1
|
Vicente P, Inocêncio LR, Ullate-Agote A, Louro AF, Jacinto J, Gamelas B, Iglesias-García O, Martin-Uriz PS, Aguirre-Ruiz P, Ríos-Muñoz GR, Fernández-Santos ME, van Mil A, Sluijter JPG, Prósper F, Vega MMM, Alves PM, Serra M. Billion-Scale Expansion of Functional hiPSC-Derived Cardiomyocytes in Bioreactors Through Oxygen Control and Continuous Wnt Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410510. [PMID: 39846380 DOI: 10.1002/advs.202410510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/28/2024] [Indexed: 01/24/2025]
Abstract
Generation of upscaled quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), for therapeutic or testing applications, is both expensive and time-consuming. Herein, a scalable bioprocess for hiPSC-CM expansion in stirred-tank bioreactors (STB) is developed. By combining the continuous activation of the Wnt pathway, through perfusion of CHIR99021, within a mild hypoxia environment, the expansion of hiPSC-CM as aggregates is maximized, reaching 4 billion of pure hiPSC-CM in 2L STB. In particular, the importance of i) controlling the dissolved oxygen at 10% O2 to reduce reactive oxygen species production and upregulate genes involved in cell proliferation, resulting in higher expansion rates (tenfold) compared to normoxic conditions, and ii) maintaining constant power input per volume as a scale-up criteria is demonstrated. After expansion, hiPSC-CM further mature in culture, revealing more mature transcriptional signatures, higher sarcomere alignment and improved calcium handling. This new bioprocess opens the door to time- and cost-effective generation of hiPSC-CM.
Collapse
Affiliation(s)
- Pedro Vicente
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Nova de Lisboa, Av. da República, Oeiras, 2780157, Portugal
| | - Lara R Inocêncio
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Nova de Lisboa, Av. da República, Oeiras, 2780157, Portugal
| | - Asier Ullate-Agote
- Program of Biomedical Engineering, Technological Innovation Division, CIMA Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Nova de Lisboa, Av. da República, Oeiras, 2780157, Portugal
| | - João Jacinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Nova de Lisboa, Av. da República, Oeiras, 2780157, Portugal
| | - Beatriz Gamelas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Nova de Lisboa, Av. da República, Oeiras, 2780157, Portugal
| | - Olalla Iglesias-García
- Program of Biomedical Engineering, Technological Innovation Division, CIMA Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Patxi San Martin-Uriz
- Hemato-oncology Program, Cancer Division, CIMA Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Paula Aguirre-Ruiz
- Hemato-oncology Program, Cancer Division, CIMA Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Gonzalo R Ríos-Muñoz
- Bioengineering Department, Universidad Carlos III de Madrid, Madrid, 28911, Spain
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Carlos III, Madrid, 28029, Spain
| | - María Eugenia Fernández-Santos
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Carlos III, Madrid, 28029, Spain
| | - Alain van Mil
- Regenerative Medicine Center Utrecht, Laboratory of Experimental Cardiology, Circulatory Health Research Center, University Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center Utrecht, Laboratory of Experimental Cardiology, Circulatory Health Research Center, University Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Felipe Prósper
- Hematology and Cell Therapy, Clínica Universidad de Navarra, Pamplona, 31008, Spain
- Hemato-oncology Program, Cancer Division, CIMA Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, 31008, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, 28029, Spain
| | - Manuel M Mazo Vega
- Program of Biomedical Engineering, Technological Innovation Division, CIMA Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, 31008, Spain
- Hematology and Cell Therapy, Clínica Universidad de Navarra, Pamplona, 31008, Spain
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Nova de Lisboa, Av. da República, Oeiras, 2780157, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade de Nova de Lisboa, Av. da República, Oeiras, 2780157, Portugal
| |
Collapse
|
2
|
Yun J, So J, Jeong S, Jang J, Han S, Jeon J, Lee K, Jang HR, Lee J. Transcriptome and epigenome dynamics of the clonal heterogeneity of human induced pluripotent stem cells for cardiac differentiation. Cell Mol Life Sci 2024; 82:2. [PMID: 39661125 PMCID: PMC11635083 DOI: 10.1007/s00018-024-05493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) generate multiple clones with inherent heterogeneity, leading to variations in their differentiation capacity. Previous studies have primarily addressed line-to-line variations in differentiation capacity, leaving a gap in the comprehensive understanding of clonal heterogeneity. Here, we aimed to profile the heterogeneity of hiPSC clones and identify predictive biomarkers for cardiomyocyte (CM) differentiation capacity by integrating transcriptomic, epigenomic, endogenous retroelement, and protein kinase phosphorylation profiles. We generated multiple clones from a single donor and validated that these clones exhibited comparable levels of pluripotency markers. The clones were classified into two groups based on their differentiation efficiency to CMs-productive clone (PC) and non-productive clone (NPC). We performed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with sequencing (ATAC-seq). NPC was enriched in vasculogenesis and cell adhesion, accompanied by elevated levels of phosphorylated ERK1/2. Conversely, PC exhibited enrichment in embryonic organ development and transcription factor activation, accompanied by increased chromatin accessibility near transcription start site (TSS) regions. Integrative analysis of RNA-seq and ATAC-seq revealed 14 candidate genes correlated with cardiac differentiation potential. Notably, TEK and SDR42E1 were upregulated in NPC. Our integrative profiles enhance the understanding of clonal heterogeneity and highlight two novel biomarkers associated with CM differentiation. This insight may facilitate the identification of suboptimal hiPSC clones, thereby mitigating adverse outcomes in clinical applications.
