1
|
Strasser W. How Irregular Geometry and Flow Waveform Affect Pulsating Arterial Mass Transfer. J Biomech Eng 2024; 146:121011. [PMID: 38766991 DOI: 10.1115/1.4065556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease is a progressive degenerative condition that has various levels of effect on one's memory. It is thought to be caused by a buildup of protein in small fluid-filled spaces in the brain called perivascular spaces (PVS). The PVS often takes on the form of an annular region around arteries and is used as a protein-clearing system for the brain. To analyze the modes of mass transfer in the PVS, a digitized scan of a mouse brain PVS segment was meshed and used for computational fluid dynamics (CFD) studies. Tandem analyses were then carried out and compared between the mouse PVS section and a cylinder with commensurate dimensionless parameters and hydraulic resistance. The geometry pair was used to first validate the CFD model and then assess mass transfer in various advection states: no-flow, constant flow, sinusoidal flow, sinusoidal flow with zero net solvent flux, and an anatomically correct asymmetrical periodic flow. Two mass transfer situations were considered, one being a protein build-up and the other being a protein blend-down using a multitude of metrics. Bulk arterial solute transport was found to be advection-controlled. The consideration of temporal evolution and trajectories of contiguous protein bolus volumes revealed that flow pulsation was beneficial at bolus break-up and that additional local wall curvature-based geometry irregularities also were. Using certain measures, local solute peak concentration blend-down appeared to be diffusion-dominated even for high Peclet numbers; however, bolus size evolution analyses showed definite advection support.
Collapse
Affiliation(s)
- Wayne Strasser
- Department of Mechanical Engineering, Liberty University, Lynchburg, VA 24550
| |
Collapse
|
2
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2024:10.1007/s12035-024-04543-4. [PMID: 39446217 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
3
|
Chawathe A, Ahire V, Luthra K, Patil B, Garkhal K, Sharma N. Analytical and drug delivery strategies for short peptides: From manufacturing to market. Anal Biochem 2024; 696:115699. [PMID: 39461693 DOI: 10.1016/j.ab.2024.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
In recent times, biopharmaceuticals have gained attention because of their tremendous potential to benefit millions of patients globally by treating widespread diseases such as cancer, diabetes and many rare diseases. Short peptides (SP), also termed as oligopeptides, are one such class of biopharmaceuticals, that are majorly involved in efficient functioning of biological systems. Peptide chains that are 2-20 amino acids long are considered as oligopeptides by researchers and are some of the functionally vital compounds with widespread applications including self-assembly material for drug delivery, targeting ligands for precise/specific targeting and other biological uses. Using functionalised biomacromolecules such as short chained peptides, helps in improving pharmacokinetic properties and biodistribution profile of the drug. Apart from this, functionalised SP are being employed as cell penetrating peptides and prodrug to specifically and selectively target tumor sites. In order to minimize any unwanted interaction and adverse effects, the stability and safety of SP should be ensured throughout its development from manufacturing to market. Formulation development and characterization strategies of these potential molecules are described in the following review along with various applications and details of marketed formulations.
Collapse
Affiliation(s)
- Ashwini Chawathe
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vishal Ahire
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kshitiz Luthra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Bhumika Patil
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
4
|
Illodo S, Al-Soufi W, Novo M. Critical aggregation concentration and reversibility of amyloid-β (1-40) oligomers. Arch Biochem Biophys 2024; 761:110179. [PMID: 39393664 DOI: 10.1016/j.abb.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Amyloid-beta (Aβ) aggregation is a critical factor in the pathogenesis of Alzheimer's disease, with distinct aggregation behaviours observed between its isoforms Amyloid-β 1-40 (Aβ40) and 1-42 (Aβ42). In this study, we investigated the aggregation properties of Aβ40 using fluorescence correlation spectroscopy (FCS) and detailed data analysis. Our results reveal that Aβ40 undergoes a two-step cooperative aggregation process. The first step, characterized by a critical aggregation concentration (cac) of 0.5 ± 0.3 μM, results in the formation of metastable oligomers of 5-25 monomers and stable oligomers of 50-100 monomers, with less than 10 % of the total amyloid aggregated. The second step, with a cac of 19 ± 2 μM, leads to the formation of much larger aggregates, consistent with protofibrils, and approximately 50 % aggregated amyloid. Notably, the cac for Aβ40 is significantly higher, and the fraction of aggregated amyloid is much lower compared to Aβ42, indicating a lower propensity for aggregation. Additionally, our findings suggest that Aβ40 early oligomers are reversible upon dilution, albeit with a kinetic barrier to disaggregation. These insights into the aggregation mechanisms of Aβ40 enhance our understanding of its role in Alzheimer's disease and may inform therapeutic strategies targeting amyloid aggregation.
Collapse
Affiliation(s)
- Sara Illodo
- Facultade de Ciencias, Departamento de Química Física, Campus Terra, Universidade de Santiago de Compostela, 27002, Lugo, Spain; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Facultade de Química, Departamento de Química Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Wajih Al-Soufi
- Facultade de Ciencias, Departamento de Química Física, Campus Terra, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Mercedes Novo
- Facultade de Ciencias, Departamento de Química Física, Campus Terra, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
5
|
Juráková V, Széky B, Zapletalová M, Fehér A, Zana M, Pandey S, Kučera R, Šerý O, Hudeček J, Dinnyés A, Lochman J. Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease. Biol Proced Online 2024; 26:30. [PMID: 39342077 PMCID: PMC11437813 DOI: 10.1186/s12575-024-00257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation. RESULTS We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes. CONCLUSIONS Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.
Collapse
Affiliation(s)
- Veronika Juráková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Radek Kučera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Omar Šerý
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic
| | - Jiří Hudeček
- Psychiatric Clinic, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - András Dinnyés
- BioTalentum Ltd, Godollo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic.
| |
Collapse
|
6
|
Sahtoe DD, Andrzejewska EA, Han HL, Rennella E, Schneider MM, Meisl G, Ahlrichs M, Decarreau J, Nguyen H, Kang A, Levine P, Lamb M, Li X, Bera AK, Kay LE, Knowles TPJ, Baker D. Design of amyloidogenic peptide traps. Nat Chem Biol 2024; 20:981-990. [PMID: 38503834 PMCID: PMC11288891 DOI: 10.1038/s41589-024-01578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
Segments of proteins with high β-strand propensity can self-associate to form amyloid fibrils implicated in many diseases. We describe a general approach to bind such segments in β-strand and β-hairpin conformations using de novo designed scaffolds that contain deep peptide-binding clefts. The designs bind their cognate peptides in vitro with nanomolar affinities. The crystal structure of a designed protein-peptide complex is close to the design model, and NMR characterization reveals how the peptide-binding cleft is protected in the apo state. We use the approach to design binders to the amyloid-forming proteins transthyretin, tau, serum amyloid A1 and amyloid β1-42 (Aβ42). The Aβ binders block the assembly of Aβ fibrils as effectively as the most potent of the clinically tested antibodies to date and protect cells from toxic Aβ42 species.
Collapse
Affiliation(s)
- Danny D Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
- Hubrecht Institute, Utrecht, the Netherlands.
| | - Ewa A Andrzejewska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hannah L Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2024:10.1007/s12035-024-04333-y. [PMID: 39012443 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
8
|
Pagano K, De Rosa L, Tomaselli S, Molinari H, D'Andrea LD, Ragona L. Characterizing the Oligomers Distribution along the Aggregation Pathway of Amyloid Aβ1-40 by NMR. Chemistry 2024; 30:e202400594. [PMID: 38712990 DOI: 10.1002/chem.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
This study delves into the early aggregation process of the Aβ1-40 amyloid peptide, elucidating the associated oligomers distribution. Motivated by the acknowledged role of small oligomers in the neurotoxic damage linked to Alzheimer's disease, we present an experimental protocol for preparing 26-O-acyl isoAβ1-40, a modified Aβ1-40 peptide facilitating rapid isomerization to the native amide form at neutral pH. This ensures seed-free solutions, minimizing experimental variability. Additionally, we demonstrate the efficacy of coupling NMR diffusion ordered spectroscopy (DOSY) with the Inverse Laplace Transform (ILT) reconstruction method, for effective characterization of early aggregation processes. This innovative approach efficiently maps oligomers distributions across a wide spectrum of initial peptide concentrations offering unique insights into the evolution of oligomers relative populations. As a proof of concept, we demonstrate the efficacy of our approach assessing the impact of Epigallocathechin gallate, a known remodeling agent of amyloid fibrils, on the oligomeric distributions of aggregated Aβ1-40. The DOSY-ILT proposed approach stands as a robust and discriminating asset, providing a powerful strategy for rapidly gaining insight into potential inhibitors' impact on the aggregation process.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini CNR, Via Pietro Castellino 111, Napoli, Italy
| | - Simona Tomaselli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Luca Domenico D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, Via Mario Bianco, 9, Milano, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| |
Collapse
|
9
|
Yang H, Wang J, Wang X, Wang S, Xu J, Shan Q, Wang J, Ma X, Zhu Y. Nanofiber Peptides for Bacterial Trapping: A Novel Approach to Antibiotic Alternatives in Wound Infections. Adv Healthc Mater 2024; 13:e2304657. [PMID: 38607802 DOI: 10.1002/adhm.202304657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The pervasive employment of antibiotics has engendered the advent of drug-resistant bacteria, imperiling the well-being and health of both humans and animals. Infections precipitated by such multi-resistant bacteria, especially those induced by methicillin-resistant Staphylococcus aureus (MRSA), pervade hospital settings, constituting a grave menace to patient vitality. Antimicrobial peptides (AMPs) have garnered considerable attention as a potent countermeasure against multidrug resistant bacteria. In preceding research endeavors, an insect-derived antimicrobial peptide is identified that, while possessing antimicrobial attributes, manifested suboptimal efficacy against drug-resistant Gram-positive bacteria. To ameliorate this issue, this work enhances the antimicrobial capabilities of the initial β-hairpin AMPs by substituting the structural sequence of the original AMPs with variant lengths of hydrophobic amino acid-hydrophilic amino acid repeat units. Throughout this endeavor, this work has identified a number of peptides that possess highly effective antibacterial characteristics against a wide range of bacteria. Additionally, some of these peptides have the ability to self-assemble into nanofibers, which then build networks in a distinctive manner to capture bacteria. Consequently, they represent prospective antibiotic alternatives for addressing wound infections engendered by drug-resistant bacteria.
