1
|
Zaman SU, Mehdi MS. Dialysis treatment, in vitro, and anticoagulation activity of polysulfone-polyacrylamide based-blend membranes: an experimental study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:169-190. [PMID: 39228062 DOI: 10.1080/09205063.2024.2398325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
The majority of treatments are performed with polysulfone (PSf) membranes. The main issue of the PSf membrane is its lack of endothelial function, leading to various processes like platelet adhesion, protein adsorption, and thrombus formation when comes in contact with blood. The crucial aspect in the development of hemodialysis (HD) membrane materials is a biocompatibility factor. This study aims to improve the performance and biocompatibility of PSf membranes by utilizing polyethylene glycol (PEG) as a pore-forming agent and polyacrylamide (PAA) as a multifunctional modifying additive owing to its non-toxic, and biocompatible nature. The formulated HD membranes were characterized using Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and Water Contact Angle (WCA) measurements. The biocompatibility results showed that PSf-PAA membranes reduced the adsorption of bovine serum albumin (BSA) protein, hemolysis process, thrombus formation, and platelets adhesion with improved in vitro cytotoxicity results as well as anticoagulation performance. The protein separation results showed that PSf-PAA membranes were able to reject 90.1% and 92.8% of BSA protein. The membranes also showed better uremic waste clearance for urea (76.56% and 78.24%) and creatinine (73.71% and 79.13%) solutes, respectively. It is conceivable that these modern-age membranes may surpass conventional HD membranes regarding both efficiency and effectiveness.
Collapse
Affiliation(s)
- Shafiq Uz Zaman
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| |
Collapse
|
2
|
Ye T, Chai M, Wang Z, Shao T, Liu J, Shi X. 3D-Printed Hydrogels with Engineered Nanocrystalline Domains as Functional Vascular Constructs. ACS NANO 2024; 18:25765-25777. [PMID: 39231281 DOI: 10.1021/acsnano.4c08359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Three-dimensionally printed (3DP) hydrogel-based vascular constructs have been investigated in response to the impaired function of blood vessels or organs by replicating exactly the 3D structural geometry to approach their function. However, they are still challenged by their intrinsic brittleness, which could not sustain the suture piercing and enable the long-term structural and functional stability during the direct contact with blood. Here, we reported the high-fidelity digital light processing (DLP) 3D printing of hydrogel-based vascular constructs from poly(vinyl alcohol)-based inks, followed by mechanical strengthening through engineering the nanocrystalline domains and subsequent surface modification. The as-prepared high-precision hydrogel vascular constructs were imparted with highly desirable mechanical robustness, suture tolerance, swelling resistance, antithrombosis, and long-term patency. Notably, the hydrogel-based bionic vein grafts, with precise valve structures, exhibited excellent control over the unidirectional flow and successfully fulfilled the biological functionalities and patency during a 4-week implantation within the deep veins of beagles, thus corroborating the promising potential for treating chronic venous insufficiency.
Collapse
Affiliation(s)
- Tan Ye
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Muyuan Chai
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan 523000, P. R. China
| | - Zhenxing Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingru Shao
- Department of Oral & Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Liu Y, Gao Z, Yu X, Lin W, Lian H, Meng Z. Recent Advances in the Fabrication and Performance Optimization of Polyvinyl Alcohol Based Vascular Grafts. Macromol Biosci 2024; 24:e2400093. [PMID: 38801024 DOI: 10.1002/mabi.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Indexed: 05/29/2024]
Abstract
Cardiovascular disease is one of the diseases with the highest morbidity and mortality rates worldwide, and coronary artery bypass grafting (CABG) is a fast and effective treatment. More researchers are investigating in artificial blood vessels due to the limitations of autologous blood vessels. Despite the availability of large-diameter vascular grafts (Ø > 6 mm) for clinical use, small-diameter vascular grafts (Ø < 6 mm) have been a challenge for researchers to overcome in recent years. Vascular grafts made of polyvinyl alcohol (PVA) and PVA-based composites have excellent biocompatibility and mechanical characteristics. In order to gain a clearer and more specific understanding of the progress in PVA vascular graft research, particularly regarding the preparation methods, principles, and functionality of PVA vascular graft, this article discusses the mechanical properties, biocompatibility, blood compatibility, and other properties of PVA vascular graft prepared or enhanced with different blends using various techniques that mimic natural blood vessels. The findings reveal the feasibility and promising potential of PVA or PVA-based composite materials as vascular grafts.
