1
|
Zhang M, Wang C, Pan J, Wang M, Cui H, Zhao X. Preparation and evaluation of oral insulin nanocapsule delivery systems. Int J Biol Macromol 2025; 290:138727. [PMID: 39672446 DOI: 10.1016/j.ijbiomac.2024.138727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Insulin therapy is essential for regulating blood sugar levels. Conventional subcutaneous injection is prone to psychological stress, local tissue damage and severe blood glucose fluctuations, and thus the development of oral insulin technology has become an alternative therapy. However, oral insulin faces challenges such as difficult absorption, poor adhesion, low bioavailability, and short duration of action, due to the large molecular weight, low permeability, and easily degradable by enzymes and gastric acids. In this study, oral insulin nanocapsule delivery systems (Orl-Ins-NPs) were developed by using polylactic acid-co-glycolic acid (PLGA) as the encapsulation material for insulin loading. After preparation, optimization and characterization, the mean size of Orl-Ins-NPs was 140.08 nm, the encapsulation efficiency of the system was 54.3 %, and the loading capacity of insulin was 2.2 %. In addition, cationic modification with chitosan/ polyethyleneimine promoted adhesion and permeation of the intestinal mucus layer, and surface coating with pH-responsive methyl methacrylate trimethylamine ethyl chloride copolymer achieved 100 % gastric protection. The results of rat blood glucose test showed that, subcutaneous injection of the control group reduced blood glucose concentrations within 1 h and returned to initial levels within 4 h, while Orl-Ins-NPs slowly reduced blood glucose concentration to 51.3 % of the initial level and maintains stability within 10 h. Orl-Ins-NPs exhibited good physicochemical stabilities, sustained release property, improved in vitro acid resistance, as well as long-term in vivo hypoglycemic effect. This system demonstrates its potential clinical application in oral insulin and other protein drugs delivery.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengjie Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Ge S, Dang M, Pires Dias AC, Zhang X. Engineered IgG Fc-conjugation prolongs the half-life of florfenicol and alleviates pneumonia in mice. Biochimie 2025; 229:105-113. [PMID: 39427834 DOI: 10.1016/j.biochi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Small molecule drugs often exhibit short half-lives, requiring frequent administrations to maintain therapeutic concentrations over an extended period. To address this issue, the fragment crystallizable (Fc) region of IgG, known to prolong the half-life of antibodies via its interaction with the Fc neonatal receptor, was harnessed as a carrier protein to extend the half-life of a small molecule drug, florfenicol. Florfenicol, was chemically coupled to a recombinant Fc protein expressed using the eukaryotic expression system in HEK293 cells. The Fc-florfenicol conjugate exhibited a substantially prolonged half-life of from 3.8 to 9.1 h compared to unconjugated florfenicol and demonstrated excellent therapeutic properties in treating pneumonia in a mouse model. Our results, combined with the literature analysis on Fc-small molecule conjugates, show that Fc can substantially enhance the drug's half-life and suggest the potential for its use as a carrier in novel delivery systems.
Collapse
Affiliation(s)
- Shikun Ge
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mei Dang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Xiaoying Zhang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Pinto S, Viegas J, Cristelo C, Pacheco C, Barros S, Buckley ST, Garousi J, Gräslund T, Santos HA, Sarmento B. Bioengineered Nanomedicines Targeting the Intestinal Fc Receptor Achieve the Improved Glucoregulatory Effect of Semaglutide in a Type 2 Diabetic Mice Model. ACS NANO 2024; 18:28406-28424. [PMID: 39356547 DOI: 10.1021/acsnano.4c11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The oral administration of the glucagon-like peptide-1 analogue, semaglutide, remains a hurdle due to its limited bioavailability. Herein, neonatal Fc receptor (FcRn)-targeted nanoparticles (NPs) were designed to enhance the oral delivery of semaglutide. The nanocarriers were covalently linked to the FcRn-binding peptide FcBP or the affibody molecule ZFcRn that specifically binds to the human FcRn (hFcRn) in a pH-dependent manner. These FcRn-targeted ligands were selected over the endogenous ligands of the receptor (albumin and IgG) due to their smaller size and simpler structure, which could facilitate the transport of functionalized NPs through the tissues. The capacity of FcRn-targeted semaglutide-NPs in controlling the blood glucose levels was evaluated in an hFcRn transgenic mice model, where type 2 diabetes mellitus (T2DM) was induced via intraperitoneal injection of nicotinamide followed by streptozotocin. The encapsulation of semaglutide into FcRn-targeted NPs was translated in an improved glucoregulatory effect in T2DM-induced mice when compared to the oral free semaglutide or nontargeted NP groups, after daily oral administrations for 7 days. Notably, a similar glucose-lowering response was observed between both FcRn-targeted NPs and the subcutaneous semaglutide groups. An increase in insulin pancreatic content and a recovery in β cell mass were visualized in the mice treated with FcRn-targeted semaglutide-NPs. The biodistribution of fluorescently labeled NPs through the gastrointestinal tract demonstrated that the nanosystems targeting the hFcRn are retained longer in the ileum and colorectum, where the expression of FcRn is more prevalent, than nontargeted NPs. Therefore, FcRn-targeted nanocarriers proved to be an effective platform for improving the pharmacological effect of semaglutide in a T2DM-induced mice model.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Juliana Viegas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Cecília Cristelo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Catarina Pacheco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| | - Sofia Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, Måløv 2760, Denmark
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV Groningen 9713, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| |
Collapse
|
4
|
Autier B, Verger A, Plaisse C, Manuel C, Chollet-Krugler M, Preza M, Lundstroem-Stadelmann B, Amela-Cortes M, Aninat C, Samson M, Brandhonneur N, Dion S. PLGA-PEG-COOH nanoparticles are efficient systems for delivery of mefloquine to Echinococcus multilocularis metacestodes. Exp Parasitol 2024; 265:108811. [PMID: 39111383 DOI: 10.1016/j.exppara.2024.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/11/2024]
Abstract
Alveolar echinococcosis (AE) is a severe disease caused by the infection with the larval stage of Echinococcus multilocularis, the metacestode. As there is no actual curative drug therapy, recommendations to manage AE patients are based on radical surgery and prophylactic administration of albendazole or mebendazole during 2 years to prevent relapses. There is an urgent need for new therapeutic strategies for the management of AE, as the drugs in use are only parasitostatic, and can induce toxicity. This study aimed at developing a drug delivery system for mefloquine, an antiparasitic compound which is highly active against E. multilocularis in vitro and in experimentally infected mice. We formulated mefloquine-loaded PLGA-PEG-COOH (poly-(lactic-co-glycolic acid)) nanoparticles that exhibit stable physical properties and mefloquine content. These nanoparticles crossed the outer acellular laminated layer of metacestodes in vitro and delivered their content to the inner germinal layer within less than 5 min. The in vitro anti-echinococcal activity of mefloquine was not altered during the formulation process. However, toxicity against hepatocytes was not reduced when compared to free mefloquine. Altogether, this study shows that mefloquine-loaded PLGA-PEG-COOH nanoparticles are promising candidates for drug delivery during AE treatment. However, strategies for direct parasite-specific targeting of these particles should be developed.
