1
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Guo Q, Ping L, Dammer EB, Duong DM, Yin L, Xu K, Shantaraman A, Fox EJ, Golde TE, Johnson ECB, Roberts BR, Lah JJ, Levey AI, Seyfried NT. Heparin-enriched plasma proteome is significantly altered in Alzheimer's disease. Mol Neurodegener 2024; 19:67. [PMID: 39380021 PMCID: PMC11460197 DOI: 10.1186/s13024-024-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to β-amyloid (Aβ) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. METHODS We employed heparin-affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to enrich HBPs from plasma obtained from AD (n = 62) and control (n = 47) samples. These profiles were then correlated to Aβ, tau and phosphorylated tau (pTau) CSF biomarkers and plasma pTau181 from the same individuals, as well as a consensus brain proteome network to assess the overlap with AD brain pathophysiology. RESULTS Heparin enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundant proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude in abundance, were measured across 109 samples. Compared to the consensus AD brain protein co-expression network, we observed that specific plasma proteins exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes, highlighting the complex interplay between the two compartments. Elevated proteins in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate with Aβ deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and the APOE4 proteoform. Additionally, heparin-enriched proteins in plasma demonstrated significant correlations with conventional AD CSF biomarkers, including Aβ, total tau, pTau, and plasma pTau181. A panel of five plasma proteins classified AD from control individuals with an area under the curve (AUC) of 0.85. When combined with plasma pTau181, the panel significantly improved the classification performance of pTau181 alone, increasing the AUC from 0.93 to 0.98. This suggests that the heparin-enriched plasma proteome captures additional variance in cognitive dementia beyond what is explained by pTau181. CONCLUSION These findings support the utility of a heparin-affinity approach coupled with TMT-MS for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
Collapse
Affiliation(s)
- Qi Guo
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lingyan Ping
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Luming Yin
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kaiming Xu
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anantharaman Shantaraman
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Edward J Fox
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Todd E Golde
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Erik C B Johnson
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Blaine R Roberts
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James J Lah
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Readhead B, Klang E, Gisladottir U, Vandromme M, Li L, Quiroz YT, Arboleda-Velasquez JF, Dudley JT, Tatonetti NP, Glicksberg BS, Reiman EM. Heparin treatment is associated with a delayed diagnosis of Alzheimer's dementia in electronic health records from two large United States health systems. Mol Psychiatry 2024:10.1038/s41380-024-02757-5. [PMID: 39379683 DOI: 10.1038/s41380-024-02757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Recent studies suggest that heparan sulfate proteoglycans (HSPG) contribute to the predisposition to, protection from, and potential treatment and prevention of Alzheimer's disease (AD). Here, we used electronic health records (EHR) from two different health systems to examine whether heparin therapy was associated with a delayed diagnosis of AD dementia. Longitudinal EHR data from 15,183 patients from the Mount Sinai Health System (MSHS) and 6207 patients from Columbia University Medical Center (CUMC) were used in separate survival analyses to compare those who did or did not receive heparin therapy, had a least 5 years of observation, were at least 65 years old by their last visit, and had subsequent diagnostic code or drug treatment evidence of possible AD dementia. Analyses controlled for age, sex, comorbidities, follow-up duration and number of inpatient visits. Heparin therapy was associated with significant delays in age of clinical diagnosis of AD dementia, including +1.0 years in the MSMS cohort (P < 0.001) and +1.0 years in the CUMC cohort (P < 0.001). While additional studies are needed, this study supports the potential roles of heparin-like drugs and HSPGs in the protection from and prevention of AD dementia.
Collapse
Affiliation(s)
- Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA.
| | - Eyal Klang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Undina Gisladottir
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | | | | | - Yakeel T Quiroz
- Departments of Psychiatry and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Joel T Dudley
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Eric M Reiman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
- Banner Alzheimer's Institute, Phoenix, AZ, 85006, USA
| |
Collapse
|
4
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
5
|
Nguyen DLB, Okolicsanyi RK, Haupt LM. Heparan sulfate proteoglycans: Mediators of cellular and molecular Alzheimer's disease pathogenic factors via tunnelling nanotubes? Mol Cell Neurosci 2024; 129:103936. [PMID: 38750678 DOI: 10.1016/j.mcn.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid β proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Duy L B Nguyen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
6
|
Chen C, Kumbhar R, Wang H, Yang X, Gadhave K, Rastegar C, Kimura Y, Behensky A, Kotha S, Kuo G, Katakam S, Jeong D, Wang L, Wang A, Chen R, Zhang S, Jin L, Workman CJ, Vignali DAA, Pletinkova O, Jia H, Peng W, Nauen DW, Wong PC, Redding‐Ochoa J, Troncoso JC, Ying M, Dawson VL, Dawson TM, Mao X. Lymphocyte-Activation Gene 3 Facilitates Pathological Tau Neuron-to-Neuron Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303775. [PMID: 38327094 PMCID: PMC11040377 DOI: 10.1002/advs.202303775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/27/2023] [Indexed: 02/09/2024]
Abstract
The spread of prion-like protein aggregates is a common driver of pathogenesis in various neurodegenerative diseases, including Alzheimer's disease (AD) and related Tauopathies. Tau pathologies exhibit a clear progressive spreading pattern that correlates with disease severity. Clinical observation combined with complementary experimental studies has shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several cell surface receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remain poorly understood. Here, it is shown that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF but not the monomer of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. These results identify neuronal Lag3 as a receptor of pathologic Tau in the brain,and for AD and related Tauopathies, a therapeutic target.
Collapse
|
7
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
8
|
Wiśniewska K, Gaffke L, Żabińska M, Węgrzyn G, Pierzynowska K. Cellular Organelle-Related Transcriptomic Profile Abnormalities in Neuronopathic Types of Mucopolysaccharidosis: A Comparison with Other Neurodegenerative Diseases. Curr Issues Mol Biol 2024; 46:2678-2700. [PMID: 38534785 DOI: 10.3390/cimb46030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations in genes encoding lysosomal enzymes that catalyze reactions of glycosaminoglycan (GAG) degradation. As a result, GAGs accumulate in lysosomes, impairing the proper functioning of entire cells and tissues. There are 14 types/subtypes of MPS, which are differentiated by the kind(s) of accumulated GAG(s) and the type of a non-functional lysosomal enzyme. Some of these types (severe forms of MPS types I and II, MPS III, and MPS VII) are characterized by extensive central nervous system disorders. The aim of this work was to identify, using transcriptomic methods, organelle-related genes whose expression levels are changed in neuronopathic types of MPS compared to healthy cells while remaining unchanged in non-neuronopathic types of MPS. The study was conducted with fibroblast lines derived from patients with neuronopathic and non-neuronopathic types of MPS and control (healthy) fibroblasts. Transcriptomic analysis has identified genes related to cellular organelles whose expression is altered. Then, using fluorescence and electron microscopy, we assessed the morphology of selected structures. Our analyses indicated that the genes whose expression is affected in neuronopathic MPS are often associated with the structures or functions of the cell nucleus, endoplasmic reticulum, or Golgi apparatus. Electron microscopic studies confirmed disruptions in the structures of these organelles. Special attention was paid to up-regulated genes, such as PDIA3 and MFGE8, and down-regulated genes, such as ARL6IP6, ABHD5, PDE4DIP, YIPF5, and CLDN11. Of particular interest is also the GM130 (GOLGA2) gene, which encodes golgin A2, which revealed an increased expression in neuronopathic MPS types. We propose to consider the levels of mRNAs of these genes as candidates for biomarkers of neurodegeneration in MPS. These genes may also become potential targets for therapies under development for neurological disorders associated with MPS and candidates for markers of the effectiveness of these therapies. Although fibroblasts rather than nerve cells were used in this study, it is worth noting that potential genetic markers characteristic solely of neurons would be impractical in testing patients, contrary to somatic cells that can be relatively easily obtained from assessed persons.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
9
|
Sun X, Eastman G, Shi Y, Saibaba S, Oliveira AK, Lukens JR, Norambuena A, Thompson JA, Purdy MD, Dryden K, Pardo E, Mandell JW, Bloom GS. Structural and functional damage to neuronal nuclei caused by extracellular tau oligomers. Alzheimers Dement 2024; 20:1656-1670. [PMID: 38069673 PMCID: PMC10947977 DOI: 10.1002/alz.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 10/11/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Neuronal nuclei are normally smoothly surfaced. In Alzheimer's disease (AD) and other tauopathies, though, they often develop invaginations. We investigated mechanisms and functional consequences of neuronal nuclear invagination in tauopathies. METHODS Nuclear invagination was assayed by immunofluorescence in the brain, and in cultured neurons before and after extracellular tau oligomer (xcTauO) exposure. Nucleocytoplasmic transport was assayed in cultured neurons. Gene expression was investigated using nanoString nCounter technology and quantitative reverse transcription polymerase chain reaction. RESULTS Invaginated nuclei were twice as abundant in human AD as in cognitively normal adults, and were increased in mouse neurodegeneration models. In cultured neurons, nuclear invagination was induced by xcTauOs by an intracellular tau-dependent mechanism. xcTauOs impaired nucleocytoplasmic transport, increased histone H3 trimethylation at lysine 9, and altered gene expression, especially by increasing tau mRNA. DISCUSSION xcTauOs may be a primary cause of nuclear invagination in vivo, and by extension, impair nucleocytoplasmic transport and induce pathogenic gene expression changes. HIGHLIGHTS Extracellular tau oligomers (xcTauOs) cause neuronal nuclei to invaginate. xcTauOs alter nucleocytoplasmic transport, chromatin structure, and gene expression. The most upregulated gene is MAPT, which encodes tau. xcTauOs may thus drive a positive feedback loop for production of toxic tau.