Collapse
Affiliation(s)
- Yixuan Liu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zichun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinrong Yu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenjiao Lin
- Qingmao Technology (Shenzhen) Co., LTD, Shenzhen, China
| | - He Lian
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
4
|
Zhang G, Wang X, Meng G, Xu T, Shu J, Zhao J, He J, Wu F. Enzyme-Mineralized PVASA Hydrogels with Combined Toughness and Strength for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:178-189. [PMID: 38116784 DOI: 10.1021/acsami.3c14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Enzymatic mineralization is an advanced mineralization method that is often used to enhance the stiffness and strength of hydrogels, but often accompanied by brittle behavior. Moreover, the hydrogel systems with dense networks currently used for enzymatic mineralization are not ideal materials for bone repair applications. To address these issues, two usual bone repair hydrogels, poly(vinyl alcohol) (PVA) and sodium alginate (SA), were selected to form a double-network structure through repeated freeze-thawing and ionic cross-linking, followed by enzyme mineralization. The results demonstrated that both enzymatic mineralization and double-network structure improved the mechanical and biological properties and even exhibited synergistic effects. The mineralized PVASA hydrogels exhibited superior comprehensive mechanical properties, with a Young's modulus of 1.03 MPa, a storage modulus of 103 kPa, and an equilibrium swelling ratio of 132%. In particular, the PVASA hydrogel did not suffer toughness loss after mineralization, with a high toughness value of 1.86 MJ/m3. The prepared hydrogels also exhibited superior biocompatibility with a cell spreading area about 13 times that of mineralized PVA. It also effectively promoted cellular osteogenic differentiation in vitro and further promoted the formation of new bone in the femur defect region in vivo. Overall, the enzyme-mineralized PVASA hydrogel demonstrated combined strength and toughness and great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Guangpeng Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinying Wang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Guolong Meng
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Tingting Xu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Shu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jingwen Zhao
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing He
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fang Wu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Sultana T, Fahad MAA, Park M, Kwon SH, Lee BT. Physicochemical, in vitro and in vivo evaluation of VEGF loaded PCL-mPEG and PDGF loaded PCL-Chitosan dual layered vascular grafts. J Biomed Mater Res B Appl Biomater 2024; 112:e35325. [PMID: 37675952 DOI: 10.1002/jbm.b.35325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The present study has attempted to evaluate the endothelialization and smooth muscle regeneration efficiency of a novel dual-layer small-diameter vascular graft. Two types of layers (PCL-mPEG-VEGF and PCL-Chitosan-PDGF) were fabricated to find out the best layer giving endothelialization support for the lumen and unique contractile function for outer layer of blood vessels. Platelet-derived growth factor (PDGF) and chitosan were immobilized onto PCL surface by aminolysis-based surface modification technique. Besides, Poly (ethylene glycol) methyl ether (mPEG) and vascular endothelial growth factor (VEGF) were directly blended with PCL. Morphological analysis of membranes ensured consistency of average fibers diameter with native extracellular matrix. A favorable interaction of PCL-mPEG-VEGF with cow pulmonary endothelial cells (CPAEs) and PCL-Chitosan-PDGF with rat bone marrow mesenchymal stem cells (RBMSCs) was obtained during in vitro study. Controlled growth factor release patterns were found from both layers. Further, PCL-mPEG-VEGF exhibited endothelial markers expression properties from RBMSCs. Up-regulation of SMCs markers expression was significantly ensured by the PCL-Chitosan-PDGF membrane. Thus, PCL-mPEG-VEGF and PCL-Chitosan-PDGF were preferred as inner and outer layers respectively of a finally prepared tubular hybrid tissue engineered small diameter vascular graft. Finally, the dual-layer vascular graft was implanted onto a rat abdominal aorta model for 2 months. The extracted samples exhibited the presence of endothelial marker (ICAM 1) in the inner layer and smooth muscle cell marker (αSMA) in the outer layer as well as substantial amount of collagen deposition was observed in the both layers.