Collapse
Affiliation(s)
- Hao Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Siyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jieru Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
10
|
Koroleva ON, Kuzmina NV, Dubrovin EV, Drutsa VL. Atomic force microscopy of spherical intermediates on the pathway to fibril formation of influenza A virus nuclear export protein. Microsc Res Tech 2024; 87:1131-1145. [PMID: 38270267 DOI: 10.1002/jemt.24499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
The nuclear export protein of the influenza A virus (NEP) is involved in many important processes of the virus life cycle. This makes it an attractive target for the treatment of a disease caused by a virus. Previously it has been shown, that recombinant variants of NEP are highly prone to aggregation in solution under various conditions with the formation of amyloid-like aggregates. In the present work, the amyloid nature of NEP aggregates was evidenced by Congo red binding assays. Atomic force microscopy has shown that NEP can form two types of spherical nanoparticles, which provide an alternative pathway for the formation of amyloid-like fibrils. Type I of these "fibrillogenic" spheres, formed under physiological conditions, represents the micelle-like particles with height 10-60 nm, which can generate worm-like flexible fibrils with the diameter 2.5-4.0 nm, length 20-500 nm and the Young's modulus ~73 MPa. Type II spherical aggregates with size of about 400-1000 nm, formed at elevated temperatures, includes fractions of drop-like and vesicle-like particles, generating more rigid amyloid-like fibrils with height of ~8 nm, and length of up to 2 μm. The hypothetical mechanism of fibril formation via nanospherical structures was suggested. RESEARCH HIGHLIGHTS: AFM has revealed two types of the influenza A virus nuclear export protein spherical aggregates. They provide an alternative pathway for the formation of amyloid-like fibrils. The mechanism of fibril formation via spherical structures is suggested.
Collapse
Affiliation(s)
- Olga N Koroleva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Natalia V Kuzmina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniy V Dubrovin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
- National University of Science and Technology, MISIS, Moscow, Russian Federation
| | - Valeriy L Drutsa
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
11
|
Adam AA, Michaux F, Dos Santos Morais R, Seiler A, Muniglia L, Khanji AN, Jasniewski J. Determination of the critical aggregation concentration in water of Gum Arabic functionalized with curcumin oxidation products by micro-scale thermophoresis approach. Int J Biol Macromol 2024; 271:132510. [PMID: 38821797 DOI: 10.1016/j.ijbiomac.2024.132510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Gum Arabic underwent enzymatic modification with curcumin oxidation products, prompting self-assembly in water at lower concentrations than native gum Arabic, which was fully soluble. The resulting particles displayed a narrow size distribution, suggestive of a micellization mechanism akin to Critical Micellization Concentration (CMC) in surfactants or Critical Aggregation Concentration (CAC) in polymers. Accurately determining CAC is vital for utilizing polymers in molecule encapsulation, but precise measurement is challenging, requiring multiple techniques. Initially, CAC was probed via turbidity measurements, dynamic light scattering (DLS), and isothermal calorimetric titration (ITC), yielding a range of 0.0015 to 0.01 %. Micro-scale thermophoresis (MST) was then employed for the first time to define CAC more precisely, facilitated by the intrinsic fluorescence of modified gum Arabic. Using MST, CAC was pinpointed at 0.001 % (w/v), a novel approach. Furthermore, MST revealed a low EC50 value of 0.007 % (w/t) for self-assembly, signifying uniformity among GAC sub-units and assembly stability upon dilution.
Collapse
Affiliation(s)
| | | | | | | | | | - Aya N Khanji
- Université de Lorraine, LIBio, F-54000 Nancy, France
| | | |
Collapse
|
12
|
Furlepa M, Zhang YP, Lobanova E, Kahanawita L, Vivacqua G, Williams-Gray CH, Klenerman D. Single-molecule characterization of salivary protein aggregates from Parkinson's disease patients: a pilot study. Brain Commun 2024; 6:fcae178. [PMID: 38863577 PMCID: PMC11166177 DOI: 10.1093/braincomms/fcae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Saliva is a convenient and accessible biofluid that has potential as a future diagnostic tool for Parkinson's disease. Candidate diagnostic tests for Parkinson's disease to date have predominantly focused on measurements of α-synuclein in CSF, but there is a need for accurate tests utilizing more easily accessible sample types. Prior studies utilizing saliva have used bulk measurements of salivary α-synuclein to provide diagnostic insight. Aggregate structure may influence the contribution of α-synuclein to disease pathology. Single-molecule approaches can characterize the structure of individual aggregates present in the biofluid and may, therefore, provide greater insight than bulk measurements. We have employed an antibody-based single-molecule pulldown assay to quantify salivary α-synuclein and amyloid-β peptide aggregate numbers and subsequently super-resolved captured aggregates using direct Stochastic Optical Reconstruction Microscopy to describe their morphological features. We show that the salivary α-synuclein aggregate/amyloid-β aggregate ratio is increased almost 2-fold in patients with Parkinson's disease (n = 20) compared with controls (n = 20, P < 0.05). Morphological information also provides insight, with saliva from patients with Parkinson's disease containing a greater proportion of larger and more fibrillar amyloid-β aggregates than control saliva (P < 0.05). Furthermore, the combination of count and morphology data provides greater diagnostic value than either measure alone, distinguishing between patients with Parkinson's disease (n = 17) and controls (n = 18) with a high degree of accuracy (area under the curve = 0.87, P < 0.001) and a larger dynamic range. We, therefore, demonstrate for the first time the application of highly sensitive single-molecule imaging techniques to saliva. In addition, we show that aggregates present within saliva retain relevant structural information, further expanding the potential utility of saliva-based diagnostic methods.
Collapse
Affiliation(s)
- Martin Furlepa
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Yu P Zhang
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| | - Evgeniia Lobanova
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| | - Lakmini Kahanawita
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Giorgio Vivacqua
- Microscopic and Ultrastructural Anatomy Research Unit-Integrated Research Centre (PRABB), Campus Biomedico University of Rome, 00128 Rome, Italy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | | | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
13
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
14
|
Portugal Barron D, Guo Z. The supersaturation perspective on the amyloid hypothesis. Chem Sci 2023; 15:46-54. [PMID: 38131088 PMCID: PMC10731913 DOI: 10.1039/d3sc03981a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/27/2023] [Indexed: 12/23/2023] Open
Abstract
Development of therapeutic interventions for Alzheimer's over the past three decades has been guided by the amyloid hypothesis, which puts Aβ deposition as the initiating event of a pathogenic cascade leading to dementia. In the current form, the amyloid hypothesis lacks a comprehensive framework that considers the complex nature of Aβ aggregation. The explanation of how Aβ deposition leads to downstream pathology, and how reducing Aβ plaque load via anti-amyloid therapy can lead to improvement in cognition remains insufficient. In this perspective we integrate the concept of Aβ supersaturation into the amyloid hypothesis, laying out a framework for the mechanistic understanding and therapeutic intervention of Alzheimer's disease. We discuss the important distinction between in vitro and in vivo patterns of Aβ aggregation, the impact of different aggregation stages on therapeutic strategies, and how future investigations could integrate this concept in order to produce a more thorough understanding and better treatment for Alzheimer's and other amyloid-related disorders.