Collapse
Affiliation(s)
- Jihye Yun
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaemin So
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seunghee Jeong
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiye Jang
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soyoung Han
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Republic of Korea
| | - Jaecheol Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Yuan Q, Verbueken D, Dinani R, Kim R, Schoger E, Morsink CD, Simkooei SA, Kemna LJM, Hjortnaes J, Kuster DWD, Boon RA, Zelarayan LC, van der Velden J, Buikema JW. Glycogen synthase kinase-3 inhibition and insulin enhance proliferation and inhibit maturation of human iPSC-derived cardiomyocytes via TCF and FOXO signaling. Stem Cell Reports 2024:102371. [PMID: 39642876 DOI: 10.1016/j.stemcr.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024] Open
Abstract
Embryonic signaling pathways exert stage-specific effects during cardiac development, yet the precise signals for proliferation or maturation remain elusive. To uncover the cues for proliferation, we performed a combinatory cell-cycle screen for insulin and glycogen synthase kinase-3 (GSK3) inhibition in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our analysis for proliferation, and subsequential downstream sarcomere development, gene expression analysis, and molecular interventions identified a temporal interplay between insulin/Akt/FOXO and CHIR99021/Wnt/GSK3/TCF signaling. Combined pathway activation led to proliferation of immature hiPSC-CMs with low sarcomere and mitochondria content, while, in the absence of pathway activators, cardiomyocytes rapidly exited the cell cycle and fetched higher organization of sarcomeres and mitochondria. Our data demonstrate two important pathways, which enhance proliferation and inhibit maturation, and provide molecular mechanistic understanding of these cell fate decisions in immature hiPSC-CMs.
Collapse
Affiliation(s)
- Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Devin Verbueken
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Rosa Kim
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Eric Schoger
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Chloé D Morsink
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Shamim Amiri Simkooei
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Luuk J M Kemna
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesper Hjortnaes
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Heart Lung Center, Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Diederik W D Kuster
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Reinier A Boon
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Laura Cecilia Zelarayan
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany; Justus Liebig University, Medical Clinic I, Department of Cardiology and Angiology, Giessen, Germany
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Jan W Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Datta S, Cao W, Skillman M, Wu M. Hypoplastic Left Heart Syndrome: Signaling & Molecular Perspectives, and the Road Ahead. Int J Mol Sci 2023; 24:15249. [PMID: 37894928 PMCID: PMC10607600 DOI: 10.3390/ijms242015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a lethal congenital heart disease (CHD) affecting 8-25 per 100,000 neonates globally. Clinical interventions, primarily surgical, have improved the life expectancy of the affected subjects substantially over the years. However, the etiological basis of HLHS remains fundamentally unclear to this day. Based upon the existing paradigm of studies, HLHS exhibits a multifactorial mode of etiology mediated by a complicated course of genetic and signaling cascade. This review presents a detailed outline of the HLHS phenotype, the prenatal and postnatal risks, and the signaling and molecular mechanisms driving HLHS pathogenesis. The review discusses the potential limitations and future perspectives of studies that can be undertaken to address the existing scientific gap. Mechanistic studies to explain HLHS etiology will potentially elucidate novel druggable targets and empower the development of therapeutic regimens against HLHS in the future.
Collapse
Affiliation(s)
| | | | | | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (S.D.); (W.C.); (M.S.)
| |
Collapse
|
5
|
Maas RGC, van den Dolder FW, Yuan Q, van der Velden J, Wu SM, Sluijter JPG, Buikema JW. Harnessing developmental cues for cardiomyocyte production. Development 2023; 150:dev201483. [PMID: 37560977 PMCID: PMC10445742 DOI: 10.1242/dev.201483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.
Collapse
Affiliation(s)
- Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Floor W. van den Dolder
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sean M. Wu
- Department of Medicine, Division of Cardiovascular Medicine,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jan W. Buikema
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury. Int J Mol Sci 2023; 24:ijms24054577. [PMID: 36902008 PMCID: PMC10003569 DOI: 10.3390/ijms24054577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia-reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs.
