1
|
Liu D, Wu H. The joint effects of local, climatic, and spatial variables determine soil oribatid mite community assembly along a temperate forest elevational gradient. Ecol Evol 2024; 14:e11590. [PMID: 38966244 PMCID: PMC11222168 DOI: 10.1002/ece3.11590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Numerous factors influence mountain biodiversity variation across elevational gradients and recognizing the relative importance is vital for understanding species distribution mechanisms. We examined oribatid mites at nine elevations (from 600 to 2200 m a.s.l) and four vegetation types from mixed coniferous and broad-leaved forests to alpine tundra on Changbai Mountain. We assessed the contribution of environmental factors (climatic and local factors) and spatial processes (geographic or elevation distances) to oribatid mite community assembly and identified 59 oribatid mite species from 38 families and 51 genera. With increasing elevation, species richness and the Shannon index declined significantly, whereas abundance followed a hump-shaped trend. Soil TP, NH4 +-N, MAT, MAP, and elevation were the critical variables shaping oribatid mite communities based on random forest analysis. Moreover, environmental and spatial factors, and oribatid mite communities were significantly correlated based on Mantel and partial Mantel tests. Local characteristics (3.9%), climatic factors (1.9%), and spatial filtering (8.8%) played crucial roles in determining oribatid mite communities across nine elevational bands (based on variation partitioning analyses of abundance data). Within the same vegetation types, spatial processes had relatively little effects, with local characteristics the dominant drivers of oribatid mite community variation. Environmental and spatial filters together shape oribatid mite community assembly and their relative roles varied with elevation and vegetation type. These findings are crucial for the conservation, restoration, and management of Changbai mountain ecosystems in the context of climate change, along with the prediction of future vertical biotic gradient pattern evolution.
Collapse
Affiliation(s)
- Dandan Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunJilinChina
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunJilinChina
| |
Collapse
|
2
|
de Mendoza G, Gansfort B, Catalan J, Traunspurger W. Female proportion has a stronger influence on dispersal than body size in nematodes of mountain lakes. PLoS One 2024; 19:e0303864. [PMID: 38758759 PMCID: PMC11101049 DOI: 10.1371/journal.pone.0303864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Nematodes disperse passively and are amongst the smallest invertebrates on Earth. Free-living nematodes in mountain lakes are highly tolerant of environmental variations and are thus excellent model organisms in dispersal studies, since species-environment relationships are unlikely to interfere. In this study, we investigated how population or organism traits influence the stochastic physical nature of passive dispersal in a topologically complex environment. Specifically, we analyzed the influence of female proportion and body size on the geographical distribution of nematode species in the mountain lakes of the Pyrenees. We hypothesized that dispersal is facilitated by (i) a smaller body size, which would increase the rate of wind transport, and (ii) a higher female proportion within a population, which could increase colonization success because many nematode species are capable of parthenogenetic reproduction. The results showed that nematode species with a low proportion of females tend to have clustered spatial distributions that are not associated with patchy environmental conditions, suggesting greater barriers to dispersal. When all species were pooled, the overall proportion of females tended to increase at the highest elevations, where dispersal between lakes is arguably more difficult. The influence of body size was barely relevant for nematode distributions. Our study highlights the relevance of female proportion as a mechanism that enhances the dispersal success of parthenogenetic species, and that female sex is a determining factor in metacommunity connectivity.
Collapse
Affiliation(s)
- Guillermo de Mendoza
- Institute of Geography, Faculty of Oceanography and Geography, University of Gdansk, Gdańsk, Poland
- Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Birgit Gansfort
- Department of Animal Ecology, Bielefeld University, Bielefeld, Germany
| | - Jordi Catalan
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
3
|
Niu X, Wang P, Xie Z, Gao M, Qian S, Saifutdinov R, Aspe NM, Wu D, Guan P. Soil nematode metacommunities in different land covers: Assessment at the local and regional scales. Ecol Evol 2024; 14:e11468. [PMID: 38799394 PMCID: PMC11116945 DOI: 10.1002/ece3.11468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The metacommunity theory enhances our understanding of how ecological processes regulate community structure. Yet, unraveling the complexities of soil nematode metacommunity structures across various spatial scales and determining the factors influencing these patterns remains challenging. Therefore, we conducted an investigation on soil nematode metacommunities spanning from north to south in the Northeastern China. Our aim was to test whether nematode metacommunities were structured by different drivers under three land covers (i.e., farmland, grassland and woodland) at the local and regional scales. The results revealed that the Clementsian, Gleasonian and their quasi-structures of soil nematodes collectively accounted for 93% of the variation across the three land covers at the local and regional scales. These structures suggest that the soil nematode metacommunities in the Northeast China responded to fluctuations in environmental gradients. At the local scale, metacommunities were primarily shaped by biological interactions. At the regional scale, environmental heterogeneity, dispersal limitation and biological interactions all contributed to nematode metacommunities. Meanwhile, biological interactions under three land covers were represented within different trophic groups, with plant parasites predominant in farmlands and bacterivores in grasslands and woodlands. In conclusion, the metacommunity structures of soil nematodes remain stable at different spatial scales and land covers. Biological interactions are widespread among nematodes regardless of changes in spatial scales and land covers. This study reveals the importance of nematode sensitivity to the environment and biological interactions in shaping the nematode metacommunities, potentially enhancing our understanding of the spatial patterns of nematode metacommunities.