Collapse
Affiliation(s)
- Diana Portugal Barron
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer's Research and Care, David Geffen School of Medicine, University of California, Los Angeles Los Angeles CA USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer's Research and Care, David Geffen School of Medicine, University of California, Los Angeles Los Angeles CA USA
| |
Collapse
|
15
|
Ali SA, Chung KHK, Forgham H, Olsen WP, Kakinen A, Balaji A, Otzen DE, Davis TP, Javed I. Alzheimer's Progenitor Amyloid-β Targets and Dissolves Microbial Amyloids and Impairs Biofilm Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301423. [PMID: 37594661 PMCID: PMC10582422 DOI: 10.1002/advs.202301423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Indexed: 08/19/2023]
Abstract
Alzheimer's disease (AD) is a leading form of dementia where the presence of extra-neuronal plaques of Amyloid-β (Aβ) is a pathological hallmark. However, Aβ peptide is also observed in the intestinal tissues of AD patients and animal models. In this study, it is reported that Aβ monomers can target and disintegrate microbial amyloids of FapC and CsgA formed by opportunistic gut pathogens, Pseudomonas aeruginosa and Escherichia coli, explaining a potential role of Aβ in the gut-brain axis. Employing a zebrafish-based transparent in vivo system and whole-mount live-imaging, Aβ is observed to diffuse into the vasculature and subsequently localize with FapC or CsgA fibrils that were injected into the tail muscles of the fish. FapC aggregates, produced after Aβ treatment (Faβ), present selective toxicity to SH-SY5Y neuronal cells while the intestinal Caco-2 cells are shown to phagocytose Faβ in a non-toxic cellular process. After remodeling by Aβ, microbial fibrils lose their native function of cell adhesion with intestinal Caco-2 cells and Aβ dissolves and detaches the microbial fibrils already attached to the cell membrane. Taken together, this study strongly indicates an anti-biofilm role for Aβ monomers that can help aid in the future development of selective anti-Alzheimer's and anti-infective medicine.
Collapse
Affiliation(s)
- Syed Aoun Ali
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Helen Forgham
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - William P. Olsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus C8000Denmark
- Sino‐Danish Center (SDC)Eastern Yanqihu CampusUniversity of Chinese Academy of Sciences380 Huaibeizhuang, Huairou DistrictBeijing101400China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinki00014Finland
| | - Arunpandian Balaji
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus C8000Denmark
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| |
Collapse
|
16
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Pils M, Dybala A, Rehn F, Blömeke L, Bujnicki T, Kraemer-Schulien V, Hoyer W, Riesner D, Willbold D, Bannach O. Development and Implementation of an Internal Quality Control Sample to Standardize Oligomer-Based Diagnostics of Alzheimer's Disease. Diagnostics (Basel) 2023; 13:diagnostics13101702. [PMID: 37238187 DOI: 10.3390/diagnostics13101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Protein misfolding and aggregation are pathological hallmarks of various neurodegenerative diseases. In Alzheimer's disease (AD), soluble and toxic amyloid-β (Aβ) oligomers are biomarker candidates for diagnostics and drug development. However, accurate quantification of Aβ oligomers in bodily fluids is challenging because extreme sensitivity and specificity are required. We previously introduced surface-based fluorescence intensity distribution analysis (sFIDA) with single-particle sensitivity. In this report, a preparation protocol for a synthetic Aβ oligomer sample was developed. This sample was used for internal quality control (IQC) to improve standardization, quality assurance, and routine application of oligomer-based diagnostic methods. We established an aggregation protocol for Aβ1-42, characterized the oligomers by atomic force microscopy (AFM), and assessed their application in sFIDA. Globular-shaped oligomers with a median size of 2.67 nm were detected by AFM, and sFIDA analysis of the Aβ1-42 oligomers yielded a femtomolar detection limit with high assay selectivity and dilution linearity over 5 log units. Lastly, we implemented a Shewhart chart for monitoring IQC performance over time, which is another important step toward quality assurance of oligomer-based diagnostic methods.
Collapse
Affiliation(s)
- Marlene Pils
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Alexandra Dybala
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Fabian Rehn
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Lara Blömeke
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tuyen Bujnicki
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Victoria Kraemer-Schulien
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Oliver Bannach
- attyloid GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
18
|
Banerjee M, Shenoy RR. Emphasizing roles of BDNF promoters and inducers in Alzheimer's disease for improving impaired cognition and memory. J Basic Clin Physiol Pharmacol 2023; 34:125-136. [PMID: 34751526 DOI: 10.1515/jbcpp-2021-0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophic factor adding to neurons' development and endurance. The amount of BDNF present in the brain determines susceptibility to various neurodegenerative diseases. In Alzheimer's disease (AD), often it is seen that low levels of BDNF are present, which primarily contributes to cognition deficit by regulating long-term potentiation (LTP) and synaptic plasticity. Molecular mechanisms underlying the synthesis, storage and release of BDNF are widely studied. New molecules are found, which contribute to the signal transduction pathway. Two important receptors of BDNF are TrkB and p75NTR. When BDNF binds to the TrkB receptor, it activates three main signalling pathways-phospholipase C, MAPK/ERK, PI3/AKT. BDNF holds an imperative part in LTP and dendritic development, which are essential for memory formation. BDNF supports synaptic integrity by influencing LTP and LTD. This action is conducted by modulating the glutamate receptors; AMPA and NMDA. This review paper discusses the aforesaid points along with inducers of BDNF. Drugs and herbals promote neuroprotection by increasing the hippocampus' BDNF level in various disease-induced animal models for neurodegeneration. Advancement in finding pertinent molecules contributing to the BDNF signalling pathway has been discussed, along with the areas that require further research and study.
Collapse
Affiliation(s)
- Madhuparna Banerjee
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi District, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi District, Karnataka, India
| |
Collapse
|
19
|
Sun W, Gregory DA, Zhao X. Designed peptide amphiphiles as scaffolds for tissue engineering. Adv Colloid Interface Sci 2023; 314:102866. [PMID: 36898186 DOI: 10.1016/j.cis.2023.102866] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Peptide amphiphiles (PAs) are peptide-based molecules that contain a peptide sequence as a head group covalently conjugated to a hydrophobic segment, such as lipid tails. They can self-assemble into well-ordered supramolecular nanostructures such as micelles, vesicles, twisted ribbons and nanofibers. In addition, the diversity of natural amino acids gives the possibility to produce PAs with different sequences. These properties along with their biocompatibility, biodegradability and a high resemblance to native extracellular matrix (ECM) have resulted in PAs being considered as ideal scaffold materials for tissue engineering (TE) applications. This review introduces the 20 natural canonical amino acids as building blocks followed by highlighting the three categories of PAs: amphiphilic peptides, lipidated peptide amphiphiles and supramolecular peptide amphiphile conjugates, as well as their design rules that dictate the peptide self-assembly process. Furthermore, 3D bio-fabrication strategies of PAs hydrogels are discussed and the recent advances of PA-based scaffolds in TE with the emphasis on bone, cartilage and neural tissue regeneration both in vitro and in vivo are considered. Finally, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Weizhen Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; Department of Material Science and Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
20
|
Temviriyanukul P, Chansawhang A, Karinchai J, Phochantachinda S, Buranasinsup S, Inthachat W, Pitchakarn P, Chantong B. Kaempferia parviflora Extracts Protect Neural Stem Cells from Amyloid Peptide-Mediated Inflammation in Co-Culture Model with Microglia. Nutrients 2023; 15:nu15051098. [PMID: 36904098 PMCID: PMC10004790 DOI: 10.3390/nu15051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The existence of neuroinflammation and oxidative stress surrounding amyloid beta (Aβ) plaques, a hallmark of Alzheimer's disease (AD), has been demonstrated and may result in the activation of neuronal death and inhibition of neurogenesis. Therefore, dysregulation of neuroinflammation and oxidative stress is one possible therapeutic target for AD. Kaempferia parviflora Wall. ex Baker (KP), a member of the Zingiberaceae family, possesses health-promoting benefits including anti-oxidative stress and anti-inflammation in vitro and in vivo with a high level of safety; however, the role of KP in suppressing Aβ-mediated neuroinflammation and neuronal differentiation has not yet been investigated. The neuroprotective effects of KP extract against Aβ42 have been examined in both monoculture and co-culture systems of mouse neuroectodermal (NE-4C) stem cells and BV-2 microglia cells. Our results showed that fractions of KP extract containing 5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone protected neural stem cells (both undifferentiated and differentiated) and microglia activation from Aβ42-induced neuroinflammation and oxidative stress in both monoculture and co-culture system of microglia and neuronal stem cells. Interestingly, KP extracts also prevented Aβ42-suppressed neurogenesis, possibly due to the contained methoxyflavone derivatives. Our data indicated the promising role of KP in treating AD through the suppression of neuroinflammation and oxidative stress induced by Aβ peptides.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.P.); (B.C.)
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: (P.P.); (B.C.)
| |
Collapse
|
21
|
Pönisch W, Michaels TCT, Weber CA. Aggregation controlled by condensate rheology. Biophys J 2023; 122:197-214. [PMID: 36369755 PMCID: PMC9822804 DOI: 10.1016/j.bpj.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Biomolecular condensates in living cells can exhibit a complex rheology, including viscoelastic and glassy behavior. This rheological behavior of condensates was suggested to regulate polymerization of cytoskeletal filaments and aggregation of amyloid fibrils. Here, we theoretically investigate how the rheological properties of condensates can control the formation of linear aggregates. To this end, we propose a kinetic theory for linear aggregation in coexisting phases, which accounts for the aggregate size distribution and the exchange of aggregates between inside and outside of condensates. The rheology of condensates is accounted in our model via aggregate mobilities that depend on aggregate size. We show that condensate rheology determines whether aggregates of all sizes or dominantly small aggregates are exchanged between condensate inside and outside on the timescale of aggregation. As a result, the ratio of aggregate numbers inside to outside of condensates differs significantly. Strikingly, we also find that weak variations in the rheological properties of condensates can lead to a switch-like change of the number of aggregates. These results suggest a possible physical mechanism for how living cells could control linear aggregation in a switch-like fashion through variations in condensate rheology.
