1
|
Hausburg MA, Banton KL, Cassidy CD, Madayag RM, Palacio CH, Williams JS, Bar-Or R, Ryznar RJ, Bar-Or D. Mesothelial cell responses to acute appendicitis or small bowel obstruction reactive ascites: Insights into immunoregulation of abdominal adhesion. PLoS One 2025; 20:e0317056. [PMID: 39775680 PMCID: PMC11709316 DOI: 10.1371/journal.pone.0317056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Previous abdominal surgery (PAS) increases risk of small bowel obstruction (SBO) due to adhesions, and appendectomy (appy) is an independent risk factor for abdominal adhesion-related complications. Peritoneal inflammation, e.g., acute appendicitis (AA), causes formation of reactive ascitic fluid (rA) that activates peritoneum surface mesothelial cells (MCs) to form adhesions. Pathologic adhesions may arise if restoration of MC-regulated fibrinolysis and secretion of glycocalyx (GCX) are disrupted. Proteins affecting these processes may originate from peritoneal rA. This is a prospective observational IRB-approved study at three Level 1 trauma centers where rA is collected prior to surgical intervention for non-perforated AA or adhesiolysis for SBO. Samples from 48 appy and 15 SBO patients were used to treat human MCs and subjected to quantification of 85 inflammatory mediators. Results were compared between patients with surgically naïve abdomens (naïve) and patients with >1 PAS. Select rA caused MCs to form clusters of fibroblastic cells, extracellular matrix fibers (FIB), and secretion of GCX. PAS and naïve patient rA fluids were clustered into "fiber-GCX" (FIB-GCX) groups: highFIB-highGCX, highFIB-lowGCX, noFIB-highGCX, noFIB-lowGCX, and noFIB-noGCX. Between groups, 26 analytes were differentially abundant including innate immune response, wound healing, and mucosal defense proteins. Factors that contributed to the differences between groups were rA-induced highFIB and history of PAS. Overall, PAS patient rA showed a muted immune response compared to rA from naïve patients. Our data suggest that abdominal surgery may negatively impact future immune responses in the abdomen. Further, quantifying immunomodulators in peritoneal rA may lead to the development a personalized approach to post-surgical adhesion treatment and prevention.
Collapse
Affiliation(s)
- Melissa A. Hausburg
- Trauma Research, Swedish Medical Center, Englewood, Colorado, United States of America
- Trauma Research, Wesley Medical Center, Wichita, Kansas, United States of America
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Research, South Texas Health System McAllen, McAllen, Texas, United States of America
| | - Kaysie L. Banton
- Trauma Services, Swedish Medical Center, Englewood, Colorado, United States of America
| | | | - Robert M. Madayag
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Services, St. Anthony Hospital, Lakewood, Colorado, United States of America
| | - Carlos H. Palacio
- Trauma Services, South Texas Health System McAllen, McAllen, Texas, United States of America
| | - Jason S. Williams
- Trauma Research, Swedish Medical Center, Englewood, Colorado, United States of America
- Trauma Research, Wesley Medical Center, Wichita, Kansas, United States of America
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Research, South Texas Health System McAllen, McAllen, Texas, United States of America
| | - Raphael Bar-Or
- Trauma Research, Swedish Medical Center, Englewood, Colorado, United States of America
- Trauma Research, Wesley Medical Center, Wichita, Kansas, United States of America
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Research, South Texas Health System McAllen, McAllen, Texas, United States of America
| | - Rebecca J. Ryznar
- Department of Molecular Biology, Rocky Vista University, Parker, Colorado, United States of America
| | - David Bar-Or
- Trauma Research, Swedish Medical Center, Englewood, Colorado, United States of America
- Trauma Research, Wesley Medical Center, Wichita, Kansas, United States of America
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Research, South Texas Health System McAllen, McAllen, Texas, United States of America
| |
Collapse
|
2
|
Liang S, Qian Y, Liu Y, Wang Y, Su L, Yan S. Ligustrazine nanoparticles inhibits epithelial-mesenchymal transition and alleviates postoperative abdominal adhesion. Biochem Biophys Res Commun 2024; 739:150994. [PMID: 39547120 DOI: 10.1016/j.bbrc.2024.150994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Following abdominal surgery, the occurrence of postoperative abdominal adhesion (PAA) is highly prevalent and stands out as one of the most frequently encountered complications. The effect and molecular mechanisms of Ligustrazine nanoparticles (LN) underlying epithelial-mesenchymal transition (EMT) in PAA still remain elusive. Adhesions were induced in Male Sprague-Dawley rats by injuring the cecum (cecal abrasion model), followed by administration of LN and hyaluronate acid (HA). The mechanism was further verified by enzyme-linked immunosorbent assay, wound healing assay, si-RNA and Western blot. Animal experiments revealed that LN effectively ameliorated adhesions, notably decreased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, and fibrosis, and reduced the expression of TGF-β1 and EMT related markers (Fibronectin and E-cadherin). Furthermore, in vitro experiments demonstrated that LN might inhibit the TGF-β1 FOXC2 pathway through suppressing the expression of Fibronectin, P120, and E-cadherin and ameliorating peritoneal adhesion. Collectively, our findings indicate that LN inhibits PAA formation by reducing inflammation, decreasing EMT and promoting peritoneal mesothelial cell repair. Therefore, LN might be considered a potential candidate for the treatment of PPA. However, further clinical studies are required to approve the effectiveness of LN.
