1
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Fioriti F, Rifflet A, Gomperts Boneca I, Zugasti O, Royet J. Bacterial peptidoglycan serves as a critical modulator of the gut-immune-brain axis in Drosophila. Brain Behav Immun 2024; 119:878-897. [PMID: 38710338 DOI: 10.1016/j.bbi.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Metabolites and compounds derived from gut-associated bacteria can modulate numerous physiological processes in the host, including immunity and behavior. Using a model of oral bacterial infection, we previously demonstrated that gut-derived peptidoglycan (PGN), an essential constituent of the bacterial cell envelope, influences female fruit fly egg-laying behavior by activating the NF-κB cascade in a subset of brain neurons. These findings underscore PGN as a potential mediator of communication between gut bacteria and the brain in Drosophila, prompting further investigation into its impact on all brain cells. Through high-resolution mass spectrometry, we now show that PGN fragments produced by gut bacteria can rapidly reach the central nervous system. In Addition, by employing a combination of whole-genome transcriptome analyses, comprehensive genetic assays, and reporter gene systems, we reveal that gut bacterial infection triggers a PGN dose-dependent NF-κB immune response in perineurial glia, forming the continuous outer cell layer of the blood-brain barrier. Furthermore, we demonstrate that persistent PGN-dependent NF-κB activation in perineurial glial cells correlates with a reduction in lifespan and early neurological decline. Overall, our findings establish gut-derived PGN as a critical mediator of the gut-immune-brain axis in Drosophila.
Collapse
Affiliation(s)
- Florent Fioriti
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France
| | - Aline Rifflet
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, 75015 Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, 75015 Paris, France
| | - Olivier Zugasti
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France.
| | - Julien Royet
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France.
| |
Collapse
|
3
|
Hario S, Le GNT, Sugimoto H, Takahashi-Yamashiro K, Nishinami S, Toda H, Li S, Marvin JS, Kuroda S, Drobizhev M, Terai T, Nasu Y, Campbell RE. High-Performance Genetically Encoded Green Fluorescent Biosensors for Intracellular l-Lactate. ACS CENTRAL SCIENCE 2024; 10:402-416. [PMID: 38435524 PMCID: PMC10906044 DOI: 10.1021/acscentsci.3c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
l-Lactate is a monocarboxylate produced during the process of cellular glycolysis and has long generally been considered a waste product. However, studies in recent decades have provided new perspectives on the physiological roles of l-lactate as a major energy substrate and a signaling molecule. To enable further investigations of the physiological roles of l-lactate, we have developed a series of high-performance (ΔF/F = 15 to 30 in vitro), intensiometric, genetically encoded green fluorescent protein (GFP)-based intracellular l-lactate biosensors with a range of affinities. We evaluated these biosensors in cultured cells and demonstrated their application in an ex vivo preparation of Drosophila brain tissue. Using these biosensors, we were able to detect glycolytic oscillations, which we analyzed and mathematically modeled.
Collapse
Affiliation(s)
- Saaya Hario
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Giang N. T. Le
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hikaru Sugimoto
- Department
of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei Takahashi-Yamashiro
- Department
of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Chemistry, Faculty of Science, University
of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Suguru Nishinami
- International
Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirofumi Toda
- International
Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Selene Li
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jonathan S. Marvin
- Howard
Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, United States
| | - Shinya Kuroda
- Department
of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikhail Drobizhev
- Department
of Microbiology and Cell Biology, Montana
State University, Bozeman, Montana 59717, United States
| | - Takuya Terai
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Nasu
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Robert E. Campbell
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Chemistry, Faculty of Science, University
of Alberta, Edmonton, Alberta T6G 2G2, Canada
- CERVO
Brain Research Center and Department of Biochemistry, Microbiology,
and Bioinformatics, Université Laval, Québec, Québec G1 V 0A6, Canada
| |
Collapse
|
4
|
Delgado MG, Delgado R. Transient Synaptic Enhancement Triggered by Exogenously Supplied Monocarboxylate in Drosophila Motoneuron Synapse. Neuroscience 2024; 539:66-75. [PMID: 38220128 DOI: 10.1016/j.neuroscience.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Current evidence suggests that glial cells provide C3 carbon sources to fuel neuronal activity; however, this notion has become challenged by biosensor studies carried out in acute brain slices or in vivo, showing that neuronal activity does not rely on the import of astrocyte-produced L-lactate. Rather, stimulated neurons become net lactate exporters, as it was also shown in Drosophila neurons, in which astrocyte-provided lactate returns as lipid droplets to be stored in glial cells. In this view, we investigate whether exogenously supplied monocarboxylates can support Drosophila motoneuron neurotransmitter release (NTR). By assessing the excitatory post-synaptic current (EPSC) amplitude under voltage-clamp as NTR indicative, we found that both pyruvate and L-lactate, as the only carbon sources in the synapses bathing-solution, cause a large transient NTR enhancement, which declines to reach a synaptic depression state, from which the synapses do not recover. The FM1-43 pre-synaptic loading ability, however, is maintained under monocarboxylate, suggesting that SV cycling should not contribute to the synaptic depression state. The NTR recovery was reached by supplementing the monocarboxylate medium with sucrose. However, monocarboxylate addition to sucrose medium does not enhance NTR, but it does when the disaccharide concentration becomes too reduced. Thus, when pyruvate concentrations become too reduced, exogenously supplied L-lactate could be converted to pyruvate and metabolized by the neural mitochondria, triggering the NTR enhancement. SIGNIFICANCE STATEMENT: The question of whether monocarboxylic acids can fuel the Drosophila motoneuron NTR was challenged. Our findings show that exogenously supplied monocarboxylates trigger a large transient synaptic enhancement just under extreme glycolysis reduction but fail to maintain NTR under sustained synaptic demand, still at low frequency stimulation, driven to the synapses to a synaptic depression state. Glycolysis activation, by adding sucrose to the monocarboxylate bath solution, restores the motoneuron NTR ability, giving place to a hexoses role in SV recruitment. Moreover these results suggest exogenously supplied C3 carbon sources could have an additional role beyond providing energetic support for neural activity.