Collapse
|
7
|
He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair. Cells 2022; 11:3914. [PMID: 36497171 PMCID: PMC9740402 DOI: 10.3390/cells11233914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Paul
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wei Huang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yigang Wang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
8
|
Mansfield C, Zhao MT, Basu M. Translational potential of hiPSCs in predictive modeling of heart development and disease. Birth Defects Res 2022; 114:926-947. [PMID: 35261209 PMCID: PMC9458775 DOI: 10.1002/bdr2.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require surgical intervention immediately after birth. Despite the intense efforts from multicentric genome/exome sequencing studies that have identified several genetic variants, the etiology of CHD remains diverse and often unknown. Genetically modified animal models with candidate gene deficiencies continue to provide novel molecular insights that are responsible for fetal cardiac development. However, the past decade has seen remarkable advances in the field of human induced pluripotent stem cell (hiPSC)-based disease modeling approaches to better understand the development of CHD and discover novel preventative therapies. The iPSCs are derived from reprogramming of differentiated somatic cells to an embryonic-like pluripotent state via overexpression of key transcription factors. In this review, we describe how differentiation of hiPSCs to specialized cardiac cellular identities facilitates our understanding of the development and pathogenesis of CHD subtypes. We summarize the molecular and functional characterization of hiPSC-derived differentiated cells in support of normal cardiogenesis, those that go awry in CHD and other heart diseases. We illustrate how stem cell-based disease modeling enables scientists to dissect the molecular mechanisms of cell-cell interactions underlying CHD. We highlight the current state of hiPSC-based studies that are in the verge of translating into clinical trials. We also address limitations including hiPSC-model reproducibility and scalability and differentiation methods leading to cellular heterogeneity. Last, we provide future perspective on exploiting the potential of hiPSC technology as a predictive model for patient-specific CHD, screening pharmaceuticals, and provide a source for cell-based personalized medicine. In combination with existing clinical and animal model studies, data obtained from hiPSCs will yield further understanding of oligogenic, gene-environment interaction, pathophysiology, and management for CHD and other genetic cardiac disorders.
Collapse
Affiliation(s)
- Corrin Mansfield
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Madhumita Basu
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
9
|
Muñoz JJAM, Dariolli R, da Silva CM, Neri EA, Valadão IC, Turaça LT, Lima VM, de Carvalho MLP, Velho MR, Sobie EA, Krieger JE. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther 2022; 13:437. [PMID: 36056380 PMCID: PMC9438174 DOI: 10.1186/s13287-022-03138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA–target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. Methods We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA–target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling.
Results We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < − 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < − 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation.
Conclusion We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03138-x.
Collapse
Affiliation(s)
- Juan J A M Muñoz
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Universidad Señor de Sipán, Chiclayo, Perú
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caio Mateus da Silva
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Iuri C Valadão
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Lauro Thiago Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Vanessa M Lima
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariana Lombardi Peres de Carvalho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariliza R Velho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
10
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
12
|
Kametani Y, Tanaka S, Wada Y, Suzuki S, Umeda A, Nishinaka K, Okada Y, Maeda M, Miyagawa S, Sawa Y, Obana M, Fujio Y. Yes‐associated protein activation potentiates glycogen synthase kinase‐3 inhibitor‐induced proliferation of neonatal cardiomyocytes and iPS cell‐derived cardiomyocytes. J Cell Physiol 2022; 237:2539-2549. [PMID: 35312066 PMCID: PMC9311433 DOI: 10.1002/jcp.30724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/06/2022]
Abstract
Because mammalian cardiomyocytes largely cease to proliferate immediately after birth, the regenerative activity of the heart is limited. To date, much effort has been made to clarify the regulatory mechanism of cardiomyocyte proliferation because the amplification of cardiomyocytes could be a promising strategy for heart regenerative therapy. Recently, it was reported that the inhibition of glycogen synthase kinase (GSK)‐3 promotes the proliferation of neonatal rat cardiomyocytes (NRCMs) and human iPS cell‐derived cardiomyocytes (hiPSC‐CMs). Additionally, Yes‐associated protein (YAP) induces cardiomyocyte proliferation. The purpose of this study was to address the importance of YAP activity in cardiomyocyte proliferation induced by GSK‐3 inhibitors (GSK‐3Is) to develop a novel strategy for cardiomyocyte amplification. Immunofluorescent microscopic analysis using an anti‐Ki‐67 antibody demonstrated that the treatment of NRCMs with GSK‐3Is, such as BIO and CHIR99021, increased the ratio of proliferative cardiomyocytes. YAP was localized in the nuclei of more than 95% of cardiomyocytes, either in the presence or absence of GSK‐3Is, indicating that YAP was endogenously activated. GSK‐3Is increased the expression of β‐catenin and promoted its translocation into the nucleus without influencing YAP activity. The knockdown of YAP using siRNA or pharmacological inhibition of YAP using verteporfin or CIL56 dramatically reduced GSK‐3I‐induced cardiomyocyte proliferation without suppressing β‐catenin activation. Interestingly, the inhibition of GSK‐3 also induced the proliferation of hiPSC‐CMs under sparse culture conditions, where YAP was constitutively activated. In contrast, under dense culture conditions, in which YAP activity was suppressed, the proliferative effects of GSK‐3Is on hiPSC‐CMs were not detected. Importantly, the activation of YAP by the knockdown of α‐catenin restored the proproliferative activity of GSK‐3Is. Collectively, YAP activation potentiates the GSK‐3I‐induced proliferation of cardiomyocytes. The blockade of GSK‐3 in combination with YAP activation resulted in remarkable amplification of cardiomyocytes.