Collapse
Affiliation(s)
- Xuehan Sun
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Guillermo Eastman
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Departamento de GenómicaInstituto de Investigaciones Biológicas Clemente EstableMinisterio de Educación y CulturaMontevideoUruguay
| | - Yu Shi
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Subhi Saibaba
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ana K. Oliveira
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - John R. Lukens
- Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Andrés Norambuena
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Joseph A. Thompson
- Department of Materials Science & EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Michael D. Purdy
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kelly Dryden
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Evelyn Pardo
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - James W. Mandell
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - George S. Bloom
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
10
|
Guo Q, Ping L, Dammer EB, Yin L, Xu K, Shantaraman A, Fox EJ, Golde TE, Johnson ECB, Roberts BR, Lah JJ, Levey AI, Seyfried NT. Heparin-enriched plasma proteome is significantly altered in Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-3933136. [PMID: 38464223 PMCID: PMC10925398 DOI: 10.21203/rs.3.rs-3933136/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Introduction Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to β-amyloid (Aβ) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aβ, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aβ deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aβ, total tau, pTau, and plasma pTau from the same individuals. Conclusion These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
Collapse
Affiliation(s)
- Qi Guo
- Emory University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Blumenfeld J, Yip O, Kim MJ, Huang Y. Cell type-specific roles of APOE4 in Alzheimer disease. Nat Rev Neurosci 2024; 25:91-110. [PMID: 38191720 PMCID: PMC11073858 DOI: 10.1038/s41583-023-00776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
The ɛ4 allele of the apolipoprotein E gene (APOE), which translates to the APOE4 isoform, is the strongest genetic risk factor for late-onset Alzheimer disease (AD). Within the CNS, APOE is produced by a variety of cell types under different conditions, posing a challenge for studying its roles in AD pathogenesis. However, through powerful advances in research tools and the use of novel cell culture and animal models, researchers have recently begun to study the roles of APOE4 in AD in a cell type-specific manner and at a deeper and more mechanistic level than ever before. In particular, cutting-edge omics studies have enabled APOE4 to be studied at the single-cell level and have allowed the identification of critical APOE4 effects in AD-vulnerable cellular subtypes. Through these studies, it has become evident that APOE4 produced in various types of CNS cell - including astrocytes, neurons, microglia, oligodendrocytes and vascular cells - has diverse roles in AD pathogenesis. Here, we review these scientific advances and propose a cell type-specific APOE4 cascade model of AD. In this model, neuronal APOE4 emerges as a crucial pathological initiator and driver of AD pathogenesis, instigating glial responses and, ultimately, neurodegeneration. In addition, we provide perspectives on future directions for APOE4 research and related therapeutic developments in the context of AD.
Collapse
Affiliation(s)
- Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Marino C, Perez‐Corredor P, O'Hare M, Heuer A, Chmielewska N, Gordon H, Chandrahas AS, Gonzalez‐Buendia L, Delgado‐Tirado S, Doan TH, Vanderleest TE, Arevalo‐Alquichire S, Obar RA, Ortiz‐Cordero C, Villegas A, Sepulveda‐Falla D, Kim LA, Lopera F, Mahley R, Huang Y, Quiroz YT, Arboleda‐Velasquez JF. APOE Christchurch-mimetic therapeutic antibody reduces APOE-mediated toxicity and tau phosphorylation. Alzheimers Dement 2024; 20:819-836. [PMID: 37791598 PMCID: PMC10916992 DOI: 10.1002/alz.13436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION We discovered that the APOE3 Christchurch (APOE3Ch) variant may provide resistance to Alzheimer's disease (AD). This resistance may be due to reduced pathological interactions between ApoE3Ch and heparan sulfate proteoglycans (HSPGs). METHODS We developed and characterized the binding, structure, and preclinical efficacy of novel antibodies targeting human ApoE-HSPG interactions. RESULTS We found that one of these antibodies, called 7C11, preferentially bound ApoE4, a major risk factor for sporadic AD, and disrupts heparin-ApoE4 interactions. We also determined the crystal structure of a Fab fragment of 7C11 and used computer modeling to predict how it would bind to ApoE. When we tested 7C11 in mouse models, we found that it reduced recombinant ApoE-induced tau pathology in the retina of MAPT*P301S mice and curbed pTau S396 phosphorylation in brains of systemically treated APOE4 knock-in mice. Targeting ApoE-HSPG interactions using 7C11 antibody may be a promising approach to developing new therapies for AD.
Collapse
Affiliation(s)
- Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Paula Perez‐Corredor
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Michael O'Hare
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Annie Heuer
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Natalia Chmielewska
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Harper Gordon
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Anita S. Chandrahas
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Lucia Gonzalez‐Buendia
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Santiago Delgado‐Tirado
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Tri H. Doan
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Timothy E. Vanderleest
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Said Arevalo‐Alquichire
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Robert A. Obar
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Andres Villegas
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leo A. Kim
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Robert Mahley
- Gladstone Institute of Neurological DiseaseSan FranciscoCaliforniaUSA
- Gladstone Institute of Cardiovascular DiseaseSan FranciscoCaliforniaUSA
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of MedicineUCSFSan FranciscoCaliforniaUSA
- Cardiovascular Research InstituteUCSFSan FranciscoCaliforniaUSA
| | - Yadong Huang
- Gladstone Institute of Neurological DiseaseSan FranciscoCaliforniaUSA
- Gladstone Institute of Cardiovascular DiseaseSan FranciscoCaliforniaUSA
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of NeurologyUCSFSan FranciscoCaliforniaUSA
| | - Yakeel T. Quiroz
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Joseph F. Arboleda‐Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
13
|
Kosik KS. Tau and the hard problem faceoff. Cytoskeleton (Hoboken) 2024; 81:63-65. [PMID: 37772747 DOI: 10.1002/cm.21791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Tau has attracted the attention of fundamental cell biologists for its control over microtubules and Alzheimer biologists for its tendency to form pathological inclusions. While an extensive and insightful literature exists on the tauopathies and vulnerable cell populations, we should acknowledge that a core problem remains-how the individually variable experience of dementia is embodied, how it is felt.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Department of Molecular, Cellular, and Development Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
14
|
Nelson MR, Liu P, Agrawal A, Yip O, Blumenfeld J, Traglia M, Kim MJ, Koutsodendris N, Rao A, Grone B, Hao Y, Yoon SY, Xu Q, De Leon S, Choenyi T, Thomas R, Lopera F, Quiroz YT, Arboleda-Velasquez JF, Reiman EM, Mahley RW, Huang Y. The APOE-R136S mutation protects against APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. Nat Neurosci 2023; 26:2104-2121. [PMID: 37957317 PMCID: PMC10689245 DOI: 10.1038/s41593-023-01480-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier. In this study, we sought to determine if the R136S mutation also protects against APOE4-driven effects in LOAD. We generated tauopathy mouse and human iPSC-derived neuron models carrying human APOE4 with the homozygous or heterozygous R136S mutation. We found that the homozygous R136S mutation rescued APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. The heterozygous R136S mutation partially protected against APOE4-driven neurodegeneration and neuroinflammation but not Tau pathology. Single-nucleus RNA sequencing revealed that the APOE4-R136S mutation increased disease-protective and diminished disease-associated cell populations in a gene dose-dependent manner. Thus, the APOE-R136S mutation protects against APOE4-driven AD pathologies, providing a target for therapeutic development against AD.
Collapse
Affiliation(s)
- Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Peng Liu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Ayushi Agrawal
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michela Traglia
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Qin Xu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Samuel De Leon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Tenzing Choenyi
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia de la Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T Quiroz
- Grupo de Neurociencias de Antioquia de la Universidad de Antioquia, Medellin, Colombia
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- University of Arizona, Tucson, AZ, USA
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience 2023; 26:108095. [PMID: 37867945 PMCID: PMC10589900 DOI: 10.1016/j.isci.2023.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Hivare P, Mujmer K, Swarup G, Gupta S, Bhatia D. Endocytic pathways of pathogenic protein aggregates in neurodegenerative diseases. Traffic 2023; 24:434-452. [PMID: 37392160 DOI: 10.1111/tra.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/14/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
Endocytosis is the fundamental uptake process through which cells internalize extracellular materials and species. Neurodegenerative diseases (NDs) are characterized by a progressive accumulation of intrinsically disordered protein species, leading to neuronal death. Misfolding in many proteins leads to various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other disorders. Despite the significance of disordered protein species in neurodegeneration, their spread between cells and the cellular uptake of extracellular species is not entirely understood. This review discusses the major internalization mechanisms of the different conformer species of these proteins and their endocytic mechanisms. We briefly introduce the broad types of endocytic mechanisms found in cells and then summarize what is known about the endocytosis of monomeric, oligomeric and aggregated conformations of tau, Aβ, α-Syn, Huntingtin, Prions, SOD1, TDP-43 and other proteins associated with neurodegeneration. We also highlight the key players involved in internalizing these disordered proteins and the several techniques and approaches to identify their endocytic mechanisms. Finally, we discuss the obstacles involved in studying the endocytosis of these protein species and the need to develop better techniques to elucidate the uptake mechanisms of a particular disordered protein species.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Kratika Mujmer
- Center for Brain and Cognitive Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Gitanjali Swarup
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| |
Collapse
|
17
|
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P, Bragança J. Reprogramming iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. Mech Ageing Dev 2023; 214:111854. [PMID: 37579530 DOI: 10.1016/j.mad.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.