Collapse
Affiliation(s)
- Ximei Niu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Ping Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, Ministry of EducationNortheast Normal UniversityChangchunChina
| | - Zhijing Xie
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, Ministry of EducationNortheast Normal UniversityChangchunChina
| | - Meixiang Gao
- Department of Geography and Spatial Information TechniquesNingbo UniversityNingboChina
| | - Siru Qian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Ruslan Saifutdinov
- Laboratory for Soil Ecological FunctionsA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Nonillon M. Aspe
- College of Marine and Allied SciencesMindanao State University at NaawanNaawanPhilippines
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, Ministry of EducationNortheast Normal UniversityChangchunChina
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Pingting Guan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, Ministry of EducationNortheast Normal UniversityChangchunChina
| |
Collapse
|
4
|
Parr McQueen J, Gattoni K, Gendron E, Schmidt S, Sommers P, Porazinska DL. External and Internal Microbiomes of Antarctic Nematodes are Distinct, but More Similar to each other than the Surrounding Environment. J Nematol 2023; 55:20230004. [PMID: 36969543 PMCID: PMC10035304 DOI: 10.2478/jofnem-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 03/11/2023] Open
Abstract
Host-associated microbiomes have primarily been examined in the context of their internal microbial communities, but many animal species also contain microorganisms on external host surfaces that are important to host physiology. For nematodes, single strains of bacteria are known to adhere to the cuticle (e.g., Pasteuria penetrans), but the structure of a full external microbial community is uncertain. In prior research, we showed that internal gut microbiomes of nematodes (Plectus murrayi, Eudorylaimus antarcticus) and tardigrades from Antarctica's McMurdo Dry Valleys were distinct from the surrounding environment and primarily driven by host identity. Building on this work, we extracted an additional set of individuals containing intact external microbiomes and amplified them for 16S and 18S rRNA metabarcoding. Our results showed that external bacterial microbiomes were more diverse than internal microbiomes, but less diverse than the surrounding environment. Host-specific bacterial compositional patterns were observed, and external microbiomes were most similar to their respective internal microbiomes. However, external microbiomes were more influenced by the environment than the internal microbiomes were. Non-host eukaryotic communities were similar in diversity to internal eukaryotic communities, but exhibited more stochastic patterns of assembly compared to bacterial communities, suggesting the lack of a structured external eukaryotic microbiome. Altogether, we provide evidence that nematode and tardigrade cuticles are inhabited by robust bacterial communities that are substantially influenced by the host, albeit less so than internal microbiomes are.
Collapse
Affiliation(s)
- J. Parr McQueen
- Department of Entomology and Nematology, University of Florida, FL 32611FloridaUSA
| | - K. Gattoni
- Department of Entomology and Nematology, University of Florida, FL 32611FloridaUSA
| | - E.M.S. Gendron
- Department of Entomology and Nematology, University of Florida, FL 32611FloridaUSA
| | - S.K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO 80309Colorado BoulderUSA
| | - P. Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO 80309Colorado BoulderUSA
| | - D. L. Porazinska
- Department of Entomology and Nematology, University of Florida, FL 32611FloridaUSA
| |
Collapse
|
5
|
Two new tardigrade genera from New Zealand's Southern Alp glaciers display morphological stasis and parallel evolution. Mol Phylogenet Evol 2023; 178:107634. [PMID: 36208696 DOI: 10.1016/j.ympev.2022.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Tardigrada is an invertebrate phylum that often constitutes a dominant micrometazoan group on glaciers worldwide. We investigated tardigrades residing in surface ice above the equilibrium line altitude (ELA) on three temperate glaciers of New Zealand's Southern Alps. Morphological, morphometric and multilocus DNA analyses (CO1, 18S rRNA, 28S rRNA, ITS-2) revealed two new genera comprising four species, of which two are formally described here: Kopakaius gen. nov. nicolae sp. nov. and Kararehius gen. nov. gregorii sp. nov. The former is represented by three genetically distinct phyletic lineages akin to species. According to CO1, Kopakaius gen. nov. nicolae sp. nov. inhabits Whataroa Glacier only while the remaining two Kopakaius species occur on Fox and Franz Joseph Glaciers, suggesting low dispersal capabilities. Although morphological characteristics of the new genera could indicate affinity with the subfamily Itaquasconinae, phylogenetic analysis placed them confidently in the subfamily Diphasconinae. Kopakaius gen. nov. lack placoids in the pharynx similar with some Itaquasconinae, whereas dark pigmentation and claw shape aligns them with the glacier-obligate genus, Cryobiotus (subfamily Hypsibiinae), which is an example of parallel evolution. The second genus, Kararehius gen nov. could be classified as Adropion-like (subfamily Itaquasconinae), but differs greatly by genetics (placed in the subfamily Diphasconinae) as well as morphology (e.g., lack of septulum), exemplify deep stasis in Hypsibiidae. Our results suggest that glacier fragmentation during the Pleistocene triggered tardigrade speciation, making it a suitable model for studies on allopatric divergence in glacier meiofauna.