Collapse
Affiliation(s)
- Yusuke Kametani
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Yuriko Wada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Shota Suzuki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Ayaka Umeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Kosuke Nishinaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Makiko Maeda
- Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
- Department of Medical Innovation, Medical Center for Translational Research Osaka University Hospital Suita City Osaka Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine Osaka University Suita City Osaka Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Graduate School of Medicine Osaka University Suita City Osaka Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI) Osaka University Suita City Osaka Japan
- Radioisotope Research Center, Institute for Radiation Sciences Osaka University Suita City Osaka Japan
- Global Center for Medical Engineering and Informatics (MEI) Osaka University Suita City Osaka Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI) Osaka University Suita City Osaka Japan
| |
Collapse
|
13
|
Yuan Q, Maas RGC, Brouwer ECJ, Pei J, Blok CS, Popovic MA, Paauw NJ, Bovenschen N, Hjortnaes J, Harakalova M, Doevendans PA, Sluijter JPG, van der Velden J, Buikema JW. Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. J Cardiovasc Dev Dis 2022; 9:jcdd9020043. [PMID: 35200697 PMCID: PMC8880351 DOI: 10.3390/jcdd9020043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Contractility of the adult heart relates to the architectural degree of sarcomeres in individual cardiomyocytes (CMs) and appears to be inversely correlated with the ability to regenerate. In this study we utilized multiple imaging techniques to follow the sequence of sarcomere disassembly during mitosis resulting in cellular or nuclear division in a source of proliferating human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We observed that both mono- and binuclear hiPSC-CMs give rise to mononuclear daughter cells or binuclear progeny. Within this source of highly proliferative hiPSC-CMs, treated with the CHIR99021 small molecule, we found that Wnt and Hippo signaling was more present when compared to metabolic matured non-proliferative hiPSC-CMs and adult human heart tissue. Furthermore, we found that CHIR99021 increased the efficiency of non-viral vector incorporation in high-proliferative hiPSC-CMs, in which fluorescent transgene expression became present after the chromosomal segregation (M phase). This study provides a tool for gene manipulation studies in hiPSC-CMs and engineered cardiac tissue. Moreover, our data illustrate that there is a complex biology behind the cellular and nuclear division of mono- and binuclear CMs, with a shared-phenomenon of sarcomere disassembly during mitosis.
Collapse
Affiliation(s)
- Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ellen C. J. Brouwer
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Jiayi Pei
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Snijders Blok
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marko A. Popovic
- Department of Molecular Cell Biology and Immunology (MCBI), Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (M.A.P.); (N.J.P.)
| | - Nanne J. Paauw
- Department of Molecular Cell Biology and Immunology (MCBI), Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (M.A.P.); (N.J.P.)
| | - Niels Bovenschen
- Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Heart & Lung Center, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Magdalena Harakalova
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Jan W. Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
14
|
Engineering the niche to differentiate and deploy cardiovascular cells. Curr Opin Biotechnol 2021; 74:122-128. [PMID: 34861477 DOI: 10.1016/j.copbio.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
Applications for stem cells have ranged from therapeutic interventions to more conventional screening and in vitro modeling, but significant limitations to each is due to the lack of maturity from decades old monolayer protocols. While those methods remain the 'gold standard,' newer three-dimensional methods, when combined with engineered niche, stand to significantly improve cell maturity and enable new applications. Here in three parts, we first discuss past methods, and where and why we believe those methods produced suboptimal myocytes. Second, we note how newer methods are moving the field into an era of cell mechanical, electrical, and biological maturity. Finally, we highlight how these improvements will solve issues of scale and engraftment to yield clinical success. It is our conclusion that only through a combination of diverse cell populations and engineered niche will we create an engineered heart tissue with the maturity and vasculature to integrate successfully into a host.
Collapse
|
15
|
Neininger AC, Dai X, Liu Q, Burnette DT. The Hippo pathway regulates density-dependent proliferation of iPSC-derived cardiac myocytes. Sci Rep 2021; 11:17759. [PMID: 34493746 PMCID: PMC8423799 DOI: 10.1038/s41598-021-97133-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Inducing cardiac myocytes to proliferate is considered a potential therapy to target heart disease, however, modulating cardiac myocyte proliferation has proven to be a technical challenge. The Hippo pathway is a kinase signaling cascade that regulates cell proliferation during the growth of the heart. Inhibition of the Hippo pathway increases the activation of the transcription factors YAP/TAZ, which translocate to the nucleus and upregulate transcription of pro-proliferative genes. The Hippo pathway regulates the proliferation of cancer cells, pluripotent stem cells, and epithelial cells through a cell-cell contact-dependent manner, however, it is unclear if cell density-dependent cell proliferation is a consistent feature in cardiac myocytes. Here, we used cultured human iPSC-derived cardiac myocytes (hiCMs) as a model system to investigate this concept. hiCMs have a comparable transcriptome to the immature cardiac myocytes that proliferate during heart development in vivo. Our data indicate that a dense syncytium of hiCMs can regain cell cycle activity and YAP expression and activity when plated sparsely or when density is reduced through wounding. We found that combining two small molecules, XMU-MP-1 and S1P, increased YAP activity and further enhanced proliferation of low-density hiCMs. Importantly, these compounds had no effect on hiCMs within a dense syncytium. These data add to a growing body of literature that link Hippo pathway regulation with cardiac myocyte proliferation and demonstrate that regulation is restricted to cells with reduced contact inhibition.