Collapse
Affiliation(s)
- Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
18
|
Puliatti G, Li Puma DD, Aceto G, Lazzarino G, Acquarone E, Mangione R, D'Adamio L, Ripoli C, Arancio O, Piacentini R, Grassi C. Intracellular accumulation of tau oligomers in astrocytes and their synaptotoxic action rely on Amyloid Precursor Protein Intracellular Domain-dependent expression of Glypican-4. Prog Neurobiol 2023; 227:102482. [PMID: 37321444 PMCID: PMC10472746 DOI: 10.1016/j.pneurobio.2023.102482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Several studies including ours reported the detrimental effects of extracellular tau oligomers (ex-oTau) on glutamatergic synaptic transmission and plasticity. Astrocytes greatly internalize ex-oTau whose intracellular accumulation alters neuro/gliotransmitter handling thereby negatively affecting synaptic function. Both amyloid precursor protein (APP) and heparan sulfate proteoglycans (HSPGs) are required for oTau internalization in astrocytes but the molecular mechanisms underlying this phenomenon have not been clearly identified yet. Here we found that a specific antibody anti-glypican 4 (GPC4), a receptor belonging to the HSPG family, significantly reduced oTau uploading from astrocytes and prevented oTau-induced alterations of Ca2+-dependent gliotransmitter release. As such, anti-GPC4 spared neurons co-cultured with astrocytes from the astrocyte-mediated synaptotoxic action of ex-oTau, thus preserving synaptic vesicular release, synaptic protein expression and hippocampal LTP at CA3-CA1 synapses. Of note, the expression of GPC4 depended on APP and, in particular, on its C-terminal domain, AICD, that we found to bind Gpc4 promoter. Accordingly, GPC4 expression was significantly reduced in mice in which either APP was knocked-out or it contained the non-phosphorylatable amino acid alanine replacing threonine 688, thus becoming unable to produce AICD. Collectively, our data indicate that GPC4 expression is APP/AICD-dependent, it mediates oTau accumulation in astrocytes and the resulting synaptotoxic effects.
Collapse
Affiliation(s)
- Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus - Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome 00131, Italy
| | - Erica Acquarone
- Taub Institute, Department of Pathology and Cell Biology, and Department of Medicine, Columbia University, 630W 168th Street, New York, NY 10032, USA
| | - Renata Mangione
- Department of Basic biotechnological sciences, intensivological and perioperative clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Luciano D'Adamio
- Institute of Brain Health, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Ottavio Arancio
- Taub Institute, Department of Pathology and Cell Biology, and Department of Medicine, Columbia University, 630W 168th Street, New York, NY 10032, USA
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| |
Collapse
|
19
|
Juul Rasmussen I, Frikke-Schmidt R. Modifiable cardiovascular risk factors and genetics for targeted prevention of dementia. Eur Heart J 2023; 44:2526-2543. [PMID: 37224508 PMCID: PMC10481783 DOI: 10.1093/eurheartj/ehad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Dementia is a major global challenge for health and social care in the 21st century. A third of individuals >65 years of age die with dementia, and worldwide incidence numbers are projected to be higher than 150 million by 2050. Dementia is, however, not an inevitable consequence of old age; 40% of dementia may theoretically be preventable. Alzheimer's disease (AD) accounts for approximately two-thirds of dementia cases and the major pathological hallmark of AD is accumulation of amyloid-β. Nevertheless, the exact pathological mechanisms of AD remain unknown. Cardiovascular disease and dementia share several risk factors and dementia often coexists with cerebrovascular disease. In a public health perspective, prevention is crucial, and it is suggested that a 10% reduction in prevalence of cardiovascular risk factors could prevent more than nine million dementia cases worldwide by 2050. Yet this assumes causality between cardiovascular risk factors and dementia and adherence to the interventions over decades for a large number of individuals. Using genome-wide association studies, the entire genome can be scanned for disease/trait associated loci in a hypothesis-free manner, and the compiled genetic information is not only useful for pinpointing novel pathogenic pathways but also for risk assessments. This enables identification of individuals at high risk, who likely will benefit the most from a targeted intervention. Further optimization of the risk stratification can be done by adding cardiovascular risk factors. Additional studies are, however, highly needed to elucidate dementia pathogenesis and potential shared causal risk factors between cardiovascular disease and dementia.
Collapse
Affiliation(s)
- Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Lopez DM, Maltby CJ, Warming H, Divecha N, Vargas-Caballero M, Coldwell MJ, Deinhardt K. A luminescence-based reporter to study tau secretion reveals overlapping mechanisms for the release of healthy and pathological tau. Front Neurosci 2023; 17:1196007. [PMID: 37342467 PMCID: PMC10277490 DOI: 10.3389/fnins.2023.1196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
In Alzheimer's disease, tau pathology is thought to spread via a prion-like manner along connected neuronal networks. For this to occur, the usually cytosolic tau protein must be secreted via an unconventional mechanism prior to uptake into the connected neuron. While secretion of healthy and pathological tau has been documented, it remains under-investigated whether this occurs via overlapping or distinct processes. Here, we established a sensitive bioluminescence-based assay to assess mechanisms underlying the secretion of pseudohyperphosphorylated and wild-type tau in cultured murine hippocampal neurons. We found that under basal conditions, both wild-type and mutant tau are secreted, with mutant tau being more robustly secreted. Pharmacological stimulation of neuronal activity led to a modest increase of wild-type and mutant tau secretion, whereas inhibition of activity had no effect. Interestingly, inhibition of heparin sulfate proteoglycan (HSPG) biosynthesis drastically decreased secretion of both wild-type and mutant tau without affecting cell viability. This shows that native and pathological tau share release mechanisms; both activity-dependent and non-activity-dependent secretion of tau is facilitated by HSPGs.
Collapse
|
21
|
Wang Z, Patel VN, Song X, Xu Y, Kaminski AM, Doan VU, Su G, Liao Y, Mah D, Zhang F, Pagadala V, Wang C, Pedersen LC, Wang L, Hoffman MP, Gearing M, Liu J. Increased 3- O-sulfated heparan sulfate in Alzheimer's disease brain is associated with genetic risk gene HS3ST1. SCIENCE ADVANCES 2023; 9:eadf6232. [PMID: 37235665 PMCID: PMC10219595 DOI: 10.1126/sciadv.adf6232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
HS3ST1 is a genetic risk gene associated with Alzheimer's disease (AD) and overexpressed in patients, but how it contributes to the disease progression is unknown. We report the analysis of brain heparan sulfate (HS) from AD and other tauopathies using a LC-MS/MS method. A specific 3-O-sulfated HS displayed sevenfold increase in the AD group (n = 14, P < 0.0005). Analysis of the HS modified by recombinant sulfotransferases and HS from genetic knockout mice revealed that the specific 3-O-sulfated HS is made by 3-O-sulfotransferase isoform 1 (3-OST-1), which is encoded by the HS3ST1 gene. A synthetic tetradecasaccharide (14-mer) carrying the specific 3-O-sulfated domain displayed stronger inhibition for tau internalization than a 14-mer without the domain, suggesting that the 3-O-sulfated HS is used in tau cellular uptake. Our findings suggest that the overexpression of HS3ST1 gene may enhance the spread of tau pathology, uncovering a previously unidentified therapeutic target for AD.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vaishali N. Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea M. Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivien Uyen Doan
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Guowei Su
- Glycan Therapeutics Corp., 617 Hutton Street, Raleigh, NC 27606, USA
| | - Yien Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dylan Mah
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Chen C, Kumbhar R, Wang H, Yang X, Gadhave K, Rastegar C, Kimura Y, Behensky A, Katakam S, Jeong D, Wang L, Wang A, Chen R, Zhang S, Jin L, Workman CJ, Vignali DA, Pletinkova O, Nauen DW, Wong PC, Troncoso JC, Ying M, Dawson VL, Dawson TM, Mao X. Pathological Tau transmission initiated by binding lymphocyte-activation gene 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541015. [PMID: 37293032 PMCID: PMC10245704 DOI: 10.1101/2023.05.16.541015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The spread of prion-like protein aggregates is believed to be a common driver of pathogenesis in many neurodegenerative diseases. Accumulated tangles of filamentous Tau protein are considered pathogenic lesions of Alzheimer's disease (AD) and related Tauopathies, including progressive supranuclear palsy, and corticobasal degeneration. Tau pathologies in these illnesses exhibits a clear progressive and hierarchical spreading pattern that correlates with disease severity1,2. Clinical observation combined with complementary experimental studies3,4 have shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remains poorly understood. Here, we show that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF, but not monomer, of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. Our results identify neuronal Lag3 as a receptor of pathologic Tau in the brain, and for AD and related Tauopathies a therapeutic target.