Collapse
|
6
|
Microinvertebrate Colonization of New Zealand’s Thermally Extreme Environments. Evol Biol 2022. [DOI: 10.1007/s11692-022-09578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Bragard C, Baptista P, Chatzivassiliou E, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Dehnen‐Schmutz K, Migheli Q, Vloutoglou I, Czwienczek E, Streissl F, Carluccio AV, Chiumenti M, Di Serio F, Rubino L, Reignault PL. Pest categorisation of Capsicum chlorosis virus. EFSA J 2022; 20:e07337. [PMID: 35734283 PMCID: PMC9194764 DOI: 10.2903/j.efsa.2022.7337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Plant Health conducted a pest categorisation of Capsicum chlorosis virus (CaCV) for the EU territory. The identity of CaCV, a member of the genus Orthotospovirus (family Tospoviridae), is established and reliable detection and identification methods are available. The pathogen is not included in the EU Commission Implementing Regulation 2019/2072. CaCV has been reported in Australia, China, India, Iran, Taiwan, Thailand and USA (Hawaii). In the EU, it has been reported once in Greece (Crete Island). The NPPO of Greece reported that CaCV is no longer present in Greece. CaCV infects plant species in the family Solanaceae (i.e. pepper, tomato) and several species of other families, including ornamentals. It may induce severe symptoms on its hosts, mainly on leaves and fruits, which may become unmarketable. The virus is transmitted in a persistent propagative mode by the thrips Ceratothripoides claratris, Frankliniella schultzei, Microcephalothrips abdominalis and Thrips palmi. C. claratris and T. palmi are EU quarantine pests. M. abdominalis is known to be present in several EU member states and it is not regulated in the EU. Plants for planting, parts of plants, fruits and cut flowers of CaCV hosts, and viruliferous thrips were identified as the most relevant pathways for the entry of CaCV into the EU. Cultivated and wild hosts of CaCV are distributed across the EU. Should the pest enter and establish in the EU territory, impact on the production of cultivated hosts is expected. Phytosanitary measures are available to prevent entry and spread of the virus in the EU. CaCV fulfils the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.
Collapse
|
8
|
Crombie TA, Battlay P, Tanny RE, Evans KS, Buchanan CM, Cook DE, Dilks CM, Stinson LA, Zdraljevic S, Zhang G, Roberto NM, Lee D, Ailion M, Hodgins KA, Andersen EC. Local adaptation and spatiotemporal patterns of genetic diversity revealed by repeated sampling of Caenorhabditis elegans across the Hawaiian Islands. Mol Ecol 2022; 31:2327-2347. [PMID: 35167162 PMCID: PMC9306471 DOI: 10.1111/mec.16400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans is among the most widely studied organisms, but relatively little is known about its natural ecology. Genetic diversity is low across much of the globe but high in the Hawaiian Islands and across the Pacific Rim. To characterize the niche and genetic diversity of C. elegans on the Hawaiian Islands and to explore how genetic diversity might be influenced by local adaptation, we repeatedly sampled nematodes over a three-year period, measured various environmental parameters at each sampling site, and whole-genome sequenced the C. elegans isolates that we identified. We found that the typical Hawaiian C. elegans niche comprises moderately moist native forests at high elevations (500-1,500 m) where ambient air temperatures are cool (15-20°C). Compared to other Caenorhabditis species found on the Hawaiian Islands (e.g., Caenorhabditis briggsae and Caenorhabditis tropicalis), we found that C. elegans were enriched in native habitats. We measured levels of genetic diversity and differentiation among Hawaiian C. elegans and found evidence of seven genetically distinct groups distributed across the islands. Then, we scanned these genomes for signatures of local adaptation and identified 18 distinct regions that overlap with hyper-divergent regions, which may be maintained by balancing selection and are enriched for genes related to environmental sensing, xenobiotic detoxification, and pathogen resistance. These results provide strong evidence of local adaptation among Hawaiian C. elegans and contribute to our understanding of the forces that shape genetic diversity on the most remote volcanic archipelago in the world.