Collapse
Affiliation(s)
- María-Graciela Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, 7800001 Santiago, Chile.
| | - Ricardo Delgado
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, 7800001 Santiago, Chile.
| |
Collapse
|
5
|
Barros LF. Glial metabolism checkpoints memory. Nat Metab 2023; 5:1852-1853. [PMID: 37932429 DOI: 10.1038/s42255-023-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos-CECs, Valdivia, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| |
Collapse
|
6
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
7
|
Hasel P, Aisenberg WH, Bennett FC, Liddelow SA. Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metab 2023; 35:555-570. [PMID: 36958329 DOI: 10.1016/j.cmet.2023.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Astrocytes and microglia are central players in a myriad of processes in the healthy and diseased brain, ranging from metabolism to immunity. The crosstalk between these two cell types contributes to pathology in many if not all neuroinflammatory and neurodegenerative diseases. Recent advancements in integrative multimodal sequencing techniques have begun to highlight how heterogeneous both cell types are and the importance of metabolism to their regulation. We discuss here the transcriptomic, metabolic, and functional heterogeneity of astrocytes and microglia and highlight their interaction in health and disease.
Collapse
Affiliation(s)
- Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - William H Aisenberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - F Chris Bennett
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
8
|
Contreras EG, Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol Dis 2023; 180:106071. [PMID: 36898613 DOI: 10.1016/j.nbd.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Esteban G Contreras
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| | - Christian Klämbt
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| |
Collapse
|
9
|
Todorova V, Stauffacher MF, Ravotto L, Nötzli S, Karademir D, Ebner LJA, Imsand C, Merolla L, Hauck SM, Samardzija M, Saab AS, Barros LF, Weber B, Grimm C. Deficits in mitochondrial TCA cycle and OXPHOS precede rod photoreceptor degeneration during chronic HIF activation. Mol Neurodegener 2023; 18:15. [PMID: 36882871 PMCID: PMC9990367 DOI: 10.1186/s13024-023-00602-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Major retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and retinal detachment, are associated with a local decrease in oxygen availability causing the formation of hypoxic areas affecting the photoreceptor (PR) cells. Here, we addressed the underlying pathological mechanisms of PR degeneration by focusing on energy metabolism during chronic activation of hypoxia-inducible factors (HIFs) in rod PR. METHODS We used two-photon laser scanning microscopy (TPLSM) of genetically encoded biosensors delivered by adeno-associated viruses (AAV) to determine lactate and glucose dynamics in PR and inner retinal cells. Retinal layer-specific proteomics, in situ enzymatic assays and immunofluorescence studies were used to analyse mitochondrial metabolism in rod PRs during chronic HIF activation. RESULTS PRs exhibited remarkably higher glycolytic flux through the hexokinases than neurons of the inner retina. Chronic HIF activation in rods did not cause overt change in glucose dynamics but an increase in lactate production nonetheless. Furthermore, dysregulation of the oxidative phosphorylation pathway (OXPHOS) and tricarboxylic acid (TCA) cycle in rods with an activated hypoxic response decelerated cellular anabolism causing shortening of rod photoreceptor outer segments (OS) before onset of cell degeneration. Interestingly, rods with deficient OXPHOS but an intact TCA cycle did not exhibit these early signs of anabolic dysregulation and showed a slower course of degeneration. CONCLUSION Together, these data indicate an exceeding high glycolytic flux in rods and highlight the importance of mitochondrial metabolism and especially of the TCA cycle for PR survival in conditions of increased HIF activity.