Collapse
Affiliation(s)
- Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Xiaozhaun Dai
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Ghori FF, Wahid M. Induced pluripotent stem cells derived cardiomyocytes from Duchenne Muscular Dystrophy patients in vitro. Pak J Med Sci 2021; 37:1376-1381. [PMID: 34475915 PMCID: PMC8377888 DOI: 10.12669/pjms.37.5.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 04/30/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study aimed at the in vitro generation of DMD-cardiomyocytes from patient-specific induced pluripotent stem cells derived from a Pakistani patient for future work on DMD in vitro disease modeling and drug testing for efficacy and toxicity. METHODS This in vitro experimental study was carried out from December 2018 to January 2019 at Stem Cells and Regenerative Medicine Lab (SCRML) at Dow Research Institute of Biotechnology and Biomedical Sciences (DRIBBS), Dow University of Health Sciences (DUHS) Urine derived DMD-iPSCs were used which had been generated previously from a Pakistani DMD patient who had been selected through non-random purposive sampling. These were differentiated towards cardiomyocytes using Cardiomyocytes Differentiation media having specified growth factors and then the molecular characterization of the differentiated cells was done using immunofluorescence. RESULTS Pakistani patient's DMD-Cardiomyocytes were generated and their identity was confirmed by positive immunofluorescence for the expression of cardiac markers NKX2-5 and TNNT-2. CONCLUSION This study aimed for in vitro generation of DMD cardiomyocytes for future application in disease modeling, new drug testing for efficacy and toxicity, as well as for drug-testing for tailored personalized therapy. To the best of our knowledge, this was the first time DMD-Cardiomyocytes were generated from Pakistani DMD patients using their own induced pluripotent stem cells.
Collapse
Affiliation(s)
- Fareeha Faizan Ghori
- Fareeha Faizan Ghori, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohsin Wahid
- Mohsin Wahid, Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan. Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
17
|
Telias M, Ben-Yosef D. Pharmacological Manipulation of Wnt/β-Catenin Signaling Pathway in Human Neural Precursor Cells Alters Their Differentiation Potential and Neuronal Yield. Front Mol Neurosci 2021; 14:680018. [PMID: 34421534 PMCID: PMC8371257 DOI: 10.3389/fnmol.2021.680018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.
Collapse
Affiliation(s)
- Michael Telias
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Abstract
Cardiovascular diseases top the list of fatal illnesses worldwide. Cardiac tissues is known to be one of te least proliferative in the human body, with very limited regenraive capacity. Stem cell therapy has shown great potential for treatment of cardiovascular diseases in the experimental setting, but success in human trials has been limited. Applications of stem cell therapy for cardiovascular regeneration necessitate understamding of the complex and unique structure of the heart unit, and the embryologic development of the heart muscles and vessels. This chapter aims to provide an insight into cardiac progenitor cells and their potential applications in regenerative medicine. It also provides an overview of the embryological development of cardiac tissue, and the major findings on the development of cardiac stem cells, their characterization, and differentiation, and their regenerative potential. It concludes with clinical applications in treating cardiac disease using different approaches, and concludes with areas for future research.
Collapse
|
19
|
Jang JH, Kim MS, Antao AM, Jo WJ, Kim HJ, Kim SJ, Choi MJ, Ramakrishna S, Kim KS. Bioactive Lipid O-cyclic phytosphingosine-1-phosphate Promotes Differentiation of Human Embryonic Stem Cells into Cardiomyocytes via ALK3/BMPR Signaling. Int J Mol Sci 2021; 22:ijms22137015. [PMID: 34209900 PMCID: PMC8267745 DOI: 10.3390/ijms22137015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/04/2022] Open
Abstract
Adult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis. In this study, we explored the novel function of the chemically synthesized bioactive lipid O-cyclic phytosphingosine-1-phosphate (cP1P) as an inducer of cardiac differentiation. Here, we identified cP1P as a novel factor that significantly enhances the differentiation potential of hESCs into cardiomyocytes. Treatment with cP1P augments the beating colony number and contracting area of CMs. Furthermore, we elucidated the molecular mechanism of cP1P regulating SMAD1/5/8 signaling via the ALK3/BMP receptor cascade during cardiac differentiation. Our result provides a new insight for cP1P usage to improve the quality of CM differentiation for regenerative therapies.