Collapse
Affiliation(s)
- Brice Autier
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, CHU Rennes, University of Rennes, Rennes, France
| | - Alexis Verger
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France
| | - Charleen Plaisse
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, University of Rennes, Rennes, France
| | - Christelle Manuel
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, University of Rennes, Rennes, France
| | - Marylène Chollet-Krugler
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France
| | - Matias Preza
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Britta Lundstroem-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center of Infectious Diseases, University of Bern, Berne, Switzerland
| | - Marian Amela-Cortes
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France
| | - Caroline Aninat
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000, Rennes, France
| | - Michel Samson
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, University of Rennes, Rennes, France
| | - Nolwenn Brandhonneur
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France
| | - Sarah Dion
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, University of Rennes, Rennes, France.
| |
Collapse
|
5
|
Khan T, Vadivel G, Ramasamy B, Murugesan G, Sebaey TA. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review. Polymers (Basel) 2024; 16:1533. [PMID: 38891481 PMCID: PMC11175044 DOI: 10.3390/polym16111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, researchers have increasingly directed their focus toward the biomedical field, driven by the goal of engineering polymer systems that possess a unique combination of both electrical conductivity and biodegradability. This convergence of properties holds significant promise, as it addresses a fundamental requirement for biomedical applications: compatibility with biological environments. These polymer systems are viewed as auspicious biomaterials, precisely because they meet this critical criterion. Beyond their biodegradability, these materials offer a range of advantageous characteristics. Their exceptional processability enables facile fabrication into various forms, and their chemical stability ensures reliability in diverse physiological conditions. Moreover, their low production costs make them economically viable options for large-scale applications. Notably, their intrinsic electrical conductivity further distinguishes them, opening up possibilities for applications that demand such functionality. As the focus of this review, a survey into the use of biodegradable conducting polymers in tissue engineering, biomedical implants, and antibacterial applications is conducted.
Collapse
Affiliation(s)
- Tabrej Khan
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Gayathri Vadivel
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Balan Ramasamy
- Department of Physics, Government Arts and Science College, Mettupalayam 641104, Tamil Nadu, India
| | - Gowtham Murugesan
- Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Tamer A. Sebaey
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Sharkia, Egypt
| |
Collapse
|
6
|
Ding B, Zhu Z, Guo C, Li J, Gan Y, Yu M. Oral peptide therapeutics for diabetes treatment: State-of-the-art and future perspectives. Acta Pharm Sin B 2024; 14:2006-2025. [PMID: 38799624 PMCID: PMC11120284 DOI: 10.1016/j.apsb.2024.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 05/29/2024] Open
Abstract
Diabetes, characterized by hyperglycemia, is a major cause of death and disability worldwide. Peptides, such as insulin and glucagon-like peptide-1 (GLP-1) analogs, have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body. Compared to subcutaneous injection, oral administration of anti-diabetic peptides is a preferred approach. However, biological barriers significantly reduce the efficacy of oral peptide therapeutics. Recent advancements in drug delivery systems and formulation techniques have greatly improved the oral delivery of peptide therapeutics and their efficacy in treating diabetes. This review will highlight (1) the benefits of oral anti-diabetic peptide therapeutics; (2) the biological barriers for oral peptide delivery, including pH and enzyme degradation, intestinal mucosa barrier, and biodistribution barrier; (3) the delivery platforms to overcome these biological barriers. Additionally, the review will discuss the prospects in this field. The information provided in this review will serve as a valuable guide for future developments in oral anti-diabetic peptide therapeutics.
Collapse
Affiliation(s)
- Bingwen Ding
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Zhu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Cong Guo
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
8
|
Liu S, Wen X, Zhang X, Mao S. Oral delivery of biomacromolecules by overcoming biological barriers in the gastrointestinal tract: an update. Expert Opin Drug Deliv 2023; 20:1333-1347. [PMID: 37439101 DOI: 10.1080/17425247.2023.2231343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Biomacromolecules have proven to be an attractive choice for treating diseases due to their properties of strong specificity, high efficiency, and low toxicity. Besides greatly improving the patient's complaint, oral delivery of macromolecules also complies with hormone physiological secretion, which has become one of the most innovative fields of research in recent years. AREAS COVERED Oral delivery biological barriers for biomacromolecule, transport mechanisms, and various administration strategies were discussed in this review, including absorption enhancers, targeting nanoparticles, mucoadhesion nanoparticles, mucus penetration nanoparticles, and intelligent bionic drug delivery systems. EXPERT OPINION The oral delivery of biomacromolecules has important clinical implications; however, these are still facing the challenges of low bioavailability due to certain barriers. Various promising technologies have been developed to overcome the barriers and improve the therapeutic effect of oral biomacromolecules. By considering safety and efficacy comprehensively, the development of intelligent nanoparticles based on the GIT environment has demonstrated some promise in overcoming these barriers; however, a more comprehensive understanding of the oral fate of oral biomacromolecules is still required.
Collapse
Affiliation(s)
- Shiyun Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangce Wen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [PMID: 36208724 DOI: 10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Currently, the only practical way to treat type 1 and advanced insulin-dependent type 2 diabetes mellitus (T1/2DM) is the frequent subcutaneous injection of insulin, which is significantly different physiologically from endogenous insulin secretion from pancreatic islets and can lead to hyperinsulinemia, pain, and infection in patients with poor compliance. Hence, oral insulin delivery has been actively pursued to revolutionize the treatment of insulin-dependent diabetes. In this review, we provide an overview of recent progress in developing poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) for oral insulin delivery. Different strategies for insulin-loaded PLGA NPs to achieve normoglycemic effects are discussed. Finally, challenges and future perspectives of PLGA NPs for oral insulin delivery are put forward.