Collapse
Affiliation(s)
- Shasha Liang
- Teaching and Research Office of Obstetrics and Gynecology, Medical College of Zhengzhou University of Industrial Technology, Xinzheng, 451100, Henan, China
| | - Yifei Qian
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Liu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yahui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Lianlin Su
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
3
|
Davoodi F, Azizi S, Aghazadeh S, Dezfoulian O. Effects of linalool on postoperative peritoneal adhesions in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5145-5155. [PMID: 38240782 DOI: 10.1007/s00210-024-02943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 06/12/2024]
Abstract
The current study examines the effects of linalool in preventing postoperative abdominal adhesions. Twenty male Wistar rats were randomly divided into four groups. (1) Sham: in this group, the abdomen was approached, and without any manipulations, it was sutured. (2) Control: rats in this group underwent a surgical procedure to induce adhesions. This involved making three incisions on the right abdominal side and removing a 1×1-cm piece of the peritoneum on the left abdominal side. (3) Treatment groups: these groups underwent the same surgical procedure as the control group to induce adhesions. Animals in these groups received linalool orally with doses of 50 and 100 mg/kg, respectively, for a period of 14 days. Moreover, rats in the sham and control groups received normal saline via gavage for 14 days. The evaluation of TNF-α, TGF-β, VEGF, and caspase 3 was performed using western blot and IHC methods. Furthermore, oxidative stress biomarkers such as MDA, TAC, GSH, and NO were assessed in the peritoneal adhesion tissue. The findings revealed that linalool significantly reduced peritoneal adhesions by reducing TNF-α, TGF-β, VEGF, and caspase 3 levels. Moreover, MDA concentration was significantly decreased, while NO, TAC, and GSH levels were notably increased. Overall, linalool was effective in preventing adhesion formation and reduced inflammation, angiogenesis, apoptosis, and oxidative stress. Therefore, linalool as a potent antioxidant is suggested for reducing postoperative adhesions in rats.
Collapse
Affiliation(s)
- Farshid Davoodi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Saeed Azizi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Safiyeh Aghazadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| |
Collapse
|
4
|
Yahyazadeh R, Baradaran Rahimi V, Ahmad Mohajeri S, Iranshahy M, Hasanpour M, Askari VR. Intra-peritoneal lavage of Zingiber officinale rhizome and its active constituent gingerol impede inflammation, angiogenesis, and fibrosis following post-operative peritoneal adhesion in male rats. Saudi Pharm J 2024; 32:102092. [PMID: 38737808 PMCID: PMC11087237 DOI: 10.1016/j.jsps.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Post-operative peritoneal adhesions (PA) are a common and important clinical problem. In this study, we focused on the ameliorative efficacy of ginger and gingerol compounds on surgical-induced peritoneal adhesion, and their strategies that disrupted the PA formation pathways to suppress their incidence. First, liquid chromatography-mass spectrometry (LC-MS) was established to separate and identify several chemical groups of ginger rhizome extract. In the next steps, male Wistar albino rats were randomly selected and divided into various groups, namely sham, control, ginger extract (0.6, 1.8, 5 %w/v), and gingerol (0.05, 0.1, 0.3, and 1 %w/v). Finally, we investigated the macroscopic parameters such as wound healing, body weight as well as spleen height and weight. In addition, visual peritoneal adhesion assessment was performed via Nair et al and Adhesion Scoring Scheme. Moreover, the microscopic parameters and biological assessment was performed via and immunoassays. The present findings revealed significant improvement in wound healing and reduction of the adhesion range, as Nair et al. and Adhesion Scoring Scheme scoring, in both the ginger and gingerol groups compared to the PA group (P < 0.05). Whereas, gingerol (0.3 % w/v) was able to increase the body weight in rats (P < 0.0001) at end stage of experiment. Also, inflammation, angiogenesis, and fibrosis were significantly decreased due to the downregulation of interleukin (IL)-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), respectively, in the ginger and gingerol groups compared to the PA group (P < 0.05). In contrast, the levels of IL-10 were increased in the ginger and gingerol groups compared to the control group (P < 0.01). Our results proved that ginger rhizome and gingerol, as novel therapeutic compounds, could be used to prevent PA for their beneficial anti-inflammatory as well as anti-fibrosis properties in clinical trials. However, further clinical studies are required to approve the effectiveness of ginger and gingerol.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Razazi A, Kakanezhadi A, Raisi A, Pedram B, Dezfoulian O, Davoodi F. D-limonene inhibits peritoneal adhesion formation in rats via anti-inflammatory, anti-angiogenic, and antioxidative effects. Inflammopharmacology 2024; 32:1077-1089. [PMID: 38308792 DOI: 10.1007/s10787-023-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
The aim of this research was to investigate the effects of D-limonene on decreasing post-operative adhesion in rats and to understand the mechanisms involved. Peritoneal adhesions were induced by creating different incisions and excising a 1 × 1 cm section of the peritoneum. The experimental groups included a sham group, a control group in which peritoneal adhesions were induced without any treatment, and two treatment groups in which animals received D-limonene with dosages of 25 and 50 mg/kg after inducing peritoneal adhesions. Macroscopic examination of adhesions showed that both treatment groups had reduced adhesion bands in comparison to the control group. Immunohistochemical assessment of TGF-β1, TNF-α, and VEGF on day 14 revealed a significant increment in the level of immunopositive cells for the mentioned markers in the control group, whereas administration of limonene in both doses significantly reduced levels of TGF-β1, TNF-α, and VEGF (P < 0.05). Induction of peritoneal adhesions in the control group significantly increased TGF-β1, TNF-α, and VEGF on days 3 and 14 in western blot evaluation, while treatment with limonene significantly reduced TNF-α level on day 14 (P < 0.05). Moreover, VEGF levels in both treatment groups significantly reduced on days 3 and 14. In the control group, a significant increment in the levels of MDA and NO and a notable decline in the levels of GPX, CAT was observed (P < 0.05). Limonene 50 group significantly reduced MDA level and increased GPx and CAT levels on day 14 (P < 0.05). In summary, D-limonene reduced adhesion bands, inflammatory cytokines, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Ali Razazi