Collapse
Affiliation(s)
- Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Soon Ha Kwon
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
6
|
Rosciardi V, Baglioni P. Role of amylose and amylopectin in PVA-starch hybrid cryo-gels networks formation from liquid-liquid phase separation. J Colloid Interface Sci 2023; 630:415-425. [DOI: 10.1016/j.jcis.2022.10.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
|
7
|
Fegan KL, Green NC, Britton MM, Iqbal AJ, Thomas-Seale LEJ. Design and Simulation of the Biomechanics of Multi-Layered Composite Poly(Vinyl Alcohol) Coronary Artery Grafts. Front Cardiovasc Med 2022; 9:883179. [PMID: 35833186 PMCID: PMC9272978 DOI: 10.3389/fcvm.2022.883179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Coronary artery disease is among the primary causes of death worldwide. While synthetic grafts allow replacement of diseased tissue, mismatched mechanical properties between graft and native tissue remains a major cause of graft failure. Multi-layered grafts could overcome these mechanical incompatibilities by mimicking the structural heterogeneity of the artery wall. However, the layer-specific biomechanics of synthetic grafts under physiological conditions and their impact on endothelial function is often overlooked and/or poorly understood. In this study, the transmural biomechanics of four synthetic graft designs were simulated under physiological pressure, relative to the coronary artery wall, using finite element analysis. Using poly(vinyl alcohol) (PVA)/gelatin cryogel as the representative biomaterial, the following conclusions are drawn: (I) the maximum circumferential stress occurs at the luminal surface of both the grafts and the artery; (II) circumferential stress varies discontinuously across the media and adventitia, and is influenced by the stiffness of the adventitia; (III) unlike native tissue, PVA/gelatin does not exhibit strain stiffening below diastolic pressure; and (IV) for both PVA/gelatin and native tissue, the magnitude of stress and strain distribution is heavily dependent on the constitutive models used to model material hyperelasticity. While these results build on the current literature surrounding PVA-based arterial grafts, the proposed method has exciting potential toward the wider design of multi-layer scaffolds. Such finite element analyses could help guide the future validation of multi-layered grafts for the treatment of coronary artery disease.
Collapse
Affiliation(s)
- Katie L. Fegan
- Physical Sciences for Health Centre for Doctoral Training, University of Birmingham, Birmingham, United Kingdom
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Naomi C. Green
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Melanie M. Britton
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asif J. Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
8
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Matsushita H, Hayashi H, Nurminsky K, Dunn T, He Y, Pitaktong I, Koda Y, Xu S, Nguyen V, Inoue T, Rodgers D, Nelson K, Johnson J, Hibino N. Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model. JVS Vasc Sci 2022; 3:182-191. [PMID: 35495567 PMCID: PMC9044007 DOI: 10.1016/j.jvssci.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Many patients who require hemodialysis treatment will often require a prosthetic graft after multiple surgeries. However, the patency rate of grafts currently available commercially has not been satisfactory. Tissue engineering vascular grafts (TEVGs) are biodegradable scaffolds created to promote autologous cell proliferation and functional neotissue regeneration and, accordingly, have antithrombogenicity. Therefore, TEVGs can be an alternative prosthesis for small diameter grafts. However, owing to the limitations of the graft materials, most TEVGs are rigid and can easily kink when implanted in limited spaces, precluding future clinical application. Previously, we developed a novel corrugated nanofiber graft to prevent graft kinking. Reinforcement of these grafts to ensure their safety is required in a preclinical study. In the present study, three types of reinforcement were applied, and their effectiveness was examined using large animals. Methods In the present study, three different reinforcements for the graft composed of corrugated poly-ε-caprolactone (PCL) blended with poly(L-lactide-co-ε-caprolactone) (PLCL) created with electrospinning were evaluated: 1) a polydioxanone suture, 2) a 2-0 polypropylene suture, 3) a polyethylene terephthalate/polyurethane (PET/PU) outer layer, and PCL/PLCL as the control. These different grafts were then implanted in a U-shape between the carotid artery and jugular vein in seven ovine models for a total of 14 grafts during a 3-month period. In evaluating the different reinforcements, the main factors considered were cell proliferation and a lack of graft dilation, which were evaluated using ultrasound examinations and histologic and mechanical analysis. Results No kinking of the grafts occurred. Overall, re-endothelialization was observed in all the grafts at 3 months after surgery without graft rupture or calcification. The PCL/PLCL grafts and PCL/PLCL grafts with a polydioxanone suture showed high cell infiltration; however, they had become dilated 10 weeks after surgery. In contrast, the PCL/PLCL graft with the 2-0 suture and the PCL/PLCL graft covered with a PET/PU layer did not show any graft expansion. The PCL/PLCL graft covered with a PET/PU layer showed less cell infiltration than that of the PCL/PLCL graft. Conclusions Reinforcement is required to create grafts that can withstand arterial pressure. Reinforcement with suture materials has the potential to maintain cell infiltration into the graft, which could improve the neotissue formation of the graft. In our basic science research study, we investigated tissue engineered vascular grafts for arteriovenous shunts. Our grafts were created with poly-ε-caprolactone and poly(L-lactide-co-ε-caprolactone) and designed with corrugated walls to avoid graft kinking. The grafts were implanted between the carotid artery and external jugular vein in a U-shape using an ovine model. To withstand the high pressure of blood on the arterial system, two types of reinforcement were applied to these tissue engineering vascular grafts. Because reinforcement of the graft could interfere with cell infiltration into the tissue engineering vascular grafts, the methods and material of reinforcement were investigated, in addition to the mechanical properties of the graft.