Collapse
|
10
|
Pang H, Huang X, Xu ZP, Chen C, Han FY. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [DOI: https:/doi.org/10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
11
|
Huang YC, Chen BH. A Comparative Study on Improving Streptozotocin-Induced Type 2 Diabetes in Rats by Hydrosol, Extract and Nanoemulsion Prepared from Cinnamon Leaves. Antioxidants (Basel) 2022; 12:29. [PMID: 36670891 PMCID: PMC9855112 DOI: 10.3390/antiox12010029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Cinnamomoum osmophloeum Kanehira (C. osmophloeum) contains various biologically active antioxidant compounds such as flavonoids, phenolic acids and cinnamaldehyde. Type 2 diabetes mellitus is a chronic disease of metabolic abnormality caused by insulin deficiency or resistance. The objectives of this study were to analyze various bioactive compounds in C. osmophloeum leaves by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and compare the effects of hydrosol, extract and nanoemulsion prepared from C. osmophloeum leaves on improving type 2 diabetes in rats. Our results show that a total of 15 bioactive compounds in C. osmophloeum leaves, including quercetin, quercetin-3-O-galactoside, quercetin-3-O-glucoside, rutin, caffeic acid, benzoic acid, 5-O-caffeoylquinic acid, kaempferol 3-β-D-glucopyranoside, trans-cinnamic acid, coumarin, cinnamyl alcohol, p-coumaric acid, eugenol, kaempferol and cinnamaldehyde, were separated within 14 min for subsequent identification and quantitation by UPLC-MS/MS. The nanoemulsion was successfully prepared by mixing C. osmophloeum leaf extract, soybean oil, lecithin, Tween 80 and deionized water in an appropriate proportion with a mean particle size, polydispersity index, zeta potential and encapsulation efficiency of 36.58 nm, 0.222, -42.6 mV and 91.22%, respectively, while a high storage and heating stability was obtained. The animal experiment results reveal that the high-dose nanoemulsion was the most effective in reducing both fasting blood glucose and oral glucose tolerance test value, followed by low-dose nanoemulsion, high-dose extract, low-dose extract and leaf powder in hydrosol. A similar trend was shown in reducing serum insulin and the homeostatic model assessment of insulin resistance index. In addition, the contents of serum biochemical parameters, including total cholesterol, triglyceride, aspartate aminotransferase, alanine aminotransferase, uric acid, urea nitrogen and creatinine, were reduced, with the high-dose nanoemulsion showing the most pronounced effect. Collectively, the high-dose nanoemulsion may possess great potential to be developed into a hypoglycemic health food or botanic drug.
Collapse
Affiliation(s)
- Yu-Chi Huang
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
12
|
Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022; 352:813-832. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Ligand-modified nanocarriers (LMNCs) specific to their targets have attracted increasing interest for enhanced oral drug delivery in recent decades. Although the design of LMNCs for enhanced endocytosis and improved exposure of the loaded drugs through the oral route has received abundant attention, it remains unclear how the design influences their transcellular process, especially the key factors affecting their functions. This review discusses the extracellular and cellular barriers to orally administered LMNCs in the gastrointestinal (GI) tract and new discoveries regarding the GI protein corona and the sequential transport barriers that impede the preplanned movements of LMNCs after oral administration. Furthermore, innovative progress in considering key factors (including target selection, ligand properties, and other important factors) in the rational design of LMNCs for oral drug delivery is presented. In particular, some factors that endow LMNCs with efficient transcytosis rather than only endocytosis are highlighted. Finally, the prospects of orally administered LMNCs in disease therapy for the enhanced oral/local bioavailability of active pharmaceutical ingredients, as well as emerging delivery routes, such as lymphatic drug delivery and systemic location-specific drug release based on oral transcellular LMNCs, are discussed.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
13
|
Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review. Polymers (Basel) 2022; 14:polym14224924. [PMID: 36433050 PMCID: PMC9693219 DOI: 10.3390/polym14224924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The rising significance of the field of biopolymers has driven the rapid progress of this distinctive class of polymeric materials in the past decades. Biodegradable polymers have acquired much attention because they play an essential role in humans' lives due to their specific tunable electrical conductivity and biodegradability characteristics, making them fascinating in many applications. Herein, we debated the recent progress in developing biodegradable polymers and their applications. Initially, we introduce the basics of conducting and biodegradable polymers, trailed by debates about the effective strategies currently used to develop biopolymers. Special importance will focus on the uses of biodegradable polymers in drug delivery and tissue engineering, as well as wound healing, demonstrating the recent findings, and uses of several biodegradable polymers in modern biological uses. In this review, we have provided comprehensive viewpoints on the latest progress of the challenges and future prospects involving biodegradable polymers' advancement and commercial applications.
Collapse
|
14
|
Zhang JY, Liu XX, Lin JY, Bao XY, Peng JQ, Gong ZP, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. Int J Pharm 2022; 624:121979. [DOI: 10.1016/j.ijpharm.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
15
|
Giles MB, Hong JKY, Liu Y, Tang J, Li T, Beig A, Schwendeman A, Schwendeman SP. Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nat Commun 2022; 13:3282. [PMID: 35676271 PMCID: PMC9177552 DOI: 10.1038/s41467-022-30813-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) long-acting release depots are effective for extending the duration of action of peptide drugs. We describe efficient organic-solvent-free remote encapsulation based on the capacity of common uncapped PLGA to bind and absorb into the polymer phase net positively charged peptides from aqueous solution after short exposure at modest temperature. Leuprolide encapsulated by this approach in low-molecular-weight PLGA 75/25 microspheres slowly and continuously released peptide for over 56 days in vitro and suppressed testosterone production in rats in an equivalent manner as the 1-month Lupron Depot®. The technique is generalizable to encapsulate a number of net cationic peptides of various size, including octreotide, with competitive loading and encapsulation efficiencies to traditional methods. In certain cases, in vitro and in vivo performance of remote-loaded PLGA microspheres exceeded that relative to marketed products. Remote absorption encapsulation further removes the need for a critical organic solvent removal step after encapsulation, allowing for simple and cost-effective sterilization of the drug-free microspheres before encapsulation of the peptide.