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Ali Kakanezhadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Behnam Pedram
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Farshid Davoodi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Pais MA, Papanikolaou A, Hoyos IA, Nißler R, De Brot S, Gogos A, Rieben R, Constantinescu MA, Matter MT, Herrmann IK, Lese I. Bioglass/ceria nanoparticle hybrids for the treatment of seroma: a comparative long-term study in rats. Front Bioeng Biotechnol 2024; 12:1363126. [PMID: 38532882 PMCID: PMC10963406 DOI: 10.3389/fbioe.2024.1363126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Seroma formation is a common postoperative complication. Fibrin-based glues are typically employed in an attempt to seal the cavity. Recently, the first nanoparticle (NP)-based treatment approaches have emerged. Nanoparticle dispersions can be used as tissue glues, capitalizing on a phenomenon known as 'nanobridging'. In this process, macromolecules such as proteins physically adsorb onto the NP surface, leading to macroscopic adhesion. Although significant early seroma reduction has been shown, little is known about long-term efficacy of NPs. The aim of this study was to assess the long-term effects of NPs in reducing seroma formation, and to understand their underlying mechanism. Methods: Seroma was surgically induced bilaterally in 20 Lewis rats. On postoperative day (POD) 7, seromas were aspirated on both sides. In 10 rats, one side was treated with NPs, while the contralateral side received only NP carrier solution. In the other 10 rats, one side was treated with fibrin glue, while the other was left untreated. Seroma fluid, blood and tissue samples were obtained at defined time points. Biochemical, histopathological and immunohistochemical assessments were made. Results: NP-treated sides showed no macroscopically visible seroma formation after application on POD 7, in stark contrast to the fibrin-treated sides, where 60% of the rats had seromas on POD 14, and 50% on POD 21. At the endpoint (POD 42), sides treated with nanoparticles (NPs) exhibited significant macroscopic differences compared to other groups, including the absence of a cavity, and increased fibrous adhesions. Histologically, there were more macrophage groupings and collagen type 1 (COL1) deposits in the superficial capsule on NP-treated sides. Conclusion: NPs not only significantly reduced early manifestations of seroma and demonstrated an anti-inflammatory response, but they also led to increased adhesion formation over the long term, suggesting a decreased risk of seroma recurrence. These findings highlight both the adhesive properties of NPs and their potential for clinical therapy.
Collapse
Affiliation(s)
- Michael-Alexander Pais
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Athanasios Papanikolaou
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Arenas Hoyos
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Robert Nißler
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Ingenuity Lab, University Hospital Balgrist and University of Zurich, Zurich, Switzerland
| | - Simone De Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Alexander Gogos
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
| | - Robert Rieben
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Mihai A. Constantinescu
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin T. Matter
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Inge K. Herrmann
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Ingenuity Lab, University Hospital Balgrist and University of Zurich, Zurich, Switzerland
| | - Ioana Lese
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Lv K, Lou P, Liu S, Wang Y, Yang J, Zhou P, Zhou X, Lu Y, Wang H, Cheng J, Liu J. Injectable Multifunctional Composite Hydrogel as a Combination Therapy for Preventing Postsurgical Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303425. [PMID: 37649233 DOI: 10.1002/smll.202303425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Postsurgical adhesion (PA) is a common and serious postoperative complication that affects millions of patients worldwide. However, current commercial barrier materials are insufficient to inhibit diverse pathological factors during PA formation, and thus, highly bioactive materials are needed. Here, this work designs an injectable multifunctional composite hydrogel that can serve as a combination therapy for preventing PA. In brief, this work reveals that multiple pathological events, such as chronic inflammatory and fibrotic processes, contribute to adhesion formation in vivo, and such processes can not be attenuated by barrier material (e.g., hydrogel) alone treatments. To solve this limitation, this work designs a composite hydrogel made of the cationic self-assembling peptide KLD2R and TGF-β receptor inhibitor (TGF-βRi)-loaded mesenchymal stem cell-derived nanovesicles (MSC-NVs). The resulting composite hydrogel displays multiple functions, including physical separation of the injured tissue areas, antibacterial effects, and local delivery and sustained release of anti-inflammatory MSC-NVs and antifibrotic TGF-βRi. As a result, this composite hydrogel effectively inhibited local inflammation, fibrosis and adhesion formation in vivo. Moreover, the hydrogel also exhibits good biocompatibility and biodegradability in vivo. Together, the results highlight that this "all-in-one" composite hydrogel strategy may provide insights into designing advanced therapies for many types of tissue injury.