Collapse
|
10
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
11
|
Azhar O, Jahan Z, Sher F, Niazi MBK, Kakar SJ, Shahid M. Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112127. [PMID: 34082944 DOI: 10.1016/j.msec.2021.112127] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Hemodialysis considered as therapy of end-stage renal disease (ESRD) for the separation of protein and uremic toxins based on their molecular weights using semi-permeable membranes. Cellulose Acetate (CA) hemodialysis membrane has been widely used in the biomedical field particularly for hemodialysis applications. The main issue of CA membrane is less selectivity and hemocompatibility. In this study, to enhance the filtration capability and biocompatibility of CA hemodialysis membrane modified by using Polyvinyl Alcohol (PVA) and Polyethylene Glycol (PEG) as additives. CA-PVA flat sheet membranes were cast by phase inversion method, and separation was done by dead-end filtration cell. The synthesized membranes were described in terms of chemical structure using Fourier Transform Infrared Spectroscopy (FTIR) and morphology by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), pure water flux, solute permeation, and protein retention. Biocompatibility of the membranes was tested by the platelet adherence, hemolysis ratio, thrombus formation, and plasma recalcification time. SEM images exposed that the CA-PVA membrane has a uniform porous structure. 42.484 L/m2 h is the maximum pure water flux obtained. The CA-PVA rejected up to 95% of bovine serum albumin (BSA). A similar membrane separated 93% of urea and 89% of creatinine. Platelet adhesion and hemolysis ratio of casted membranes were less than the pure CA membrane. Increased clotting time and less thrombus formation on the membrane's surface showed that the fabricated membrane is biocompatible. CA-PVA hemodialysis membranes are more efficient than conventional reported hemodialysis membranes. It revealed that CA-PVA is high performing biocompatible hemodialysis membrane.
Collapse
Affiliation(s)
- Ofaira Azhar
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Farooq Sher
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, United Kingdom.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Salik Javed Kakar
- Department of Healthcare Biotechnology, Atta-ur, Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
12
|
Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering (Basel) 2020; 7:E160. [PMID: 33321830 PMCID: PMC7763104 DOI: 10.3390/bioengineering7040160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The increased demands of small-diameter vascular grafts (SDVGs) globally has forced the scientific society to explore alternative strategies utilizing the tissue engineering approaches. Cardiovascular disease (CVD) comprises one of the most lethal groups of non-communicable disorders worldwide. It has been estimated that in Europe, the healthcare cost for the administration of CVD is more than 169 billion €. Common manifestations involve the narrowing or occlusion of blood vessels. The replacement of damaged vessels with autologous grafts represents one of the applied therapeutic approaches in CVD. However, significant drawbacks are accompanying the above procedure; therefore, the exploration of alternative vessel sources must be performed. Engineered SDVGs can be produced through the utilization of non-degradable/degradable and naturally derived materials. Decellularized vessels represent also an alternative valuable source for the development of SDVGs. In this review, a great number of SDVG engineering approaches will be highlighted. Importantly, the state-of-the-art methodologies, which are currently employed, will be comprehensively presented. A discussion summarizing the key marks and the future perspectives of SDVG engineering will be included in this review. Taking into consideration the increased number of patients with CVD, SDVG engineering may assist significantly in cardiovascular reconstructive surgery and, therefore, the overall improvement of patients' life.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Alkiviadis Kostakis