Collapse
Affiliation(s)
- Ji-Hye Jang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Min-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Won-Jun Jo
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Hyung-Joon Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
| | - Su-Jin Kim
- Axceso Biopharma Co., Ltd., Yongin 16914, Korea; (S.-J.K.); (M.-J.C.)
| | - Myeong-Jun Choi
- Axceso Biopharma Co., Ltd., Yongin 16914, Korea; (S.-J.K.); (M.-J.C.)
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: or (S.R.); (K.-S.K.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (J.-H.J.); (M.-S.K.); (A.M.A.); (W.-J.J.); (H.-J.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: or (S.R.); (K.-S.K.)
| |
Collapse
|
20
|
Mai HN, Kim EJ, Jung HS. Application of hiPSCs in tooth regeneration via cellular modulation. J Oral Biosci 2021; 63:225-231. [PMID: 34033906 DOI: 10.1016/j.job.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC)-based technology provides limitless resources for customized development of organs without any ethical concerns. In theory, iPSCs generated from terminally differentiated cells can be induced to further differentiate into all types of organs that are derived from the embryonic germ layers. Since iPSC reprogramming technology is relatively new, extensive efforts by the researchers have been put together to optimize the protocols to establish in vitro differentiation of human iPSCs (hiPSCs) into various desirable cell types/organs. HIGHLIGHTS In the present study, we review the potential application of iPSCs as an efficient alternative to primary cells for modulating signal molecules. Furthermore, an efficient culture system that promotes the differentiation of cell lineages and tissue formation has been reviewed. We also summarize the recent studies wherein tissue engineering of the three germ layers has been explored. Particularly, we focus on the current research strategies for iPSC-based tooth regeneration via molecular modulation. CONCLUSION In recent decades, robust knowledge regarding the hiPSC-based regenerative therapy has been accumulated, especially focusing on cellular modulation. This review provides the optimization of the procedures designed to regenerate specific organs.
Collapse
Affiliation(s)
- Han Ngoc Mai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
21
|
Decreased YAP activity reduces proliferative ability in human induced pluripotent stem cell of duchenne muscular dystrophy derived cardiomyocytes. Sci Rep 2021; 11:10351. [PMID: 33990626 PMCID: PMC8121946 DOI: 10.1038/s41598-021-89603-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration accompanied by dilated cardiomyopathy. Recently, abnormality of yes-associated protein (YAP) has been reported as the pathogenesis of muscle degeneration of DMD; however YAP activity remains unclear in dystrophic heart of DMD. Herein, we investigated YAP activity using disease-specific induced pluripotent stem cell (iPSC) derived cardiomyocytes (CMs) in DMD. DMD-iPSCs were generated from DMD patient with exon 48–54 deletion in DMD, and genome-edited (Ed)-DMD-iPSCs with in-frame (Ed-DMD-iPSCs) were created using CRISPR/Cas9. Nuclear translocation of YAP [nuclear (N)/cytoplasmic (C) ratio] was significantly lower in DMD-iPSC-CMs than in Ed-DMD-iPSC-CMs. In addition, Ki67 expression, indicating proliferative ability, was significantly lower in DMD-iPSC-CMs than Ed-DMD-iPSC-CMs. Therefore, immunofluorescent staining showed that actin stress fibers associated with YAP activity by mechanotransduction were disorganized in DMD-iPSC-CMs. Lysophosphatidic acid (LPA), a known lipid mediator on induction of actin polymerization, significantly increased YAP activity and actin dynamics in DMD-iPSC-CMs using live cell imaging. These results suggested that altered YAP activity due to impaired actin dynamics reduced proliferative ability in DMD-iPSC-CMs. Hence, decreased YAP activity in dystrophic heart may contribute to DMD-cardiomyopathy pathogenesis.
Collapse
|
22
|
Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell 2021; 27:50-63.e5. [PMID: 32619518 DOI: 10.1016/j.stem.2020.06.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Modulating signaling pathways including Wnt and Hippo can induce cardiomyocyte proliferation in vivo. Applying these signaling modulators to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro can expand CMs modestly (<5-fold). Here, we demonstrate massive expansion of hiPSC-CMs in vitro (i.e., 100- to 250-fold) by glycogen synthase kinase-3β (GSK-3β) inhibition using CHIR99021 and concurrent removal of cell-cell contact. We show that GSK-3β inhibition suppresses CM maturation, while contact removal prevents CMs from cell cycle exit. Remarkably, contact removal enabled 10 to 25 times greater expansion beyond GSK-3β inhibition alone. Mechanistically, persistent CM proliferation required both LEF/TCF activity and AKT phosphorylation but was independent from yes-associated protein (YAP) signaling. Engineered heart tissues from expanded hiPSC-CMs showed comparable contractility to those from unexpanded hiPSC-CMs, demonstrating uncompromised cellular functionality after expansion. In summary, we uncovered a molecular interplay that enables massive hiPSC-CM expansion for large-scale drug screening and tissue engineering applications.
