1
|
Pegoraro A, Grignolo M, Ruo L, Ricci L, Adinolfi E. P2X7 Variants in Pathophysiology. Int J Mol Sci 2024; 25:6673. [PMID: 38928378 PMCID: PMC11204217 DOI: 10.3390/ijms25126673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
P2X7 receptor activation by extracellular adenosine triphosphate (eATP) modulates different intracellular pathways, including pro-inflammatory and tumor-promoting cascades. ATP is released by cells and necrotic tissues during stressful conditions and accumulates mainly in the inflammatory and tumoral microenvironments. As a consequence, both the P2X7 blockade and agonism have been proposed as therapeutic strategies in phlogosis and cancer. Nevertheless, most studies have been carried out on the WT fully functional receptor variant. In recent years, the discovery of P2X7 variants derived by alternative splicing mechanisms or single-nucleotide substitutions gave rise to the investigation of these new P2X7 variants' roles in different processes and diseases. Here, we provide an overview of the literature covering the function of human P2X7 splice variants and polymorphisms in diverse pathophysiological contexts, paying particular attention to their role in oncological and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.G.); (L.R.); (L.R.)
| | | | | | | | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.G.); (L.R.); (L.R.)
| |
Collapse
|
2
|
Wang W, Zhang H, Sandai D, Zhao R, Bai J, Wang Y, Wang Y, Zhang Z, Zhang HL, Song ZJ. ATP-induced cell death: a novel hypothesis for osteoporosis. Front Cell Dev Biol 2023; 11:1324213. [PMID: 38161333 PMCID: PMC10755924 DOI: 10.3389/fcell.2023.1324213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
ATP-induced cell death has emerged as a captivating realm of inquiry with profound ramifications in the context of osteoporosis. This study unveils a paradigm-shifting hypothesis that illuminates the prospective involvement of ATP-induced cellular demise in the etiology of osteoporosis. Initially, we explicate the morphological attributes of ATP-induced cell death and delve into the intricacies of the molecular machinery and regulatory networks governing ATP homeostasis and ATP-induced cell death. Subsequently, our focus pivots towards the multifaceted interplay between ATP-induced cellular demise and pivotal cellular protagonists, such as bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts, accentuating their potential contributions to secondary osteoporosis phenotypes, encompassing diabetic osteoporosis, glucocorticoid-induced osteoporosis, and postmenopausal osteoporosis. Furthermore, we probe the captivating interplay between ATP-induced cellular demise and alternative modalities of cellular demise, encompassing apoptosis, autophagy, and necroptosis. Through an all-encompassing inquiry into the intricate nexus connecting ATP-induced cellular demise and osteoporosis, our primary goal is to deepen our comprehension of the underlying mechanisms propelling this malady and establish a theoretical bedrock to underpin the development of pioneering therapeutic strategies.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haolong Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Doblin Sandai
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jinxia Bai
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanfei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yong Wang
- Pathology Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongwen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hao-Ling Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
3
|
The Impact of Plasma Membrane Ion Channels on Bone Remodeling in Response to Mechanical Stress, Oxidative Imbalance, and Acidosis. Antioxidants (Basel) 2023; 12:antiox12030689. [PMID: 36978936 PMCID: PMC10045377 DOI: 10.3390/antiox12030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical–physical features of the matrix, while others may come from the ‘outer’ environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events.
Collapse
|
4
|
Spotlight on P2X7 Receptor PET Imaging: A Bright Target or a Failing Star? Int J Mol Sci 2023; 24:ijms24021374. [PMID: 36674884 PMCID: PMC9861945 DOI: 10.3390/ijms24021374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
The homotrimeric P2X7 receptor (P2X7R) is expressed by virtually all cells of the innate and adaptive immune system and plays a crucial role in various pathophysiological processes such as autoimmune and neurodegenerative diseases, inflammation, neuropathic pain and cancer. Consequently, the P2X7R is considered a promising target for therapy and diagnosis. As the development of tracers comes hand-in-hand with the development of potent and selective receptor ligands, there is a rising number of PET tracers available in preclinical and clinical studies. This review analyzes the development of P2X7R positron emission tomography (PET) tracers and their potential in various PET imaging applications.
Collapse
|
5
|
Calcium-Permeable Channels Cooperation for Rheumatoid Arthritis: Therapeutic Opportunities. Biomolecules 2022; 12:biom12101383. [PMID: 36291594 PMCID: PMC9599458 DOI: 10.3390/biom12101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis is a common autoimmune disease that results from the deposition of antibodies–autoantigens in the joints, leading to long-lasting inflammation. The main features of RA include cartilage damage, synovial invasion and flare-ups of intra-articular inflammation, and these pathological processes significantly reduce patients’ quality of life. To date, there is still no drug target that can act in rheumatoid arthritis. Therefore, the search for novel drug targets has become urgent. Due to their unique physicochemical properties, calcium ions play an important role in all cellular activities and the body has evolved a rigorous calcium signaling system. Calcium-permeable channels, as the main operators of calcium signaling, are widely distributed in cell membranes, endoplasmic reticulum membranes and mitochondrial membranes, and mediate the efflux and entry of Ca2+. Over the last century, more and more calcium-permeable channels have been identified in human cells, and the role of this large family of calcium-permeable channels in rheumatoid arthritis has gradually become clear. In this review, we briefly introduce the major calcium-permeable channels involved in the pathogenesis of RA (e.g., acid-sensitive ion channel (ASIC), transient receptor potential (TRP) channel and P2X receptor) and explain the specific roles and mechanisms of these calcium-permeable channels in the pathogenesis of RA, providing more comprehensive ideas and targets for the treatment of RA.