Collapse
Affiliation(s)
- Vyara Todorova
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Mia Fee Stauffacher
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Sarah Nötzli
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Cornelia Imsand
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Luca Merolla
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Munich, Germany
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile.,Universidad San Sebastián, Valdivia, Chile
| | - Bruno Weber
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland.
| |
Collapse
|
10
|
Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging (Albany NY) 2023; 15:947-981. [PMID: 36849157 PMCID: PMC10008500 DOI: 10.18632/aging.204565] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
The astrocyte-neuron lactate shuttle hypothesis posits that glial-generated lactate is transported to neurons to fuel metabolic processes required for long-term memory. Although studies in vertebrates have revealed that lactate shuttling is important for cognitive function, it is uncertain if this form of metabolic coupling is conserved in invertebrates or is influenced by age. Lactate dehydrogenase (Ldh) is a rate limiting enzyme that interconverts lactate and pyruvate. Here we genetically manipulated expression of Drosophila melanogaster lactate dehydrogenase (dLdh) in neurons or glia to assess the impact of altered lactate metabolism on invertebrate aging and long-term courtship memory at different ages. We also assessed survival, negative geotaxis, brain neutral lipids (the core component of lipid droplets) and brain metabolites. Both upregulation and downregulation of dLdh in neurons resulted in decreased survival and memory impairment with age. Glial downregulation of dLdh expression caused age-related memory impairment without altering survival, while upregulated glial dLdh expression lowered survival without disrupting memory. Both neuronal and glial dLdh upregulation increased neutral lipid accumulation. We provide evidence that altered lactate metabolism with age affects the tricarboxylic acid (TCA) cycle, 2-hydroxyglutarate (2HG), and neutral lipid accumulation. Collectively, our findings indicate that the direct alteration of lactate metabolism in either glia or neurons affects memory and survival but only in an age-dependent manner.
Collapse
|
11
|
Rebelo AR, Homem CCF. dMyc-dependent upregulation of CD98 amino acid transporters is required for Drosophila brain tumor growth. Cell Mol Life Sci 2023; 80:30. [PMID: 36609617 PMCID: PMC9823048 DOI: 10.1007/s00018-022-04668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023]
Abstract
Tumor cells have an increased demand for nutrients to sustain their growth, but how these increased metabolic needs are ensured or how this influences tumor formation and progression remains unclear. To unravel tumor metabolic dependencies, particularly from extracellular metabolites, we have analyzed the role of plasma membrane metabolic transporters in Drosophila brain tumors. Using a well-established neural stem cell-derived tumor model, caused by brat knockdown, we have found that 13 plasma membrane metabolic transporters, including amino acid, carbohydrate and monocarboxylate transporters, are upregulated in tumors and are required for tumor growth. We identified CD98hc and several of the light chains with which it can form heterodimeric amino acid transporters, as crucial players in brat RNAi (brat IR) tumor progression. Knockdown of these components of CD98 heterodimers caused a dramatic reduction in tumor growth. Our data also reveal that the oncogene dMyc is required and sufficient for the upregulation of CD98 transporter subunits in these tumors. Furthermore, tumor-upregulated dmyc and CD98 transporters orchestrate the overactivation of the growth-promoting signaling pathway TOR, forming a core growth regulatory network to support brat IR tumor progression. Our findings highlight the important link between oncogenes, metabolism, and signaling pathways in the regulation of tumor growth and allow for a better understanding of the mechanisms necessary for tumor progression.
Collapse
Affiliation(s)
- Ana R Rebelo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina C F Homem
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Aburto C, Galaz A, Bernier A, Sandoval PY, Holtheuer-Gallardo S, Ruminot I, Soto-Ojeda I, Hertenstein H, Schweizer JA, Schirmeier S, Pástor TP, Mardones GA, Barros LF, San Martín A. Single-Fluorophore Indicator to Explore Cellular and Sub-cellular Lactate Dynamics. ACS Sens 2022; 7:3278-3286. [PMID: 36306435 DOI: 10.1021/acssensors.2c00731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lactate is an energy substrate and an intercellular signal, which can be monitored in intact cells with the genetically encoded FRET indicator Laconic. However, the structural complexity, need for sophisticated equipment, and relatively small fluorescent change limit the use of FRET indicators for subcellular targeting and development of high-throughput screening methodologies. Using the bacterial periplasmic binding protein TTHA0766 from Thermus thermophilus, we have now developed a single-fluorophore indicator for lactate, CanlonicSF. This indicator exhibits a maximal fluorescence change of 200% and a KD of ∼300 μM. The fluorescence is not affected by other monocarboxylates. The lactate indicator was not significantly affected by Ca2+ at the physiological concentrations prevailing in the cytosol, endoplasmic reticulum, and extracellular space, but was affected by Ca2+ in the low micromolar range. Targeting the indicator to the endoplasmic reticulum revealed for the first time sub-cellular lactate dynamics. Its improved lactate-induced fluorescence response permitted the development of a multiwell plate assay to screen for inhibitors of the monocarboxylate transporters MCTs, a pharmaceutical target for cancer and inflammation. The functionality of the indicator in living tissue was demonstrated in the brain of Drosophila melanogaster larvae. CanlonicSF is well suited to explore lactate dynamics with sub-cellular resolution in intact systems.