Collapse
Affiliation(s)
- Chan Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiuli Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kundlik Gadhave
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cyrus Rastegar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yasuyoshi Kimura
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adam Behensky
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sruthi Katakam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deok Jeong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liang Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shu Zhang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dario A.A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Olga Pletinkova
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David W. Nauen
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip C. Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C. Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Hussong SA, Banh AQ, Van Skike CE, Dorigatti AO, Hernandez SF, Hart MJ, Ferran B, Makhlouf H, Gaczynska M, Osmulski PA, McAllen SA, Dineley KT, Ungvari Z, Perez VI, Kayed R, Galvan V. Soluble pathogenic tau enters brain vascular endothelial cells and drives cellular senescence and brain microvascular dysfunction in a mouse model of tauopathy. Nat Commun 2023; 14:2367. [PMID: 37185259 PMCID: PMC10126555 DOI: 10.1038/s41467-023-37840-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Vascular mechanisms of Alzheimer's disease (AD) may constitute a therapeutically addressable biological pathway underlying dementia. We previously demonstrated that soluble pathogenic forms of tau (tau oligomers) accumulate in brain microvasculature of AD and other tauopathies, including prominently in microvascular endothelial cells. Here we show that soluble pathogenic tau accumulates in brain microvascular endothelial cells of P301S(PS19) mice modeling tauopathy and drives AD-like brain microvascular deficits. Microvascular impairments in P301S(PS19) mice were partially negated by selective removal of pathogenic soluble tau aggregates from brain. We found that similar to trans-neuronal transmission of pathogenic forms of tau, soluble tau aggregates are internalized by brain microvascular endothelial cells in a heparin-sensitive manner and induce microtubule destabilization, block endothelial nitric oxide synthase (eNOS) activation, and potently induce endothelial cell senescence that was recapitulated in vivo in microvasculature of P301S(PS19) mice. Our studies suggest that soluble pathogenic tau aggregates mediate AD-like brain microvascular deficits in a mouse model of tauopathy, which may arise from endothelial cell senescence and eNOS dysfunction triggered by internalization of soluble tau aggregates.
Collapse
Affiliation(s)
- Stacy A Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Health Care System, 921 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Andy Q Banh
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Angela O Dorigatti
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Stephen F Hernandez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Matthew J Hart
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Therapeutic Science, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
| | - Beatriz Ferran
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
| | - Haneen Makhlouf
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
| | - Maria Gaczynska
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Pawel A Osmulski
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Salome A McAllen
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Kelly T Dineley
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Zoltan Ungvari
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, H-1085 Budapest, Üllői út 26, Budapest, Hungary
| | | | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA.
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Health Care System, 921 NE 13th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
24
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
25
|
Mukadam AS, Miller LVC, Smith AE, Vaysburd M, Sakya SA, Sanford S, Keeling S, Tuck BJ, Katsinelos T, Green C, Skov L, Kaalund SS, Foss S, Mayes K, O’Connell K, Wing M, Knox C, Banbury J, Avezov E, Rowe JB, Goedert M, Andersen JT, James LC, McEwan WA. Cytosolic antibody receptor TRIM21 is required for effective tau immunotherapy in mouse models. Science 2023; 379:1336-1341. [PMID: 36996217 PMCID: PMC7614512 DOI: 10.1126/science.abn1366] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Aggregates of the protein tau are proposed to drive pathogenesis in neurodegenerative diseases. Tau can be targeted by using passively transferred antibodies (Abs), but the mechanisms of Ab protection are incompletely understood. In this work, we used a variety of cell and animal model systems and showed that the cytosolic Ab receptor and E3 ligase TRIM21 (T21) could play a role in Ab protection against tau pathology. Tau-Ab complexes were internalized to the cytosol of neurons, which enabled T21 engagement and protection against seeded aggregation. Ab-mediated protection against tau pathology was lost in mice that lacked T21. Thus, the cytosolic compartment provides a site of immunotherapeutic protection, which may help in the design of Ab-based therapies in neurodegenerative disease.
Collapse
Affiliation(s)
- Aamir S Mukadam
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Lauren VC Miller
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Annabel E Smith
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Siri A Sakya
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Sophie Sanford
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Chris Green
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Lise Skov
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Sanne S Kaalund
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Stian Foss
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Keith Mayes
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kevin O’Connell
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark Wing
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Claire Knox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Banbury
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Edward Avezov
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0SZ
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| |
Collapse
|
26
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
27
|
Le Guen Y, Raulin AC, Logue MW, Sherva R, Belloy ME, Eger SJ, Chen A, Kennedy G, Kuchenbecker L, O’Leary JP, Zhang R, Merritt VC, Panizzon MS, Hauger RL, Gaziano JM, Bu G, Thornton TA, Farrer LA, Napolioni V, He Z, Greicius MD. Association of African Ancestry-Specific APOE Missense Variant R145C With Risk of Alzheimer Disease. JAMA 2023; 329:551-560. [PMID: 36809323 PMCID: PMC9945061 DOI: 10.1001/jama.2023.0268] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/31/2022] [Indexed: 02/23/2023]
Abstract
Importance Numerous studies have established the association of the common APOE ε2 and APOE ε4 alleles with Alzheimer disease (AD) risk across ancestries. Studies of the interaction of these alleles with other amino acid changes on APOE in non-European ancestries are lacking and may improve ancestry-specific risk prediction. Objective To determine whether APOE amino acid changes specific to individuals of African ancestry modulate AD risk. Design, Setting, and Participants Case-control study including 31 929 participants and using a sequenced discovery sample (Alzheimer Disease Sequencing Project; stage 1) followed by 2 microarray imputed data sets derived from the Alzheimer Disease Genetic Consortium (stage 2, internal replication) and the Million Veteran Program (stage 3, external validation). This study combined case-control, family-based, population-based, and longitudinal AD cohorts, which recruited participants (1991-2022) in primarily US-based studies with 1 US/Nigerian study. Across all stages, individuals included in this study were of African ancestry. Exposures Two APOE missense variants (R145C and R150H) were assessed, stratified by APOE genotype. Main Outcomes and Measures The primary outcome was AD case-control status, and secondary outcomes included age at AD onset. Results Stage 1 included 2888 cases (median age, 77 [IQR, 71-83] years; 31.3% male) and 4957 controls (median age, 77 [IQR, 71-83] years; 28.0% male). In stage 2, across multiple cohorts, 1201 cases (median age, 75 [IQR, 69-81] years; 30.8% male) and 2744 controls (median age, 80 [IQR, 75-84] years; 31.4% male) were included. In stage 3, 733 cases (median age, 79.4 [IQR, 73.8-86.5] years; 97.0% male) and 19 406 controls (median age, 71.9 [IQR, 68.4-75.8] years; 94.5% male) were included. In ε3/ε4-stratified analyses of stage 1, R145C was present in 52 individuals with AD (4.8%) and 19 controls (1.5%); R145C was associated with an increased risk of AD (odds ratio [OR], 3.01; 95% CI, 1.87-4.85; P = 6.0 × 10-6) and was associated with a reported younger age at AD onset (β, -5.87 years; 95% CI, -8.35 to -3.4 years; P = 3.4 × 10-6). Association with increased AD risk was replicated in stage 2 (R145C was present in 23 individuals with AD [4.7%] and 21 controls [2.7%]; OR, 2.20; 95% CI, 1.04-4.65; P = .04) and was concordant in stage 3 (R145C was present in 11 individuals with AD [3.8%] and 149 controls [2.7%]; OR, 1.90; 95% CI, 0.99-3.64; P = .051). Association with earlier AD onset was replicated in stage 2 (β, -5.23 years; 95% CI, -9.58 to -0.87 years; P = .02) and stage 3 (β, -10.15 years; 95% CI, -15.66 to -4.64 years; P = 4.0 × 10-4). No significant associations were observed in other APOE strata for R145C or in any APOE strata for R150H. Conclusions and Relevance In this exploratory analysis, the APOE ε3[R145C] missense variant was associated with an increased risk of AD among individuals of African ancestry with the ε3/ε4 genotype. With additional external validation, these findings may inform AD genetic risk assessment in individuals of African ancestry.
Collapse
Affiliation(s)
- Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
- Institut du Cerveau–Paris Brain Institute–ICM, Paris, France
| | | | - Mark W. Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
- Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Richard Sherva
- Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts
| | - Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| | - Sarah J. Eger
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| | - Annabel Chen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| | - Gabriel Kennedy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| | | | | | - Rui Zhang
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
| | - Victoria C. Merritt
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California, San Diego, La Jolla
- VA San Diego Healthcare System, San Diego, California
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California, San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - J. Michael Gaziano
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | | | - Lindsay A. Farrer
- Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, California
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
28
|
Ferreira A, Royaux I, Liu J, Wang Z, Su G, Moechars D, Callewaert N, De Muynck L. The 3-O sulfation of heparan sulfate proteoglycans contributes to the cellular internalization of tau aggregates. BMC Mol Cell Biol 2022; 23:61. [PMID: 36564747 PMCID: PMC9789671 DOI: 10.1186/s12860-022-00462-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Considering the high correlation between the functional decline in Alzheimer's disease (AD) and the propagation of aggregated tau protein, many research efforts are focused on determining the underlying molecular mechanisms of tau spreading. Heparan sulfate proteoglycans (HSPGs) were reported to mediate cellular uptake of tau aggregates. Specifically, the heparan sulfates (HS) sulfation plays a critical role in the interaction of HSPGs with aggregated tau. HS can be N-/2-O/6-O- or 3-O-sulfated, some of which have been reported to take part in the interaction with tau aggregates. However, the role of the 3-O sulfation remains enigmatic. RESULTS Here, we studied the contribution of HS 3-O sulfation in the binding and cellular uptake of tau aggregates. We observed reduced tau aggregates uptake in absence of 3-O sulfation or when outcompeting available cellular 3-O sulfated HS (3S-HS) with antithrombin III. The lack of HS3ST1-generated HS products in the HS3ST1-/- cells was further corroborated with an LC-MS/MS using 13C-labeled HS calibrants. Here, we showed that these functional changes can be explained by a higher affinity of aggregated tau to 3S-HS. When targeting tau aggregates with 3-O sulfation-containing HS, we observed an increase in inhibition of tau aggregates uptake. CONCLUSIONS These data indicate that HS 3-O sulfation plays a role in the binding of tau aggregates and, thus, contributes to their cellular uptake, highlighting a potential target value to modulate tau pathogenesis.