Collapse
|
23
|
Tanosaki S, Tohyama S, Kishino Y, Fujita J, Fukuda K. Metabolism of human pluripotent stem cells and differentiated cells for regenerative therapy: a focus on cardiomyocytes. Inflamm Regen 2021; 41:5. [PMID: 33526069 PMCID: PMC7852150 DOI: 10.1186/s41232-021-00156-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Pluripotent stem cells (PSCs) exhibit promising application in regenerative therapy, drug discovery, and disease modeling. While several protocols for differentiating somatic cells from PSCs exist, their use is limited by contamination of residual undifferentiated PSCs and immaturity of differentiated somatic cells. The metabolism of PSCs differs greatly from that of somatic cells, and a distinct feature is required to sustain the distinct properties of PSCs. To date, several studies have reported on the importance of metabolism in PSCs and their derivative cells. Here, we detail advancements in the field, with a focus on cardiac regenerative therapy.
Collapse
Affiliation(s)
- Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
24
|
Miao Y, Tian L, Martin M, Paige SL, Galdos FX, Li J, Klein A, Zhang H, Ma N, Wei Y, Stewart M, Lee S, Moonen JR, Zhang B, Grossfeld P, Mital S, Chitayat D, Wu JC, Rabinovitch M, Nelson TJ, Nie S, Wu SM, Gu M. Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell 2020; 27:574-589.e8. [PMID: 32810435 PMCID: PMC7541479 DOI: 10.1016/j.stem.2020.07.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/21/2020] [Accepted: 07/15/2020] [Indexed: 01/03/2023]
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex congenital heart disease characterized by abnormalities in the left ventricle, associated valves, and ascending aorta. Studies have shown intrinsic myocardial defects but do not sufficiently explain developmental defects in the endocardial-derived cardiac valve, septum, and vasculature. Here, we identify a developmentally impaired endocardial population in HLHS through single-cell RNA profiling of hiPSC-derived endocardium and human fetal heart tissue with an underdeveloped left ventricle. Intrinsic endocardial defects contribute to abnormal endothelial-to-mesenchymal transition, NOTCH signaling, and extracellular matrix organization, key factors in valve formation. Endocardial abnormalities cause reduced cardiomyocyte proliferation and maturation by disrupting fibronectin-integrin signaling, consistent with recently described de novo HLHS mutations associated with abnormal endocardial gene and fibronectin regulation. Together, these results reveal a critical role for endocardium in HLHS etiology and provide a rationale for considering endocardial function in regenerative strategies.
Collapse
Affiliation(s)
- Yifei Miao
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lei Tian
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell and Regenerative Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Marcy Martin
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Sharon L Paige
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell and Regenerative Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Francisco X Galdos
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell and Regenerative Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jibiao Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alyssa Klein
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell and Regenerative Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ning Ma
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell and Regenerative Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Yuning Wei
- Center for Personal Dynamic Regulomes, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Maria Stewart
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Soah Lee
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell and Regenerative Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jan-Renier Moonen
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Paul Grossfeld
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Seema Mital
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - David Chitayat
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada; The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell and Regenerative Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Timothy J Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Shuyi Nie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sean M Wu
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell and Regenerative Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Mingxia Gu
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA; Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
25
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Abstract
The finding of "glycogen synthase kinase-3" (GSK-3) was initially identified as a protein kinase that phosphorylate and inhibited glycogen synthase. However, it was soon discovered that GSK-3 also has significant impact in regulation of truly astonishing number of critical intracellular signaling pathways ranging from regulation of cell growth, neurology, heart failure, diabetes, aging, inflammation, and cancer. Recent studies have validated the feasibility of targeting GSK-3 for its vital therapeutic potential to maintain normal myocardial homeostasis, conversely, its loss is incompatible with life as it can abrupt cell cycle and endorse fatal cardiomyopathy. The current study focuses on its expanding therapeutic action in myocardial tissue, concentrating primarily on its role in diabetes-associated cardiac complication, apoptosis and metabolism, heart failure, cardiac hypertrophy, and myocardial infarction. The current report also includes the finding of our previous investigation that has shown the impact of GSK-3β inhibitor against diabetes-associated myocardial injury and experimentally induced myocardial infarction. We have also discussed some recent identified GSK-3β inhibitors for their cardio-protective potential. The crosstalk of various underlying mechanisms that highlight the significant role of GSK-3β in myocardial pathophysiology have been discussed in the present report. For these literatures, we will rely profoundly on our previous studies and those of others to reconcile some of the deceptive contradictions in the literature.