Collapse
Affiliation(s)
- Camila Aburto
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Alex Galaz
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile
| | - Angelo Bernier
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Pamela Yohana Sandoval
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Postal Code 5110773 Valdivia, Chile
| | - Sebastián Holtheuer-Gallardo
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Iván Ruminot
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Postal Code 5110773 Valdivia, Chile
| | - Ignacio Soto-Ojeda
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Helen Hertenstein
- Department of Biology, Technische Universität Dresden, Postal Code 01062 Dresden, Germany
| | | | - Stefanie Schirmeier
- Department of Biology, Technische Universität Dresden, Postal Code 01062 Dresden, Germany
| | - Tammy Paulina Pástor
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Gonzalo Antonio Mardones
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Isla Teja s/n, Postal Code 5110566 Valdivia, Chile
| | - Luis Felipe Barros
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Postal Code 5110773 Valdivia, Chile
| | - Alejandro San Martín
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Postal Code 5110466 Valdivia, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Postal Code 5110773 Valdivia, Chile
| |
Collapse
|
13
|
De Backer JF, Grunwald Kadow IC. A role for glia in cellular and systemic metabolism: insights from the fly. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100947. [PMID: 35772690 DOI: 10.1016/j.cois.2022.100947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Excitability and synaptic transmission make neurons high-energy consumers. However, neurons do not store carbohydrates or lipids. Instead, they need support cells to fuel their metabolic demands. This role is assumed by glia, both in vertebrates and invertebrates. Many questions remain regarding the coupling between neuronal activity and energy demand on the one hand, and nutrient supply by glia on the other hand. Here, we review recent advances showing that fly glia, similar to their role in vertebrates, fuel neurons in times of high energetic demand, such as during memory formation and long-term storage. Vertebrate glia also play a role in the modulation of neurons, their communication, and behavior, including food search and feeding. We discuss recent literature pointing to similar roles of fly glia in behavior and metabolism.
Collapse
Affiliation(s)
- Jean-François De Backer
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
14
|
Xue X, Liu B, Hu J, Bian X, Lou S. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr Metab (Lond) 2022; 19:52. [PMID: 35907984 PMCID: PMC9338682 DOI: 10.1186/s12986-022-00687-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Lactate has previously been considered a metabolic waste and is mainly involved in exercise-induced fatigue. However, recent studies have found that lactate may be a mediator of the beneficial effects of exercise on brain health. Lactate plays a dual role as an energy supply substrate and a signaling molecule in this process. On the one hand, astrocytes can uptake circulating glucose or degrade glycogen for glycolysis to produce lactate, which is released into the extracellular space. Neurons can uptake extracellular lactate as an important supplement to their energy metabolism substrates, to meet the demand for large amounts of energy when synaptic activity is enhanced. Thus, synaptic activity and energy transfer show tight metabolic coupling. On the other hand, lactate acts as a signaling molecule to activate downstream signaling transduction pathways by specific receptors, inducing the expression of immediate early genes and cerebral angiogenesis. Moderate to high-intensity exercise not only increases lactate production and accumulation in muscle and blood but also promotes the uptake of skeletal muscle-derived lactate by the brain and enhances aerobic glycolysis to increase brain-derived lactate production. Furthermore, exercise regulates the expression or activity of transporters and enzymes involved in the astrocyte-neuron lactate shuttle to maintain the efficiency of this process; exercise also activates lactate receptor HCAR1, thus affecting brain plasticity. Rethinking the role of lactate in cognitive function and the regulatory effect of exercise is the main focus and highlights of the review. This may enrich the theoretical basis of lactate-related to promote brain health during exercise, and provide new perspectives for promoting a healthy aging strategy.