Collapse
|
6
|
Dsouza C, Moussa MS, Mikolajewicz N, Komarova SV. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Rep 2022; 17:101608. [PMID: 35992507 PMCID: PMC9385560 DOI: 10.1016/j.bonr.2022.101608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces. Cellular bioenergetic molecule ATP is released when cell is mechanically stimulated. ATP release is proportional to the amount of cellular damage. ATP diffusion and transformation to ADP indicates the proximity to the damage. Purinergic receptors form a network choreographing cell response to physical forces. Complete transformation of ATP to adenosine initiates the recovery phase.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
| | - Mahmoud S. Moussa
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nicholas Mikolajewicz
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Svetlana V. Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Corresponding author.
| |
Collapse
|
7
|
Ma Y, Di R, Zhao H, Song R, Zou H, Liu Z. P2X7 receptor knockdown suppresses osteoclast differentiation by inhibiting autophagy and Ca 2+/calcineurin signaling. Mol Med Rep 2022; 25:160. [PMID: 35266012 PMCID: PMC8941524 DOI: 10.3892/mmr.2022.12677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/11/2022] [Indexed: 11/06/2022] Open
Abstract
Bone is continuously remodeled in a dynamic process maintained by osteoclasts and osteoblasts, and imbalances in the relative activities of these cell types can cause various pathological conditions, including rheumatoid arthritis and osteoporosis. Osteoclasts are multinucleated cells that serve an important role in regulating the development of osteoporosis. Furthermore, P2X7 receptor activation has a vital role in physiological and pathological reactions in bone, including bone disease. Therefore, the present study aimed to investigate the effect of P2X7 receptor on osteoclast differentiation and to explore the underlying molecular mechanism by western blotting and tartrate‑resistant acid phosphatase staining. The results indicated that the expression levels of P2X7 receptor and intracellular Ca2+ concentration levels were very high in mature osteoclasts. Furthermore, P2X7 receptor overexpression increased the number of multinucleated osteoclasts and the expression of osteoclastogenesis‑related proteins. P2X7 receptor overexpression was also associated with downstream activation of Ca2+/calcineurin/nuclear factor of activated T cells c1 (NFATc1) signaling and increased expression of autophagy‑related proteins during osteoclast differentiation. By contrast, knockdown of P2X7 receptor exerted the opposite effects. Notably, FK506 (a Ca2+/calcineurin/NFATc1 signaling inhibitor) abrogated P2X7 receptor overexpression‑induced osteoclast differentiation and activation of autophagy. Moreover, 3‑MA (an autophagy inhibitor) significantly suppressed P2X7 receptor overexpression‑induced osteoclast differentiation. In conclusion, P2X7 receptor knockdown may suppress osteoclast differentiation by modulating autophagy and the Ca2+/calcineurin/NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Ran Di
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
8
|
Liu Y, Liu Q, Yin C, Li Y, Wu J, Chen Q, Yu H, Lu A, Guan D. Uncovering Hidden Mechanisms of Different Prescriptions Treatment for Osteoporosis via Novel Bioinformatics Model and Experiment Validation. Front Cell Dev Biol 2022; 10:831894. [PMID: 35211473 PMCID: PMC8861325 DOI: 10.3389/fcell.2022.831894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis (OP) is a systemic disease susceptible to fracture due to the decline of bone mineral density and bone mass, the destruction of bone tissue microstructure, and increased bone fragility. At present, the treatments of OP mainly include bisphosphonates, hormone therapy, and RANKL antibody therapy. However, these treatments have observable side effects and cannot fundamentally improve bone metabolism. Currently, the prescription of herbal medicine and their derived proprietary Chinese medicines are playing increasingly important roles in the treatment of OP due to their significant curative effects and few side effects. Among these prescriptions, Gushukang Granules (GSK), Xianling Gubao Capsules (XLGB), and Er-xian Decoction (EXD) are widely employed at the clinic on therapy of OP, which also is in line with the compatibility principle of “different treatments for the same disease” in herbal medicine. However, at present, the functional interpretation of “different treatments for the same disease” in herbal medicine still lacks systematic quantitative research, especially on the detection of key component groups and mechanisms. To solve this problem, we designed a new bioinformatics model based on random walk, optimized programming, and information gain to analyze the components and targets to figure out the Functional Response Motifs (FRMs) of different prescriptions for the therapy of OP. The distribution of high relevance score, the number of reported evidence, and coverage of enriched pathways were performed to verify the precision and reliability of FRMs. At the same time, the information gain and target influence of each component was calculated, and the key component groups in all FRMs of each prescription were screened to speculate the potential action mode of different prescriptions on the same disease. Results show that the relevance score and the number of reported evidence of high reliable genes in FRMs were higher than those of the pathogenic genes of OP. Furthermore, the gene enrichment pathways in FRMs could cover 79.6, 81, and 79.5% of the gene enrichment pathways in the component-target (C-T) network. Functional pathway enrichment analysis showed that GSK, XLGB, and EXD all treat OP through osteoclast differentiation (hsa04380), calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and PI3K-Akt signaling pathway (hsa04151). Combined with experiments, the key component groups and the mechanism of “different treatments for the same disease” in the three prescriptions and proprietary Chinese medicines were verified. This study provides methodological references for the optimization and mechanism speculation of Chinese medicine prescriptions and proprietary Chinese medicines.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Ma Y, Ran D, Zhao H, Shi X, Song R, Zou H, Liu Z. The effect of P2X7R- mediated Ca 2+ and MAPK signaling in OPG-induced duck embryo osteoclasts differentiation and adhesive structure damage. Life Sci 2022; 293:120337. [PMID: 35074408 DOI: 10.1016/j.lfs.2022.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