Collapse
Affiliation(s)
- Morgan B Giles
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yayuan Liu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Tinghui Li
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Roque-Borda CA, Gualque MWDL, da Fonseca FH, Pavan FR, Santos-Filho NA. Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides. Pharmaceutics 2022; 14:891. [PMID: 35631477 PMCID: PMC9146920 DOI: 10.3390/pharmaceutics14050891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Some diseases of uncontrolled proliferation such as cancer, as well as infectious diseases, are the main cause of death in the world, and their causative agents have rapidly developed resistance to the various existing treatments, making them even more dangerous. Thereby, the discovery of new therapeutic agents is a challenge promoted by the World Health Organization (WHO). Biomacromolecules, isolated or synthesized from a natural template, have therapeutic properties which have not yet been fully studied, and represent an unexplored potential in the search for new drugs. These substances, starting from conglomerates of proteins and other substances such as animal venoms, or from minor substances such as bioactive peptides, help fight diseases or counteract harmful effects. The high effectiveness of these biomacromolecules makes them promising substances for obtaining new drugs; however, their low bioavailability or stability in biological systems is a challenge to be overcome in the coming years with the help of nanotechnology. The objective of this review article is to describe the relationship between the structure and function of biomacromolecules of animal origin that have applications already described using nanotechnology and targeted delivery.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Marcos William de Lima Gualque
- Proteomics Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fauller Henrique da Fonseca
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Norival Alves Santos-Filho
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| |
Collapse
|
17
|
Zhang P, Du C, Huang T, Hu S, Bai Y, Li C, Feng G, Gao Y, Li Z, Wang B, Hirvonen JT, Fan J, Santos HA, Liu D. Surface Adsorption-Mediated Ultrahigh Efficient Peptide Encapsulation with a Precise Ratiometric Control for Type 1 and 2 Diabetic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200449. [PMID: 35229498 DOI: 10.1002/smll.202200449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A surface adsorption strategy is developed to enable the engineering of microcomposites featured with ultrahigh loading capacity and precise ratiometric control of co-encapsulated peptides. In this strategy, peptide molecules (insulin, exenatide, and bivalirudin) are formulated into nanoparticles and their surface is decorated with carrier polymers. This polymer layer blocks the phase transfer of peptide nanoparticles from oil to water and, consequently, realizes ultrahigh peptide loading degree (up to 78.9%). After surface decoration, all three nanoparticles are expected to exhibit the properties of adsorbed polymer materials, which enables the co-encapsulation of insulin, exenatide, and bivalirudin with a precise ratiometric control. After solidification of this adsorbed polymer layer, the release of peptides is synchronously prolonged. With the help of encapsulation, insulin achieves 8 days of glycemic control in type 1 diabetic rats with one single injection. The co-delivery of insulin and exenatide (1:1) efficiently controls the glycemic level in type 2 diabetic rats for 8 days. Weekly administration of insulin and exenatide co-encapsulated microcomposite effectively reduces the weight gain and glycosylated hemoglobin level in type 2 diabetic rats. The surface adsorption strategy sets a new paradigm to improve the pharmacokinetic and pharmacological performance of peptides, especially for the combination of peptides.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Chunyang Du
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianhe Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuancheng Bai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Cong Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guobing Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Yue Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhi Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Baoxun Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
18
|
Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022; 12:621-636. [PMID: 35256935 PMCID: PMC8897023 DOI: 10.1016/j.apsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a major health problem with increasing prevalence at a global level. The discovery of insulin in the early 1900s represented a major breakthrough in diabetes management, with further milestones being subsequently achieved with the identification of glucagon-like peptide-1 (GLP-1) and the introduction of GLP-1 receptor agonists (GLP-1 RAs) in clinical practice. Moreover, the subcutaneous delivery of biotherapeutics is a well-established route of administration generally preferred over the intravenous route due to better patient compliance and prolonged drug absorption. However, current subcutaneous formulations of GLP-1 RAs present pharmacokinetic problems that lead to adverse reactions and treatment discontinuation. In this review, we discuss the current challenges of subcutaneous administration of peptide-based therapeutics and provide an overview of the formulations available for the different routes of administration with improved bioavailability and reduced frequency of administration.
Collapse
Affiliation(s)
- Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Asteria Luzardo-Álvarez
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
19
|
Li Y, Sun J, Li J, Liu K, Zhang H. Engineered protein nanodrug as an emerging therapeutic tool. NANO RESEARCH 2022; 15:5161-5172. [PMID: 35281219 PMCID: PMC8900963 DOI: 10.1007/s12274-022-4103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Functional proteins are the most versatile macromolecules. They can be obtained by extraction from natural sources or by genetic engineering technologies. The outstanding selectivity, specificity, binding activity, and biocompatibility endow engineered proteins with outstanding performance for disease therapy. Nevertheless, their stability is dramatically impaired in blood circulation, hindering clinical translations. Thus, many strategies have been developed to improve the stability, efficacy, bioavailability, and productivity of therapeutic proteins for clinical applications. In this review, we summarize the recent progress in the fabrication and application of therapeutic proteins. We first introduce various strategies for improving therapeutic efficacy via bioengineering and nanoassembly. Furthermore, we highlight their diverse applications as growth factors, nanovaccines, antibody-based drugs, bioimaging molecules, and cytokine receptor antagonists. Finally, a summary and perspective for the future development of therapeutic proteins are presented.
Collapse
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081 Germany
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
20
|
A common strategy to improve transmembrane transport in polarized epithelial cells based on sorting signals: Guiding nanocarriers to TGN rather than to the basolateral plasma membrane directly. J Control Release 2021; 339:430-444. [PMID: 34655679 DOI: 10.1016/j.jconrel.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022]
Abstract
The intestinal barrier has always been the rate-limiting step in the oral administration process. To overcome the intestinal barrier, researchers have widely adopted nanocarriers, especially active-targeting nanocarriers strategies. However, most of these strategies focus on the ligand decoration of nanocarriers targeting specific receptors, so their applications are confined to specific receptors or specific cell types. In this study, we tried to investigate more common strategies in the field of transmembrane transport enhancement. Trans-Golgi network (TGN) is the sorting center of biosynthetic route which could achieve polarized localization of proteins in polarized epithelial cells, and the basolateral plasma membrane is where all transcytotic cargos have to pass through. Thus, it is expected that guiding nanocarriers to TGN or basolateral plasma membrane may improve the transcytosis. Hence, we choose sorting signal peptide to modify micelles to guide micelles to TGN (named as BAC decorated micelles, BAC-M) or to basolateral plasma membrane (named as STX decorated micelles, STX-M). By incorporating coumarin-6 (C6) or Cy5-PEG-PCL in the micelles to indicate the behavior of micelles, the effects of these two strategies on the transcytosis were investigated. To our surprise, BAC-M and STX-M behaved quite differently when crossing biological barriers. BAC-M showed significant superiority in colocalization with TGN, transmembrane transport and even in vivo absorption, while STX-M had no significant difference from blank micelles. Further investigation revealed that the strategy of directly guiding nanocarriers to the basolateral plasma membrane (STX-M) only caused the stack of vesicles near the basolateral plasma membrane. So, we concluded that guiding nanocarriers to TGN which related to secretion may contribute to the transmembrane transport. This common strategy based on the physiological function of TGN in polarized epithelial cells will have broad application prospects in overcoming biological barrier.
Collapse
|
21
|
Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021; 175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic disease with an elevated risk of micro- and macrovascular complications, such as fibrosis. To prevent diabetes-associated fibrosis, the symptomatology of diabetes must be controlled, which is commonly done by subcutaneous injection of antidiabetic peptides. To minimize the pain and distress associated with such injections, there is an urgent need for non-invasive oral transmucosal drug delivery strategies. However, orally administered peptide-based drugs are exposed to harsh conditions in the gastrointestinal tract and poorly cross the selective intestinal epithelium. Thus, targeting of drugs to receptors expressed in epithelial cells, such as the neonatal Fc receptor (FcRn), may therefore enhance uptake and transport through mucosal barriers. This review compiles how in-depth studies of FcRn biology and engineering of receptor-binding molecules may pave the way for design of new classes of FcRn-targeted nanosystems. Tailored strategies may open new avenues for oral drug delivery and provide better treatment options for diabetes and, consequently, fibrosis prevention.