Collapse
Affiliation(s)
- Andreia Ferreira
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Ines Royaux
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Guowei Su
- Glycan Therapeutics, LLC, 617 Hutton Street, Raleigh, NC, USA
| | - Diederik Moechars
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Louis De Muynck
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium.
| |
Collapse
|
29
|
Common and Specific Marks of Different Tau Strains Following Intra-Hippocampal Injection of AD, PiD, and GGT Inoculum in hTau Transgenic Mice. Int J Mol Sci 2022; 23:ijms232415940. [PMID: 36555581 PMCID: PMC9787745 DOI: 10.3390/ijms232415940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Heterozygous hTau mice were used for the study of tau seeding. These mice express the six human tau isoforms, with a high predominance of 3Rtau over 4Rtau. The following groups were assessed: (i) non-inoculated mice aged 9 months (n = 4); (ii) Alzheimer's Disease (AD)-inoculated mice (n = 4); (iii) Globular Glial Tauopathy (GGT)-inoculated mice (n = 4); (iv) Pick's disease (PiD)-inoculated mice (n = 4); (v) control-inoculated mice (n = 4); and (vi) inoculated with vehicle alone (n = 2). AD-inoculated mice showed AT8-immunoreactive neuronal pre-tangles, granular aggregates, and dots in the CA1 region of the hippocampus, dentate gyrus (DG), and hilus, and threads and dots in the ipsilateral corpus callosum. GGT-inoculated mice showed unique or multiple AT8-immunoreactive globular deposits in neurons, occasionally extended to the proximal dendrites. PiD-inoculated mice showed a few loose pre-tangles in the CA1 region, DG, and cerebral cortex near the injection site. Coiled bodies were formed in the corpus callosum in AD-inoculated mice, but GGT-inoculated mice lacked globular glial inclusions. Tau deposits in inoculated mice co-localized active kinases p38-P and SAPK/JNK-P, thus suggesting active phosphorylation of the host tau. Tau deposits were absent in hTau mice inoculated with control homogenates and vehicle alone. Deposits in AD-inoculated hTau mice contained 3Rtau and 4Rtau; those in GGT-inoculated mice were mainly stained with anti-4Rtau antibodies, but a small number of deposits contained 3Rtau. Deposits in PiD-inoculated mice were stained with anti-3Rtau antibodies, but rare neuronal, thread-like, and dot-like deposits showed 4Rtau immunoreactivity. These findings show that tau strains produce different patterns of active neuronal seeding, which also depend on the host tau. Unexpected 3Rtau and 4Rtau deposits after inoculation of homogenates from 4R and 3R tauopathies, respectively, suggests the regulation of exon 10 splicing of the host tau during the process of seeding, thus modulating the plasticity of the cytoskeleton.
Collapse
|
30
|
Faris S, Jin W, Gibson J, Murray A, Smith N, He P, Zhang F, Linhardt R, Wang C. Small-molecule compound from AlphaScreen disrupts tau-glycan interface. Front Mol Biosci 2022; 9:1083225. [PMID: 36589242 PMCID: PMC9798536 DOI: 10.3389/fmolb.2022.1083225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by intracellular abnormal tau deposits in the brain. Tau aggregates can propagate from one neuron to another in a prion-like manner, mediated by the interaction between tau and cell surface heparan sulfate proteoglycans. We developed an AlphaScreen assay, with His-tagged tau and biotinylated heparin, to represent the tau-HS interface to target the tau-glycan interface. Using our AlphaScreen assay, with a Z-factor of 0.65, we screened ∼300 compounds and discovered a small-molecule compound (herein referred to as A9), which can disrupt the tau-heparin interaction with micromolar efficacy. A9 also effectively inhibited heparin-induced tau aggregation in Thioflavin T fluorescence assays and attenuated tau internalization by H4 neuroglioma cells. These results strongly suggest that A9 can disrupt the tau-glycan interface in both in vitro molecular and cellular environments. We further determined that A9 interacts with heparin rather than tau and does so with micromolar binding affinity as shown by nuclear magnetic resonance and surface plasmon resonance experiments. A9 binds to heparin in a manner that blocks the sites where tau binds to heparin on the cell surface. These results demonstrate our AlphaScreen method as an effective method for targeting the tau-glycan interface in drug discovery and A9 as a promising lead compound for tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Shannon Faris
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Weihua Jin
- Department of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - James Gibson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Anqesha Murray
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Nathan Smith
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Peng He
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
31
|
Zhu Y, Gandy L, Zhang F, Liu J, Wang C, Blair LJ, Linhardt RJ, Wang L. Heparan Sulfate Proteoglycans in Tauopathy. Biomolecules 2022; 12:1792. [PMID: 36551220 PMCID: PMC9776397 DOI: 10.3390/biom12121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, and are characterized by intraneuronal tau inclusion in the brain and the patient's cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer's patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lauren Gandy
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
32
|
Leng K, Kampmann M. Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Med 2022; 14:130. [PMID: 36401300 PMCID: PMC9673433 DOI: 10.1186/s13073-022-01134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Our understanding of neurological diseases has been tremendously enhanced over the past decade by the application of new technologies. Genome-wide association studies have highlighted glial cells as important players in diseases. Single-cell profiling technologies are providing descriptions of disease states of neurons and glia at unprecedented molecular resolution. However, significant gaps remain in our understanding of the mechanisms driving disease-associated cell states, and how these states contribute to disease. These gaps in our understanding can be bridged by CRISPR-based functional genomics, a powerful approach to systematically interrogate gene function. In this review, we will briefly review the current literature on neurological disease-associated cell states and introduce CRISPR-based functional genomics. We discuss how advances in CRISPR-based screens, especially when implemented in the relevant brain cell types or cellular environments, have paved the way towards uncovering mechanisms underlying neurological disease-associated cell states. Finally, we will delineate current challenges and future directions for CRISPR-based functional genomics to further our understanding of neurological diseases and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Polanco JC, Götz J. Exosomal and vesicle-free tau seeds-propagation and convergence in endolysosomal permeabilization. FEBS J 2022; 289:6891-6907. [PMID: 34092031 DOI: 10.1111/febs.16055] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
In Alzheimer's disease (AD), β-amyloid peptides aggregate to form amyloid plaques, and the microtubule-associated protein tau forms neurofibrillary tangles. However, severity and duration of AD correlate with the stereotypical emergence of tau tangles throughout the brain, suggestive of a gradual region-to-region spreading of pathological tau. The current notion in the field is that misfolded tau seeds propagate transsynaptically and corrupt the proper folding of soluble tau in recipient neurons. This is supported by accumulating evidence showing that in AD, functional connectivity and not proximity predicts the spreading of tau pathology. Tau seeds can be found in two flavors, vesicle-free, that is, naked as in oligomers and fibrils, or encapsulated by membranes of secreted vesicles known as exosomes. Both types of seeds have been shown to propagate between interconnected neurons. Here, we describe potential ways of how their propagation can be controlled in several subcellular compartments by manipulating mechanisms affecting production, neuron-to-neuron transmission, internalization, endosomal escape, and autophagy. We emphasize that although vesicle-free tau seeds and exosomes differ, they share the ability to trigger endolysosomal permeabilization. Such a mechanistic convergence in endolysosomal permeabilization presents itself as a unique opportunity to target both types of tau seeding. We discuss the cellular response to endolysosomal damage that might be key to control permeabilization, and the significant overlap in the seeding mechanism of proteopathic agents other than tau, which suggests that targeting the endolysosomal pathway could pave the way toward developing broad-spectrum treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Murray A, Yan L, Gibson JM, Liu J, Eliezer D, Lippens G, Zhang F, Linhardt RJ, Zhao J, Wang C. Proline-Rich Region II (PRR2) Plays an Important Role in Tau-Glycan Interaction: An NMR Study. Biomolecules 2022; 12:1573. [PMID: 36358923 PMCID: PMC9687896 DOI: 10.3390/biom12111573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 01/09/2023] Open
Abstract
(1) Background: Prion-like transcellular spreading of tau pathology in Alzheimer's disease (AD) is mediated by tau binding to the cell-surface glycan heparan sulfate (HS). However, the structural determinants for tau-HS interaction are not well understood. (2) Methods and Results: Binding-site mapping using NMR showed two major binding regions in full-length tau responsible for heparin interaction. Thus, two tau constructs, tau PRR2* and tau R2*, were designed to investigate the molecular details at the tau-heparin binding interface. The 2D 1H-15N HSQC of tau PRR2* and tau R2* lacked dispersion, which is characteristic for intrinsically disordered proteins. NMR titration of Arixtra into 15N-labeled tau R2* induced large chemical shift perturbations (CSPs) in 275VQIINK280 and downstream residues K281-D283, in which L282 and I278 displayed the largest shifts. NMR titration of Arixtra into 15N-labeled tau PRR2* induced the largest CSPs for residue R209 followed by residues S210 and R211. Residue-based CSP fitting showed that tau PRR2*-Arixtra interaction had a much stronger binding affinity (0.37-0.67 mM) than that of tau R2*-Arixtra (1.90-5.12 mM) interaction. (3) Conclusions: Our results suggested that PRR2 is a crucial domain for tau-heparin and tau-HS interaction.