Collapse
Affiliation(s)
- Wolfram Pönisch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Thomas C T Michaels
- Laboratory for Molecular Cell Biology, University College London, London, United Kingdom; Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom; Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| | - Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Faculty of Mathematics, Natural Sciences, and Materials Engineering, Institute of Physics, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
22
|
Novo M, Pérez-González C, Freire S, Al-Soufi W. Early Aggregation of Amyloid-β(1-42) Studied by Fluorescence Correlation Spectroscopy. Methods Mol Biol 2023; 2551:1-14. [PMID: 36310192 DOI: 10.1007/978-1-0716-2597-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting cognitive and memory abilities and is believed to be linked to the formation and accumulation of neurotoxic aggregates of the Amyloid-β peptide (Aβ). In particular, it is the formation of soluble pre-fibrillar oligomers within the early stage of Aβ aggregation which is thought to represent a key step in the development of AD, thus underlining the interest in characterizing the aggregation process and the nature of these aggregates. In this context, fluorescence correlation spectroscopy (FCS) has emerged as a valuable alternative for the study of these systems in solution. Indeed, the use of FCS to study terminally labelled Aβ provides a means to detect changes in the size and concentration of initially monomeric Aβ samples by monitoring these fluorescently labelled species freely diffusing in solution with single-molecule resolution. Herein, we show how to employ FCS to study the early aggregation process of Aβ(1-42) and how this can be used to estimate the critical concentration for oligomer formation and to characterize the aggregates formed.
Collapse
Affiliation(s)
- Mercedes Novo
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, Spain.
| | - Cibrán Pérez-González
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, Spain
| | - Sonia Freire
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, Spain
| | - Wajih Al-Soufi
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
23
|
Khalifa J, Bourgault S, Gaudreault R. Interactions of Polyphenolic Gallotannins with Amyloidogenic Polypeptides Associated with Alzheimer's Disease: From Molecular Insights to Physiological Significance. Curr Alzheimer Res 2023; 20:603-617. [PMID: 38270140 DOI: 10.2174/0115672050277001231213073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols are natural compounds abundantly found in plants. They are known for their numerous benefits to human health, including antioxidant properties and anti-inflammatory activities. Interestingly, many studies have revealed that polyphenols can also modulate the formation of amyloid fibrils associated with disease states and can prevent the formation of cytotoxic oligomer species. In this review, we underline the numerous effects of four hydrolysable gallotannins (HGTs) with high conformational flexibility, low toxicity, and multi-targeticity, e.g., tannic acid, pentagalloyl glucose, corilagin, and 1,3,6-tri-O-galloyl-β-D-glucose, on the aggregation of amyloidogenic proteins associated with the Alzheimer's Disease (AD). These HGTs have demonstrated interesting abilities to reduce, at different levels, the formation of amyloid fibrils involved in AD, including those assembled from the amyloid β-peptide, the tubulin-associated unit, and the islet amyloid polypeptide. HGTs were also shown to disassemble pre-formed fibrils and to diminish cognitive decline in mice. Finally, this manuscript highlights the importance of further investigating these naturally occurring HGTs as promising scaffolds to design molecules that can interfere with the formation of proteotoxic oligomers and aggregates associated with AD pathogenesis.
Collapse
Affiliation(s)
- Jihane Khalifa
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
| | - Roger Gaudreault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| |
Collapse
|
24
|
Kabir ER, Chowdhury NM, Yasmin H, Kabir MT, Akter R, Perveen A, Ashraf GM, Akter S, Rahman MH, Sweilam SH. Unveiling the Potential of Polyphenols as Anti-Amyloid Molecules in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:787-807. [PMID: 36221865 PMCID: PMC10227919 DOI: 10.2174/1570159x20666221010113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that mostly affects the elderly population. Mechanisms underlying AD pathogenesis are yet to be fully revealed, but there are several hypotheses regarding AD. Even though free radicals and inflammation are likely to be linked with AD pathogenesis, still amyloid-beta (Aβ) cascade is the dominant hypothesis. According to the Aβ hypothesis, a progressive buildup of extracellular and intracellular Aβ aggregates has a significant contribution to the AD-linked neurodegeneration process. Since Aβ plays an important role in the etiology of AD, therefore Aβ-linked pathways are mainly targeted in order to develop potential AD therapies. Accumulation of Aβ plaques in the brains of AD individuals is an important hallmark of AD. These plaques are mainly composed of Aβ (a peptide of 39-42 amino acids) aggregates produced via the proteolytic cleavage of the amyloid precursor protein. Numerous studies have demonstrated that various polyphenols (PPHs), including cyanidins, anthocyanins, curcumin, catechins and their gallate esters were found to markedly suppress Aβ aggregation and prevent the formation of Aβ oligomers and toxicity, which is further suggesting that these PPHs might be regarded as effective therapeutic agents for the AD treatment. This review summarizes the roles of Aβ in AD pathogenesis, the Aβ aggregation pathway, types of PPHs, and distribution of PPHs in dietary sources. Furthermore, we have predominantly focused on the potential of food-derived PPHs as putative anti-amyloid drugs.
Collapse
Affiliation(s)
- Eva Rahman Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | | | - Hasina Yasmin
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md. Tanvir Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, Virginia 22030, USA
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
25
|
Julian L, Sang JC, Wu Y, Meisl G, Brelstaff JH, Miller A, Cheetham MR, Vendruscolo M, Knowles TPJ, Ruggeri FS, Bryant C, Ros S, Brindle KM, Klenerman D. Characterization of full-length p53 aggregates and their kinetics of formation. Biophys J 2022; 121:4280-4298. [PMID: 36230002 PMCID: PMC9703098 DOI: 10.1016/j.bpj.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in the TP53 gene are common in cancer with the R248Q missense mutation conferring an increased propensity to aggregate. Previous p53 aggregation studies showed that, at micromolar concentrations, protein unfolding to produce aggregation-prone species is the rate-determining step. Here we show that, at physiological concentrations, aggregation kinetics of insect cell-derived full-length wild-type p53 and p53R248Q are determined by a nucleation-growth model, rather than formation of aggregation-prone monomeric species. Self-seeding, but not cross-seeding, increases aggregation rate, confirming the aggregation process as rate determining. p53R248Q displays enhanced aggregation propensity due to decreased solubility and increased aggregation rate, forming greater numbers of larger amorphous aggregates that disrupt lipid bilayers and invokes an inflammatory response. These results suggest that p53 aggregation can occur under physiological conditions, a rate enhanced by R248Q mutation, and that aggregates formed can cause membrane damage and inflammation that may influence tumorigenesis.
Collapse
Affiliation(s)
- Linda Julian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jason C Sang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jack H Brelstaff
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa Miller
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Matthew R Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Simone Ruggeri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Clare Bryant
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - Susana Ros
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
26
|
Novo M, Al-Soufi W. Supramolecular association studied by Fluorescence correlation spectroscopy. Front Chem 2022; 10:1042658. [DOI: 10.3389/fchem.2022.1042658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
A comprehensive description of a supramolecular system involves a full understanding of its thermodynamic and dynamic properties, as well as detailed knowledge of its structure. Fluorescence Correlation Spectroscopy (FCS) constitutes a powerful technique to acquire this information. Fluorescence correlation curves show a characteristic diffusion term that is related to the binding equilibrium constant or other thermodynamic properties of the supramolecular system. The association and dissociation rate constants of the binding process can be determined in FCS when the relaxation time of the binding is faster than the observation time—a regime called fast-exchange dynamics - in opposition to the slow-exchange regime. In all cases, structural information can be inferred from the diffusional properties of the supramolecular complexes. A short overview of the use of FCS for the study of supramolecular systems is given with examples which belong to the fast and slow regime.
Collapse
|
27
|
Connor JP, Quinn SD, Schaefer C. Sticker-and-spacer model for amyloid beta condensation and fibrillation. Front Mol Neurosci 2022; 15:962526. [PMID: 36311031 PMCID: PMC9611774 DOI: 10.3389/fnmol.2022.962526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A major pathogenic hallmark of Alzheimer's disease is the presence of neurotoxic plaques composed of amyloid beta (Aβ) peptides in patients' brains. The pathway of plaque formation remains elusive, though some clues appear to lie in the dominant presence of Aβ1 − 42 in these plaques despite Aβ1−40 making up approximately 90% of the Aβ pool. We hypothesize that this asymmetry is driven by the hydrophobicity of the two extra amino acids that are incorporated in Aβ1−42. To investigate this hypothesis at the level of single molecules, we have developed a molecular “sticker-and-spacer lattice model” of unfolded Aβ. The model protein has a single sticker that may reversibly dimerise and elongate into semi-flexible linear chains. The growth is hampered by excluded-volume interactions that are encoded by the hydrophilic spacers but are rendered cooperative by the attractive interactions of hydrophobic spacers. For sufficiently strong hydrophobicity, the chains undergo liquid-liquid phase-separation (LLPS) into condensates that facilitate the nucleation of fibers. We find that a small fraction of Aβ1−40 in a mixture of Aβ1−40 and Aβ1−42 shifts the critical concentration for LLPS to lower values. This study provides theoretical support for the hypothesis that LLPS condensates act as a precursor for aggregation and provides an explanation for the Aβ1−42-enrichment of aggregates in terms of hydrophobic interactions.