Collapse
|
22
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
24
|
Ren T, Zheng X, Bai R, Yang Y, Jian L. Utilization of PLGA nanoparticles in yeast cell wall particle system for oral targeted delivery of exenatide to improve its hypoglycemic efficacy. Int J Pharm 2021; 601:120583. [PMID: 33839225 DOI: 10.1016/j.ijpharm.2021.120583] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/19/2022]
Abstract
Oral delivery of exenatide (EXE), a high-efficiency therapeutic peptide, is urgently needed for long-term treatment of diabetes. In this study, a polylactide-co-glycoside (PLGA) nanoparticles (NPs) in yeast cell wall particle (YCWP) system was built to improve the intestinal absorption of EXE by efficient protection of EXE against gastrointestinal degradation and intestinal phagocytic cell targeted delivery. The EXE-loaded PLGA NPs were prepared by a double emulsion solvent diffusion method and exhibited a uniformly spherical appearance, a nano size (92.4 ± 4.6 nm) and a positive surface charge (+32.3 ± 3.8 mV). And then, the NPs were successfully loaded into the YCWPs by a solvent hydration - lyophilization cycle method to obtain the EXE-PLGA NPs @YCWPs, which was verified by scanning electron microscope and confocal laser scanning microscopy. An obvious sustained drug release and a reduced burst release were achieved by this nano-in-micro carrier. Moreover, the gastrointestinal stability of EXE in PLGA NPs @YCWPs was significantly higher than that in PLGA NPs in the simulated gastrointestinal environment, which were useful in enhancing the intestinal absorption of EXE. In biodistribution study, the EXE-PLGA NPs @YCWPs could quickly reached the root of the villi, and even partly entered the inner of the villi, especially in ileum and Peyer's patches. In vitro cell evaluation demonstrated an efficient β-glucan receptor mediated endocytosis and transport of EXE-PLGA NPs @YCWPs by the macrophage RAW 264.7 cells, suggesting a potential intestinal macrophage targeted absorptive pathway. The in vivo pharmacokinetic study showed a preferred hypoglycemic effect and an increased pharmacological availability (13.7 ± 4.1%) after oral administration of the EXE-PLGA NPs @YCWPs. It is believed that the PLGA nanoparticles in YCWP system could become an efficient strategy to orally deliver therapeutic peptide drugs.
Collapse
Affiliation(s)
- Tianyang Ren
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Xuehua Zheng
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ruixue Bai
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China.
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
25
|
Azevedo C, Andersen JT, Traverso G, Sarmento B. The potential of porcine ex vivo platform for intestinal permeability screening of FcRn-targeted drugs. Eur J Pharm Biopharm 2021; 162:99-104. [PMID: 33771621 DOI: 10.1016/j.ejpb.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Conventionally, the intestinal permeability of drugs is evaluated using cell monolayer models that lack morphological, physiological and architectural features, as well as realistic neonatal Fc receptor (FcRn) expression. In addition, it is time-consuming, expensive and excessive to use a large number of mice for large-scale screening of FcRn-targeted candidates. For preclinical validation, it is critical to use suitable models that mimic the human intestine; the porcine ex vivo model is widely used for intestinal permeability studies, due to its physiological and anatomical similarities to humans. This study intended to analyze the potential to measure the intestinal permeability of FcRn-targeted substances using a porcine ex vivo platform, which is able to analyze 96 samples at the same time. In addition, the platform allows the screening of FcRn-targeting substances for transmucosal delivery, taking into consideration (cross-species) receptor-ligand binding kinetics. After analyzing the morphology of the porcine tissue, the FcRn expression across the gastrointestinal tract was verified. By studying the stomach, duodenum and jejunum, it was demonstrated that FcRn expression is maintained for up to 7 days. When evaluating the duodenum permeability of free engineered human albumin variants, it was shown that the variant with the mutation K573P (KP) is more efficiently transported. Given this, the porcine ex vivo platform was revealed to be a potential model for the screening of FcRn-targeted oral drug formulations.
Collapse
Affiliation(s)
- Cláudia Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Jan Terje Andersen
- Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway; Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
26
|
Fu Y, Ding Y, Zhang L, Zhang Y, Liu J, Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem 2021; 217:113372. [PMID: 33744689 DOI: 10.1016/j.ejmech.2021.113372] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is one of the most challenging threats to global public health. To improve the therapy efficacy of antidiabetic drugs, numerous drug delivery systems have been developed. Polyethylene glycol (PEG) is a polymeric family sharing the same skeleton but with different molecular weights which is considered as a promising material for drug delivery. In the delivery of antidiabetic drugs, PEG captures much attention in the designing and preparation of sustainable and controllable release systems due to its unique features including hydrophilicity, biocompatibility and biodegradability. Due to the unique architecture, PEG molecules are also able to shelter delivery systems to decrease their immunogenicity and avoid undesirable enzymolysis. PEG has been applied in plenty of delivery systems such as micelles, vesicles, nanoparticles and hydrogels. In this review, we summarized several commonly used PEG-contained antidiabetic drug delivery systems and emphasized the advantages of stimuli-responsive function in these sustainable and controllable formations.
Collapse
Affiliation(s)
- Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Ying Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Litao Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
27
|
Influence of FcRn binding properties on the gastrointestinal absorption and exposure profile of Fc molecules. Bioorg Med Chem 2021; 32:115942. [PMID: 33461147 DOI: 10.1016/j.bmc.2020.115942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 01/26/2023]
Abstract
The neonatal Fc receptor (FcRn) represents a transport system with the potential to facilitate absorption of biologics across the gastrointestinal barrier. How biologics interact with FcRn to enable their gastrointestinal absorption, and how these interactions might be optimized in a biological therapeutic are not well understood. Thus, we studied the absorption of Fc molecules from the intestine using three IgG4-derived Fc variants with different, pH-dependent FcRn binding and release profiles. Using several different intestinal models, we consistently observed that FcRn binding affinity correlated with transcytosis. Our findings support targeting FcRn to enable intestinal absorption of biologics and highlight additional strategic considerations for future work.
Collapse
|
28
|
New R. Oral Delivery of Biologics via the Intestine. Pharmaceutics 2020; 13:E18. [PMID: 33374222 PMCID: PMC7824380 DOI: 10.3390/pharmaceutics13010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Biologics are currently one of the most promising avenues for therapeutic interventions in conditions such as metabolic disease, ageing and inflammatory disorders, and for chronic ailments, oral delivery of such medicines has for years been recognised as an important goal. Despite decades of intensive research, oral delivery of biologics is only just starting to prove feasible. There has been much talk about the barriers to uptake of biologics, and indeed, one function of the intestine is to prevent, in one way or another, passage of unwanted materials across the gut, and yet, grams of biological agents both large and small pass across the intestinal cell wall every day. This review first describes the functioning of the gut under normal circumstances, then identifies the principle biological mechanisms which have been harnessed successfully, to date, to achieve oral uptake, outlining the pros and cons of each approach. Examples with different biologics are given, and information on result of the latest clinical trials is provided, where available.
