox Cphx1, related to the senescence regulator ETS proto-oncogene 2 (ETS2). Furthermore, miRNA885, a p53-mediated apoptosis inducer, was upregulated in sFRP4 OE cells. RNA sequencing analysis suggested that sFRP4-mediated apoptosis is via the Fas-p53 pathway by activating the Wnt calcium and reactive oxygen species pathways. Interestingly, sFRP4 OE cells had decreased stemness, but when knocked down in multipotent mesenchymal stem cells, pluripotentiality was induced and the Wnt β-catenin pathway was upregulated. CONCLUSIONS This study unveils a novel nuclear role for sFRP4 to promote apoptosis by a possible activation of DNA damage machinery in glioblastoma.
Collapse
Affiliation(s)
- Gurubharathi Bhuvanalakshmi
- Division of Cancer Stem Cells and Cardiovascular and Neuronal Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular and Neuronal Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular and Neuronal Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Cancer Program, Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia.
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular and Neuronal Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia.
- Cuor Stem Cellutions Pvt Ltd., School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| |
Collapse
|
8
|
He R, Kidder BL. Culture of haploid blastocysts in FGF4 favors the derivation of epiblast stem cells with a primed epigenetic and transcriptional landscape. Sci Rep 2018; 8:10775. [PMID: 30018329 PMCID: PMC6050317 DOI: 10.1038/s41598-018-29074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
Pluripotent stem cells within the inner cell mass and epiblast of mammalian embryos have the capacity to form all lineages in the adult organism, while multipotent trophoblast stem (TS) cells derived from the trophectoderm are capable of differentiating into fetal lineages of the placenta. While mouse embryonic stem (ES) cells and epiblast stem cells (EpiSCs) exhibit distinct expression patterns and utilize distinct external signaling pathways for self-renewal, because mouse EpiSCs resemble human ES cells they are a useful model to investigate mechanisms of human ES cell self-renewal and differentiation. Recent studies have shown that haploid embryos and ES cells can be generated from chemically-activated unfertilized mouse oocytes. However, it is unclear whether EpiSCs or TS cells can be derived from haploid embryos. Here, we describe the derivation of EpiSCs from haploid blastocyst-stage embryos using culture conditions that promote TS cell self-renewal. Maternal (parthenogenetic/gynogenetic) EpiSCs (maEpiSCs) functionally and morphologically resemble conventional EpiSCs. Established maEpiSCs and conventional EpiSCs are diploid and exhibit a normal number of chromosomes. Moreover, global expression analyses and epigenomic profiling revealed that maEpiSCs and conventional EpiSCs exhibit similarly primed transcriptional programs and epigenetic profiles, respectively. Altogether, our results describe a useful experimental model to generate EpiSCs from haploid embryos, provide insight into self-renewal mechanisms of EpiSCs, and suggest that FGF4 is not sufficient to derive TS cells from haploid blastocyst-stage embryos.
Collapse
Affiliation(s)
- Runsheng He
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|