Various factors cause animal bone malnutrition disease during intensive culture. Osteoclasts play an important role in regulating bone metabolism disease. Osteoprotegerin (OPG) modulates osteoclast function; however, the mechanism underlying this effect is unknown. Therefore, the present study aimed to explore whether OPG affects duck embryo osteoclast function via purinergic receptor P2X7. OPG significantly inhibited duck embryo osteoclast differentiation and bone resorption, and suppressed F-actin formation. In addition, OPG remarkably impaired duck embryo osteoclasts' adhesive structure. After OPG treatment, the expression of P2X7R significantly reduced, the ATP level and Ca2+-ATPase activity decreased rapidly, and concomitantly suppressed calcium and MAPK signaling. A438079 (a selective P2X7R inhibitor) significantly inhibited duck embryo osteoclast differentiation and bone resorption, and the phosphorylation of Ca2+ regulated proteins (CAM, CAMKII, CAMKIV) and MAPKs (ERK, JNK, and P38) were markedly suppressed. Pretreatment of duck embryo osteoclasts with BzATP, a P2X7R agonist, activated Ca2+ and MAPK signaling. BzATP alleviated OPG-induced duck embryo osteoclast differentiation and adhesive structure damage, and recovered the distribution of adhesion-related proteins in mature duck embryo osteoclasts. Thus, P2RX7-mediated Ca2+ and MAPK signaling has a key function in OPG-induced duck embryo osteoclast differentiation and adhesive structure damage. P2X7R might be an ideal target to treat bone diseases through regulating bone cell activation.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xueni Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
10
|
Agrawal A, Ellegaard M, Haanes KA, Wang N, Gartland A, Ding M, Praetorius H, Jørgensen NR. Absence of P2Y 2 Receptor Does Not Prevent Bone Destruction in a Murine Model of Muscle Paralysis-Induced Bone Loss. Front Endocrinol (Lausanne) 2022; 13:850525. [PMID: 35721713 PMCID: PMC9204296 DOI: 10.3389/fendo.2022.850525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Increased incidence of bone fractures in the elderly is associated with gradual sarcopenia. Similar deterioration of bone quality is seen with prolonged bed rest, spinal cord injuries or in astronauts exposed to microgravity and, preceded by loss of muscle mass. Signaling mechanisms involving uridine-5'-triphosphate (UTP) regulate bone homeostasis via P2Y2 receptors on osteoblasts and osteoclasts, whilst dictating the bone cells' response to mechanical loading. We hypothesized that muscle paralysis-induced loss of bone quality would be prevented in P2Y2 receptor knockout (KO) mice. Female mice injected with botulinum toxin (BTX) in the hind limb developed muscle paralysis and femoral DXA analysis showed reduction in bone mineral density (<10%), bone mineral content (<16%) and bone area (<6%) in wildtype (WT) compared to KO littermates (with <13%, <21%, <9% respectively). The femoral metaphyseal strength was reduced equally in both WT and KO (<37%) and <11% in diaphysis region of KO, compared to the saline injected controls. Tibial micro-CT showed reduced cortical thickness (12% in WT vs. 9% in KO), trabecular bone volume (38% in both WT and KO), trabecular thickness (22% in WT vs. 27% in KO) and increased SMI (26% in WT vs. 19% in KO) after BTX. Tibial histomorphometry showed reduced formation in KO (16%) but unchanged resorption in both WT and KO. Furthermore, analyses of DXA and bone strength after regaining the muscle function showed partial bone recovery in the KO but no difference in the bone recovery in WT mice. Primary osteoblasts from KO mice displayed increased viability and alkaline phosphatase activity but, impaired bone nodule formation. Significantly more TRAP-positive osteoclasts were generated from KO mice but displayed reduced resorptive function. Our data showed that hind limb paralysis with a single dose of BTX caused profound bone loss after 3 weeks, and an incomplete reversal of bone loss by week 19. Our findings indicate no role of the P2Y2 receptor in the bone loss after a period of skeletal unloading in mice or, in the bone recovery after restoration of muscle function.
Collapse
Affiliation(s)
- Ankita Agrawal
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- *Correspondence: Ankita Agrawal, ; Niklas Rye Jørgensen,
| | - Maria Ellegaard
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research and The Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research and The Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Ming Ding
- Department of Orthopedic Surgery and Traumatology, Odense University Hospital, & Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Ankita Agrawal, ; Niklas Rye Jørgensen,
| |
Collapse
|
11
|
Li X. LncRNA MALAT1 promotes osteogenic differentiation of BMSCs and inhibits osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis. J Tissue Eng Regen Med 2021; 16:311-329. [PMID: 34962086 DOI: 10.1002/term.3279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022]
Abstract
Osteoporosis is defined as a skeletal disorder characterized by impairment in bone strength. The potential application of lncRNAs as therapeutic targets for osteoporosis has been unveiled. This study investigated the regulatory mechanism of lncRNA MALAT1 in the differentiation of bone marrow stem cells (BMSCs) and macrophages (Mø) in osteoporosis. MALAT1 expression in peripheral blood of elderly osteoporosis patients and healthy volunteers was detected. BMSCs and mononuclear Mø were isolated and cultured. Osteogenic differentiation of BMSCs and osteoclastic differentiation of Mø were induced. BMSCs and Mø were transfected with si-MALAT1, miR-124-3p mimics, miR-124-3p inhibitor, or pcDNA IGF2BP1, followed by detection of cell differentiation. The target microRNAs (miRs) and downstream genes and signaling pathways of MALAT1 were examined. The ovariectomy-induced mouse model of osteoporosis was established, and the mice were injected with pcDNA-MALAT1. MALAT1 was downregulated in osteoporosis patients, increased in BMSCs after osteogenic differentiation, and diminished in Mø after osteoclastic differentiation. Downregulation of MALAT1 repressed osteogenic differentiation of BMSCs and facilitated osteoclastic differentiation of Mø. MALAT1 upregulated IGF2BP1 expression by competitively binding to miR-124-3p. miR-124-3p silencing reversed the effect of si-MALAT1 on BMSCs and Mø differentiation, and IGF2BP1 upregulation averted the effect of overexpressed-miR-124-3p by activating the Wnt/β-catenin pathway. Upregulation of MALAT1 activated the Wnt/β-catenin pathway and attenuated bone injury in mice. In conclusion, lncRNA MALAT1 promoted the osteogenic differentiation of BMSCs and inhibited osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiangxin Li
- Department of Pain, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun, 130021, Jilin, China
| |
Collapse
|
12
|
Tattersall L, Shah KM, Lath DL, Singh A, Down JM, De Marchi E, Williamson A, Di Virgilio F, Heymann D, Adinolfi E, Fraser WD, Green D, Lawson MA, Gartland A. The P2RX7B splice variant modulates osteosarcoma cell behaviour and metastatic properties. J Bone Oncol 2021; 31:100398. [PMID: 35340569 PMCID: PMC8948168 DOI: 10.1016/j.jbo.2021.100398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
P2RX7B expression confers a survival advantage in TE85+P2RX7B and MNNG-HOS+P2RX7B OS cell lines. P2RX7B expression reduced cell adhesion and activation promoted invasion and migration in vitro. MNNG-HOS+P2RX7B tumours in vivo exhibited ectopic bone formation that A740003 reduced. Expression of P2RX7B in primary tumour cells increased the propensity to metastasise to the lungs. A novel gene axis, FN1/LOX/PDGFB/IGFBP3/BMP4 was downregulated in response to A740003.