Collapse
Affiliation(s)
- Ke Lv
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhuo Wang
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Pingya Zhou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyue Zhou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hongren Wang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
9
|
Zou L, Hou Y, Zhang J, Chen M, Wu P, Feng C, Li Q, Xu X, Sun Z, Ma G. Degradable carrier-free spray hydrogel based on self-assembly of natural small molecule for prevention of postoperative adhesion. Mater Today Bio 2023; 22:100755. [PMID: 37593217 PMCID: PMC10430199 DOI: 10.1016/j.mtbio.2023.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Postoperative peritoneal adhesion (PPA) is frequent and extremely dangerous complication after surgery. Different tactics have been developed to reduce it. However, creating a postoperative adhesion method that is multifunctional, biodegradable, biocompatible, low-toxic but highly effective, and therapeutically applicable is still a challenge. Herein, we have prepared a degradable spray glycyrrhetinic acid hydrogel (GAG) based on natural glycyrrhetinic acid (GA) by straightforward heating and cooling without the use of any additional chemical cross-linking agents to prevent postoperative adhesion. The resultant hydrogel was demonstrated to possess various superior anti-inflammatory activity, and multiple functions, such as excellent degradability and biocompatibility. Specifically, spraying characteristic and excellent antibacterial activities essentially eliminated secondary infections during the administration of drugs in surgical wounds. In the rat models, the carrier-free spray GAG could not only slow-release GA to inhibit inflammatory response, but also serve as physical anti-adhesion barrier to reduce collagen deposition and fibrosis. The sprayed GAG would shed a new light on the prevention of postoperative adhesion and broaden the application of the hydrogels based on natural products in biomedical fields.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Peiying Wu
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Changcun Feng
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
|
11
|
Flutur IM, Păduraru DN, Bolocan A, Palcău AC, Ion D, Andronic O. Postsurgical Adhesions: Is There Any Prophylactic Strategy Really Working? J Clin Med 2023; 12:3931. [PMID: 37373626 DOI: 10.3390/jcm12123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Postoperative adhesions are a frequent complication encountered after surgical procedures, mainly after intraperitoneal interventions. To this day, the pathophysiological mechanism behind the process of adhesions formation is not completely known. There are many strategies proposed as prophylaxis methods, involving surgical techniques, drugs or materials that prevent adhesions and even state of the art technologies such as nanoparticles or gene therapy. The aim of our review is to present these innovative approaches and techniques for postoperative adhesions prevention. After a thorough scientific database query, we selected 84 articles published in the past 15 years that were relevant to our topic. Despite all the recent groundbreaking discoveries, we are at an early stage of understanding the complexity of the adhesion formation mechanism. Further investigations should be made in order to create an ideal product for safe clinical use for prevention.
Collapse
Affiliation(s)
- Irina-Maria Flutur
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Dan Nicolae Păduraru
- Department of General Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- IIIrd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandra Bolocan
- Department of General Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- IIIrd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Cosmin Palcău
- IIIrd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Department of General Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- IIIrd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Department of General Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- IIIrd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
12
|
Zhao X, Piao X, Liu B, Xie R, Zhan T, Liang M, Tian J, Wang R, Chen C, Zhu J, Zhang Y, Yang B. NFK prevent postoperative abdominal adhesion through downregulating the TGF-β1 signaling pathway. Mol Biol Rep 2023; 50:279-288. [PMID: 36331752 DOI: 10.1007/s11033-022-07795-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Postoperative abdominal adhesions (PAAs) represent a frequent condition occurring in more than 90% of patients undergoing abdomen and pelvic surgeries, which can cause chronic abdominal pain, female infertility, and repeated bowel obstruction, requiring repetitive surgical interventions causing morbidity and mortality, as well as high costs. It is therefore of paramount clinical importance and significance to develop practical and reliable strategies for preventing the occurrence of PAAs. METHODS AND RESULTS In this study, we demonstrated that Nianfukang (NFK, composed of polyethylene glycol 1450 and diclofenac sodium) is highly effective in preventing PAAs, likely by reducing leukocytes and inflammatory factors in the abdominal cavity, and inhibiting intestinal fibrosis in a rat model of PAAs induced by postoperative cecum scraping. We further uncovered that NFK downregulates the expression of TGF-β1, a key factor for adhesion formation, to suppress the TGF-β1/TGF-βRIII/Smad2 signaling pathway, thereby inhibiting the proliferation and migration of fibroblasts and provided evidences for the involvement of the TGF-β1/TGF-βRIII/Smad2 axis in the prevention of PAAs in normal human colon fibroblast CCD-18Co. CONCLUSIONS Our findings support NFK as a potential anti-adhesive product that has the advantages of significant effectiveness, safety profile, and low cost, as well as clear mechanism of action.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xianmei Piao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rumeng Xie
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Zhan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Min Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaying Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ruishuai Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chao Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiuxin Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, 150081, Harbin, China.