Collapse
Affiliation(s)
- Timothy A. Crombie
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Paul Battlay
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Robyn E. Tanny
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Kathryn S. Evans
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Claire M. Buchanan
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Daniel E. Cook
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Clayton M. Dilks
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Loraina A. Stinson
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Stefan Zdraljevic
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Gaotian Zhang
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Nicole M. Roberto
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Daehan Lee
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Michael Ailion
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Kathryn A. Hodgins
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Erik C. Andersen
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
9
|
Abstract
Experimentally tractable organisms like C. elegans, Drosophila, zebrafish, and mouse are popular models for addressing diverse questions in biology. In 1997, two of the most valuable invertebrate model organisms to date-C. elegans and Drosophila-were found to be much more closely related to each other than expected. C. elegans and Drosophila belong to the nematodes and arthropods, respectively, and these two phyla and six other phyla make up a clade of molting animals referred to as the Ecdysozoa. The other ecdysozoan phyla could be valuable models for comparative biology, taking advantage of the rich and continual sources of research findings as well as tools from both C. elegans and Drosophila. But when the Ecdysozoa was first recognized, few tools were available for laboratory studies in any of these six other ecdysozoan phyla. In 1999 I began an effort to develop tools for studying one such phylum, the tardigrades. Here, I describe how the tardigrade species Hypsibius exemplaris and tardigrades more generally have emerged over the past two decades as valuable new models for answering diverse questions. To date, these questions have included how animal body plans evolve and how biological materials can survive some remarkably extreme conditions.
Collapse
Affiliation(s)
- Bob Goldstein
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.
| |
Collapse
|
10
|
HODDA M. Phylum Nematoda: trends in species descriptions, the documentation of diversity, systematics, and the species concept. Zootaxa 2022; 5114:290-317. [DOI: 10.11646/zootaxa.5114.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/04/2022]
Abstract
This paper summarizes the trends in nematode species description and systematics emerging from a comparison of the latest comprehensive classification and census of Phylum Nematoda (Hodda 2022a, b) with earlier classifications (listed in Hodda 2007). It also offers some general observations on trends in nematode systematics emerging from the review of the voluminous literature used to produce the classification. The trends in nematodes can be compared with developments in the systematics of other organisms to shed light on many of the general issues confronting systematists now and into the future.
Collapse
|
11
|
Gansfort B, Uthoff J, Traunspurger W. Connectivity of communities interacts with regional heterogeneity in driving species diversity: a mesocosm experiment. Ecosphere 2021. [DOI: 10.1002/ecs2.3749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Birgit Gansfort
- Animal Ecology Bielefeld University Konsequenz 45 Bielefeld 33615 Germany
| | - Jana Uthoff
- Animal Ecology Bielefeld University Konsequenz 45 Bielefeld 33615 Germany
| | | |
Collapse
|
12
|
Moll J, Roy F, Bässler C, Heilmann-Clausen J, Hofrichter M, Kellner H, Krabel D, Schmidt JH, Buscot F, Hoppe B. First Evidence That Nematode Communities in Deadwood Are Related to Tree Species Identity and to Co-Occurring Fungi and Prokaryotes. Microorganisms 2021; 9:microorganisms9071454. [PMID: 34361890 PMCID: PMC8304250 DOI: 10.3390/microorganisms9071454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Nematodes represent a diverse and ubiquitous group of metazoans in terrestrial environments. They feed on bacteria, fungi, plants, other nematodes or parasitize a variety of animals and hence may be considered as active members of many food webs. Deadwood is a structural component of forest ecosystems which harbors many niches for diverse biota. As fungi and bacteria are among the most prominent decomposing colonizers of deadwood, we anticipated frequent and diverse nematode populations to co-occur in such ecosystems. However, knowledge about their ability to colonize this habitat is still limited. We applied DNA-based amplicon sequencing (metabarcoding) of the 18S rRNA gene to analyze nematode communities in sapwood and heartwood of decaying logs from 13 different tree species. We identified 247 nematode ASVs (amplicon sequence variants) from 27 families. Most of these identified families represent bacterial and fungal feeders. Their composition strongly depended on tree species identity in both wood compartments. While pH and water content were the only wood properties that contributed to nematodes' distribution, co-occurring fungal and prokaryotic (bacteria and archaea) α- and β-diversities were significantly related to nematode communities. By exploring thirteen different tree species, which exhibit a broad range of wood characteristics, this study provides first and comprehensive insights into nematode diversity in deadwood of temperate forests and indicates connectivity to other wood-inhabiting organisms.
Collapse
Affiliation(s)
- Julia Moll
- Helmholtz Centre for Environmental Research—UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany; (F.R.); (F.B.)
- Correspondence: (J.M.); (B.H.)
| | - Friederike Roy
- Helmholtz Centre for Environmental Research—UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany; (F.R.); (F.B.)
- Institute of Forest Botany, Technische Universität Dresden, 01737 Tharandt, Germany;
| | - Claus Bässler
- Department of Conservation Biology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Department of Research, National Park Bavarian Forest, 94481 Grafenau, Germany
| | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Martin Hofrichter
- Institute of Environmental Biotechnology, Technische Universität Dresden, IHI Zittau, 02763 Zittau, Germany; (M.H.); (H.K.)
| | - Harald Kellner
- Institute of Environmental Biotechnology, Technische Universität Dresden, IHI Zittau, 02763 Zittau, Germany; (M.H.); (H.K.)