Collapse
Affiliation(s)
- Roger New
- Proxima Concepts Ltd., London NW1 0NH, UK;
- Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK
| |
Collapse
|
29
|
Martins C, Chauhan VM, Araújo M, Abouselo A, Barrias CC, Aylott JW, Sarmento B. Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine (Lond) 2020; 15:2287-2309. [PMID: 32945230 DOI: 10.2217/nnm-2020-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Therapeutic and diagnostic payloads are usually associated with properties that compromise their efficacy, such as poor aqueous solubility, short half-life, low bioavailability, nonspecific accumulation and diverse side effects. Nanotechnological solutions have emerged to circumvent some of these drawbacks, augmenting therapeutic and/or diagnostic outcomes. Nanotechnology has benefited from the rise in polymer science research for the development of novel nanosystems for therapeutic and diagnostic purposes. Polymers are a widely used class of biomaterials, with a considerable number of regulatory approvals for application in clinics. In addition to their versatility in production and functionalization, several synthetic and natural polymers demonstrate biocompatible properties that dictate their successful biological performance. This article highlights the physicochemical characteristics of a variety of natural and synthetic biocompatible polymers, as well as their role in the manufacture of nanotechnology-based systems, state-of-art applications in disease treatment and diagnosis, and current challenges in finding a way to clinics.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Ruade Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Veeren M Chauhan
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
| | - Amjad Abouselo
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| |
Collapse
|
30
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
31
|
Pharmacokinetic and pharmacodynamic evaluation of nano-fixed dose combination for hypertension. J Hypertens 2020; 38:1593-1602. [DOI: 10.1097/hjh.0000000000002429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Song Y, Shi Y, Zhang L, Hu H, Zhang C, Yin M, Zhang X, Sun K. Oral delivery system for low molecular weight protamine-dextran-poly(lactic-co-glycolic acid) carrying exenatide to overcome the mucus barrier and improve intestinal targeting efficiency. Nanomedicine (Lond) 2019; 14:989-1009. [PMID: 31088322 DOI: 10.2217/nnm-2018-0322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to explore the effect of nanoparticles loaded with exenatide in overcoming the mucus barrier and improving intestinal targeting efficiency, to improve the oral bioavailability. Materials & methods: Low molecular weight protamine (LMWP)-dextran-poly(lactic-co-glycolic acid) was used to create LMWP-dextran-poly(lactic-co-glycolic acid)-nanoparticles (LDPs) encapsulating exenatide-Zn2+ complex.Results & conclusion: LDPs showed improved penetration of the mucus barrier, and LMWP was helpful for mediating cell translocation through protein transduction domains. The absorption sites and distribution rates of LDPs were verified by intestinal localization experiments and in vivo distribution experiments. Cell uptake and transmembrane experiments confirmed the absorption efficiency in the intestinal epithelium. Furthermore, the relative bioavailability after oral administration of exenatide-Zn2+-LDPs was 8.4%, with a significant hypoglycemic effect on Type 2 diabetic mice.
Collapse
Affiliation(s)
- Yina Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yanan Shi
- School of Pharmacy, Binzhou Medical University, Yantai, 264005, PR China
| | - Liping Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Haiyan Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Chunyan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xuemei Zhang
- State Key Laboratory of Long-Acting & Targeting Drug Delivery System, Luye Pharmaceutical Co. Ltd, Yantai, 264005, PR China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.,State Key Laboratory of Long-Acting & Targeting Drug Delivery System, Luye Pharmaceutical Co. Ltd, Yantai, 264005, PR China
| |
Collapse
|
33
|
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2019; 8:1020-1044. [PMID: 31621709 DOI: 10.1039/c9bm01378d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral drug delivery remains the most preferred approach due to its multiple advantages. Recently there has been increasing interest in the development of advanced vehicles for oral delivery of different therapeutics. Among them, biomimetic and bioinspired strategies are emerging as novel approaches that are promising for addressing biological barriers encountered by traditional drug delivery systems. Herein we provide a state-of-the-art review on the current progress of biomimetic particulate oral delivery systems. Different biomimetic nanoparticles used for oral drug delivery are first discussed, mainly including ligand/antibody-functionalized nanoparticles, transporter-mediated nanoplatforms, and nanoscale extracellular vesicles. Then we describe bacteria-derived biomimetic systems, with respect to oral delivery of therapeutic proteins or antigens. Subsequently, yeast-derived oral delivery systems, based on either chemical engineering or bioengineering approaches are discussed, with emphasis on the treatment of inflammatory diseases and cancer as well as oral vaccination. Finally, bioengineered plant cells are introduced for oral delivery of biological agents. A future perspective is also provided to highlight the existing challenges and possible resolution toward clinical translation of currently developed biomimetic oral therapies.
Collapse
Affiliation(s)
- Xiankang Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Guoyu Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China. and The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
35
|
Bajracharya R, Song JG, Back SY, Han HK. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery. Comput Struct Biotechnol J 2019; 17:1290-1308. [PMID: 31921395 PMCID: PMC6944732 DOI: 10.1016/j.csbj.2019.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/14/2023] Open
Abstract
Advancements in biotechnology and protein engineering expand the availability of various therapeutic proteins including vaccines, antibodies, hormones, and growth factors. In addition, protein drugs hold many therapeutic advantages over small synthetic drugs in terms of high specificity and activity. This has led to further R&D investment in protein-based drug products and an increased number of drug approvals for therapeutic proteins. However, there are many biological and biopharmaceutical obstacles inherent to protein drugs including physicochemical and enzymatic destabilization, which limit their development and clinical application. Therefore, effective formulations of therapeutic proteins are needed to overcome the various physicochemical and biological barriers. In current medical practice, protein drugs are predominantly available in injectable formulations, which have disadvantages including pain, the possibility of infection, high cost, and low patient compliance. Consequently, non-invasive drug delivery systems for therapeutic proteins have gained great attention in the research and development of biomedicines. Therefore, this review covers the various formulation approaches to optimizing the delivery properties of protein drugs with an emphasis on improving bioavailability and patient compliance. It provides a comprehensive update on recent advancements in nanotechnologies with regard to non-invasive protein drug delivery systems, which is also categorized by the route of administrations including oral, nasal, transdermal, pulmonary, ocular, and rectal delivery systems.