| |
Collapse
|
13
|
Liu J, Ma X, Cao L, Wei Y, Gao Y, Qu C, Maimaitiming N, Zhang L. Computational Drug Repurposing Approach to Identify Novel Inhibitors of ILK Protein for Treatment of Esophageal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3658334. [PMID: 36618074 PMCID: PMC9815933 DOI: 10.1155/2022/3658334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022]
Abstract
Purpose Esophageal squamous cell cancer (ESCC) is a deadly malignant tumor characterized by an overall 5-year survival rate below 20%, with China accounting for approximately 50% of all cases worldwide. Our previous studies have demonstrated that high integrin-linked kinase (ILK) expression plays a key role in development and progression of ESCC both in vitro and in vivo. Here, we employed the drug repurposing approach to identify a novel FDA-approved anticancer inhibitor against ILK-induced tumorigenesis and progression. Methods We screened the ZINC15 database and predicted the molecular docking ability among FDA-approved and publicly available drugs to ILK and then performed computational docking and visual inspection analyses of the top 10 ranked drugs. Two computer-based virtual screened drugs were evaluated in vitro for their ability to directly bind purified ILK by surface plasmon resonance. Cytotoxicity of the two candidate drugs was validated in vitro using CCK-8 and LDH assays. Results We initially selected the top 10 compounds, based on their minimum binding energy to the ILK crystal, after molecular docking and subjected them to further screening. Taking the binding energy of -10 kcal/mol as the threshold, we selected two drugs, namely, nilotinib and teniposide, for the wet-lab experiment. Surface plasmon resonance (SPR) revealed that nilotinib and teniposide had equilibrium dissociation constant (KD) values of 6.410E - 6 and 1.793E - 6, respectively, which were lower than 2.643E - 6 observed in ILK-IN-3 used as the positive control. The IC50 values for nilotinib and teniposide in ESCC cell lines were 40 μM and 200-400 nM, respectively. Results of the CCK-8 assay demonstrated that both nilotinib and teniposide significantly inhibited proliferation of cells (P < 0.01). LDH results revealed that both drugs significantly suppressed the rate of cell death (P < 0.01). Conclusion The drug repositioning procedure can effectively identify new therapeutic tools for ESCC. Our findings suggest that nilotinib and teniposide are efficacious inhibitors of ILK and thus have potential to target ILK-mediated signaling pathways for management of ESCC.
Collapse
Affiliation(s)
- Juan Liu
- Department of General Medicine of Healthy Care Center for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiaoli Ma
- Department of General Medicine of Healthy Care Center for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Leiyu Cao
- Department of General Medicine of Healthy Care Center for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yu Wei
- Department of General Medicine of Healthy Care Center for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan Gao
- Department of General Medicine of Healthy Care Center for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chengcheng Qu
- Department of General Medicine of Healthy Care Center for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Nuersimanguli Maimaitiming
- Department of General Medicine of Healthy Care Center for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Li Zhang
- Department of General Medicine of Healthy Care Center for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
14
|
Ensan B, Bathaei P, Nassiri M, Khazaei M, Hassanian SM, Abdollahi A, Ghorbani HR, Aliakbarian M, Ferns GA, Avan A. The Therapeutic Potential of Targeting Key Signaling Pathways as a Novel Approach to Ameliorating Post-Surgical Adhesions. Curr Pharm Des 2022; 28:3592-3617. [PMID: 35466868 DOI: 10.2174/1381612828666220422090238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Peritoneal adhesions (PA) are a common complication of abdominal operations. A growing body of evidence shows that inhibition of inflammation and fibrosis at sites of peritoneal damaging could prevent the development of intra-abdominal adhesions. METHODS A search of PubMed, Medline, CINAHL and Embase databases was performed using the keywords 'postsurgical adhesion', 'post-operative adhesion', 'peritoneal adhesion', 'surgery-induced adhesion' and 'abdominal adhesion'. Studies detailing the use of pharmacological and non-pharmacological agents for peritoneal adhesion prevention were identified, and their bibliographies were thoroughly reviewed to identify further related articles. RESULTS Several signaling pathways, such as tumor necrosis factor-alpha, tissue plasminogen activator, and type 1 plasminogen activator inhibitor, macrophages, fibroblasts, and mesothelial cells play a key part in the development of plasminogen activator. Several therapeutic approaches based on anti-PA drug barriers and traditional herbal medicines have been developed to prevent and treat adhesion formation. In recent years, the most promising method to prevent PA is treatment using biomaterial-based barriers. CONCLUSION In this review, we provide an overview of the pathophysiology of adhesion formation and various agents targeting different pathways, including chemical agents, herbal agents, physical barriers, and clinical trials concerning this matter.