Collapse
Affiliation(s)
- Anqesha Murray
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Departments of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, NY 12180, USA
| | - Lufeng Yan
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Departments of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, NY 12180, USA
| | - James M. Gibson
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Departments of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, NY 12180, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27514, USA
| | - David Eliezer
- Program in Structural Biology, Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Guy Lippens
- Toulouse Biotechnology Institute, CNRS, INRA, INSA, University of Toulouse, 31077 Toulouse, France
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Departments of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, NY 12180, USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Departments of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, NY 12180, USA
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Departments of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, NY 12180, USA
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Departments of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, NY 12180, USA
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
35
|
LRP1 is a neuronal receptor for α-synuclein uptake and spread. Mol Neurodegener 2022; 17:57. [PMID: 36056345 PMCID: PMC9438229 DOI: 10.1186/s13024-022-00560-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aggregation and spread of α-synuclein (α-Syn) protein and related neuronal toxicity are the key pathological features of Parkinson's disease (PD) and Lewy body dementia (LBD). Studies have shown that pathological species of α-Syn and tau can spread in a prion-like manner between neurons, although these two proteins have distinct pathological roles and contribute to different neurodegenerative diseases. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP1) regulates the spread of tau proteins; however, the molecular regulatory mechanisms of α-Syn uptake and spread, and whether it is also regulated by LRP1, remain poorly understood. METHODS We established LRP1 knockout (LRP1-KO) human induced pluripotent stem cells (iPSCs) isogenic lines using a CRISPR/Cas9 strategy and generated iPSC-derived neurons (iPSNs) to test the role of LRP1 in α-Syn uptake. We treated the iPSNs with fluorescently labeled α-Syn protein and measured the internalization of α-Syn using flow cytometry. Three forms of α-Syn species were tested: monomers, oligomers, and pre-formed fibrils (PFFs). To examine whether the lysine residues of α-Syn are involved in LRP1-mediated uptake, we capped the amines of lysines on α-Syn with sulfo-NHS acetate and then measured the internalization. We also tested whether the N-terminus of α-Syn is critical for LRP1-mediated internalization. Lastly, we investigated the role of Lrp1 in regulating α-Syn spread with a neuronal Lrp1 conditional knockout (Lrp1-nKO) mouse model. We generated adeno-associated viruses (AAVs) that allowed for distinguishing the α-Syn expression versus spread and injected them into the hippocampus of six-month-old Lrp1-nKO mice and the littermate wild type (WT) controls. The spread of α-Syn was evaluated three months after the injection. RESULTS We found that the uptake of both monomeric and oligomeric α-Syn was significantly reduced in iPSNs with LRP1-KO compared with the WT controls. The uptake of α-Syn PFFs was also inhibited in LRP1-KO iPSNs, albeit to a much lesser extent compared to α-Syn monomers and oligomers. The blocking of lysine residues on α-Syn effectively decreased the uptake of α-Syn in iPSNs and the N-terminus of α-Syn was critical for LRP1-mediated α-Syn uptake. Finally, in the Lrp1-nKO mice, the spread of α-Syn was significantly reduced compared with the WT littermates. CONCLUSIONS We identified LRP1 as a key regulator of α-Syn neuronal uptake, as well as an important mediator of α-Syn spread in the brain. This study provides new knowledge on the physiological and pathological role of LRP1 in α-Syn trafficking and pathology, offering insight for the treatment of synucleinopathies.
Collapse
|
36
|
Seitkazina A, Kim KH, Fagan E, Sung Y, Kim YK, Lim S. The Fate of Tau Aggregates Between Clearance and Transmission. Front Aging Neurosci 2022; 14:932541. [PMID: 35923541 PMCID: PMC9339952 DOI: 10.3389/fnagi.2022.932541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Neuronal accumulation of mis-folded tau is the pathological hallmark of multiple neurodegenerative disorders, including Alzheimer’s disease. Distinct from amyloid plaques, which appear simultaneously throughout the brain, tau pathology develops first in a specific brain region and then propagates to neuroanatomically connected brain regions, exacerbating the disease. Due to the implication in disease progression, prevention of tau transmission is recognized as an important therapeutic strategy that can halt disease progression in the brain. Recently, accumulating studies have demonstrated diverse cellular mechanisms associated with cell-to-cell transmission of tau. Once transmitted, mis-folded tau species act as a prion-like seed for native tau aggregation in the recipient neuron. In this review, we summarize the diverse cellular mechanisms associated with the secretion and uptake of tau, and highlight tau-trafficking receptors, which mediate tau clearance or cell-to-cell tau transmission.
Collapse
Affiliation(s)
- Assel Seitkazina
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Kyu Hyeon Kim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Erin Fagan
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| | - Yoonsik Sung
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Yun Kyung Kim,
| | - Sungsu Lim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Sungsu Lim,
| |
Collapse
|
37
|
Patil SP, DiFlumeri J, Wellington J, Fattakhova E, Oravic M. Alzheimer’s neuroinflammation: A crosstalk between immune checkpoint PD1-PDL1 and ApoE-Heparin interactions? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Carrettiero DC, Almeida MC, Longhini AP, Rauch JN, Han D, Zhang X, Najafi S, Gestwicki JE, Kosik KS. Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate. Nat Commun 2022; 13:3074. [PMID: 35654899 PMCID: PMC9163039 DOI: 10.1038/s41467-022-30751-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
The formation of membraneless organelles can be a proteotoxic stress control mechanism that locally condenses a set of components capable of mediating protein degradation decisions. The breadth of mechanisms by which cells respond to stressors and form specific functional types of membraneless organelles, is incompletely understood. We found that Bcl2-associated athanogene 2 (BAG2) marks a distinct phase-separated membraneless organelle, triggered by several forms of stress, particularly hyper-osmotic stress. Distinct from well-known condensates such as stress granules and processing bodies, BAG2-containing granules lack RNA, lack ubiquitin and promote client degradation in a ubiquitin-independent manner via the 20S proteasome. These organelles protect the viability of cells from stress and can traffic to the client protein, in the case of Tau protein, on the microtubule. Components of these ubiquitin-independent degradation organelles include the chaperone HSP-70 and the 20S proteasome activated by members of the PA28 (PMSE) family. BAG2 condensates did not co-localize with LAMP-1 or p62/SQSTM1. When the proteasome is inhibited, BAG2 condensates and the autophagy markers traffic to an aggresome-like structure.
Collapse
Affiliation(s)
- Daniel C Carrettiero
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Maria C Almeida
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Jennifer N Rauch
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Dasol Han
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xuemei Zhang
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
39
|
Congdon EE, Jiang Y, Sigurdsson EM. Targeting tau only extracellularly is likely to be less efficacious than targeting it both intra- and extracellularly. Semin Cell Dev Biol 2022; 126:125-137. [PMID: 34896021 PMCID: PMC9680670 DOI: 10.1016/j.semcdb.2021.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Aggregation of the tau protein is thought to be responsible for the neurodegeneration and subsequent functional impairments in diseases that are collectively named tauopathies. Alzheimer's disease is the most common tauopathy, but the group consists of over 20 different diseases, many of which have tau pathology as their primary feature. The development of tau therapies has mainly focused on preventing the formation of and/or clearing these aggregates. Of these, immunotherapies that aim to either elicit endogenous tau antibodies or deliver exogenous ones are the most common approach in clinical trials. While their mechanism of action can involve several pathways, both extra- and intracellular, pharmaceutical companies have primarily focused on antibody-mediated clearance of extracellular tau. As we have pointed out over the years, this is rather surprising because it is well known that most of pathological tau protein is found intracellularly. It has been repeatedly shown by several groups over the past decades that antibodies can enter neurons and that their cellular uptake can be enhanced by various means, particularly by altering their charge. Here, we will briefly describe the potential extra- and intracellular mechanisms involved in antibody-mediated clearance of tau pathology, discuss these in the context of recent failures of some of the tau antibody trials, and finally provide a brief overview of how the intracellular efficacy of tau antibodies can potentially be further improved by certain modifications that aim to enhance tau clearance via specific intracellular degradation pathways.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States.