Collapse
Affiliation(s)
- Jack P. Connor
- Department of Biology, University of York, York, United Kingdom
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Jack P. Connor
| | - Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Charley Schaefer
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Charley Schaefer
| |
Collapse
|
28
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
29
|
Trebesova H, Olivero G, Marchi M, Grilli M. The Anti-Aggregative Peptide KLVFF Mimics Aβ1-40 in the Modulation of Nicotinic Receptors: Implications for Peptide-Based Therapy. Biomedicines 2022; 10:biomedicines10092231. [PMID: 36140331 PMCID: PMC9496455 DOI: 10.3390/biomedicines10092231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, the inhibition of beta-amyloid (Aβ) aggregation has emerged as a potential strategy for Alzheimer’s disease. KLVFF, a small peptide corresponding to the aminoacidic sequence 16-20 of Aβ, reduces Aβ fibrillation dose dependently. Therefore, the toxic and functional characterization of its brain activity is fundamental for clarifying its potential therapeutic role. Accordingly, we studied the modulatory role of KLVFF on the cholinergic receptors regulating dopamine and noradrenaline release in rat synaptosomes. Nicotinic receptors on dopaminergic nerve terminals in the nucleus acccumbens are inhibited by KLVFF, which closely resembles full-length Aβ1-40. Moreover, KLVFF entrapped in synaptosomes does not modify the nicotinic receptor’s function, suggesting that external binding to the receptor is required for its activity. The cholinergic agent desformylflustrabromine counteracts the KLVFF effect. Remarkably, muscarinic receptors on dopaminergic terminals and nicotinic receptors regulating noradrenaline release in the hippocampus are completely insensitive to KLVFF. Based on our findings, KLVFF mimics Aβ1-40 as a negative modulator of specific nicotinic receptor subtypes affecting dopamine transmission in the rat brain. Therefore, new pharmacological strategies using the anti-aggregative properties of KLVFF need to be evaluated for potential interference with nicotinic receptor-mediated transmission.
Collapse
|
30
|
Liu Z, Li B, Li Z, Zhang H. Pillar[n]arene-Mimicking/Assisted/Participated Carbon Nanotube Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6119. [PMID: 36079500 PMCID: PMC9458132 DOI: 10.3390/ma15176119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The recent progress in pillar[n]arene-assisted/participated carbon nanotube hybrid materials were initially summarized and discussed. The molecular structure of pillar[n]arene could serve different roles in the fabrication of attractive carbon nanotube-based materials. Firstly, pillar[n]arene has the ability to provide the structural basis for enlarging the cylindrical pillar-like architecture by forming one-dimensional, rigid, tubular, oligomeric/polymeric structures with aromatic moieties as the linker, or forming spatially "closed", channel-like, flexible structures by perfunctionalizing with peptides and with intramolecular hydrogen bonding. Interestingly, such pillar[n]arene-based carbon nanotube-resembling structures were used as porous materials for the adsorption and separation of gas and toxic pollutants, as well as for artificial water channels and membranes. In addition to the art of organic synthesis, self-assembly based on pillar[n]arene, such as self-assembled amphiphilic molecules, is also used to promote and control the dispersion behavior of carbon nanotubes in solution. Furthermore, functionalized pillar[n]arene derivatives integrated carbon nanotubes to prepare advanced hybrid materials through supramolecular interactions, which could also incorporate various compositions such as Ag and Au nanoparticles for catalysis and sensing.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhizheng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
31
|
The effect of citalopram treatment on amyloid-β precursor protein processing and oxidative stress in human hNSC-derived neurons. Transl Psychiatry 2022; 12:285. [PMID: 35851379 PMCID: PMC9293911 DOI: 10.1038/s41398-022-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) may hold therapeutic benefits for people with Alzheimer's disease (AD). SSRIs may perturb AD progression, or the conversion from MCI to AD, via increased neurogenesis, reduced oxidative stress and/or favourable Amyloid-β Precursor Protein (AβPP) processing. This study used iPSC derived cortical neuronal cells carrying 3 different PSEN1 mutations, to investigate the effect of treatment with the SSRI, Citalopram on AβPP processing and oxidative stress. Control and PSEN1 mutation (L286V, A246E, M146L) iPSC-derived neurons were treated with Citalopram for 45 days. ADAM10 activity, AβPP processing and Aβ generation was measured in addition to cellular redox status. Citalopram treatment reduced the Aβ1-42:40 ratio in control but not in fAD PSEN1 cells. ADAM10 activity was increased with Citalopram treatments in fAD PSEN1 cell lines, which was also seen for sAβPPα secretion. Lower superoxide generation in fAD PSEN1 cells following Citalopram treatment was identified, although there was no effect on end markers of oxidative stress. Treatment with Citalopram appears to have little effect on Aβ generation in fADPSEN1 cells, but our findings suggest that treatment can significantly increase non-amyloidogenic AβPP processing and reduce oxidative stress. These changes may explain why SSRIs appear most effective in the prodromal period of the disease progression, as opposed to reducing established AD pathology. Further investigation of specific pathways conferring the beneficial effects of SSRIs treatment are warranted.
Collapse
|
32
|
Boster KAS, Tithof J, Cook DD, Thomas JH, Kelley DH. Sensitivity analysis on a network model of glymphatic flow. J R Soc Interface 2022; 19:20220257. [PMID: 35642425 PMCID: PMC9156905 DOI: 10.1098/rsif.2022.0257] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intracranial cerebrospinal and interstitial fluid (ISF) flow and solute transport have important clinical implications, but limited in vivo access to the brain interior leaves gaping holes in human understanding of the nature of these neurophysiological phenomena. Models can address some gaps, but only insofar as model inputs are accurate. We perform a sensitivity analysis using a Monte Carlo approach on a lumped-parameter network model of cerebrospinal and ISF in perivascular and extracellular spaces in the murine brain. We place bounds on model predictions given the uncertainty in input parameters. Péclet numbers for transport in penetrating perivascular spaces (PVSs) and within the parenchyma are separated by at least two orders of magnitude. Low permeability in penetrating PVSs requires unrealistically large driving pressure and/or results in poor perfusion and are deemed unlikely. The model is most sensitive to the permeability of penetrating PVSs, a parameter whose value is largely unknown, highlighting an important direction for future experiments. Until the value of the permeability of penetrating PVSs is more accurately measured, the uncertainty of any model that includes flow in penetrating PVSs is so large that absolute numbers have little meaning and practical application is limited.
Collapse
Affiliation(s)
- Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas D. Cook
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
33
|
Mukhopadhyay S, Bera SC, Ramola K. Observation of two-step aggregation kinetics of Amyloid- βproteins from fractal analysis. Phys Biol 2022; 19. [PMID: 35381581 DOI: 10.1088/1478-3975/ac6478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/12/2022]
Abstract
Self-aggregation in proteins has long been studied and modeled due to its ubiquity and importance in many biological contexts. Several models propose a two step aggregation mechanism, consisting of linear growth of fibrils and secondary growth involving branch formation. Single molecule imaging techniques such as total internal reflection fluorescence (TIRF) microscopy can provide direct evidence of such mechanisms, however, analyzing such large data-sets is challenging. In this paper, we analyze for the first time, images of growing amyloid fibrils obtained from TIRF microscopy using the techniques of fractal geometry, which provides a natural framework to disentangle the two types of growth mechanisms at play. We find that after an initial linear growth phase, identified by a plateau in the average fractal dimension with time, the occurrence of branching events leads to a further increase in the fractal dimension, with a final saturation value ≈ 2. This provides direct evidence of the two-step nature of the aggregation kinetics of Amyloid-βproteins, with an initial linear elongation phase followed by branching at later times.
Collapse
Affiliation(s)
- Soham Mukhopadhyay
- Tata Institute of Fundamental Research Centre for Interdisciplinary Sciences, 36/P, Gopanpally Tanda, Serilingampally Mandal, Hyderabad, Telangana, 500046, INDIA
| | - Subhas C Bera
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, Erlangen, Bayern, 91058, GERMANY
| | - Kabir Ramola
- Tata Institute of Fundamental Research Centre for Interdisciplinary Sciences, 36/P, Gopanpally Tanda, Serilingampally Mandal, Hyderabad, Telangana, 500046, INDIA
| |
Collapse
|
34
|
Al Adem K, Shanti A, Srivastava A, Homouz D, Thomas SA, Khair M, Stefanini C, Chan V, Kim TY, Lee S. Linking Alzheimer’s Disease and Type 2 Diabetes: Characterization and Inhibition of Cytotoxic Aβ and IAPP Hetero-Aggregates. Front Mol Biosci 2022; 9:842582. [PMID: 35372522 PMCID: PMC8968156 DOI: 10.3389/fmolb.2022.842582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The cytotoxic self-aggregation of β-amyloid (Aβ) peptide and islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of Alzheimer’s disease (AD) and Type 2 diabetes (T2D), respectively. Increasing evidence, particularly the co-deposition of Aβ and IAPP in both brain and pancreatic tissues, suggests that Aβ and IAPP cross-interaction may be responsible for a pathological link between AD and T2D. Here, we examined the nature of IAPP-Aβ40 co-aggregation and its inhibition by small molecules. In specific, we characterized the kinetic profiles, morphologies, secondary structures and toxicities of IAPP-Aβ40 hetero-assemblies and compared them to those formed by their homo-assemblies. We demonstrated that monomeric IAPP and Aβ40 form stable hetero-dimers and hetero-assemblies that further aggregate into β-sheet-rich hetero-aggregates that are toxic (cell viability <50%) to both PC-12 cells, a neuronal cell model, and RIN-m5F cells, a pancreatic cell model for β-cells. We then selected polyphenolic candidates to inhibit IAPP or Aβ40 self-aggregation and examined the inhibitory effect of the most potent candidate on IAPP-Aβ40 co-aggregation. We demonstrated that epigallocatechin gallate (EGCG) form inter-molecular hydrogen bonds with each of IAPP and Aβ40. We also showed that EGCG reduced hetero-aggregate formation and resulted in lower β-sheets content and higher unordered structures in IAPP-Aβ40-EGCG samples. Importantly, we showed that EGCG is highly effective in reducing the toxicity of IAPP-Aβ40 hetero-aggregates on both cell models, specifically at concentrations that are equivalent to or are 2.5-fold higher than the mixed peptide concentrations. To the best of our knowledge, this is the first study to report the inhibition of IAPP-Aβ40 co-aggregation by small molecules. We conclude that EGCG is a promising candidate to prevent co-aggregation and cytotoxicity of IAPP-Aβ40, which in turn, contribute to the pathological link between AD and T2D.