Background Osteosarcoma (OS) is the most common type of primary bone cancer affecting children and adolescents. OS has a high propensity to spread meaning the disease is often incurable and fatal. There have been no improvements in survival rates for decades. This highlights an urgent need for the development of novel therapeutic strategies. Here, we report in vitro and in vivo data that demonstrates the role of purinergic signalling, specifically, the B isoform of the purinergic receptor P2RX7 (P2RX7B), in OS progression and metastasis. Methods TE85 and MNNG-HOS OS cells were transfected with P2RX7B. These cell lines were then characterised and assessed for proliferation, cell adhesion, migration and invasion in vitro. We used these cells to perform both paratibial and tail vein injected mouse studies where the primary tumour, bone and lungs were analysed. We used RNA-seq to identify responsive pathways relating to P2RX7B. Results Our data shows that P2RX7B expression confers a survival advantage in TE85 + P2RX7B and MNNG-HOS + P2RX7B human OS cell lines in vitro that is minimised following treatment with A740003, a specific P2RX7 antagonist. P2RX7B expression reduced cell adhesion and P2RX7B activation promoted invasion and migration in vitro, demonstrating a metastatic phenotype. Using an in vivo OS xenograft model, MNNG-HOS + P2RX7B tumours exhibited cancer-associated ectopic bone formation that was abrogated with A740003 treatment. A pro-metastatic phenotype was further demonstrated in vivo as expression of P2RX7B in primary tumour cells increased the propensity of tumour cells to metastasise to the lungs. RNA-seq identified a novel gene axis, FN1/LOX/PDGFB/IGFBP3/BMP4, downregulated in response to A740003 treatment. Conclusion Our data illustrates a role for P2RX7B in OS tumour growth, progression and metastasis. We show that P2RX7B is a future therapeutic target in human OS.
Collapse
Affiliation(s)
- Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Karan M. Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Darren L. Lath
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jennifer M. Down
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - Alex Williamson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Francesco Di Virgilio
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l’Ouest, Saint-Herblain, France
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Italy
| | - William D. Fraser
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Clinical Biochemistry, Norfolk and Norwich University Hospital, Norwich Research Park, Norwich, UK
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Michelle A. Lawson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
- Corresponding author.
| |
Collapse
|
13
|
Bhagavatham SKS, Kannan V, Darshan VMD, Sivaramakrishnan V. Nucleotides modulate synoviocyte proliferation and osteoclast differentiation in macrophages with potential implications for rheumatoid arthritis. 3 Biotech 2021; 11:504. [PMID: 34840926 DOI: 10.1007/s13205-021-03052-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 12/29/2022] Open
Abstract
P2 receptors are nucleotide-activated receptors involved in inflammation, cell proliferation osteoblastogenesis, osteoclastogenesis and their function. They can be potential role players in the pathophysiology of rheumatoid arthritis (RA). Our analysis of gene expression datasets of synovial tissue biopsy from the GEO database shows changes in the expression levels of P2 receptors. HIG-82, a synovial fibroblast cell line and RAW 264.7, a macrophage cell line are good in vitro models to study RA. Nucleotide addition experiments showed UDP Glucose significantly increased the proliferation of synovial fibroblasts (HIG-82). Similarly, nucleotides such as Adenosine tri-phosphate (ATP), Adenosine di-phosphate (ADP), Uridine tri-phosphate (UTP), Uridine di-phosphate (UDP) and Uridine diphosphoglucose (UDPG) induced elevated reactive oxygen species (ROS) and tartrate Resistant Acid Phosphatase (TRAP) activity in RAW264.7 cells. The ADP-induced TRAP could be inhibited by clopidogrel a P2Y12 inhibitor. ATP, ADP, UTP, UDP and UDPG also induced osteoclastogenesis as evident from fused multinucleate cells and expression of osteoclast markers (TRAP, Cathepsin K [CTSK]) as determined by Q-PCR. Apyrase (APY) a nucleotidase and an enzyme that is used to modulate extracellular nucleotide concentration is sufficient to induce osteoclastogenesis. Taken together our results show that nucleotides modulate synoviocyte proliferation and macrophage differentiation into osteoclast and play an important role in RA. Nucleotide receptors might be potential therapeutic targets in RA. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03052-8.
Collapse
|
14
|
The mechanosensory and mechanotransductive processes mediated by ion channels and the impact on bone metabolism: A systematic review. Arch Biochem Biophys 2021; 711:109020. [PMID: 34461086 DOI: 10.1016/j.abb.2021.109020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Mechanical environments were associated with alterations in bone metabolism. Ion channels present on bone cells are indispensable for bone metabolism and can be directly or indirectly activated by mechanical stimulation. This review aimed to discuss the literature reporting the mechanical regulatory effects of ion channels on bone cells and bone tissue. An electronic search was conducted in PubMed, Embase and Web of Science. Studies about mechanically induced alteration of bone cells and bone tissue by ion channels were included. Ion channels including TRP family channels, Ca2+ release-activated Ca2+ channels (CRACs), Piezo1/2 channels, purinergic receptors, NMDA receptors, voltage-sensitive calcium channels (VSCCs), TREK2 potassium channels, calcium- and voltage-dependent big conductance potassium (BKCa) channels, small conductance, calcium-activated potassium (SKCa) channels and epithelial sodium channels (ENaCs) present on bone cells and bone tissue participate in the mechanical regulation of bone development in addition to contributing to direct or indirect mechanotransduction such as altered membrane potential and ionic flux. Physiological (beneficial) mechanical stimulation could induce the anabolism of bone cells and bone tissue through ion channels, but abnormal (harmful) mechanical stimulation could also induce the catabolism of bone cells and bone tissue through ion channels. Functional expression of ion channels is vital for the mechanotransduction of bone cells. Mechanical activation (opening) of ion channels triggers ion influx and induces the activation of intracellular modulators that can influence bone metabolism. Therefore, mechanosensitive ion channels provide new insights into therapeutic targets for the treatment of bone-related diseases such as osteopenia and aseptic implant loosening.
Collapse
|
15
|
Witzler M, Vermeeren S, Kolevatov RO, Haddad R, Gericke M, Heinze T, Schulze M. Evaluating Release Kinetics from Alginate Beads Coated with Polyelectrolyte Layers for Sustained Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:6719-6731. [PMID: 35006974 DOI: 10.1021/acsabm.1c00417] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Current approaches in stem cell-based bone tissue engineering require a release of bioactive compounds over up to 2 weeks. This study presents a polyelectrolyte-layered system featuring sustained release of water-soluble drugs with decreased burst release. The bioactive compounds adenosine 5'-triphosphate (ATP), suramin, and A740003 (a less water-soluble purinergic receptor ligand) were incorporated into alginate hydrogel beads subsequently layered with different polyelectrolytes (chitosan, poly(allyl amine), alginate, or lignosulfonate). Drug release into aqueous medium was monitored over 14 days and evaluated using Korsmeyer-Peppas, Peppas-Sahlin, Weibull models, and a Langmuir-like "Two-Stage" model. Release kinetics strongly depended on both the drug and the polyelectrolyte system. For ATP, five alternating layers of poly(allyl amine) and alginate proved to be most effective in sustaining the release. Release of suramin could be prolonged best with lignosulfonate as polyanion. A740003 showed prolonged release even without layering. Applying polyelectrolyte layers significantly slowed down the burst release. Release curves could be best described with the Langmuir-like model.