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
40
|
Fawcett JW, Kwok JCF. Proteoglycan Sulphation in the Function of the Mature Central Nervous System. Front Integr Neurosci 2022; 16:895493. [PMID: 35712345 PMCID: PMC9195417 DOI: 10.3389/fnint.2022.895493] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulphate and heparan sulphate proteoglycans (CSPGS and HSPGs) are found throughout the central nervous system (CNS). CSPGs are ubiquitous in the diffuse extracellular matrix (ECM) between cells and are a major component of perineuronal nets (PNNs), the condensed ECM present around some neurons. HSPGs are more associated with the surface of neurons and glia, with synapses and in the PNNs. Both CSPGs and HSPGs consist of a protein core to which are attached repeating disaccharide chains modified by sulphation at various positions. The sequence of sulphation gives the chains a unique structure and local charge density. These sulphation codes govern the binding properties and biological effects of the proteoglycans. CSPGs are sulphated along their length, the main forms being 6- and 4-sulphated. In general, the chondroitin 4-sulphates are inhibitory to cell attachment and migration, while chondroitin 6-sulphates are more permissive. HSPGs tend to be sulphated in isolated motifs with un-sulphated regions in between. The sulphation patterns of HS motifs and of CS glycan chains govern their binding to the PTPsigma receptor and binding of many effector molecules to the proteoglycans, such as growth factors, morphogens, and molecules involved in neurodegenerative disease. Sulphation patterns change as a result of injury, inflammation and ageing. For CSPGs, attention has focussed on PNNs and their role in the control of plasticity and memory, and on the soluble CSPGs upregulated in glial scar tissue that can inhibit axon regeneration. HSPGs have key roles in development, regulating cell migration and axon growth. In the adult CNS, they have been associated with tau aggregation and amyloid-beta processing, synaptogenesis, growth factor signalling and as a component of the stem cell niche. These functions of CSPGs and HSPGs are strongly influenced by the pattern of sulphation of the glycan chains, the sulphation code. This review focuses on these sulphation patterns and their effects on the function of the mature CNS.
Collapse
Affiliation(s)
- James W. Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia
| | - Jessica C. F. Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
41
|
Tuck BJ, Miller LVC, Katsinelos T, Smith AE, Wilson EL, Keeling S, Cheng S, Vaysburd MJ, Knox C, Tredgett L, Metzakopian E, James LC, McEwan WA. Cholesterol determines the cytosolic entry and seeded aggregation of tau. Cell Rep 2022; 39:110776. [PMID: 35508140 PMCID: PMC9108550 DOI: 10.1016/j.celrep.2022.110776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/03/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
Assemblies of tau can transit between neurons, seeding aggregation in a prion-like manner. To accomplish this, tau must cross cell-limiting membranes, a process that is poorly understood. Here, we establish assays for the study of tau entry into the cytosol as a phenomenon distinct from uptake, in real time, and at physiological concentrations. The entry pathway of tau is cell type specific and, in neurons, highly sensitive to cholesterol. Depletion of the cholesterol transporter Niemann-Pick type C1 or extraction of membrane cholesterol renders neurons highly permissive to tau entry and potentiates seeding even at low levels of exogenous tau assemblies. Conversely, cholesterol supplementation reduces entry and almost completely blocks seeded aggregation. Our findings establish entry as a rate-limiting step to seeded aggregation and demonstrate that dysregulated cholesterol, a feature of several neurodegenerative diseases, potentiates tau aggregation by promoting entry of tau assemblies into the cell interior.
Collapse
Affiliation(s)
- Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK.
| | - Lauren V C Miller
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Annabel E Smith
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Emma L Wilson
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Shi Cheng
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Marina J Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claire Knox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lucy Tredgett
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK.
| |
Collapse
|
42
|
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 2022; 322:C849-C864. [PMID: 35294848 PMCID: PMC9037703 DOI: 10.1152/ajpcell.00085.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.
Collapse
Affiliation(s)
- Amrita Basu
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Neil G. Patel
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Elijah D. Nicholson
- 2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Ryan J. Weiss
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
43
|
Mee Hayes E, Sirvio L, Ye Y. A Potential Mechanism for Targeting Aggregates With Proteasomes and Disaggregases in Liquid Droplets. Front Aging Neurosci 2022; 14:854380. [PMID: 35517053 PMCID: PMC9062979 DOI: 10.3389/fnagi.2022.854380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Insoluble protein deposits are hallmarks of neurodegenerative disorders and common forms of dementia. The aberrant aggregation of misfolded proteins involves a complex cascade of events that occur over time, from the cellular to the clinical phase of neurodegeneration. Declining neuronal health through increased cell stress and loss of protein homeostasis (proteostasis) functions correlate with the accumulation of aggregates. On the cellular level, increasing evidence supports that misfolded proteins may undergo liquid-liquid phase separation (LLPS), which is emerging as an important process to drive protein aggregation. Studying, the reverse process of aggregate disassembly and degradation has only recently gained momentum, following reports of enzymes with distinct aggregate-disassembly activities. In this review, we will discuss how the ubiquitin-proteasome system and disaggregation machineries such as VCP/p97 and HSP70 system may disassemble and/or degrade protein aggregates. In addition to their canonically associated functions, these enzymes appear to share a common feature: reversibly assembling into liquid droplets in an LLPS-driven manner. We review the role of LLPS in enhancing the disassembly of aggregates through locally increasing the concentration of these enzymes and their co-proteins together within droplet structures. We propose that such activity may be achieved through the concerted actions of disaggregase machineries, the ubiquitin-proteasome system and their co-proteins, all of which are condensed within transient aggregate-associated droplets (TAADs), ultimately resulting in aggregate clearance. We further speculate that sustained engagement of these enzymatic activities within TAADs will be detrimental to normal cellular functions, where these activities are required. The possibility of facilitating endogenous disaggregation and degradation activities within TAADs potentially represents a novel target for therapeutic intervention to restore protein homeostasis at the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Emma Mee Hayes
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Liina Sirvio
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Yu Ye
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
- *Correspondence: Yu Ye,
| |
Collapse
|
44
|
Song L, Oseid DE, Wells EA, Coaston T, Robinson AS. Heparan Sulfate Proteoglycans (HSPGs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. J Mol Neurosci 2022; 72:772-791. [PMID: 35040015 PMCID: PMC8763444 DOI: 10.1007/s12031-021-01943-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
The conversion of soluble tau protein to insoluble, hyperphosphorylated neurofibrillary tangles (NFTs) is a major hallmark leading to neuronal death observed in neurodegenerative tauopathies. Unlike NFTs, the involvement of monomeric tau in the progression of tau pathology has been less investigated. Using live-cell confocal microscopy and flow cytometry, we demonstrate that soluble 0N4R monomers were rapidly endocytosed by SH-SY5Y and C6 glioma cells via actin-dependent macropinocytosis. Further, cellular endocytosis of monomeric tau has been demonstrated to be HSPG-dependent, as shown in C6 glial cells with genetic knockouts of xylosyltransferase-1-a key enzyme in HSPG synthesis-with a reduced level of tau uptake. Tau internalization subsequently triggers ERK1/2 activation and therefore, the upregulation of IL-6 and IL-1β. The role of ERK1/2 in regulating the levels of pro-inflammatory gene transcripts was confirmed by inhibiting the MEK-ERK1/2 signaling pathway, which led to the attenuated IL-6 and IL-1β expressions but not that of TNF-α. Moreover, as a key regulator of tau internalization, LRP1 (low-density lipoprotein receptor-related protein 1) levels were downregulated in response to monomeric tau added to C6 cells, while it was upregulated in HSPG-deficient cells, suggesting that the involvement of LRP1 in tau uptake depends on the presence of HSPGs on the cell surface. The subsequent LRP1 knockdown experiment we performed shows that LRP1 deficiency leads to an attenuated propensity for tau uptake and further elevated IL-6 gene expression. Collectively, our data suggest that tau has multiple extracellular binding partners that mediate its internalization through distinct mechanisms. Additionally, this study demonstrates the important role of both HSPGs and LRP1 in regulating cellular immune responses to tau protein monomers, providing a novel target for alleviating the neuroinflammatory environment before the formation of neurofibrillary tangles.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Daniel E Oseid
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Evan A Wells
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Troy Coaston
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
45
|
Smethurst P, Franklin H, Clarke BE, Sidle K, Patani R. The role of astrocytes in prion-like mechanisms of neurodegeneration. Brain 2022; 145:17-26. [PMID: 35265969 PMCID: PMC8967097 DOI: 10.1093/brain/awab366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that neurodegenerative diseases are not merely neuronal in nature but comprise multicellular involvement, with astrocytes emerging as key players. The pathomechanisms of several neurodegenerative diseases involve the deposition of misfolded protein aggregates in neurons that have characteristic prion-like behaviours such as template-directed seeding, intercellular propagation, distinct conformational strains and protein-mediated toxicity. The role of astrocytes in dealing with these pathological prion-like protein aggregates and whether their responses either protect from or conspire with the disease process is currently unclear. Here we review the existing literature implicating astrocytes in multiple neurodegenerative proteinopathies with a focus on prion-like behaviour in this context.