Collapse
|
27
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
The signaling interplay of GSK-3β in myocardial disorders. Drug Discov Today 2020; 25:633-641. [PMID: 32014454 DOI: 10.1016/j.drudis.2020.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) regulates numerous signaling transductions and pathological states, from cell growth, inflammation, apoptosis, and heart failure to cancer. Recent studies have validated the feasibility of targeting GSK-3β for its therapeutic potential to maintain myocardial homeostasis. Herein, we review the multifactorial roles of GSK-3β in cardiac abnormalities, focusing primarily on recent investigations into myocardial survival. In addition, we discuss the cardioprotective potential of divergent GSK-3β inhibitors. Finally, we also highlight crosstalk between the various mechanisms underlying abnormal myocardial functions in which GSK-3β is involved.
Collapse
|
29
|
Neininger AC, Long JH, Baillargeon SM, Burnette DT. A simple and flexible high-throughput method for the study of cardiomyocyte proliferation. Sci Rep 2019; 9:15917. [PMID: 31685907 PMCID: PMC6828730 DOI: 10.1038/s41598-019-52467-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiac muscle cells lack regenerative capacity in postnatal mammals. A concerted effort has been made in the field to determine regulators of cardiomyocyte proliferation and identify therapeutic strategies to induce division, with the ultimate goal of regenerating heart tissue after a myocardial infarct. We sought to optimize a high throughput screening protocol to facilitate this effort. We developed a straight-forward high throughput screen with simple readouts to identify small molecules that modulate cardiomyocyte proliferation. We identify human induced pluripotent stem cell-derived cardiomyocytes (hiCMs) as a model system for such a screen, as a very small subset of hiCMs have the potential to proliferate. The ability of hiCMs to proliferate is density-dependent, and cell density has no effect on the outcome of proliferation: cytokinesis or binucleation. Screening a compound library revealed many regulators of proliferation and cell death. We provide a comprehensive and flexible screening procedure and cellular phenotype information for each compound. We then provide an example of steps to follow after this screen is performed, using three of the identified small molecules at various concentrations, further implicating their target kinases in cardiomyocyte proliferation. This screening platform is flexible and cost-effective, opening the field of cardiovascular cell biology to laboratories without substantial funding or specialized training, thus diversifying this scientific community.
Collapse
Affiliation(s)
- Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - J Hunter Long
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sophie M Baillargeon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
30
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
31
|
Kim S, Jeon JM, Kwon OK, Choe MS, Yeo HC, Peng X, Cheng Z, Lee MY, Lee S. Comparative Proteomic Analysis Reveals the Upregulation of Ketogenesis in Cardiomyocytes Differentiated from Induced Pluripotent Stem Cells. Proteomics 2019; 19:e1800284. [PMID: 30724459 DOI: 10.1002/pmic.201800284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Diverse metabolic pathways, such as the tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation, regulate the differentiation of induced pluripotent stem cells (iPSCs) to cells of specific lineages and organs. Here, the protein dynamics during cardiac differentiation of human iPSCs into cardiomyocytes (CMs) are characterized. The differentiation is induced by N-(6-methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-2-yl)thio]-acetamide, a Wnt signaling inhibitor, and confirmed by the mRNA and protein expression of cTnT and MLC2A in CMs. For comparative proteomics, cells from three stages, namely, hiPSCs, cardiac progenitor cells, and CMs, are prepared using the three-plex tandem mass tag labeling approach. In total, 3970 proteins in triplicate analysis are identified. As the result, the upregulation of proteins associated with branched chain amino acid degradation and ketogenesis by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis are observed. The levels of 3-hydroxymethyl-3-methylglutaryl-CoA lyase, 3-hydroxymethyl-3-methylglutaryl-CoA synthase 2, and 3-hydroxybutyrate dehydrogenase 1, involved in ketone body metabolism, are determined using western blotting, and the level of acetoacetate, the final product of ketogenesis, is higher in CMs. Taken together, these observations indicate that proteins required for the production of diverse energy sources are naturally self-expressed during cardiomyogenic differentiation. Furthermore, acetoacetate concentration might act as a regulator of this differentiation.
Collapse
Affiliation(s)
- Sunjoo Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ju Mi Jeon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Mu Seog Choe
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Han Cheol Yeo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Xiaojun Peng
- PTM Biolab LLC, Hangzhou, Zhejiang, 310018, China
| | | | - Min Young Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
32
|
Lidgerwood GE, Pitson SM, Bonder C, Pébay A. Roles of lysophosphatidic acid and sphingosine-1-phosphate in stem cell biology. Prog Lipid Res 2018; 72:42-54. [PMID: 30196008 DOI: 10.1016/j.plipres.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Stem cells are unique in their ability to self-renew and differentiate into various cell types. Because of these features, stem cells are key to the formation of organisms and play fundamental roles in tissue regeneration and repair. Mechanisms controlling their fate are thus fundamental to the development and homeostasis of tissues and organs. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive phospholipids that play a wide range of roles in multiple cell types, during developmental and pathophysiological events. Considerable evidence now demonstrates the potent roles of LPA and S1P in the biology of pluripotent and adult stem cells, from maintenance to repair. Here we review their roles for each main category of stem cells and explore how those effects impact development and physiopathology.
Collapse
Affiliation(s)
- Grace E Lidgerwood
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Claudine Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Australia.
| |
Collapse
|