Collapse
Affiliation(s)
- Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Beibei Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.,Department of Clinical Medicine, Weifang Medical College, Weifang, 261053, Shandong, China
| | - Jingyun Hu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Xuepeng Bian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China. .,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
15
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
16
|
Arkov AL. Looking at the Pretty "Phase" of Membraneless Organelles: A View From Drosophila Glia. Front Cell Dev Biol 2022; 10:801953. [PMID: 35198559 PMCID: PMC8859445 DOI: 10.3389/fcell.2022.801953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Membraneless granules assemble in different cell types and cellular loci and are the focus of intense research due to their fundamental importance for cellular organization. These dynamic organelles are commonly assembled from RNA and protein components and exhibit soft matter characteristics of molecular condensates currently characterized with biophysical approaches and super-resolution microscopy imaging. In addition, research on the molecular mechanisms of the RNA-protein granules assembly provided insights into the formation of abnormal granules and molecular aggregates, which takes place during many neurodegenerative disorders including Parkinson's diseases (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). While these disorders are associated with formation of abnormal granules, membraneless organelles are normally assembled in neurons and contribute to translational control and affect stability of neuronal RNAs. More recently, a new subtype of membraneless granules was identified in Drosophila glia (glial granules). Interestingly, glial granules were found to contain proteins which are the principal components of the membraneless granules in germ cells (germ granules), indicating some similarity in the functional assembly of these structures in glia and germline. This mini review highlights recent research on glial granules in the context of other membraneless organelles, including their assembly mechanisms and potential functions in the nervous system.
Collapse
Affiliation(s)
- Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
17
|
Contreras EG, Sierralta J. The Fly Blood-Brain Barrier Fights Against Nutritional Stress. Neurosci Insights 2022; 17:26331055221120252. [PMID: 36225749 PMCID: PMC9549514 DOI: 10.1177/26331055221120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
In the wild, animals face different challenges including multiple events of food
scarcity. How they overcome these conditions is essential for survival. Thus,
adaptation mechanisms evolved to allow the development and survival of an
organism during nutrient restriction periods. Given the high energy demand of
the nervous system, the molecular mechanisms of adaptation to malnutrition are
of great relevance to fuel the brain. The blood-brain barrier (BBB) is the
interface between the central nervous system (CNS) and the circulatory system.
The BBB mediates the transport of macromolecules in and out of the CNS, and
therefore, it can buffer changes in nutrient availability. In this review, we
collect the current evidence using the fruit fly, Drosophila
melanogaster, as a model of the role of the BBB in the adaptation
to starvation. We discuss the role of the Drosophila BBB during
nutrient deprivation as a potential sensor for circulating nutrients, and
transient nutrient storage as a regulator of the CNS neurogenic niche.
Collapse
Affiliation(s)
- Esteban G Contreras
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Jimena Sierralta
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Yildirim K, Winkler B, Pogodalla N, Mackensen S, Baldenius M, Garcia L, Naffin E, Rodrigues S, Klämbt C. Redundant functions of the SLC5A transporters Rumpel, Bumpel, and Kumpel in ensheathing glial cells. Biol Open 2021; 11:274028. [PMID: 34897385 PMCID: PMC8790523 DOI: 10.1242/bio.059128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022] Open
Abstract
Neuronal processing is energy demanding, and relies on sugar metabolism. To nurture the Drosophila nervous system, the blood-brain barrier forming glial cells take up trehalose from the hemolymph and then distribute the metabolic products further to all neurons. This function is provided by glucose and lactate transporters of the solute carrier (SLC) 5A family. Here we identified three SLC5A genes that are specifically expressed in overlapping sets of CNS glial cells, rumpel, bumpel and kumpel. We generated mutants in all genes and all mutants are viable and fertile, lacking discernible phenotypes. Loss of rumpel causes subtle locomotor phenotypes and flies display increased daytime sleep. In addition, in bumpel kumpel double mutants, and to an even greater extent in rumpel bumpel kumpel triple mutants, oogenesis is disrupted at the onset of the vitollegenic phase. This indicates a partially redundant functions between these genes. Rescue experiments exploring this effect indicate that oogenesis can be affected by CNS glial cells. Moreover, expression of heterologous mammalian SLC5A transporters, with known transport properties, suggest that Bumpel and/or Kumpel transport glucose or lactate. Overall, our results imply a redundancy in SLC5A nutrient sensing functions in Drosophila glial cells, affecting ovarian development and behavior.
Collapse
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany.,Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Im Neuenheimer Feld 230, 9120 Heidelberg, Germany
| | - Bente Winkler
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Nicole Pogodalla
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Steffi Mackensen
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Marie Baldenius
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Luis Garcia
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Silke Rodrigues
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
19
|
Bekdash R, Quejada JR, Ueno S, Kawano F, Morikawa K, Klein AD, Matsumoto K, Lee TC, Nakanishi K, Chalan A, Lee TM, Liu R, Homma S, Lin CS, Yelshanskaya MV, Sobolevsky AI, Goda K, Yazawa M. GEM-IL: A highly responsive fluorescent lactate indicator. CELL REPORTS METHODS 2021; 1:100092. [PMID: 35475001 PMCID: PMC9017230 DOI: 10.1016/j.crmeth.2021.100092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Lactate metabolism has been shown to have increasingly important implications in cellular functions as well as in the development and pathophysiology of disease. The various roles as a signaling molecule and metabolite have led to interest in establishing a new method to detect lactate changes in live cells. Here we report our development of a genetically encoded metabolic indicator specifically for probing lactate (GEM-IL) based on superfolder fluorescent proteins and mutagenesis. With improvements in its design, specificity, and sensitivity, GEM-IL allows new applications compared with the previous lactate indicators, Laconic and Green Lindoblum. We demonstrate the functionality of GEM-IL to detect differences in lactate changes in human oncogenic neural progenitor cells and mouse primary ventricular myocytes. The development and application of GEM-IL show promise for enhancing our understanding of lactate dynamics and roles.