Collapse
Affiliation(s)
- Kenana Al Adem
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aya Shanti
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Physics, University of Houston, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Sneha Ann Thomas
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tae-Yeon Kim
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Khalifa University’s Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Sungmun Lee,
| |
Collapse
|
35
|
Deleanu M, Deschaume O, Cipelletti L, Hernandez JF, Bartic C, Cottet H, Chamieh J. Taylor Dispersion Analysis and Atomic Force Microscopy Provide a Quantitative Insight into the Aggregation Kinetics of Aβ (1-40)/Aβ (1-42) Amyloid Peptide Mixtures. ACS Chem Neurosci 2022; 13:786-795. [PMID: 35201761 DOI: 10.1021/acschemneuro.1c00784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aggregation of amyloid β peptides is known to be one of the main processes responsible for Alzheimer's disease. The resulting dementia is believed to be due in part to the formation of potentially toxic oligomers. However, the study of such intermediates and the understanding of how they form are very challenging because they are heterogeneous and transient in nature. Unfortunately, few techniques can quantify, in real time, the proportion and the size of the different soluble species during the aggregation process. In a previous work (Deleanu et al. Anal. Chem. 2021, 93, 6523-6533), we showed the potential of Taylor dispersion analysis (TDA) in amyloid speciation during the aggregation process of Aβ (1-40) and Aβ (1-42). The current work aims at exploring in detail the aggregation of amyloid Aβ (1-40):Aβ (1-42) peptide mixtures with different proportions of each peptide (1:0, 3:1, 1:1, 1:3, and 0:1) using TDA and atomic force microscopy (AFM). TDA allowed for monitoring the kinetics of the amyloid assembly and quantifying the transient intermediates. Complementarily, AFM allowed the formation of insoluble fibrils to be visualized. Together, the two techniques enabled us to study the influence of the peptide ratios on the kinetics and the formation of potentially toxic oligomeric species.
Collapse
Affiliation(s)
- Mihai Deleanu
- IBMM, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Olivier Deschaume
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200D, Box 2416, 3001 Heverlee, Belgium
| | - Luca Cipelletti
- L2C, Université Montpellier, 34095 Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Carmen Bartic
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200D, Box 2416, 3001 Heverlee, Belgium
| | - Hervé Cottet
- IBMM, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Joseph Chamieh
- IBMM, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
36
|
Chau E, Kim JR. α-synuclein-assisted oligomerization of β-amyloid (1-42). Arch Biochem Biophys 2022; 717:109120. [PMID: 35041853 PMCID: PMC8818042 DOI: 10.1016/j.abb.2022.109120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders, characterized by aggregation of amyloid polypeptides, β-amyloid (Aβ) and α-synuclein (αS), respectively. Aβ and αS follow similar aggregation pathways, starting from monomers, to soluble toxic oligomeric assemblies, and to insoluble fibrils. Various studies have suggested overlaps in the pathologies of AD and PD, and have shown Aβ-αS interactions. Unfortunately, whether these protein-protein interactions lead to self- and co-assembly of Aβ and αS into oligomers - a potentially toxic synergistic mechanism - is poorly understood. Among the various Aβ isoforms, interactions of Aβ containing 42 amino acids (Aβ (1-42), referred to as Aβ42) with αS are of most direct relevance due to the high aggregation propensity and the strong toxic effect of this Aβ isoform. In this study, we carefully determined molecular consequences of interactions between Aβ42 and αS in their respective monomeric, oligomeric, and fibrillar forms using a comprehensive set of experimental tools. We show that the three αS conformers, namely, monomers, oligomers and fibrils interfered with fibrillization of Aβ42. Specifically, αS monomers and oligomers promoted oligomerization and stabilization of soluble Aβ42, possibly via direct binding or co-assembly, while αS fibrils hindered soluble Aβ42 species from converting into insoluble aggregates by the formation of large oligomers. We also provide evidence that the interactions with αS were mediated by various parts of Aβ42, depending on Aβ42 and αS conformers. Furthermore, we compared similarities and dissimilarities between Aβ42-αS and Aβ40-αS interactions. Overall, the present study provides a comprehensive depiction of the molecular interplay between Aβ42 and αS, providing insight into its synergistic toxic mechanism.
Collapse
Affiliation(s)
- Edward Chau
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
37
|
Amyloid-β 42 oligomeric forms: AFM nanoscale structural characterization and impact on long-term memory of young and aged zebrafish. Neuroscience 2022; 497:271-281. [PMID: 35272003 DOI: 10.1016/j.neuroscience.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 11/23/2022]
Abstract
The contribution of amyloid-β (Aβ) soluble forms to Alzheimer's Disease (AD) is undergoing revision and the characterization of monomeric, oligomeric and protofibrillar Aβ forms used in vivo to model AD is a critical step to ensure data interpretation. Atomic force microscopy (AFM) was used to characterize the nanoscale morphology of different Aβ42 forms also used for cerebroventricular injection (cvi) in young (6mo) and aged (36mo) adult zebrafish behavioral and cognitive tests. On the AFM, monomeric solution deposited onto mica resulted mostly in thin filamentous structures and shorter monomeric agglomerates with heights around or below 1.5 nm, as expected for single Aβ42. The oligomeric form was dominated by particles with globular morphology and a few short aggregates around 1 nm high and 8-12 nm long. The protofibrillar form had micrometer-long twisted fibrils of varying diameters (4.5 to 10nm) and large entangled clusters with sizes of up to several tens of micrometers. On the Open Tank used to test exploratory parameters, no differences were observed between injected animals and their age-matched controls, except for a reduced distance travelled by aged individuals that received the Aβ42 oligomeric form. Long-term memory (LTM) for the inhibitory avoidance task was not influenced by monomers cvi, whilst oligomeric and fibrillar Aβ42 hindered LTM formation in young and aged groups. Our findings support current views of deleterious effects of Aβ42 soluble forms on cognition and ensures that preparations were structurally unique and within expected morphologies and dimensions.
Collapse
|
38
|
Van Bulck M, Brandt N, Claus RA, Gräler M, Bräuer AU. Aβ-Induced Alterations in Membrane Lipids Occur before Synaptic Loss Appears. Int J Mol Sci 2022; 23:ijms23042300. [PMID: 35216416 PMCID: PMC8877175 DOI: 10.3390/ijms23042300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Loss of active synapses and alterations in membrane lipids are crucial events in physiological aging as well as in neurodegenerative disorders. Both are related to the abnormal aggregation of amyloid-beta (Aβ) species, generally known as amyloidosis. There are two major known human Aβ species: Aβ(1–40) and Aβ(1–42). However, which of these species have more influence on active synapses and membrane lipids is still poorly understood. Additionally, the time-dependent effect of Aβ species on alterations in membrane lipids of hippocampal neurones and glial cells remains unknown. Therefore, our study contributes to a better understanding of the role of Aβ species in the loss of active synapses and the dysregulation of membrane lipids in vitro. We showed that Aβ(1–40) or Aβ(1–42) treatment influences membrane lipids before synaptic loss appears and that the loss of active synapses is not dependent on the Aβ species. Our lipidomic data analysis showed early changes in specific lipid classes such as sphingolipid and glycerophospholipid neurones. Our results underscore the potential role of lipids as a possible early diagnostic biomarker in amyloidosis-related disorders.
Collapse
Affiliation(s)
- Michiel Van Bulck
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Experimental Models of Human Disease, Networked Center of Biomedical Research on Neurodegenerative Diseases (CIBERNED), Institute for Biomedical Research A. Sols (CSIC-UAM), 28029 Madrid, Spain
- Correspondence: (M.V.B.); (A.U.B.)
| | - Nicola Brandt
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
| | - Ralf A. Claus
- Department of Anaesthesiology and Intensive Care Medicine Center for Molecular Biomedicine(CMB), Jena University Hospital, 07745 Jena, Germany; (R.A.C.); (M.G.)
| | - Markus Gräler
- Department of Anaesthesiology and Intensive Care Medicine Center for Molecular Biomedicine(CMB), Jena University Hospital, 07745 Jena, Germany; (R.A.C.); (M.G.)