Collapse
Affiliation(s)
- Behzad Ensan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parsa Bathaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abdollahi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Ghorbani
- Orology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aliakbarian
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Wang R, Guo T, Li J. Mechanisms of Peritoneal Mesothelial Cells in Peritoneal Adhesion. Biomolecules 2022; 12:biom12101498. [PMID: 36291710 PMCID: PMC9599397 DOI: 10.3390/biom12101498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial–mesenchymal transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the treatment and prevention of PAs.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
16
|
Regenerative Medicine Therapies for Prevention of Abdominal Adhesions: A Scoping Review. J Surg Res 2022; 275:252-264. [DOI: 10.1016/j.jss.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 01/02/2023]
|
17
|
Elucidating the Novel Mechanism of Ligustrazine in Preventing Postoperative Peritoneal Adhesion Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9226022. [PMID: 35308169 PMCID: PMC8930249 DOI: 10.1155/2022/9226022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Postoperative peritoneal adhesion (PPA) is a major clinical complication after open surgery or laparoscopic procedure. Ligustrazine is the active ingredient extracted from the natural herb Ligusticum chuanxiong Hort, which has promising antiadhesion properties. This study is aimed at revealing the underlying mechanisms of ligustrazine in preventing PPA at molecular and cellular levels. Both rat primary peritoneal mesothelial cells (PMCs) and human PMCs were used for analysis in vitro. Several molecular biological techniques were applied to uncover the potential mechanisms of ligustrazine in preventing PPA. And molecular docking and site-directed mutagenesis assay were used to predict the binding sites of ligustrazine with PPARγ. The bioinformatics analysis was further applied to identify the key pathway in the pathogenesis of PPA. Besides, PPA rodent models were prepared and developed to evaluate the novel ligustrazine nanoparticles in vivo. Ligustrazine could significantly suppress hypoxia-induced PMC functions, such as restricting the production of profibrotic cytokines, inhibiting the expression of migration and adhesion-associated molecules, repressing the expression of cytoskeleton proteins, restricting hypoxia-induced PMCs to obtain myofibroblast-like phenotypes, and reversing ECM remodeling and EMT phenotype transitions by activating PPARγ. The antagonist GW9662 of PPARγ could restore the inhibitory effects of ligustrazine on hypoxia-induced PMC functions. The inhibitor KC7F2 of HIF-1α could repress hypoxia-induced PMC functions, and ligustrazine could downregulate the expression of HIF-1α, which could be reversed by GW9662. And the expression of HIF-1α inhibited by ligustrazine was dramatically reversed after transfection with si-SMRT. The results showed that the benefit of ligustrazine on PMC functions is contributed to the activation of PPARγ on the transrepression of HIF-1α in an SMRT-dependent manner. Molecular docking and site-directed mutagenesis tests uncovered that ligustrazine bound directly to PPARγ, and Val 339/Ile 341 residue was critical for the binding of PPARγ to ligustrazine. Besides, we discovered a novel nanoparticle agent with sustained release behavior, drug delivery efficiency, and good tissue penetration in PPA rodent models. Our study unravels a novel mechanism of ligustrazine in preventing PPA. The findings indicated that ligustrazine is a potential strategy for PPA formation and ligustrazine nanoparticles are promising agents for preclinical application.
Collapse
|
18
|
Beetham H, Griffith BG, Murina O, Loftus AE, Parry DA, Temps C, Culley J, Muir M, Unciti-Broceta A, Sims AH, Byron A, Brunton VG. Loss of Integrin-Linked Kinase Sensitizes Breast Cancer to SRC Inhibitors. Cancer Res 2022; 82:632-647. [PMID: 34921014 PMCID: PMC9621571 DOI: 10.1158/0008-5472.can-21-0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/02/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023]
Abstract
SRC is a nonreceptor tyrosine kinase with key roles in breast cancer development and progression. Despite this, SRC tyrosine kinase inhibitors have so far failed to live up to their promise in clinical trials, with poor overall response rates. We aimed to identify possible synergistic gene-drug interactions to discover new rational combination therapies for SRC inhibitors. An unbiased genome-wide CRISPR-Cas9 knockout screen in a model of triple-negative breast cancer revealed that loss of integrin-linked kinase (ILK) and its binding partners α-Parvin and PINCH-1 sensitizes cells to bosutinib, a clinically approved SRC/ABL kinase inhibitor. Sensitivity to bosutinib did not correlate with ABL dependency; instead, bosutinib likely induces these effects by acting as a SRC tyrosine kinase inhibitor. Furthermore, in vitro and in vivo models showed that loss of ILK enhanced sensitivity to eCF506, a novel and highly selective inhibitor of SRC with a unique mode of action. Whole-genome RNA sequencing following bosutinib treatment in ILK knockout cells identified broad changes in the expression of genes regulating cell adhesion and cell-extracellular matrix. Increased sensitivity to SRC inhibition in ILK knockout cells was associated with defective adhesion, resulting in reduced cell number as well as increased G1 arrest and apoptosis. These findings support the potential of ILK loss as an exploitable therapeutic vulnerability in breast cancer, enhancing the effectiveness of clinical SRC inhibitors. SIGNIFICANCE A CRISPR-Cas9 screen reveals that loss of integrin-linked kinase synergizes with SRC inhibition, providing a new opportunity for enhancing the clinical effectiveness of SRC inhibitors in breast cancer.