Collapse
Affiliation(s)
- Markus Witzler
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany.,Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Sarah Vermeeren
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Roman O Kolevatov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Martin Gericke
- Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Thomas Heinze
- Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| |
Collapse
|
16
|
Ribet ABP, Ng PY, Pavlos NJ. Membrane Transport Proteins in Osteoclasts: The Ins and Outs. Front Cell Dev Biol 2021; 9:644986. [PMID: 33718388 PMCID: PMC7952445 DOI: 10.3389/fcell.2021.644986] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
During bone resorption, the osteoclast must sustain an extraordinarily low pH environment, withstand immense ionic pressures, and coordinate nutrient and waste exchange across its membrane to sustain its unique structural and functional polarity. To achieve this, osteoclasts are equipped with an elaborate set of membrane transport proteins (pumps, transporters and channels) that serve as molecular ‘gatekeepers’ to regulate the bilateral exchange of ions, amino acids, metabolites and macromolecules across the ruffled border and basolateral domains. Whereas the importance of the vacuolar-ATPase proton pump and chloride voltage-gated channel 7 in osteoclasts has long been established, comparatively little is known about the contributions of other membrane transport proteins, including those categorized as secondary active transporters. In this Special Issue review, we provide a contemporary update on the ‘ins and outs’ of membrane transport proteins implicated in osteoclast differentiation, function and bone homeostasis and discuss their therapeutic potential for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Amy B P Ribet
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Pei Ying Ng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
17
|
Osteoclast-derived small extracellular vesicles induce osteogenic differentiation via inhibiting ARHGAP1. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1191-1203. [PMID: 33664997 PMCID: PMC7900016 DOI: 10.1016/j.omtn.2021.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Activated osteoclasts release large amounts of small extracellular vesicles (sEVs) during bone remodeling. However, little is known about whether osteoclast-derived sEVs affect surrounding cells. In this study, osteoclasts were generated by stimulating bone marrow macrophages (BMMs) with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear actor κB ligand (RANKL). We performed microarray analysis of sEV-microRNAs (miRNAs)s secreted from osteoclast at different stages and identified four miRNAs that were highly expressed in mature osteoclast-derived sEVs. One of these miRNAs, miR-324, significantly induced osteogenic differentiation and mineralization of primary mesenchymal stem cells (MSCs) in vitro by targeting ARHGAP1, a negative regulator of osteogenic differentiation. We next fabricated an sEV-modified scaffold by coating decalcified bone matrix (DBM) with osteoclast-derived sEVs, and the pro-osteogenic regeneration activities of the sEV-modified scaffold were validated in a mouse calvarial defect model. Notably, miR-324-enriched sEV-modified scaffold showed the highest capacity on bone regeneration, whereas inhibition of miR-324 in sEVs abrogated these effects. Taken together, our findings suggest that miR-324-contained sEVs released from mature osteoclast play an essential role in the regulation of osteogenic differentiation and potentially bridge the coupling between osteoclasts and MSCs.
Collapse
|
18
|
Extracellular purines and bone homeostasis. Biochem Pharmacol 2021; 187:114425. [PMID: 33482152 DOI: 10.1016/j.bcp.2021.114425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Maintenance of a healthy skeleton is highly dependent on an intricate regulation of bone metabolism, as changes in the balance between bone formation and bone resorption leads to bone loss, bone fragility and ultimately bone fractures. During the last three decades it has become increasingly evident that physiological release of purines in the extracellular space is imperative for bone homeostasis and is orchestrated via the network of purinoceptors. Adenosine derivatives are released locally in the skeleton either by the bone forming osteoblasts or the bone degrading osteoclasts actioned directly by processes like mechanical loading and indirectly by systemic hormones. Adenosine derivatives directly affect the bone cells by their action on the membranal receptors or have co-stimulatory actions with bone active hormones such as parathyroid hormone or the gut hormones. Any deviations leading to increased levels of extracellular adenosine derivatives in the bone tissue such as in pathologic situations, trigger complex pathways with opposing effects on tissue health as presented by studies involving a range of model organisms. Pathological conditions where skeletal purinergic signaling is affected are following tissue injury like microdamage and macroscopic fractures; and during inflammatory processes where nucleotides and nucleosides play an important part in the pathophysiological skeletal response. Moreover, adenosine derivatives also play an important role in the interaction between malignant cells and bone cells in several types of cancers involving the skeleton, such as but not limited to multiple myeloma and bone osteolysis. Much knowledge has been gained over the last decades. The net- resulting phenotype of adenosine derivatives in bone (including the ratio of ATP to Adenosine) is highly dependent on CD39 and CD73 enzymes together with the expression and activity of the specific receptors. Thus, each component is important in the physiological and pathophysiological processes in bone. Promising perspectives await in the future in treating skeletal disorders with medications targeting the individual components of the purinergic signaling pathway.