- Centre for Sepsis Control and Care (CSCC), Jena University Hospital, 07745 Jena, Germany
| | - Anja U. Bräuer
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Research Centre for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Correspondence: (M.V.B.); (A.U.B.)
| |
Collapse
|
39
|
Kurisaki I, Tanaka S. Remarked suppression of Aβ 42 protomer-protomer dissociation reaction elucidated by molecular dynamics simulation. Proteins 2022; 90:1367-1375. [PMID: 35137442 DOI: 10.1002/prot.26319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023]
Abstract
Multimeric protein complexes are molecular apparatuses to regulate biological systems and often determine their fate. Among proteins forming such molecular assemblies, amyloid proteins have drawn attention over a half-century since amyloid fibril formation of these proteins is supposed to be a common pathogenic cause for neurodegenerative diseases. This process is triggered by the accumulation of fibril-like aggregates, while the microscopic mechanisms are mostly elusive due to technical limitation of experimental methodologies in individually observing each of diverse aggregate species in the aqueous solution. We then addressed this problem by employing atomistic molecular dynamics simulations for the paradigmatic amyloid protein, amyloid-β (Aβ42 ). Seven different dimeric forms of oligomeric Aβ42 fibril-like aggregate in aqueous solution, ranging from tetramer to decamer, were considered. We found additive effects of the size of these fibril-like aggregates on their thermodynamic stability and have clarified kinetic suppression of protomer-protomer dissociation reactions at and beyond the point of pentamer dimer formation. This observation was obtained from the specific combination of the Aβ42 protomer structure and the physicochemical condition that we here examined, while it is worthwhile to recall that several amyloid fibrils take dimeric forms of their protomers. We could thus conclude that the stable formation of fibril-like protomer dimer should be involved in a turning point where rapid growth of amyloid fibrils is triggered.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Department of Computational Science, Graduate School of System Informatics, Kobe University, Kobe, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, Kobe, Japan
| |
Collapse
|
40
|
Wiatrak B, Mieszała P, Gąsiorowski K. Impact of NMDA receptor activation on DNA damage in PC12 neuron-like cell cultures in the presence of β-amyloid peptides. Mol Biol Rep 2022; 49:10443-10455. [PMID: 36107376 PMCID: PMC9618537 DOI: 10.1007/s11033-022-07856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of low nanomolar concentrations of Aβ1-40 and Aβ25-35 on DNA double-strand breaks following NMDA activation of cells. MATERIALS AND METHODS After incubating the differentiated PC12 cells with Aβ25-35, Aβ1-40 or Aβ1-42 for 24 h, the culture was washed and stimulated for 15 min with NMDA. Then, tests were performed at four-time intervals from stimulation to assess the viability of the culture, the level of oxygen free radicals, and the γH2AX and pATM kinase. NMDAR1 expression was also evaluated by performing immunocytochemical staining. RESULTS It was found that amyloid peptides in nanomolar concentrations reduce double-stranded DNA breaks after NMDA neuron activation. A slight antioxidant effect was also demonstrated when measured 120 min after NMDA cell activation. CONCLUSION The NMDA stimulation of PC12 cells led to a rapid increase in the number of double-stranded DNA breaks in the cells and is assumed to be the initial step in IEG activation and LTP induction. The effect of Aβ on the reduction of double-strand breaks after NMDA cell stimulation indicates that at concentrations similar to physiological amyloid peptides, it may reduce the mobilization of the neuronal response to stimuli, leading to inhibition of LTP induction and decreasing synaptic plasticity in the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland ,Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - Przemysław Mieszała
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
41
|
Yuan M, Tang X, Han W. Anatomy and Formation Mechanisms of Early Amyloid-β Oligomers with Lateral Branching: Graph Network Analysis on Large-Scale Simulations. Chem Sci 2022; 13:2649-2660. [PMID: 35356670 PMCID: PMC8890322 DOI: 10.1039/d1sc06337e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Oligomeric amyloid-β aggregates (AβOs) effectively trigger Alzheimer's disease-related toxicity, generating great interest in understanding their structures and formation mechanisms. However, AβOs are heterogeneous and transient, making their structure and formation difficult to study. Here, we performed graph network analysis of tens of microsecond massive simulations of early amyloid-β (Aβ) aggregations at near-atomic resolution to characterize AβO structures with sizes up to 20-mers. We found that AβOs exhibit highly curvilinear, irregular shapes with occasional lateral branches, consistent with recent cryo-electron tomography experiments. We also found that Aβ40 oligomers were more likely to develop branches than Aβ42 oligomers, explaining an experimental observation that only Aβ40 was trapped in network-like aggregates and exhibited slower fibrillization kinetics. Moreover, AβO architecture dissection revealed that their curvilinear appearance is related to the local packing geometries of neighboring peptides and that Aβ40's greater branching ability originates from specific C-terminal interactions at branching interfaces. Finally, we demonstrate that whether Aβ oligomerization causes oligomers to elongate or to branch depends on the sizes and shapes of colliding aggregates. Collectively, this study provides bottom-up structural information for understanding early Aβ aggregation and AβO toxicity. Graph network analysis on large-scale simulations uncovers the differential branching behaviours of large Aβ40 and Aβ42 oligomers.![]()
Collapse
Affiliation(s)
- Miao Yuan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
42
|
Hugais MM, Cobos SN, Bennett SA, Paredes J, Foran G, Torrente MP. Changes in Histone H3 Acetylation on Lysine 9 Accompany Aβ 1-40 Overexpression in an Alzheimer's Disease Yeast Model. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34746682 PMCID: PMC8567091 DOI: 10.17912/micropub.biology.000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022]
Abstract
Alzheimer’s Disease (AD), the most common type of dementia, is a neurodegenerative disease characterized by plaques of amyloid-beta (Aβ) peptides found in the cerebral cortex of the brain. The pathological mechanism by which Aβ aggregation leads to neurodegeneration remains unknown. Interestingly, genetic mutations do not explain most AD cases suggesting that other mechanisms are at play. Epigenetic mechanisms, such as histone post-translational modifications (PTMs), may provide insight into the development of AD. Here, we exploit a yeast Aβ overexpression model to map out the histone PTM landscape associated with AD. We find a modest decrease in the acetylation levels on lysine 9 of histone H3 in the context of Aβ 1-40 overexpression. This change is accompanied by a decrease in RNA levels. Our results support a potential role for H3K9ac in AD pathology and allude to the role of epigenetics in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Muna M Hugais
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210
| | - Samantha N Cobos
- PhD. Program in Chemistry, City University of New York - The Graduate Center, New York, NY, USA 10016
| | - Seth A Bennett
- PhD. Program in Biochemistry, City University of New York - The Graduate Center, New York, NY, USA 10016
| | - Jailene Paredes
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210
| | | | - Mariana P Torrente
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210.,PhD. Programs in Chemistry, Biochemistry, and Biology, City University of New York - The Graduate Center, New York, NY, USA 10016
| |
Collapse
|
43
|
LaRocca TJ, Cavalier AN, Roberts CM, Lemieux MR, Ramesh P, Garcia MA, Link CD. Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol Dis 2021; 159:105493. [PMID: 34464705 PMCID: PMC8502211 DOI: 10.1016/j.nbd.2021.105493] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/08/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The amyloid beta (Aβ) peptide is believed to play a central role in Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. However, the natural, evolutionarily selected functions of Aβ are incompletely understood. Here, we report that nanomolar concentrations of Aβ act synergistically with known cytokines to promote pro-inflammatory activation in primary human astrocytes (a cell type increasingly implicated in brain aging and AD). Using transcriptomics (RNA-seq), we show that Aβ can directly substitute for the complement component C1q in a cytokine cocktail previously shown to induce astrocyte immune activation. Furthermore, we show that astrocytes synergistically activated by Aβ have a transcriptional signature similar to neurotoxic "A1" astrocytes known to accumulate with age and in AD. Interestingly, we find that this biological action of Aβ at low concentrations is distinct from the transcriptome changes induced by the high/supraphysiological doses of Aβ often used in in vitro studies. Collectively, our results suggest an important, cytokine-like function for Aβ and a novel mechanism by which it may directly contribute to the neuroinflammation associated with brain aging and AD.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America; Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University (Current), Fort Collins, CO, United States of America.
| | - Alyssa N Cavalier
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America; Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University (Current), Fort Collins, CO, United States of America
| | - Christine M Roberts
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Maddie R Lemieux
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Pooja Ramesh
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Micklaus A Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
44
|
Strazdaite S, Roeters SJ, Sakalauskas A, Sneideris T, Kirschner J, Pedersen KB, Schiøtt B, Jensen F, Weidner T, Smirnovas V, Niaura G. Interaction of Amyloid-β-(1-42) Peptide and Its Aggregates with Lipid/Water Interfaces Probed by Vibrational Sum-Frequency Generation Spectroscopy. J Phys Chem B 2021; 125:11208-11218. [PMID: 34597059 DOI: 10.1021/acs.jpcb.1c04882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we use surface-sensitive vibrational sum-frequency generation (VSFG) spectroscopy to investigate the interaction between model lipid monolayers and Aβ(1-42) in its monomeric and aggregated states. Combining VSFG with atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence measurements, we found that only small aggregates with probably a β-hairpin-like structure adsorbed to the zwitterionic lipid monolayer (DOPC). In contrast, larger aggregates with an extended β-sheet structure adsorbed to a negatively charged lipid monolayer (DOPG). The adsorption of small, initially formed aggregates strongly destabilized both monolayers, but only the DOPC monolayer was completely disrupted. We showed that the intensity of the amide-II' band in achiral (SSP) and chiral (SPP) polarization combinations increased in time when Aβ(1-42) aggregates accumulated at the DOPG monolayer. Nevertheless, almost no adsorption of preformed mature fibrils to DOPG monolayers was detected. By performing spectral VSFG calculations, we revealed a clear correlation between the amide-II' signal and the degree of amyloid aggregates (e.g., oligomers or (proto)fibrils) of various Aβ(1-42) structures. The calculations showed that only structures with a significant amyloid β-sheet content have a strong amide-II' intensity, in line with previous Raman studies. The combination of the presented results substantiates the amide-II(') band as a legitimate amyloid marker.