Collapse
Affiliation(s)
- Ramsey Bekdash
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jose R. Quejada
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Shunnosuke Ueno
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
| | - Fuun Kawano
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
| | - Kumi Morikawa
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
| | - Alison D. Klein
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
| | - Kenji Matsumoto
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Tetz C. Lee
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Koki Nakanishi
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Amy Chalan
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
| | - Teresa M. Lee
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rui Liu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Shunichi Homma
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Transgenic Mouse Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Maria V. Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Alexander I. Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| | - Masayuki Yazawa
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
20
|
Tsujimoto H, Anderson MAE, Eggleston H, Myles KM, Adelman ZN. Aedes aegypti dyspepsia encodes a novel member of the SLC16 family of transporters and is critical for reproductive fitness. PLoS Negl Trop Dis 2021; 15:e0009334. [PMID: 33826624 PMCID: PMC8055033 DOI: 10.1371/journal.pntd.0009334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
As a key vector for major arthropod-borne viruses (arboviruses) such as dengue, Zika and chikungunya, control of Aedes aegypti represents a major challenge in public health. Bloodmeal acquisition is necessary for the reproduction of vector mosquitoes and pathogen transmission. Blood contains potentially toxic amounts of iron while it provides nutrients for mosquito offspring; disruption of iron homeostasis in the mosquito may therefore lead to novel control strategies. We previously described a potential iron exporter in Ae. aegypti after a targeted functional screen of ZIP (zinc-regulated transporter/Iron-regulated transporter-like) and ZnT (zinc transporter) family genes. In this study, we performed an RNAseq-based screen in an Ae. aegypti cell line cultured under iron-deficient and iron-excess conditions. A subset of differentially expressed genes were analyzed via a cytosolic iron-sensitive dual-luciferase reporter assay with several gene candidates potentially involved in iron transport. In vivo gene silencing resulted in significant reduction of fecundity (egg number) and fertility (hatch rate) for one gene, termed dyspepsia. Silencing of dyspepsia reduced the induction of ferritin expression in the midgut and also resulted in delayed/impaired excretion and digestion. Further characterization of this gene, including a more direct confirmation of its substrate (iron or otherwise), could inform vector control strategies as well as to contribute to the field of metal biology.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | | | - Heather Eggleston
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | - Kevin M. Myles
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| |
Collapse
|
21
|
Wang L, Bianchi L. Maintenance of protein homeostasis in glia extends lifespan in C. elegans. Exp Neurol 2021; 339:113648. [PMID: 33600813 DOI: 10.1016/j.expneurol.2021.113648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Mounting evidence support that glia play a key role in organismal ageing. However, the mechanisms by which glia impact ageing are not understood. One of the processes that has significant impact on the rate of ageing is the unfolded protein response. The more robust the UPR, the more the organism can counteract the effect of environmental and genetic stressors. However, how decline of cellular UPR translates into organismal ageing and eventual death is not fully understood. Here we discuss recent findings highlighting that neuropeptides released by glia act long distance to regulate ageing in C. elegans. Taking advantage of the short lifespan and the genetic amenability of this organism, the endoplasmic reticulum unfolded protein responses (UPRER) can be activated in C. elegans glia. This leads to cell-nonautonomous activation of the UPRER in the intestine. Activation of intestinal UPRER requires the function of genes involved in neuropeptide processing and release, suggesting that neuropeptides signal from glia to the intestine to regulate ER stress response. Importantly, the cell-nonautonomous activation of UPRER leads to extension of lifespan. Taken together, these data suggest that environmental and genetic factors that impact the response of glia to stress have the potential to influence organismal ageing. Further research on the specific neuropeptides involved should cast new light on the mechanism of ageing and may suggest novel anti-ageing therapies.