Collapse
|
19
|
Lu J, Zhou Z, Ma J, Lu N, Lei Z, Du D, Chen A. Tumour necrosis factor-α promotes BMHSC differentiation by increasing P2X7 receptor in oestrogen-deficient osteoporosis. J Cell Mol Med 2020; 24:14316-14324. [PMID: 33169524 PMCID: PMC7753841 DOI: 10.1111/jcmm.16048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of tumour necrosis factor α (TNF‐α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co‐cultured with TNF‐α to explore the effect of TNF‐α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti‐TNF‐α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF‐α at a concentration of 20 ng/mL up‐regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti‐TNF‐α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency‐induced osteoporosis.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Jun Ma
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Nan Lu
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Zhu Lei
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Di Du
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Aimin Chen
- Department of Orthopedic Trauma Surgery, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
20
|
Transcriptomic profiling of feline teeth highlights the role of matrix metalloproteinase 9 (MMP9) in tooth resorption. Sci Rep 2020; 10:18958. [PMID: 33144645 PMCID: PMC7641192 DOI: 10.1038/s41598-020-75998-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Tooth resorption (TR) in domestic cats is a common and painful disease characterised by the loss of mineralised tissues from the tooth. Due to its progressive nature and unclear aetiology the only treatment currently available is to extract affected teeth. To gain insight into TR pathogenesis, we characterised the transcriptomic changes involved in feline TR by sequencing RNA extracted from 14 teeth (7 with and 7 without signs of resorption) collected from 11 cats. A paired comparison of teeth from the same cat with and without signs of resorption identified 1,732 differentially expressed genes, many of which were characteristic of osteoclast activity and differentiation, in particular matrix metalloproteinase 9 (MMP9). MMP9 expression was confirmed by qPCR and immunocytochemistry of odontoclasts located in TR lesions. A hydroxamate-based MMP9 inhibitor reduced both osteoclast formation and resorption activity while siRNA targeting MMP9 also inhibited osteoclast differentiation although had little effect on resorption activity. Overall, these results suggest that increased MMP9 expression is involved in the progress of TR pathogenesis and that MMP9 may be a potential therapeutic target in feline TR.
Collapse
|
21
|
Human P2X7 Receptor Causes Cycle Arrest in RPMI-8226 Myeloma Cells to Alter the Interaction with Osteoblasts and Osteoclasts. Cells 2020; 9:cells9112341. [PMID: 33105696 PMCID: PMC7690412 DOI: 10.3390/cells9112341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is a malignant expansion of plasma cells and aggressively affects bone health. We show that P2X7 receptor altered myeloma growth, which affects primary bone cells in vitro. Expression on six human myeloma cell lines confirmed the heterogeneity associated with P2X7 receptor. Pharmacology with 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP) as agonist showed dose-dependent membranal pores on RPMI-8226 (p = 0.0027) and blockade with P2X7 receptor antagonists. Ca2+ influx with increasing doses of BzATP (p = 0.0040) was also inhibited with antagonists. Chronic P2X7 receptor activation reduced RPMI-8226 viability (p = 0.0208). No apoptosis or RPMI-8226 death was observed by annexin V/propidium iodide (PI) labeling and caspase-3 cleavage, respectively. However, bromodeoxyuridine (BrdU) labelling showed an accumulation of RPMI-8226 in the S phase of cell cycle progression (61.5%, p = 0.0114) with significant decline in G0/G1 (5.2%, p = 0.0086) and G2/M (23.5%, p = 0.0015) phases. As myeloma pathology depends on a positive and proximal interaction with bone, we show that P2X7 receptor on RPMI-8226 inhibited the myeloma-induced suppression on mineralization (p = 0.0286) and reversed the excessive osteoclastic resorption. Our results demonstrate a view of how myeloma cell growth is halted by P2X7 receptor and the consequences on myeloma–osteoblast and myeloma–osteoclast interaction in vitro.
Collapse
|
22
|
Carina V, Della Bella E, Costa V, Bellavia D, Veronesi F, Cepollaro S, Fini M, Giavaresi G. Bone's Response to Mechanical Loading in Aging and Osteoporosis: Molecular Mechanisms. Calcif Tissue Int 2020; 107:301-318. [PMID: 32710266 DOI: 10.1007/s00223-020-00724-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Mechanotransduction is pivotal in the maintenance of homeostasis in different tissues and involves multiple cell signaling pathways. In bone, mechanical stimuli regulate the balance between bone formation and resorption; osteocytes play a central role in this regulation. Dysfunctions in mechanotransduction signaling or in osteocytes response lead to an imbalance in bone homeostasis. This alteration is very relevant in some conditions such as osteoporosis and aging. Both are characterized by increased bone weakness due to different causes, for example, the increase of osteocyte apoptosis that cause an alteration of fluid space, or the alteration of molecular pathways. There are intertwined yet very different mechanisms involved among the cell-intrinsic effects of aging on bone, the cell-intrinsic and tissue-level effects of estrogen/androgen withdrawal on bone, and the effects of reduced mechanical loading on bone, which are all involved to some degree in how aged bone fails to respond properly to stress/strain compared to younger bone. This review aims at clarifying how the cellular and molecular pathways regulated and induced in bone by mechanical stimulation are altered with aging and in osteoporosis, to highlight new possible targets for antiresorptive or anabolic bone therapeutic approaches.
Collapse
Affiliation(s)
- Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | | | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Veronesi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Simona Cepollaro
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
23
|
Xu XY, Tian BM, Xia Y, Xia YL, Li X, Zhou H, Tan YZ, Chen FM. Exosomes derived from P2X7 receptor gene-modified cells rescue inflammation-compromised periodontal ligament stem cells from dysfunction. Stem Cells Transl Med 2020; 9:1414-1430. [PMID: 32597574 PMCID: PMC7581448 DOI: 10.1002/sctm.19-0418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/24/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Although cellular therapy has been proposed for inflammation‐related disorders such as periodontitis for decades, clinical application has been unsuccessful. One explanation for these disappointing results is that the functions of stem cells are substantially compromised when they are transplanted into an inflammatory in vivo milieu. Considering the previous finding that P2X7 receptor (P2X7R) gene modification is able to reverse inflammation‐mediated impairment of periodontal ligament stem cells (PDLSCs), we further hypothesized that cells subjected to P2X7R gene transduction also exert influences on other cells within an in vivo milieu via an exosome‐mediated paracrine mechanism. To define the paracrine ability of P2X7R gene‐modified cells, P2X7R gene‐modified stem cell‐derived conditional medium (CM‐Ad‐P2X7) and exosomes (Exs‐Ad‐P2X7) were used to incubate PDLSCs. In an inflammatory osteogenic microenvironment, inflammation‐mediated changes in PDLSCs were substantially reduced, as shown by quantitative real‐time PCR (qRT‐PCR) analysis, Western blot analysis, alkaline phosphatase (ALP) staining/activity assays, and Alizarin red staining. In addition, the Agilent miRNA microarray system combined with qRT‐PCR analysis revealed that miR‐3679‐5p, miR‐6515‐5p, and miR‐6747‐5p were highly expressed in Exs‐Ad‐P2X7. Further functional tests and luciferase reporter assays revealed that miR‐3679‐5p and miR‐6747‐5p bound directly to the GREM‐1 protein, while miR‐6515‐5p bound to the GREM‐1 protein indirectly; these effects combined to rescue inflammation‐compromised PDLSCs from dysfunction. Thus, in addition to maintaining their robust functionality under inflammatory conditions, P2X7R gene‐modified stem cells may exert positive influences on their neighbors via a paracrine mechanism, pointing to a novel strategy for modifying the harsh local microenvironment to accommodate stem cells and promote improved tissue regeneration.