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| |
Collapse
|
13
|
Yao Y, Zaw AM, Anderson DEJ, Hinds MT, Yim EKF. Fucoidan functionalization on poly(vinyl alcohol) hydrogels for improved endothelialization and hemocompatibility. Biomaterials 2020; 249:120011. [PMID: 32304872 PMCID: PMC7748769 DOI: 10.1016/j.biomaterials.2020.120011] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
The performance of clinical synthetic small diameter vascular grafts remains disappointing due to the fast occlusion caused by thrombosis and intimal hyperplasia formation. Poly(vinyl alcohol) (PVA) hydrogels have tunable mechanical properties and a low thrombogenic surface, which suggests its potential value as a small diameter vascular graft material. However, PVA does not support cell adhesion and thus requires surface modification to encourage endothelialization. This study presents a modification of PVA with fucoidan. Fucoidan is a sulfated polysaccharide with anticoagulant and antithrombotic properties, which was shown to potentially increase endothelial cell adhesion and proliferation. By mixing fucoidan with PVA and co-crosslinked by sodium trimetaphosphate (STMP), the modification was achieved without sacrificing mechanical properties. Endothelial cell adhesion and monolayer function were significantly enhanced by the fucoidan modification. In vitro and ex-vivo studies showed low platelet adhesion and activation and decreased thrombin generation with fucoidan modified PVA. The modification proved to be compatible with gamma sterilization. In vivo evaluation of fucoidan modified PVA grafts in rabbits exhibited increased patency rate, endothelialization, and reduced intimal hyperplasia formation. The fucoidan modification presented here benefited the development of PVA vascular grafts and can be adapted to other blood contacting surfaces.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Aung Moe Zaw
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
14
|
Croitoru C, Roata IC, Pascu A, Stanciu EM. Diffusion and Controlled Release in Physically Crosslinked Poly (Vinyl Alcohol)/Iota-Carrageenan Hydrogel Blends. Polymers (Basel) 2020; 12:polym12071544. [PMID: 32668670 PMCID: PMC7407240 DOI: 10.3390/polym12071544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
This paper reports the obtaining of poly (vinyl alcohol) and i-carrageenan blend hydrogels by physical crosslinking (consecutive freeze-thaw cycles). The two polymers were completely miscible in the weight ratio interval used in this study, as determined by solution viscometry data. Strong interactions through hydrogen bonding and forming of mixed interpolymer crystalline domains were observed, which are responsible for the formation of stable drug release-tunable matrices. The release profiles of three model antibiotic drugs (amoxicillin, tetracycline hydrochloride, and gentamicin sulfate) were assessed in a pH interval between 3 and 7.3. They were found to be strongly dependent on the drug chemistry, mesh size of the hydrogels, swelling mechanism, and pH of the release medium. A decrease of up to 40% in the release rates and up to 10% in the diffusion coefficients of the model drugs was registered with the increase in i-carrageenan content.
Collapse
Affiliation(s)
- Catalin Croitoru
- Correspondence: (C.C.); (I.C.R.); Tel.: +40-748126598 (C.C.); +40-766290786 (I.C.R.)
| | - Ionut Claudiu Roata
- Correspondence: (C.C.); (I.C.R.); Tel.: +40-748126598 (C.C.); +40-766290786 (I.C.R.)