| | - Doris Krabel
- Institute of Forest Botany, Technische Universität Dresden, 01737 Tharandt, Germany;
| | - Jan Henrik Schmidt
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany;
| | - François Buscot
- Helmholtz Centre for Environmental Research—UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany; (F.R.); (F.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle—Jena—Leipzig, 04103 Leipzig, Germany
| | - Björn Hoppe
- Institute for National and International Plant Health, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Correspondence: (J.M.); (B.H.)
| |
Collapse
|
13
|
Buys B, Derycke S, De Meester N, Moens T. Colonization of macroalgal deposits by estuarine nematodes through air and potential for rafting inside algal structures. PLoS One 2021; 16:e0246723. [PMID: 33857148 PMCID: PMC8049275 DOI: 10.1371/journal.pone.0246723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Dispersal is an important life-history trait. In marine meiofauna, and particularly in nematodes, dispersal is generally considered to be mainly passive, i.e. through transport with water currents and bedload transport. Because nematodes have no larval dispersal stage and have a poor swimming ability, their per capita dispersal capacity is expected to be limited. Nevertheless, many marine nematode genera and even species have near-cosmopolitan distributions, and at much smaller spatial scales, can rapidly colonise new habitat patches. Here we demonstrate that certain marine nematodes, like the morphospecies Litoditis marina, can live inside macroalgal structures such as receptacula and-to a lesser extent-floating bladders, which may allow them to raft over large distances with drifting macroalgae. We also demonstrate for the first time that these nematodes can colonize new habitat patches, such as newly deposited macroalgal wrack in the intertidal, not only through seawater but also through air. Our experimental set-up demonstrates that this aerial transport is probably the result of hitchhiking on vectors such as insects, which visit, and move between, the patches of deposited algae. Transport by wind, which has been observed for terrestrial nematodes and freshwater zooplankton, could not be demonstrated. These results can be important for our understanding of both large-scale geographic distribution patterns and of the small-scale colonization dynamics of habitat patches by marine nematodes.
Collapse
Affiliation(s)
- Bartelijntje Buys
- Department of Biology, Marine Biology Lab, Ghent University, Ghent, Belgium
| | - Sofie Derycke
- Department of Biology, Marine Biology Lab, Ghent University, Ghent, Belgium
- Center for Molecular Phylogeny and Evolution, Ghent University, Ghent, Belgium
| | - Nele De Meester
- Department of Biology, Marine Biology Lab, Ghent University, Ghent, Belgium
- Center for Molecular Phylogeny and Evolution, Ghent University, Ghent, Belgium
| | - Tom Moens
- Department of Biology, Marine Biology Lab, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
14
|
Shain DH, Novis PM, Cridge AG, Zawierucha K, Geneva AJ, Dearden PK. Five animal phyla in glacier ice reveal unprecedented biodiversity in New Zealand's Southern Alps. Sci Rep 2021; 11:3898. [PMID: 33594128 PMCID: PMC7887191 DOI: 10.1038/s41598-021-83256-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Glacier ice is an extreme environment in which most animals cannot survive. Here we report the colonization of high elevation, climate-threatened glaciers along New Zealand's southwestern coast by species of Arthropoda, Nematoda, Platyhelminthes, Rotifera and Tardigrada. Based on DNA barcoding and haplotype-inferred evidence for deep genetic variability, at least 12 undescribed species are reported, some of which have persisted in this niche habitat throughout the Pleistocene. These findings identify not only an atypical biodiversity hotspot but also highlight the adaptive plasticity of microinvertebrate Animalia.
Collapse
Affiliation(s)
- Daniel H Shain
- Biology Department, Rutgers The State University of New Jersey, Camden, NJ, 08103, USA.
| | - Philip M Novis
- Allan Herbarium, Manaaki Whenua-Landcare Research, Lincoln, 7608, New Zealand
| | - Andrew G Cridge
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
| | - Anthony J Geneva
- Biology Department, Rutgers The State University of New Jersey, Camden, NJ, 08103, USA
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
15
|
Zawierucha K, Porazinska DL, Ficetola GF, Ambrosini R, Baccolo G, Buda J, Ceballos JL, Devetter M, Dial R, Franzetti A, Fuglewicz U, Gielly L, Łokas E, Janko K, Novotna Jaromerska T, Kościński A, Kozłowska A, Ono M, Parnikoza I, Pittino F, Poniecka E, Sommers P, Schmidt SK, Shain D, Sikorska S, Uetake J, Takeuchi N. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J Zool (1987) 2020. [DOI: 10.1111/jzo.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- K. Zawierucha
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - D. L. Porazinska
- Department of Entomology and Nematology University of Florida Gainesville FL USA
| | - G. F. Ficetola
- Department of Environmental Science and Policy University of Milan Milan Italy
- Laboratoire d'Ecologie Alpine University Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - R. Ambrosini
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - G. Baccolo
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | - J. Buda
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - J. L. Ceballos
- Institute of Hydrology, Meteorology and Environmental Studies IDEAM Bogota' Colombia
| | - M. Devetter
- Institute of soil Biology Biology Centre CAS České Budějovice Czech Republic
- Centre for Polar Ecology Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - R. Dial
- Institute of Culture and the Environment Alaska Pacific University Anchorage AK USA
| | - A. Franzetti
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | | | - L. Gielly