Collapse
Affiliation(s)
- Xin-Yue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu Xia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yun-Long Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Huan Zhou
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi-Zhou Tan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
24
|
Yang Z, Yue Z, Ma X, Xu Z. Calcium Homeostasis: A Potential Vicious Cycle of Bone Metastasis in Breast Cancers. Front Oncol 2020; 10:293. [PMID: 32211326 PMCID: PMC7076168 DOI: 10.3389/fonc.2020.00293] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cancers have been considered as one of the most severe health problems in the world. Efforts to elucidate the cancer progression reveal the importance of bone metastasis for tumor malignancy, one of the leading causes for high mortality rate. Multiple cancers develop bone metastasis, from which breast cancers exhibit the highest rate and have been well-recognized. Numerous cells and environmental factors have been believed to synergistically facilitate bone metastasis in breast cancers, from which breast cancer cells, osteoclasts, osteoblasts, and their produced cytokines have been well-recognized to form a vicious cycle that aggravates tumor malignancy. Except the cytokines or chemokines, calcium ions are another element largely released from bones during bone metastasis that leads to hypercalcemia, however, have not been well-characterized yet in modulation of bone metastasis. Calcium ions act as a type of unique second messenger that exhibits omnipotent functions in numerous cells, including tumor cells, osteoclasts, and osteoblasts. Calcium ions cannot be produced in the cells and are dynamically fluxed among extracellular calcium pools, intracellular calcium storages and cytosolic calcium signals, namely calcium homeostasis, raising a possibility that calcium ions released from bone during bone metastasis would further enhance bone metastasis and aggravate tumor progression via the vicious cycle due to abnormal calcium homeostasis in breast cancer cells, osteoclasts and osteoblasts. TRPs, VGCCs, SOCE, and P2Xs are four major calcium channels/routes mediating extracellular calcium entry and affect calcium homeostasis. Here we will summarize the overall functions of these four calcium channels in breast cancer cells, osteoclasts and osteoblasts, providing evidence of calcium homeostasis as a vicious cycle in modulation of bone metastasis in breast cancers.
Collapse
Affiliation(s)
- Zhengfeng Yang
- Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiying Yue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinrun Ma
- Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Paton-Hough J, Tazzyman S, Evans H, Lath D, Down JM, Green AC, Snowden JA, Chantry AD, Lawson MA. Preventing and Repairing Myeloma Bone Disease by Combining Conventional Antiresorptive Treatment With a Bone Anabolic Agent in Murine Models. J Bone Miner Res 2019; 34:783-796. [PMID: 30320927 PMCID: PMC6607020 DOI: 10.1002/jbmr.3606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 12/14/2022]
Abstract
Multiple myeloma is a plasma cell malignancy, which develops in the bone marrow and frequently leads to severe bone destruction. Current antiresorptive therapies to treat the bone disease do little to repair damaged bone; therefore, new treatment strategies incorporating bone anabolic therapies are urgently required. We hypothesized that combination therapy using the standard of care antiresorptive zoledronic acid (Zol) with a bone anabolic (anti-TGFβ/1D11) would be more effective at treating myeloma-induced bone disease than Zol therapy alone. JJN3 myeloma-bearing mice (n = 8/group) treated with combined Zol and 1D11 resulted in a 48% increase (p ≤ 0.001) in trabecular bone volume (BV/TV) compared with Zol alone and a 65% increase (p ≤ 0.0001) compared with 1D11 alone. Our most significant finding was the substantial repair of U266-induced osteolytic bone lesions with combination therapy (n = 8/group), which resulted in a significant reduction in lesion area compared with vehicle (p ≤ 0.01) or Zol alone (p ≤ 0.01). These results demonstrate that combined antiresorptive and bone anabolic therapy is significantly more effective at preventing myeloma-induced bone disease than Zol alone. Furthermore, we demonstrate that combined therapy is able to repair established myelomatous bone lesions. This is a highly translational strategy that could significantly improve bone outcomes and quality of life for patients with myeloma. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Julia Paton-Hough
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Simon Tazzyman
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Holly Evans
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Darren Lath
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Jenny M Down
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Alanna C Green
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Andrew D Chantry
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK.,Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Michelle A Lawson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Therkildsen JR, Christensen MG, Tingskov SJ, Wehmöller J, Nørregaard R, Praetorius HA. Lack of P2X 7 Receptors Protects against Renal Fibrosis after Pyelonephritis with α-Hemolysin-Producing Escherichia coli. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1201-1211. [PMID: 30926332 DOI: 10.1016/j.ajpath.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023]
Abstract
Severe urinary tract infections are commonly caused by sub-strains of Escherichia coli secreting the pore-forming virulence factor α-hemolysin (HlyA). Repeated or severe cases of pyelonephritis can cause renal scarring that subsequently can lead to progressive failure. We have previously demonstrated that HlyA releases cellular ATP directly through its membrane pore and that acute HlyA-induced cell damage is completely prevented by blocking ATP signaling. Local ATP signaling and P2X7 receptor activation play a key role in the development of tissue fibrosis. This study investigated the effect of P2X7 receptors on infection-induced renal scarring in a murine model of pyelonephritis. Pyelonephritis was induced by injecting 100 million HlyA-producing, uropathogenic E. coli into the urinary bladder of BALB/cJ mice. A similar degree of pyelonephritis and mortality was confirmed at day 5 after infection in P2X7+/+ and P2X7-/- mice. Fibrosis was first observed 2 weeks after infection, and the data clearly demonstrated that P2X7-/- mice and mice exposed to the P2X7 antagonist, brillian blue G, show markedly less renal fibrosis 14 days after infection compared with controls (P < 0.001). Immunohistochemistry revealed comparable early neutrophil infiltration in the renal cortex from P2X7+/+ and P2X7-/- mice. Interestingly, lack of P2X7 receptors resulted in diminished macrophage infiltration and reduced neutrophil clearance in the cortex of P2X7-/- mice. Hence, this study suggests the P2X7 receptor to be an appealing antifibrotic target after renal infections.