Collapse
Affiliation(s)
- S Strazdaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - S J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - A Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - T Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - J Kirschner
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - K B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - B Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - F Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - T Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - V Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - G Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
45
|
Al-Soufi W, Novo M. A Surfactant Concentration Model for the Systematic Determination of the Critical Micellar Concentration and the Transition Width. Molecules 2021; 26:molecules26175339. [PMID: 34500770 PMCID: PMC8433748 DOI: 10.3390/molecules26175339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
The critical micellar concentration (cmc) is a fundamental property of surfactant solutions. Many proposed methods for the definition and determination of the cmc from property-concentration plots yield values, which depend on the studied property, on the specific technique used for its analysis and in many cases on the subjective choice of the chosen type of plot and concentration interval. In this focus review, we revise the application of a surfactant concentration model we proposed earlier that defines the cmc directly based on the surfactant concentration. Known equations for the concentration-dependence of different surfactant properties can then be combined with this concentration model and fitted to experimental data. This modular concept makes it possible to determine the cmc and the transition width in a systematic and unambiguous way. We revise its use in the literature in different contexts: the determination of the cmc of surfactants and their mixtures from different properties (electrical conductivity, NMR chemical shift, self-diffusion, surface tension, UV-Vis absorption, fluorescence intensity and fluorescence correlation). We also revise the dependence of the width of the transition region on composition, detailed studies of the properties of fluorescent probes and the aggregation of non-surfactant systems, namely amyloid peptides.
Collapse
|
46
|
Chai AB, Lam HHJ, Kockx M, Gelissen IC. Apolipoprotein E isoform-dependent effects on the processing of Alzheimer's amyloid-β. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158980. [PMID: 34044125 DOI: 10.1016/j.bbalip.2021.158980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Since the identification of the apolipoprotein E (apoE) *ε4 allele as a major genetic risk factor for late-onset Alzheimer's disease, significant efforts have been aimed at elucidating how apoE4 expression confers greater brain amyloid-β (Aβ) burden, earlier disease onset and worse clinical outcomes compared to apoE2 and apoE3. ApoE primarily functions as a lipid carrier to regulate cholesterol metabolism in circulation as well as in the brain. However, it has also been suggested to interact with hydrophobic Aβ peptides to influence their processing in an isoform-dependent manner. Here, we review evidence from in vitro and in vivo studies extricating the effects of the three apoE isoforms, on different stages of the Aβ processing pathway including synthesis, aggregation, deposition, clearance and degradation. ApoE4 consistently correlates with impaired Aβ clearance, however data regarding Aβ synthesis and aggregation are conflicting and likely reflect inconsistencies in experimental approaches across studies. We further discuss the physical and chemical properties of apoE that may explain the inherent differences in activity between the isoforms. The lipidation status and lipid transport function of apoE are intrinsically linked with its ability to interact with Aβ. Traditionally, apoE-oriented therapeutic strategies for Alzheimer's disease have been proposed to non-specifically enhance or inhibit apoE activity. However, given the wide-ranging physiological functions of apoE in the brain and periphery, a more viable approach may be to specifically target and neutralise the pathological apoE4 isoform.
Collapse
Affiliation(s)
- Amanda B Chai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Hin Hei Julian Lam
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2139, Australia
| | - Ingrid C Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
47
|
Shardlow E, Khan B, Exley C. Monitoring the early aggregatory behaviour and size of Aβ 1-42 in the absence & presence of metal ions using dynamic light scattering. J Trace Elem Med Biol 2021; 67:126766. [PMID: 33964808 DOI: 10.1016/j.jtemb.2021.126766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM Aβ1-42 is an amyloidogenic peptide found within senile plaques extracted from those who died with a diagnosis of Alzheimer's disease. The potent neurotoxicity of this peptide is related to its propensity to form aggregated conformations in vivo, a process that is influenced by the species and concentration of metal ions present within the local environment. This study examines the impact of different metals upon the early aggregatory behaviour and size of Aβ1-42 under simulated physiological conditions. METHODS The size and aggregatory behaviour of Aβ1-42 in the presence and absence of metal ions was monitored during the initial 30 min of fibril formation in real-time using dynamic light scattering. RESULTS Intensity scattering measurements showed a clear tendency towards aggregation with regards to Aβ1-42 only solutions (10 μM). Both equimolar Al3+ & Cu2+ lowered and stabilised the dimensions of Aβ1-42 aggregates; however, a diminutive but significant increase in size was still observed over a 30-min period. While excess Al3+ continued to supress the size of Aβ1-42, a 10-fold increase in the concentration of Cu2+ accelerated peptide aggregation relative to that observed for equimolar metal but not compared to Aβ1-42 alone. CONCLUSION These results infer that Al3+ ions stabilise and aid in the maintenance of smaller, toxic intermediates while excess Cu2+ facilitates the formation of larger, more inert, amorphous species exceeding 1 μm in size. Furthermore, we propose that metal-induced toxicity of Aβ1-42 is reflective of their ability to preserve smaller oligomeric species in vitro.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Bakhtbilland Khan
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
48
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
49
|
Esposto JC, Martic S. Phosphorylated TAR DNA-Binding Protein-43: Aggregation and Antibody-Based Inhibition. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166234. [PMID: 34339840 DOI: 10.1016/j.bbadis.2021.166234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
TAR DNA-binding protein-43 (TDP-43) pathology, including fibrillar aggregates and mutations, develops in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). Hyperphosphorylation and aggregation of TDP-43 contribute to pathology and are viable therapeutic targets for ALS. In vivo inhibition of TDP-43 aggregation was evaluated using anti-TDP-43 antibodies with promising outcomes. However, the exact mechanism of antibody-based inhibition targeting TDP-43 is not well understood but may lead to the identification of viable immunotherapies. Herein, the mechanism of in vitro aggregation of phosphorylated TDP-43 was explored, and the anti-TDP-43 antibodies tested for their inhibitor efficacies. Specifically, the aggregation of phosphorylated full-length TDP-43 protein (pS410) was monitored by transmission electron microscopy (TEM), turbidity absorbance, and thioflavin (ThT). The protein aggregates were insoluble, ThT-positive and characterized with heterogeneous morphologies (fibers, amorphous structures). Antibodies specific to epitopes 178-393 and 256-269, within the RRM2-CTD domain, reduced the formation of β-sheets and insoluble aggregates, at low antibody loading (antibody: protein ratio = 1 ug/mL: 45 ug/mL). Inhibition outcomes were highly dependent on the type and loading of antibodies, indicating dual functionality of such inhibitors, as aggregation inhibitors or aggregation promoters. Anti-SOD1 and anti-tau antibodies were not effective inhibitors against TDP-43 aggregation, indicating selective inhibition.
Collapse
Affiliation(s)
- Josephine C Esposto
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada K9L 0G2.
| | - Sanela Martic
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada K9L 0G2.
| |
Collapse
|
50
|
Willbold D, Strodel B, Schröder GF, Hoyer W, Heise H. Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids. Chem Rev 2021; 121:8285-8307. [PMID: 34137605 DOI: 10.1021/acs.chemrev.1c00196] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review will focus on the process of amyloid-type protein aggregation. Amyloid fibrils are an important hallmark of protein misfolding diseases and therefore have been investigated for decades. Only recently, however, atomic or near-atomic resolution structures have been elucidated from various in vitro and ex vivo obtained fibrils. In parallel, the process of fibril formation has been studied in vitro under highly artificial but comparatively reproducible conditions. The review starts with a summary of what is known and speculated from artificial in vitro amyloid-type protein aggregation experiments. A partially hypothetic fibril selection model will be described that may be suitable to explain why amyloid fibrils look the way they do, in particular, why at least all so far reported high resolution cryo-electron microscopy obtained fibril structures are in register, parallel, cross-β-sheet fibrils that mostly consist of two protofilaments twisted around each other. An intrinsic feature of the model is the prion-like nature of all amyloid assemblies. Transferring the model from the in vitro point of view to the in vivo situation is not straightforward, highly hypothetic, and leaves many open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.,Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Birgit Strodel
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|