- Laboratoire d'Ecologie Alpine University Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - E. Łokas
- Department of Mass Spectroscopy Institute of Nuclear Physics Polish Academy of Sciences Kraków Poland
| | - K. Janko
- Laboratory of Fish Genetics Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | | | - A. Kozłowska
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - M. Ono
- Graduate School of Science and Engineering Chiba University Chiba Japan
| | - I. Parnikoza
- State Institution National Antarctic Center of Ministry of Education and Science of Ukraine Kyiv Ukraine
- Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Kyiv Ukraine
| | - F. Pittino
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | - E. Poniecka
- School of Earth and Ocean Sciences Cardiff University Cardiff UK
| | - P. Sommers
- Ecology and Evolutionary Biology Department University of Colorado Boulder CO USA
| | - S. K. Schmidt
- Ecology and Evolutionary Biology Department University of Colorado Boulder CO USA
| | - D. Shain
- Biology Department Rutgers, The State University of New Jersey Camden NJ USA
| | - S. Sikorska
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - J. Uetake
- The Arctic Environment Research Center National Institute of Polar Research Tachikawa Japan
| | - N. Takeuchi
- Department of Earth Sciences Graduate School of Science Chiba University Chiba Japan
| |
Collapse
|
16
|
Kuczyński L, Radwańska A, Karpicka-Ignatowska K, Laska A, Lewandowski M, Rector BG, Majer A, Raubic J, Skoracka A. A comprehensive and cost-effective approach for investigating passive dispersal in minute invertebrates with case studies of phytophagous eriophyid mites. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:17-31. [PMID: 32812209 PMCID: PMC7471196 DOI: 10.1007/s10493-020-00532-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Dispersal is a fundamental biological process that operates at different temporal and spatial scales with consequences for individual fitness, population dynamics, population genetics, and species distributions. Studying this process is particularly challenging when the focus is on microscopic organisms that disperse passively, whilst controlling neither the transience nor the settlement phase of their movement. In this work we propose a comprehensive approach for studying passive dispersal of microscopic invertebrates and demonstrate it using wind and phoretic vectors. The protocol includes the construction of versatile, modifiable dispersal tunnels as well as a theoretical framework quantifying the movement of species via wind or vectors, and a hierarchical Bayesian approach appropriate to the structure of the dispersal data. The tunnels were used to investigate the three stages of dispersal (viz., departure, transience, and settlement) of two species of minute, phytophagous eriophyid mites Aceria tosichella and Abacarus hystrix. The proposed devices are inexpensive and easy to construct from readily sourced materials. Possible modifications enable studies of a wide range of mite species and facilitate manipulation of dispersal factors, thus opening a new important area of ecological study for many heretofore understudied species.
Collapse
Affiliation(s)
- Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Radwańska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Kamila Karpicka-Ignatowska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Alicja Laska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland
| | - Brian G. Rector
- Great Basin Rangelands Research Unit, USDA-ARS, 920 Valley Road, Reno, NV 89512 USA
| | - Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Jarosław Raubic
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
17
|
Kihm JH, Kim S, McInnes SJ, Zawierucha K, Rho HS, Kang P, Park TYS. Integrative description of a new Dactylobiotus (Eutardigrada: Parachela) from Antarctica that reveals an intraspecific variation in tardigrade egg morphology. Sci Rep 2020; 10:9122. [PMID: 32499591 PMCID: PMC7272612 DOI: 10.1038/s41598-020-65573-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/06/2020] [Indexed: 02/01/2023] Open
Abstract
Tardigrades constitute one of the most important group in the challenging Antarctic terrestrial ecosystem. Living in various habitats, tardigrades play major roles as consumers and decomposers in the trophic networks of Antarctic terrestrial and freshwater environments; yet we still know little about their biodiversity. The Eutardigrada is a species rich class, for which the eggshell morphology is one of the key morphological characters. Tardigrade egg morphology shows a diverse appearance, and it is known that, despite rare, intraspecific variation is caused by seasonality, epigenetics, and external environmental conditions. Here we report Dactylobiotus ovimutans sp. nov. from King George Island, Antarctica. Interestingly, we observed a range of eggshell morphologies from the new species, although the population was cultured under controlled laboratory condition. Thus, seasonality, environmental conditions, and food source are eliminated, leaving an epigenetic factor as a main cause for variability in this case.
Collapse
Affiliation(s)
- Ji-Hoon Kihm
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, 21990, Incheon, Korea
- Polar Science, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, 34113, Daejeon, Korea
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, 21990, Incheon, Korea
| | - Sandra J McInnes
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Hyun Soo Rho
- East Sea Environment Research Center, East Sea Research Institute, Korea Institute of Ocean Science & Technology, 48 Haeyanggwahak-gil, Uljin, 36315, Gyeongsangbuk-do, Korea
| | - Pilmo Kang
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, 21990, Incheon, Korea
| | - Tae-Yoon S Park
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, 21990, Incheon, Korea.