Collapse
Affiliation(s)
| | | | - Stine J Tingskov
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julia Wehmöller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
27
|
Brooks PJ, Glogauer M, McCulloch CA. An Overview of the Derivation and Function of Multinucleated Giant Cells and Their Role in Pathologic Processes. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1145-1158. [PMID: 30926333 DOI: 10.1016/j.ajpath.2019.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Monocyte lineage cells play important roles in health and disease. Their differentiation into macrophages is crucial for a broad array of immunologic processes that regulate inflammation, neoplasia, and infection. In certain pathologic conditions, such as foreign body reactions and peripheral inflammatory lesions, monocytes fuse to form large, multinucleated giant cells (MGCs). Currently, our knowledge of the fusion mechanisms of monocytes and the regulation of MGC formation and function in discrete pathologies is limited. Herein, we consider the types and function of MGCs in disease and assess the mechanisms by which monocyte fusion contributes to the formation of MGCs. An improved understanding of the cellular origins and metabolic functions of MGCs will facilitate their identification and ultimately the treatment of diseases and disorders that involve MGCs.
Collapse
Affiliation(s)
- Patricia J Brooks
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Michael Glogauer
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Xu XY, He XT, Wang J, Li X, Xia Y, Tan YZ, Chen FM. Role of the P2X7 receptor in inflammation-mediated changes in the osteogenesis of periodontal ligament stem cells. Cell Death Dis 2019; 10:20. [PMID: 30622236 PMCID: PMC6325129 DOI: 10.1038/s41419-018-1253-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Accumulating evidence indicates that the pluripotency of periodontal ligament stem cells (PDLSCs) is compromised under inflammatory conditions; however, the underlying mechanisms remain largely unexplored. In this study, we hypothesize that the P2X7 receptor (P2X7R) is a key molecule linked to inflammation-associated impairment of PDLSCs. We first investigated P2X7R expression in PDLSCs under normal and inflammatory conditions and then determined the effect of a P2X7R agonist (BzATP) or antagonist (BBG) on PDLSC osteogenesis under various conditions. Gene-modified PDLSCs were used to further examine the role of P2X7R and the signaling pathway underlying P2X7R-enhanced osteogenesis. We found that inflammatory conditions decreased P2X7R expression in PDLSCs and reduced osteogenesis in these cells. In addition, activation of P2X7R by BzATP or overexpression of P2X7R via gene transduction reversed the inflammation-mediated decrease in PDLSC osteogenic differentiation. When selected osteogenesis-related signaling molecules were screened, the PI3K-AKT-mTOR pathway was identified as potentially involved in P2X7R-enhanced PDLSC osteogenesis. Our data reveal a crucial role for P2X7R in PDLSC osteogenesis under inflammatory conditions, suggesting a new therapeutic target to reverse or rescue inflammation-mediated changes in PDLSCs for future mainstream therapeutic uses.
Collapse
Affiliation(s)
- Xin-Yue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jia Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yu Xia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yi-Zhou Tan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
29
|
Du D, Zhou Z, Zhu L, Hu X, Lu J, Shi C, Chen F, Chen A. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y 2 receptor in estrogen-deficiency induced osteoporosis. Bone 2018; 117:161-170. [PMID: 30236554 DOI: 10.1016/j.bone.2018.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Tumor Necrosis Factor-α (TNF-α)-inhibited osteogenic differentiation of mesenchymal stem cells (MSCs) contributes to impaired bone formation, which plays a central role in the pathogenesis of postmenopausal osteoporosis. However, the exact mechanisms of TNF-α-inhibited osteoblast differentiation have not been fully elucidated. Multiple P2 purinoceptor subtypes are expressed in several species of osteoblasts and are confirmed to regulate bone metabolism. The purpose of this study is to investigate whether P2 purinoceptors are involved in TNF-α-inhibited osteoblast differentiation. This study shows TNF-α increased P2Y2 receptor expression in the differentiation of MSCs into osteoblasts in a noticeable manner. Overexpressing or silencing of the P2Y2 receptor either impaired or promoted osteogenic differentiation of MSCs significantly. Silencing of the P2Y2 receptor attenuated the inhibitory effects of TNF-α on osteoblastic differentiation of MSCs. In addition, silencing of the P2Y2 receptor evidently alleviated TNF-α-inhibited MSC proliferation. P2Y2 receptor expression was mechanistically upregulated by TNF-α mainly through extracellular regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways. Overall, our results revealed a novel function of the P2Y2 receptor and suggested suppressing the P2Y2 receptor may be an effective strategy to promote bone formation in estrogen deficiency-induced osteoporosis.
Collapse
Affiliation(s)
- Di Du
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Lei Zhu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Xianteng Hu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Jiajia Lu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Changgui Shi
- Department of Spine Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Fangjing Chen
- Department of Orthopedics, General Hospital of Jinan Military Command, Jinan 250031, Shandong, China.
| | - Aimin Chen
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China.
| |
Collapse
|
30
|
Ottensmeyer PF, Witzler M, Schulze M, Tobiasch E. Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells. Int J Mol Sci 2018; 19:E3601. [PMID: 30441872 PMCID: PMC6274752 DOI: 10.3390/ijms19113601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
The need for bone grafts is high, due to age-related diseases, such as tumor resections, but also accidents, risky sports, and military conflicts. The gold standard for bone grafting is the use of autografts from the iliac crest, but the limited amount of accessible material demands new sources of bone replacement. The use of mesenchymal stem cells or their descendant cells, namely osteoblast, the bone-building cells and endothelial cells for angiogenesis, combined with artificial scaffolds, is a new approach. Mesenchymal stem cells (MSCs) can be obtained from the patient themselves, or from donors, as they barely cause an immune response in the recipient. However, MSCs never fully differentiate in vitro which might lead to unwanted effects in vivo. Interestingly, purinergic receptors can positively influence the differentiation of both osteoblasts and endothelial cells, using specific artificial ligands. An overview is given on purinergic receptor signaling in the most-needed cell types involved in bone metabolism-namely osteoblasts, osteoclasts, and endothelial cells. Furthermore, different types of scaffolds and their production methods will be elucidated. Finally, recent patents on scaffold materials, as wells as purinergic receptor-influencing molecules which might impact bone grafting, are discussed.
Collapse
Affiliation(s)
- Patrick Frank Ottensmeyer
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Markus Witzler
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|