Collapse
|
36
|
Abeer MM, Meka AK, Pujara N, Kumeria T, Strounina E, Nunes R, Costa A, Sarmento B, Hasnain SZ, Ross BP, Popat A. Rationally Designed Dendritic Silica Nanoparticles for Oral Delivery of Exenatide. Pharmaceutics 2019; 11:E418. [PMID: 31430872 PMCID: PMC6723263 DOI: 10.3390/pharmaceutics11080418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/04/2019] [Accepted: 08/15/2019] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes makes up approximately 85% of all diabetic cases and it is linked to approximately one-third of all hospitalisations. Newer therapies with long-acting biologics such as glucagon-like peptide-1 (GLP-1) analogues have been promising in managing the disease, but they cannot reverse the pathology of the disease. Additionally, their parenteral administration is often associated with high healthcare costs, risk of infections, and poor patient adherence associated with phobia of needles. Oral delivery of these compounds would significantly improve patient compliance; however, poor enzymatic stability and low permeability across the gastrointestinal tract makes this task challenging. In the present work, large pore dendritic silica nanoparticles (DSNPs) with a pore size of ~10 nm were prepared, functionalized, and optimized in order to achieve high peptide loading and improve intestinal permeation of exenatide, a GLP-1 analogue. Compared to the loading capacity of the most popular, Mobil Composition of Matter No. 41 (MCM-41) with small pores, DSNPs showed significantly high loading owing to their large and dendritic pore structure. Among the tested DSNPs, pristine and phosphonate-modified DSNPs (PDSNPs) displayed remarkable loading of 40 and 35% w/w, respectively. Furthermore, particles successfully coated with positively charged chitosan reduced the burst release of exenatide at both pH 1.2 and 6.8. Compared with free exenatide, both chitosan-coated and uncoated PDSNPs enhanced exenatide transport through the Caco-2 monolayer by 1.7 fold. Interestingly, when a triple co-culture model of intestinal permeation was used, chitosan-coated PDSNPs performed better compared to both PDSNPs and free exenatide, which corroborated our hypothesis behind using chitosan to interact with mucus and improve permeation. These results indicate the emerging role of large pore silica nanoparticles as promising platforms for oral delivery of biologics such as exenatide.
Collapse
Affiliation(s)
| | - Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| | - Ekaterina Strounina
- Center for Advanced Imaging, The University of Queensland, Brisbane QLD 4072, Australia
| | - Rute Nunes
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana Costa
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Sumaira Z Hasnain
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
- Australian Infectious Disease Research Centre-The University of Queensland Building 76 Room 155 Cooper Road, St. Lucia QLD 4067, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia.
| |
Collapse
|
37
|
Grumezescu V, Gherasim O, Negut I, Banita S, Holban AM, Florian P, Icriverzi M, Socol G. Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications. MATERIALS 2019; 12:ma12162521. [PMID: 31398805 PMCID: PMC6719237 DOI: 10.3390/ma12162521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
Abstract
We report on the synthesis and evaluation of biopolymeric spheres of poly(lactide-co-glycolide) containing different amounts of magnetite nanoparticles and Ibuprofen (PLGA-Fe3O4-IBUP), but also chitosan (PLGA-CS-Fe3O4-IBUP), to be considered as drug delivery systems. Besides morphological, structural, and compositional characterizations, the PLGA-Fe3O4-IBUP composite microspheres were subjected to drug release studies, performed both under biomimetically-simulated dynamic conditions and under external radiofrequency magnetic fields. The experimental data resulted by performing the drug release studies evidenced that PLGA-Fe3O4-IBUP microspheres with the lowest contents of Fe3O4 nanoparticles are optimal candidates for triggered drug release under external stimulation related to hyperthermia effect. The as-selected microspheres and their chitosan-containing counterparts were biologically assessed on macrophage cultures, being evaluated as biocompatible and bioactive materials that are able to promote cellular adhesion and proliferation. The composite biopolymeric spheres resulted in inhibited microbial growth and biofilm formation, as assessed against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans microbial strains. Significantly improved antimicrobial effects were reported in the case of chitosan-containing biomaterials, regardless of the microorganisms' type. The nanostructured composite biopolymeric spheres evidenced proper characteristics as prolonged and controlled drug release platforms for multipurpose biomedical applications.
Collapse
Affiliation(s)
- Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania.
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania
| | - Stefan Banita
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania
| | - Alina Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania
| | - Paula Florian
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 060031 Bucharest, Romania
| | - Madalina Icriverzi
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 060031 Bucharest, Romania
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania.
| |
Collapse
|
38
|
Yong JM, Mantaj J, Cheng Y, Vllasaliu D. Delivery of Nanoparticles across the Intestinal Epithelium via the Transferrin Transport Pathway. Pharmaceutics 2019; 11:E298. [PMID: 31248025 PMCID: PMC6680486 DOI: 10.3390/pharmaceutics11070298] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to probe whether the transferrin (Tf) transport pathway can be exploited for intestinal delivery of nanoparticles. Tf was adsorbed on 100 nm model polystyrene nanoparticles (NP), followed by size characterisation of these systems. Cell uptake of Tf and Tf-adsorbed NP was investigated in intestinal epithelial Caco-2 cells cultured on multi-well plates and as differentiated polarised monolayers. Tf-NP demonstrated a remarkably higher cell uptake compared to unmodified NP in both non-polarised (5-fold) and polarised cell monolayers (16-fold difference). Application of soluble Tf significantly attenuated the uptake of Tf-NP. Notably, Tf-NP displayed remarkably higher rate (23-fold) of epithelial transport across Caco-2 monolayers compared to unmodified NP. This study therefore strongly suggests that the Tf transport pathway should be considered as a candidate biological transport route for orally-administered nanomedicines and drugs with poor oral bioavailability.
Collapse
Affiliation(s)
- Jing M Yong
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Julia Mantaj
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Yiyi Cheng
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| |
Collapse
|
39
|
Dos Santos AP, de Araújo TG, Rádis-Baptista G. Nanoparticles Functionalized with Venom-Derived Peptides and Toxins for Pharmaceutical Applications. Curr Pharm Biotechnol 2019; 21:97-109. [PMID: 31223083 DOI: 10.2174/1389201020666190621104624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022]
Abstract
Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.