- Polar Science, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, 34113, Daejeon, Korea.
| |
Collapse
|
18
|
Bharti D, Kumar S, La Terza A, Chandra K. Dispersal of ciliated protist cysts: mutualism and phoresy on mites. Ecology 2020; 101:e03075. [PMID: 32304224 DOI: 10.1002/ecy.3075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 03/16/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Daizy Bharti
- Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata, 700 053, India
| | - Santosh Kumar
- Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata, 700 053, India
| | - Antonietta La Terza
- Laboratory of Animal and Molecular Ecology, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, MC, 62032, Italy
| | - Kailash Chandra
- Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata, 700 053, India
| |
Collapse
|
19
|
Gąsiorek P, Jackson KJ, Meyer HA, Zając K, Nelson DR, Kristensen RM, Michalczyk Ł. Echiniscus virginicus complex: the first case of pseudocryptic allopatry and pantropical distribution in tardigrades. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractMainly because of the problems with species delineation, the biogeography of microscopic organisms is notoriously difficult to elucidate. In this contribution, variable nuclear and mitochondrial DNA markers were sequenced from individual specimens representing the Echiniscus virginicus complex that are morphologically indistinguishable under light microscopy (five populations from the temperate Eastern Nearctic and 13 populations from the subtropical and tropical zone). A range of methods was used to dissect components of variability within the complex (Bayesian inference, haplotype networks, Poisson tree processes, automatic barcode gap discovery delineations, principal components analysis and ANOVA). We found deep divergence between the temperate Eastern Nearctic E. virginicus and pantropical Echiniscus lineatus in all three genetic markers. In contrast, intraspecific genetic variation was very low, regardless of the geographical distance between the populations. Moreover, for the first time, statistical predictions of tardigrade geographical distributions were modelled. The factor determining the allopatric geographical ranges of deceptively similar species analysed in this study is most likely to be the type of climate. Our study shows that widespread tardigrade species exist, and both geographical distribution modelling and the genetic structure of populations of the pantropical E. lineatus suggest wind-mediated (aeolian) passive long-distance dispersal.
Collapse
Affiliation(s)
- Piotr Gąsiorek
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Kathy J Jackson
- Department of Biology, McNeese State University, Lake Charles, LA, USA
| | - Harry A Meyer
- Department of Biology, McNeese State University, Lake Charles, LA, USA
| | - Krzysztof Zając
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Diane R Nelson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Reinhardt M Kristensen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
20
|
Gansfort B, Traunspurger W. Environmental factors and river network position allow prediction of benthic community assemblies: A model of nematode metacommunities. Sci Rep 2019; 9:14716. [PMID: 31605024 PMCID: PMC6789110 DOI: 10.1038/s41598-019-51245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
The field of metacommunity studies is growing rapidly, including recent applications to river networks. Most of these studies have targeted a single river network but whether their findings are relevant to other river systems is unknown. This study investigated the influence of environmental, spatial and temporal parameters on the community structure of nematodes in the river networks of the Elbe and Rhine. We asked whether the variance in community structure was better explained by spatial variables representing the watercourse than by overland distances. After determining the patterns in the Elbe river network, we tested whether they also explained the Rhine data. The Elbe data were evaluated using a boosted regression tree analysis. The predictive ability of the model was then assessed using the Rhine data. In addition to strong temporal dynamics, environmental factors were more important than spatial factors in structuring riverine nematode communities. Community structure was more strongly influenced by watercourse than by Euclidean distances. Application of the model's predictions to the Rhine data correlated significantly with field observations. Our model shows that the consequences of changes in environmental factors or habitat connectivity for aquatic communities across different river networks are quantifiable.