Collapse
Affiliation(s)
- Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
22
|
Probing tissue microstructure by diffusion skewness tensor imaging. Sci Rep 2021; 11:135. [PMID: 33420140 PMCID: PMC7794496 DOI: 10.1038/s41598-020-79748-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
Probing the cellular structure of in vivo biological tissue is a fundamental problem in biomedical imaging and medical science. This work introduces an approach for analyzing diffusion magnetic resonance imaging data acquired by the novel tensor-valued encoding technique for characterizing tissue microstructure. Our approach first uses a signal model to estimate the variance and skewness of the distribution of apparent diffusion tensors modeling the underlying tissue. Then several novel imaging indices, such as weighted microscopic anisotropy and microscopic skewness, are derived to characterize different ensembles of diffusion processes that are indistinguishable by existing techniques. The contributions of this work also include a theoretical proof that shows that, to estimate the skewness of a diffusion tensor distribution, the encoding protocol needs to include full-rank tensor diffusion encoding. This proof provides a guideline for the application of this technique. The properties of the proposed indices are illustrated using both synthetic data and in vivo data acquired from a human brain.
Collapse
|
23
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
24
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
25
|
Uzelac I, Avramov M, Čelić T, Vukašinović E, Gošić-Dondo S, Purać J, Kojić D, Blagojević D, Popović ŽD. Effect of Cold Acclimation on Selected Metabolic Enzymes During Diapause in The European Corn Borer Ostrinia nubilalis (Hbn.). Sci Rep 2020; 10:9085. [PMID: 32493946 PMCID: PMC7270089 DOI: 10.1038/s41598-020-65926-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/04/2020] [Indexed: 11/27/2022] Open
Abstract
The European corn borer, Ostrinia nubilalis Hbn., is a pest Lepidopteran species whose larvae overwinter by entering diapause, gradually becoming cold-hardy. To investigate metabolic changes during cold hardening, activities of four metabolic enzymes – citrate synthase (CS), lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in whole-body homogenates of pupae, non-diapausing and diapausing larvae acclimated to 5 °C, −3 °C and −16 °C. The highest CS activity was detected in non-diapausing larvae, reflecting active development, while the highest in vitro LDH activity was recorded in diapausing larvae at temperatures close to 0 °C, evidencing a metabolic switch towards anaerobic metabolism. However, in-gel LDH activity showed that production of pyruvate from lactate is triggered by sub-zero temperatures. The activities of both aminotransferases were highest in non-diapausing larvae. Our findings suggest that during diapause and cold hardening the aminotransferases catalyse production of L-alanine, an important cryoprotectant, and L-aspartate, which is closely tied to both transamination reactions and Krebs cycle. The results of this study indicate that, during diapause, the activity of metabolic enzymes is synchronized with exogenous factors, such as temperatures close to 0 °C. These findings support the notion that diapause is metabolically plastic and vibrant, rather than simply a passive, resting state.
Collapse
Affiliation(s)
- Iva Uzelac
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Miloš Avramov
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Tatjana Čelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Elvira Vukašinović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Snežana Gošić-Dondo
- Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185, Belgrade, Serbia
| | - Jelena Purać
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Danijela Kojić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Duško Blagojević
- Institute for Biological Research "Siniša Stanković", Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Željko D Popović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
| |
Collapse
|
26
|
Arce-Molina R, Cortés-Molina F, Sandoval PY, Galaz A, Alegría K, Schirmeier S, Barros LF, San Martín A. A highly responsive pyruvate sensor reveals pathway-regulatory role of the mitochondrial pyruvate carrier MPC. eLife 2020; 9:53917. [PMID: 32142409 PMCID: PMC7077990 DOI: 10.7554/elife.53917] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/05/2020] [Indexed: 11/25/2022] Open
Abstract
Mitochondria generate ATP and building blocks for cell growth and regeneration, using pyruvate as the main substrate. Here we introduce PyronicSF, a user-friendly GFP-based sensor of improved dynamic range that enables real-time subcellular quantitation of mitochondrial pyruvate transport, concentration and flux. We report that cultured mouse astrocytes maintain mitochondrial pyruvate in the low micromolar range, below cytosolic pyruvate, which means that the mitochondrial pyruvate carrier MPC is poised to exert ultrasensitive control on the balance between respiration and anaplerosis/gluconeogenesis. The functionality of the sensor in living tissue is demonstrated in the brain of Drosophila melanogaster larvae. Mitochondrial subpopulations are known to coexist within a given cell, which differ in their morphology, mobility, membrane potential, and vicinity to other organelles. The present tool can be used to investigate how mitochondrial diversity relates to metabolism, to study the role of MPC in disease, and to screen for small-molecule MPC modulators.
Collapse
Affiliation(s)
- Robinson Arce-Molina
- Centro de Estudios Científicos-CECs, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Alex Galaz
- Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Karin Alegría
- Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, University of Münster, Münster, Germany
| | | | | |
Collapse
|
27
|
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S, Klämbt C. Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol 2020; 81:438-452. [PMID: 32096904 DOI: 10.1002/dneu.22737] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.