Collapse
Affiliation(s)
- Phillip Smethurst
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hannah Franklin
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E Clarke
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Katie Sidle
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Correspondence may also be addressed to: Katie Sidle E-mail:
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence to: Rickie Patani The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK E-mail:
| |
Collapse
|
46
|
Limorenko G, Lashuel HA. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chem Soc Rev 2021; 51:513-565. [PMID: 34889934 DOI: 10.1039/d1cs00127b] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Converging evidence continues to point towards Tau aggregation and pathology formation as central events in the pathogenesis of Alzheimer's disease and other Tauopathies. Despite significant advances in understanding the morphological and structural properties of Tau fibrils, many fundamental questions remain about what causes Tau to aggregate in the first place. The exact roles of cofactors, Tau post-translational modifications, and Tau interactome in regulating Tau aggregation, pathology formation, and toxicity remain unknown. Recent studies have put the spotlight on the wide gap between the complexity of Tau structures, aggregation, and pathology formation in the brain and the simplicity of experimental approaches used for modeling these processes in research laboratories. Embracing and deconstructing this complexity is an essential first step to understanding the role of Tau in health and disease. To help deconstruct this complexity and understand its implication for the development of effective Tau targeting diagnostics and therapies, we firstly review how our understanding of Tau aggregation and pathology formation has evolved over the past few decades. Secondly, we present an analysis of new findings and insights from recent studies illustrating the biochemical, structural, and functional heterogeneity of Tau aggregates. Thirdly, we discuss the importance of adopting new experimental approaches that embrace the complexity of Tau aggregation and pathology as an important first step towards developing mechanism- and structure-based therapies that account for the pathological and clinical heterogeneity of Alzheimer's disease and Tauopathies. We believe that this is essential to develop effective diagnostics and therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
47
|
Carroll T, Guha S, Nehrke K, Johnson GVW. Tau Post-Translational Modifications: Potentiators of Selective Vulnerability in Sporadic Alzheimer's Disease. BIOLOGY 2021; 10:1047. [PMID: 34681146 PMCID: PMC8533264 DOI: 10.3390/biology10101047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Sporadic Alzheimer's Disease (AD) is the most common form of dementia, and its severity is characterized by the progressive formation of tau neurofibrillary tangles along a well-described path through the brain. This spatial progression provides the basis for Braak staging of the pathological progression for AD. Tau protein is a necessary component of AD pathology, and recent studies have found that soluble tau species with selectively, but not extensively, modified epitopes accumulate along the path of disease progression before AD-associated insoluble aggregates form. As such, modified tau may represent a key cellular stressing agent that potentiates selective vulnerability in susceptible neurons during AD progression. Specifically, studies have found that tau phosphorylated at sites such as T181, T231, and S396 may initiate early pathological changes in tau by disrupting proper tau localization, initiating tau oligomerization, and facilitating tau accumulation and extracellular export. Thus, this review elucidates potential mechanisms through which tau post-translational modifications (PTMs) may simultaneously serve as key modulators of the spatial progression observed in AD development and as key instigators of early pathology related to neurodegeneration-relevant cellular dysfunctions.
Collapse
Affiliation(s)
- Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Sanjib Guha
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
48
|
Sallaberry CA, Voss BJ, Majewski J, Biernat J, Mandelkow E, Chi EY, Vander Zanden CM. Tau and Membranes: Interactions That Promote Folding and Condensation. Front Cell Dev Biol 2021; 9:725241. [PMID: 34621743 PMCID: PMC8491580 DOI: 10.3389/fcell.2021.725241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Tau misfolding and assembly is linked to a number of neurodegenerative diseases collectively described as tauopathies, including Alzheimer’s disease (AD) and Parkinson’s disease. Anionic cellular membranes, such as the cytosolic leaflet of the plasma membrane, are sites that concentrate and neutralize tau, primarily due to electrostatic interactions with tau’s microtubule binding repeat domain (RD). In addition to electrostatic interactions with lipids, tau also has interactions with membrane proteins, which are important for tau’s cellular functions. Tau also interacts with lipid tails to facilitate direct translocation across the membrane and can form stable protein-lipid complexes involved in cell-to-cell transport. Concentrated tau monomers at the membrane surface can form reversible condensates, change secondary structures, and induce oligomers, which may eventually undergo irreversible crosslinking and fibril formation. These β-sheet rich tau structures are capable of disrupting membrane organization and are toxic in cell-based assays. Given the evidence for relevant membrane-based tau assembly, we review the emerging hypothesis that polyanionic membranes may serve as a site for phase-separated tau condensation. Membrane-mediated phase separation may have important implications for regulating tau folding/misfolding, and may be a powerful mechanism to spatially direct tau for native membrane-mediated functions.
Collapse
Affiliation(s)
- Chad A Sallaberry
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Barbie J Voss
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Jaroslaw Majewski
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA, United States.,Department of Chemical & Biological Engineering, Center for Biomedical Engineering, The University of New Mexico, Albuquerque, NM, United States.,Theoretical Biology and Biophysics Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Jacek Biernat
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Center of Advanced European Studies and Research (CAESAR) Center, Bonn, Germany.,Department of Neurodegenerative Disease and Geriatric Psychiatry, Medical School, University of Bonn, Bonn, Germany
| | - Eva Y Chi
- Department of Chemical & Biological Engineering, Center for Biomedical Engineering, The University of New Mexico, Albuquerque, NM, United States
| | - Crystal M Vander Zanden
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
49
|
Snow AD, Cummings JA, Lake T. The Unifying Hypothesis of Alzheimer's Disease: Heparan Sulfate Proteoglycans/Glycosaminoglycans Are Key as First Hypothesized Over 30 Years Ago. Front Aging Neurosci 2021; 13:710683. [PMID: 34671250 PMCID: PMC8521200 DOI: 10.3389/fnagi.2021.710683] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
The updated "Unifying Hypothesis of Alzheimer's disease" (AD) is described that links all the observed neuropathology in AD brain (i.e., plaques, tangles, and cerebrovascular amyloid deposits), as well as inflammation, genetic factors (involving ApoE), "AD-in-a-Dish" studies, beta-amyloid protein (Aβ) as a microbial peptide; and theories that bacteria, gut microflora, gingivitis and viruses all play a role in the cause of AD. The common link is the early accumulation of heparan sulfate proteoglycans (HSPGs) and heparan sulfate glycosaminoglycans (GAGs). HS GAG accumulation and/or decreased HS GAG degradation is postulated to be the key initiating event. HS GAGs and highly sulfated macromolecules induce Aβ 1-40 (but not 1-42) to form spherical congophilic maltese-cross star-like amyloid core deposits identical to those in the AD brain. Heparin/HS also induces tau protein to form paired helical filaments (PHFs). Increased sulfation and/or decreased degradation of HSPGs and HS GAGs that occur due to brain aging leads to the formation of plaques and tangles in AD brain. Knockout of HS genes markedly reduce the accumulation of Aβ fibrils in the brain demonstrating that HS GAGs are key. Bacteria and viruses all use cell surface HS GAGs for entry into cells, including SARS-CoV-2. Bacteria and viruses cause HS GAGs to rapidly increase to cause near-immediate aggregation of Aβ fibrils. "AD-in-a-dish" studies use "Matrigel" as the underlying scaffold that spontaneously causes plaque, and then tangle formation in a dish. Matrigel mostly contains large amounts of perlecan, the same specific HSPG implicated in AD and amyloid disorders. Mucopolysaccharidoses caused by lack of specific HS GAG enzymes lead to massive accumulation of HS in lysosomal compartments in neurons and contribute to cognitive impairment in children. Neurons full of HS demonstrate marked accumulation and fibrillization of Aβ, tau, α-synuclein, and prion protein (PrP) in mucopolysaccharidosis animal models demonstrating that HS GAG accumulation is a precursor to Aβ accumulation in neurons. Brain aging leads to changes in HSPGs, including newly identified splice variants leading to increased HS GAG sulfation in the AD brain. All of these events lead to the new "Unifying Hypothesis of Alzheimer's disease" that further implicates HSPGs /HS GAGs as key (as first hypothesized by Snow and Wight in 1989).
Collapse
|
50
|
Sexton C, Snyder H, Beher D, Boxer AL, Brannelly P, Brion JP, Buée L, Cacace AM, Chételat G, Citron M, DeVos SL, Diaz K, Feldman HH, Frost B, Goate AM, Gold M, Hyman B, Johnson K, Karch CM, Kerwin DR, Koroshetz WJ, Litvan I, Morris HR, Mummery CJ, Mutamba J, Patterson MC, Quiroz YT, Rabinovici GD, Rommel A, Shulman MB, Toledo-Sherman LM, Weninger S, Wildsmith KR, Worley SL, Carrillo MC. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement 2021; 18:988-1007. [PMID: 34581500 DOI: 10.1002/alz.12452] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.
Collapse
Affiliation(s)
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Pat Brannelly
- Alzheimer's Disease Data Initiative, Kirkland, WI, USA
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Buée
- Univ Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, Lille, France
| | | | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Martin Citron
- Neuroscience TA, Braine l'Alleud, UCB Biopharma, Brussels, Belgium
| | - Sarah L DeVos
- Translational Sciences, Denali Therapeutics, San Francisco, California, USA
| | | | - Howard H Feldman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders, Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Gold
- AbbVie, Neurosciences Development, North Chicago, Illinois, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Johnson
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Diana R Kerwin
- Kerwin Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | | | - Marc C Patterson
- Departments of Neurology, Pediatrics and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yakeel T Quiroz
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Amy Rommel
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, Texas, USA
| | - Melanie B Shulman
- Neurodegeneration Development Unit, Biogen, Boston, Massachusetts, USA
| | | | | | - Kristin R Wildsmith
- Department of Biomarker Development, Genentech, South San Francisco, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | | |
Collapse
|