Collapse
Affiliation(s)
- Henry Beetham
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Billie G.C. Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Olga Murina
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Alexander E.P. Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - David A. Parry
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Carolin Temps
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Andrew H. Sims
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Valerie G. Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| |
Collapse
|
19
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
20
|
Garcia-Marin J, Griera-Merino M, Matamoros-Recio A, de Frutos S, Rodríguez-Puyol M, Alajarín R, Vaquero JJ, Rodríguez-Puyol D. Tripeptides as Integrin-Linked Kinase Modulating Agents Based on a Protein-Protein Interaction with α-Parvin. ACS Med Chem Lett 2021; 12:1656-1662. [PMID: 34790291 PMCID: PMC8591738 DOI: 10.1021/acsmedchemlett.1c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
![]()
Integrin-linked
kinase (ILK) has emerged as a controversial pseudokinase
protein that plays a crucial role in the signaling process initiated
by integrin-mediated signaling. However, ILK also exhibits a scaffolding
protein function inside cells, controlling cytoskeletal dynamics,
and has been related to non-neoplastic diseases such as chronic kidney
disease (CKD). Although this protein always acts as a heterotrimeric
complex bound to PINCH and parvin adaptor proteins, the role of parvin
proteins is currently not well understood. Using in silico approaches
for the design, we have generated and prepared a set of new tripeptides
mimicking an α-parvin segment. These derivatives exhibit activity
in phenotypic assays in an ILK-dependent manner without altering kinase
activity, thus allowing the generation of new chemical probes and
drug candidates with interesting ILK-modulating activities.
Collapse
Affiliation(s)
- Javier Garcia-Marin
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Mercedes Griera-Merino
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Graphenano Medical Care, S.L, Yecla 30510, Spain
| | - Alejandra Matamoros-Recio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Sergio de Frutos
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| | - Manuel Rodríguez-Puyol
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Diego Rodríguez-Puyol
- Fundación de Investigación Biomédica, Unidad de Nefrología del Hospital Príncipe de Asturias y Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| |
Collapse
|
21
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Dundas JA, Vasanthan V, Deniset JF, Fedak PWM. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules 2021; 11:biom11071027. [PMID: 34356652 PMCID: PMC8301806 DOI: 10.3390/biom11071027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Post-operative adhesions affect patients undergoing all types of surgeries. They are associated with serious complications, including higher risk of morbidity and mortality. Given increased hospitalization, longer operative times, and longer length of hospital stay, post-surgical adhesions also pose a great financial burden. Although our knowledge of some of the underlying mechanisms driving adhesion formation has significantly improved over the past two decades, literature has yet to fully explain the pathogenesis and etiology of post-surgical adhesions. As a result, finding an ideal preventative strategy and leveraging appropriate tissue engineering strategies has proven to be difficult. Different products have been developed and enjoyed various levels of success along the translational tissue engineering research spectrum, but their clinical translation has been limited. Herein, we comprehensively review the agents and products that have been developed to mitigate post-operative adhesion formation. We also assess emerging strategies that aid in facilitating precision and personalized medicine to improve outcomes for patients and our healthcare system.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Jameson A. Dundas
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Correspondence:
| |
Collapse
|
22
|
Raisi A, Dezfoulian O, Davoodi F, Taheri S, Ghahremani SA. Salvia miltiorrhiza hydroalcoholic extract inhibits postoperative peritoneal adhesions in rats. BMC Complement Med Ther 2021; 21:126. [PMID: 33879143 PMCID: PMC8056503 DOI: 10.1186/s12906-021-03300-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/08/2021] [Indexed: 01/22/2023] Open
Abstract
Background One of the most prevalent postoperative complications is believed to be intra-abdominal peritoneal adhesions, which is followed by several complications. Several adhesion prevention products have been examined, yet none of them were found to be completely effective. The current research is conducted to evaluate the beneficial effects of Salvia miltiorrhiza hydroalcoholic extract in inhibiting postoperative peritoneal adhesions in rats. Methods Forty rats were randomly classified into five equal groups (n = 8): 1) the normal group did not undergo surgical operations, 2) the control group in which the adhesion was induced, and which did not receive any treatment, 3) distilled water group that received distilled water, and 4,5) treatment groups treated with 1 and 5% of Salvia miltiorrhiza hydroalcoholic extract. The rats were euthanized 14 days following the surgery and the macroscopic score, the microscopic score of granulomatous inflammation and granulation tissue formation, IHC markers (vimentin, CD31, IL-1β, COX-2, and iNOS), and oxidative stress biomarkers (MDA, GPx, CAT, and TAC) were assessed in the experimental groups of the study. Results The difference between the control group and other groups for the adhesions macroscopic score, microscopic score, IHC markers, and oxidative stress biomarkers was significant (p < 0.05). Distilled water had no protective effect on the formation of peritoneal adhesions. Salvia miltiorrhiza treatment in two different doses significantly reduced macroscopic and microscopic scores, MDA concentration, Vimentin, IL-1β, COX-2, and iNOS compared to the control group (p < 0.05). The levels of GPx, CAT, and TAC in the treatment groups increased significantly compared with the control group (p < 0.05). Our findings revealed that a higher dose of Salvia miltiorrhiza was more effective in reducing peritoneal adhesions, proinflammatory and mesenchymal cell markers, and oxidative stress. Conclusions Salvia miltiorrhiza extract, owing to its strong antioxidant and anti-inflammatory properties, could effectively reduce peritoneal adhesions. Therefore, Salvia miltiorrhiza is recommended to be used as an effective anti-peritoneal post-operative adhesive agent.