| | | | | |
Collapse
|
15
|
Rizwan M, Yao Y, Gorbet MB, Tse J, Anderson DEJ, Hinds MT, Yim EKF. One-Pot Covalent Grafting of Gelatin on Poly(Vinyl Alcohol) Hydrogel to Enhance Endothelialization and Hemocompatibility for Synthetic Vascular Graft Applications. ACS APPLIED BIO MATERIALS 2020; 3:693-703. [PMID: 32656504 PMCID: PMC7351135 DOI: 10.1021/acsabm.9b01026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide. Patency rates of clinically-utilized small diameter synthetic vascular grafts such as Dacron® and expanded polytetrafluoroethylene (ePTFE) to treat cardiovascular disease are inadequate due to lack of endothelialization. Sodium trimetaphosphate (STMP) crosslinked PVA could be potentially employed as blood-compatible small diameter vascular graft for the treatment of cardiovascular disease. However, PVA severely lacks cell adhesion properties, and the efforts to endothelialize STMP-PVA have been insufficient to produce a functioning endothelium. To this end, we developed a one-pot method to conjugate cell-adhesive protein via hydroxyl-to-amine coupling using carbonyldiimidazole by targeting residual hydroxyl groups on crosslinked STMP-PVA hydrogel. Primary human umbilical vascular endothelial cells (HUVECs) demonstrated significantly improved cells adhesion, viability and spreading on modified PVA. Cells formed a confluent endothelial monolayer, and expressed vinculin focal adhesions, cell-cell junction protein zonula occludens 1 (ZO1), and vascular endothelial cadherin (VE-Cadherin). Extensive characterization of the blood-compatibility was performed on modified PVA hydrogel by examining platelet activation, platelet microparticle formation, platelet CD61 and CD62P expression, and thrombin generation, which showed that the modified PVA was blood-compatible. Additionally, grafts were tested under whole, flowing blood without any anticoagulants in a non-human primate, arteriovenous shunt model. No differences were seen in platelet or fibrin accumulation between the modified-PVA, unmodified PVA or clinical, ePTFE controls. This study presents a significant step in the modification of PVA for the development of next generation in situ endothelialized synthetic vascular grafts.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Maud B. Gorbet
- Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Centre for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - John Tse
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Deirdre E. J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Evelyn K. F. Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
16
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
17
|
Cafarelli A, Losi P, Salgarella AR, Barsotti MC, Di Cioccio IB, Foffa I, Vannozzi L, Pingue P, Soldani G, Ricotti L. Small-caliber vascular grafts based on a piezoelectric nanocomposite elastomer: Mechanical properties and biocompatibility. J Mech Behav Biomed Mater 2019; 97:138-148. [DOI: 10.1016/j.jmbbm.2019.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022]
|
18
|
Bernal M, Sen I, Urban MW. Evaluation of materials used for vascular anastomoses using shear wave elastography. ACTA ACUST UNITED AC 2019; 64:075001. [DOI: 10.1088/1361-6560/ab055c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Parikh V, Kadiwala J, Hidalgo Bastida A, Holt C, Sanami M, Miraftab M, Shakur R, Azzawi M. Small diameter helical vascular scaffolds support endothelial cell survival. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2598-2608. [PMID: 30172863 DOI: 10.1016/j.nano.2018.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
There is an acute clinical need for small-diameter vascular grafts as a treatment option for cardiovascular disease. Here, we used an intelligent design system to recreate the natural structure and hemodynamics of small arteries. Nano-fibrous tubular scaffolds were fabricated from blends of polyvinyl alcohol and gelatin with inner helices to allow a near physiological spiral flow profile, using the electrospinning technique. Human coronary artery endothelial cells (ECs) were seeded on the inner surface and their viability, distribution, gene expression of mechanosensitive and adhesion molecules compared to that in conventional scaffolds, under static and flow conditions. We show significant improvement in cell distribution in helical vs. conventional scaffolds (94% ± 9% vs. 82% ± 7.2%; P < 0.05) with improved responsiveness to shear stress and better ability to withhold physiological pressures. Our helical vascular scaffold provides an improved niche for EC growth and may be attractive as a potential small diameter vascular graft.
Collapse
Affiliation(s)
- Vijay Parikh
- Cardiovascular Research Group, School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom; Institute for Materials Research and Innovation (IMRI), University of Bolton, Manchester, United Kingdom
| | - Juned Kadiwala
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, University of Cambridge, Cambridge, UK
| | - Araida Hidalgo Bastida
- Cardiovascular Research Group, School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Cathy Holt
- Institute for Cardiovascular Science, University of Manchester, Manchester, UK
| | - Mohammad Sanami
- Institute for Materials Research and Innovation (IMRI), University of Bolton, Manchester, United Kingdom
| | - Mohsen Miraftab
- Institute for Materials Research and Innovation (IMRI), University of Bolton, Manchester, United Kingdom; Medical Device Consultants Limited, Wilmslow, UK
| | - Rameen Shakur
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, University of Cambridge, Cambridge, UK.
| | - May Azzawi
- Cardiovascular Research Group, School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom.
| |
Collapse
|