Collapse
Affiliation(s)
- Birgit Gansfort
- Animal Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Walter Traunspurger
- Animal Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| |
Collapse
|
21
|
Heatwole H, Miller WR. Structure of micrometazoan assemblages in the Larsemann Hills, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02557-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Vazquez C, Goede RGM, Korthals GW, Rutgers M, Schouten AJ, Creamer R. The effects of increasing land use intensity on soil nematodes: A turn towards specialism. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Carmen Vazquez
- Wageningen University and Research Wageningen The Netherlands
| | - Ron G. M. Goede
- Wageningen University and Research Wageningen The Netherlands
| | - Gerard W. Korthals
- Wageningen University and Research Wageningen The Netherlands
- Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Michiel Rutgers
- National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
| | - Anton J. Schouten
- National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
| | - Rachel Creamer
- Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
24
|
Rivas JA, Schröder T, Gill TE, Wallace RL, Walsh EJ. Anemochory of diapausing stages of microinvertebrates in North American drylands. FRESHWATER BIOLOGY 2019; 64:1303-1314. [PMID: 31787787 PMCID: PMC6884325 DOI: 10.1111/fwb.13306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/14/2019] [Indexed: 06/10/2023]
Abstract
1. Dry, ephemeral, desert wetlands are major sources of windblown sediment, as well as repositories for diapausing stages (propagules) of aquatic invertebrates. Zooplankton propagules are of the same size range as sand and dust grains. They can be deflated and transported in windstorm events. This study provides the evidence that dust storms aid in dispersal of microinvertebrate propagules via anemochory (aeolian transport). 2. We monitored 91 windstorms at six sites in the southwestern U.S. over a 17-year period. The primary study site was located in El Paso, Texas in the northern Chihuahuan Desert. Additional samples were collected from the Southern High Plains region. Dust carried by these events was collected and rehydrated to hatch viable propagules transported with it. 3. Using samples collected over a six-year period, 21 m above the ground which included 59 storm events, we tested the hypothesis that transport of propagules is correlated with storm intensity by monitoring meteorological conditions such as storm duration, wind direction, wind speed, and PM10 (fine dust concentration). An air quality monitoring site located adjacent to the dust samplers provided quantitative hourly measurements. 4. Rehydration results from all events showed that ciliates were found in 92% of the samples, rotifers in 81%, branchiopods in 29%, ostracods in 4%, nematodes in 13%, gastrotrichs in 16%, and tardigrades in 3%. Overall, four bdelloid and 11 monogonont rotifer species were identified from rehydrated windblown dust samples. 5. PCA results indicated gastrotrichs, branchiopods, nematodes, tardigrades, and monogonont rotifer occurrence positively correlated with PM10 and dust event duration. Bdelloid rotifers were correlated with amount of sediment deposited. NMDS showed a significant relationship between PM10 and occurrence of some taxa. Zero-inflated, general linear models with mixed-effects indicated significant relationships with bdelloid and nematode transport and PM10. 6. Thus, windstorms with high particulate matter concentration and long duration are more likely to transport microinvertebrate diapausing stages in drylands.
Collapse
Affiliation(s)
- J A Rivas
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA 79968,
| | - T Schröder
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA 79968,
| | - T E Gill
- Department of Geological Sciences and Environmental Science and Engineering Program, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA 79968,
| | - R L Wallace
- Department of Biology, Ripon College, 300 W. Seward St. Ripon, WI, USA 54971,
| | - E J Walsh
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA 79968
| |
Collapse
|
25
|
Fontaneto D. Long-distance passive dispersal in microscopic aquatic animals. MOVEMENT ECOLOGY 2019; 7:10. [PMID: 30962931 PMCID: PMC6434837 DOI: 10.1186/s40462-019-0155-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 05/21/2023]
Abstract
Given their dormancy capability (long-term resistant stages) and their ability to colonise and reproduce, microscopic aquatic animals have been suggested having cosmopolitan distribution. Their dormant stages may be continuously moved by mobile elements through the entire planet to any suitable habitat, preventing the formation of biogeographical patterns. In this review, I will go through the evidence we have on the most common microscopic aquatic animals, namely nematodes, rotifers, and tardigrades, for each of the assumptions allowing long-distance dispersal (dormancy, viability, and reproduction) and all the evidence we have for transportation, directly from surveys of dispersing stages, and indirectly from the outcome of successful dispersal in biogeographical and phylogeographical studies. The current knowledge reveals biogeographical patterns also for microscopic organisms, with species-specific differences in ecological features that make some taxa indeed cosmopolitan with the potential for long-distance dispersal, but others with restricted geographic distributions.
Collapse
Affiliation(s)
- Diego Fontaneto
- National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| |
Collapse
|
26
|
Ptatscheck C, Milne PC, Traunspurger W. Is stemflow a vector for the transport of small metazoans from tree surfaces down to soil? BMC Ecol 2018; 18:43. [PMID: 30309345 PMCID: PMC6182836 DOI: 10.1186/s12898-018-0198-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022] Open
Abstract
Background Stemflow is an essential hydrologic process shaping the soil of forests by providing a concentrated input of rainwater and solutions. However, the transport of metazoans by stemflow has yet to be investigated. This 8-week study documented the organisms (< 2 mm) present in the stemflow of different tree species. Because the texture of the tree bark is a crucial determination of stemflow, trees with smooth bark (Carpinus betulus and Fagus sylvatica) and rough bark (Quercus robur) were examined. Results Up to 1170 individuals per liter of stemflow were collected. For rotifers and nematodes, a highly positive correlation between abundance and stemflow yield was determined. Both taxa were predominant (rotifers: up to 70%, nematodes: up to 13.5%) in the stemflow of smooth-barked trees whereas in that of the oak trees collembolans were the most abundant organisms (77.3%). The mean number of organisms collected per liter of stemflow from the two species of smooth-barked trees was very similar. A higher number of nematode species was found in the stemflow of these trees than in the stemflow of rough-barked oak and all were typical colonizers of soil- and bark-associated habitats. Conclusion This pilot study showed for the first time that stemflow is a transport vector for numerous small metazoans. By connecting tree habitats (e.g., bark, moss, lichens or water-filled tree holes) with soil, stemflow may influence the composition of soil fauna by mediating intensive organismal dispersal.
Collapse
Affiliation(s)
| | | | - Walter Traunspurger
- Animal Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| |
Collapse
|