Collapse
Affiliation(s)
- Ana P Dos Santos
- Program of Post-graduation in Pharmaceutical Sciences (FFEO/UFC), Federal University of Ceara, Ceara, Brazil
| | | | | |
Collapse
|
40
|
Muraleetharan V, Mantaj J, Swedrowska M, Vllasaliu D. Nanoparticle modification in biological media: implications for oral nanomedicines. RSC Adv 2019; 9:40487-40497. [PMID: 35542629 PMCID: PMC9076262 DOI: 10.1039/c9ra08403g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
Nanomedicine has shown potential in enabling oral administration of poorly absorbable drugs, such as biologics. As part of the process related to optimisation of the safety and efficacy of nanomedicines, it is imperative that the interaction of nanoparticles with the biological systems – including the gut – is fully characterised. In this article, we provide an overview of the major mechanisms by which nanoparticles may transform upon introduction in biological media. Specifically, the phenomena of association, dissolution and biomolecule adsorption are discussed, together with factors which influence the occurrence of each phenomenon. The implications of these phenomena within the context of therapeutic action of nanomedicines, which includes reduced targeting efficiency, are also explored. Finally, we will comment on nanoparticle modification within the gut environment, including the currently available gastrointestinal models for the study of nano-bio interactions, with implications in the area of nanomedicines for oral administration. Nanomedicines undergo transformation in biological media, which impacts biological effects. Such transformation in the gut environment has implications in use of nanomedicines for oral administration.![]()
Collapse
Affiliation(s)
- Vishnaka Muraleetharan
- Institute of Pharmaceutical Science
- School of Cancer and Pharmaceutical Science
- King's College London
- London
- UK
| | - Julia Mantaj
- Institute of Pharmaceutical Science
- School of Cancer and Pharmaceutical Science
- King's College London
- London
- UK
| | - Magda Swedrowska
- Institute of Pharmaceutical Science
- School of Cancer and Pharmaceutical Science
- King's College London
- London
- UK
| | - Driton Vllasaliu
- Institute of Pharmaceutical Science
- School of Cancer and Pharmaceutical Science
- King's College London
- London
- UK
| |
Collapse
|
41
|
Martins JP, Liu D, Fontana F, Ferreira MPA, Correia A, Valentino S, Kemell M, Moslova K, Mäkilä E, Salonen J, Hirvonen J, Sarmento B, Santos HA. Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44354-44367. [PMID: 30525379 DOI: 10.1021/acsami.8b20821] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microfluidics technology is emerging as a promising strategy in improving the oral delivery of proteins and peptides. Herein, a multistage drug delivery system is proposed as a step forward in the development of noninvasive therapies. Undecylenic acid-modified thermally hydrocarbonized porous silicon (UnPSi) nanoparticles (NPs) were functionalized with the Fc fragment of immunoglobulin G for targeting purposes. Glucagon-like peptide-1 (GLP-1) was loaded into the NPs as a model antidiabetic drug. Fc-UnPSi NPs were coated with mucoadhesive chitosan and ultimately entrapped into a polymeric matrix with pH-responsive properties by microfluidic nanoprecipitation. The final formulation showed a controlled and narrow size distribution. The pH-responsive matrix remained intact in acidic conditions, dissolving only in intestinal pH, resulting in a sustained release of the payload. The NPs presented high cytocompatibility and increased levels of interaction with intestinal cells when functionalized with the Fc fragment, which was supported by the validation of the Fc-fragment integrity after conjugation to the NPs. Finally, the Fc-conjugated NPs showed augmented GLP-1 permeability in an intestinal in vitro model. These results highlight the potential of microfluidics as an advanced technique for the preparation of multistage platforms for oral administration. Moreover, this study provides new insights on the potential of the Fc receptor transcytotic capacity for the development of targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Valentino
- Department of Drug Sciences , Università degli Studi di Pavia , Viale Taramello 12 , 27100 Pavia , Itália
| | | | | | - Ermei Mäkilä
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | - Jarno Salonen
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | | | - Bruno Sarmento
- CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , 4585-116 Gandra , Portugal
| | | |
Collapse
|
42
|
Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater 2018; 81:20-42. [PMID: 30268916 DOI: 10.1016/j.actbio.2018.09.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
Emergence of nanoparticulate drug delivery systems in diabetes has facilitated improved delivery of small molecule drugs which could dramatically improve the quality of life for diabetics. Conventional dosage forms of the anti-diabetic drugs exhibit variable/less bioavailability and short half-life, demanding frequent dosing and causing increased side-effects resulting in ineffectiveness of therapy and non-compliance with the patients. Considering the chronic nature of diabetes, nanotechnology-based approaches are more promising in terms of providing site-specific delivery of drugs with higher bioavailability and reduced dosage regimen. Nanomedicines act at the cellular and molecular levels to enhance the uptake of the drug into the cells or block the efflux mechanisms thus retaining the drug inside the cell for a longer duration of time. Many studies have hinted at the possibility of administering peptide drugs like glucagon like peptides orally by encapsulation into nanoparticles. Nanoparticles also allow further modifications including their encapsulation into microparticles, polyethylene glycol (PEG)-PEGylation- or functionalization with ligands for active targeting. Nevertheless, such remarkable benefits are fraught with their long-term safety concerns, regulatory hurdles, limitations of scale-up and ineffective patent protection which have hindered their commercialization. This review summarizes the latest advances in the area of nanoformulations as applied to the delivery of anti-diabetics. STATEMENT OF SIGNIFICANCE: The present work describes the latest advancements in the area of nanoformulations for anti-diabetic therapy along with highlighting the advantages that these nanoformulations offer at molecular level for diabetes. Although several potent orally active anti-hyperglycemic agents are available, the current challenges in efficient management of diabetes include optimization of the present therapies to ensure an optimum and stable level of glucose, and also to reduce the occurrence of long term complications associated with diabetes. Nanoformulations because of their high surface area to volume ratio provide improved efficacy, targeting their delivery to the desired site of action tends to minimize adverse effects and administration of peptide drugs by oral route is also possible by encapsulating them in nanoparticles. As we reflect on the success and failures of latest research on nanoformulations for the treatment of diabetes, it is important not to dwell on lack of FDA approvals but rather define future directions that guarantee more effective anti-diabetic treatment. In proposed review we have explored the latest advancement in anti-diabetic nanotechnology based formulations.
Collapse
Affiliation(s)
- Siddharth Uppal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Kishan S Italiya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
43
|
Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 2018; 15:759-770. [PMID: 30033780 DOI: 10.1080/17425247.2018.1504017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Research into oral delivery of biologics has a long and rich history but has not produced technologies used in the clinic. The area has evolved in terms of strategies to promote oral biologics delivery from early chemical absorption enhancers to nanomedicine to devices. Continued activity in this area is justifiable considering the remarkable proliferation of biologics. AREAS COVERED The article discusses some physiological barriers to oral delivery of biologics, with a special focus on less characterized barriers such as the basement membrane. Recent progress in oral delivery of biologics via nanomedicine is subsequently covered. Finally, the emerging field of device-mediated gastrointestinal delivery of biotherapeutics is discussed EXPERT OPINION Oral delivery of biologics is considered a 'panacea' in drug delivery. Almost century-old approaches of utilizing chemical absorption enhancers have not produced clinically translated technologies. Nanomedicine for oral biologics delivery has demonstrated potential, but the field is relatively new, and technologies have not progressed to the clinic. Device-mediated oral biologics delivery (e.g. ultrasound or microneedles) is in its infancy. However, this space is likely to intensify owing to advances in electronics and materials, as well as the challenges and history related to clinical translation of alternative approaches.
Collapse
Affiliation(s)
- Driton Vllasaliu
- a School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , United Kingdom
| | - Maya Thanou
- a School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , United Kingdom
| | - Snjezana Stolnik
- b Division of Drug Delivery and Tissue Engineering, Boots Science Building , University of Nottingham , Nottingham , United Kingdom
| | - Robyn Fowler
- c SuccinctChoice Medical Communications , London , United Kingdom
| |
Collapse
|
44
|
Menzel C, Holzeisen T, Laffleur F, Zaichik S, Abdulkarim M, Gumbleton M, Bernkop-Schnürch A. In vivo evaluation of an oral self-emulsifying drug delivery system (SEDDS) for exenatide. J Control Release 2018; 277:165-172. [DOI: 10.1016/j.jconrel.2018.03.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/10/2018] [Accepted: 03/18/2018] [Indexed: 12/15/2022]
|