Collapse
Affiliation(s)
- Jonas Bittern
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Nicole Pogodalla
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Henrike Ohm
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Lena Brüser
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Rita Kottmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
28
|
González-Gutiérrez A, Ibacache A, Esparza A, Barros LF, Sierralta J. Neuronal lactate levels depend on glia-derived lactate during high brain activity in Drosophila. Glia 2019; 68:1213-1227. [PMID: 31876077 DOI: 10.1002/glia.23772] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023]
Abstract
Lactate/pyruvate transport between glial cells and neurons is thought to play an important role in how brain cells sustain the high-energy demand that neuronal activity requires. However, the in vivo mechanisms and characteristics that underlie the transport of monocarboxylates are poorly described. Here, we use Drosophila expressing genetically encoded FRET sensors to provide an ex vivo characterization of the transport of monocarboxylates in motor neurons and glial cells from the larval ventral nerve cord. We show that lactate/pyruvate transport in glial cells is coupled to protons and is more efficient than in neurons. Glial cells maintain higher levels of intracellular lactate generating a positive gradient toward neurons. Interestingly, during high neuronal activity, raised lactate in motor neurons is dependent on transfer from glial cells mediated in part by the previously described monocarboxylate transporter Chaski, providing support for in vivo glia-to-neuron lactate shuttling during neuronal activity.
Collapse
Affiliation(s)
- Andrés González-Gutiérrez
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Ibacache
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Esparza
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, San Martín A, Barros LF. Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem 2019; 294:20135-20147. [PMID: 31719150 DOI: 10.1074/jbc.ra119.009093] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/09/2019] [Indexed: 11/06/2022] Open
Abstract
Monocarboxylate transporter 4 (MCT4) is an H+-coupled symporter highly expressed in metastatic tumors and at inflammatory sites undergoing hypoxia or the Warburg effect. At these sites, extracellular lactate contributes to malignancy and immune response evasion. Intriguingly, at 30-40 mm, the reported Km of MCT4 for lactate is more than 1 order of magnitude higher than physiological or even pathological lactate levels. MCT4 is not thought to transport pyruvate. Here we have characterized cell lactate and pyruvate dynamics using the FRET sensors Laconic and Pyronic. Dominant MCT4 permeability was demonstrated in various cell types by pharmacological means and by CRISPR/Cas9-mediated deletion. Respective Km values for lactate uptake were 1.7, 1.2, and 0.7 mm in MDA-MB-231 cells, macrophages, and HEK293 cells expressing recombinant MCT4. In MDA-MB-231 cells MCT4 exhibited a Km for pyruvate of 4.2 mm, as opposed to >150 mm reported previously. Parallel assays with the pH-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) indicated that previous Km estimates based on substrate-induced acidification were severely biased by confounding pH-regulatory mechanisms. Numerical simulation using revised kinetic parameters revealed that MCT4, but not the related transporters MCT1 and MCT2, endows cells with the ability to export lactate in high-lactate microenvironments. In conclusion, MCT4 is a high-affinity lactate transporter with physiologically relevant affinity for pyruvate.
Collapse
Affiliation(s)
| | - Pamela Y Sandoval
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Romina Alarcón
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Alex Galaz
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Felipe Baeza-Lehnert
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Robinson Arce-Molina
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Anita Guequén
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | | | - L Felipe Barros
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| |
Collapse
|
30
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
31
|
Kounatidis I, Chtarbanova S. Role of Glial Immunity in Lifespan Determination: A Drosophila Perspective. Front Immunol 2018; 9:1362. [PMID: 29942319 PMCID: PMC6004738 DOI: 10.3389/fimmu.2018.01362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/01/2018] [Indexed: 11/13/2022] Open
Abstract
Increasing body of evidence indicates that proper glial function plays an important role in neuroprotection and in organismal physiology throughout lifespan. Work done in the model organism Drosophila melanogaster has revealed important aspects of glial cell biology in the contexts of longevity and neurodegeneration. In this mini review, we summarize recent findings from work done in the fruit fly Drosophila about the role of glia in maintaining a healthy status during animal’s life and discuss the involvement of glial innate immune pathways in lifespan and neurodegeneration. Overactive nuclear factor kappa B (NF-κB) pathways and defective phagocytosis appear to be major contributors to lifespan shortening and neuropathology. Glial NF-κB silencing on the other hand, extends lifespan possibly through an immune–neuroendocrine axis. Given the evolutionary conservation of NF-κB innate immune signaling and of macrophage ontogeny across fruit flies, rodents, and humans, the above observations in glia could potentially support efforts for therapeutic interventions targeting to ameliorate age-related pathologies.
Collapse
Affiliation(s)
- Ilias Kounatidis
- Cell Biology, Development, and Genetics Laboratory, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|