Collapse
Affiliation(s)
- Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Farshid Davoodi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Shayan Taheri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Soroush Afshar Ghahremani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| |
Collapse
|
23
|
Ghosh N, Garg I, Srivastava S, Kumar B. Influence of integrins on thrombus formation: a road leading to the unravelling of DVT. Mol Cell Biochem 2021; 476:1489-1504. [PMID: 33398665 DOI: 10.1007/s11010-020-03961-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Integrins are a group of transmembrane glycoprotein receptors that are responsible for platelet activation through bidirectional signalling. These receptors have left their footprints in various cellular events and have intrigued many groups of scientists that have led to some significant discoveries. A lot of the recent understanding of haemostasis has been possible due to the integrins filling the gaps in between several cellular mechanism. Apart from this, other important functions carried out by integrins are growth and maturation of cardiomyocytes, mechano-transduction, and interaction with actin cytoskeleton. The signalling cascade for integrin activation involves certain intracellular interacting proteins, which initiates the step-by-step activation procedure through 'inside-out' signalling. The signalling cascade gets activated through 'outside-in' signalling with the involvement of agonists such as ADP, Fibronectin, Vitronectin, and so on. This is a crucial step for the downstream processes of platelet spreading, followed by aggregation, clot progression and finally thrombus formation. Researchers throughout the world have shown direct relation of integrins with CVD and cardiac remodelling. The present review aims to summarize the information available so far on the involvement of integrins in thrombosis and its relationship to DVT. This information could be a bedrock of hidden answers to several questions on pathogenesis of deep vein thrombosis.
Collapse
Affiliation(s)
- Nilanjana Ghosh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Iti Garg
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Swati Srivastava
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
24
|
Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater 2020; 116:84-104. [PMID: 32871282 DOI: 10.1016/j.actbio.2020.08.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Peritoneal adhesions (PA) are a postoperative syndrome with high incidence rate, which can cause chronic abdominal pain, intestinal obstruction, and female infertility. Previous studies have identified that PA are caused by a disordered feedback of blood coagulation, inflammation, and fibrinolysis. Monocytes, macrophages, fibroblasts, and mesothelial cells are involved in this process, and secreted signaling molecules, such as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), tissue plasminogen activator (tPA), and type 1 plasminogen activator inhibitor (PAI-1), play a key role in PA development. There have been many attempts to prevent PA formation by anti-PA drugs, barriers, and other therapeutic methods, but their effectiveness has not been widely accepted. Treatment by biomaterial-based barriers is believed to be the most promising method to prevent PA formation in recent years. In this review, the pathogenesis, treatment approaches, and animal models of PA are summarized and discussed to understand the challenges faced in the biomaterial-based anti-PA treatments.
Collapse
|
25
|
Ning Z, Zhu X, Jiang Y, Gao A, Zou S, Gu C, He C, Chen Y, Ding WQ, Zhou J. Integrin-Linked Kinase Is Involved In the Proliferation and Invasion of Esophageal Squamous Cell Carcinoma. J Cancer 2020; 11:324-333. [PMID: 31897228 PMCID: PMC6930430 DOI: 10.7150/jca.33737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/18/2019] [Indexed: 11/09/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive type of cancer with high mortality rate in China, largely due to its high invasive and metastatic potential. The purposes of this study are to investigate the potential molecular mechanisms behind the aggressive nature of ESCC and search for new prognostic biomarkers. By employing the quantitative proteomic based strategy, we compared the proteomic profile between three ESCC samples and paired adjacent tissues. After bioinformatics analysis, four candidate proteins were validated in thirteen paired patient samples. Further validation of the key candidate, integrin-linked kinase (ILK), was carried out in one hundred patient samples. The specific inhibitor compound 22 (cpd22) was used to assess the influence of ILK to ESCC cell motility and invasiveness by applying wound-healing and transwell assay. Western blot analysis was performed to elucidate the signaling pathways involved in ILK-mediated ESCC invasion. Total 236 proteins were identified by proteomic analysis. Bioinformatics analysis suggested a key role of the collagen/integrin/ILK signaling pathway during ESCC progression. Further validation indicated that ILK is overexpressed in ESCC tissues and is correlated with poor patient prognosis. Inhibition of ILK kinase activity suppresses proliferation and blocks invasion and migration of ESCC cells. Signaling pathway analysis revealed that ILK regulates AKT phosphorylation on Ser473 but not GSK-3β on Ser9 to promote proliferation and motility of ESCC cells. In conclusion, our results indicated that ILK may play a crucial role in ESCC invasion and metastasis and may serve as a prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Zhonghua Ning
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Xiaozhong Zhu
- Department of Thoracic Surgery, the Affiliated Hospital of the Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Youqin Jiang
- Department of Radiation Oncology, The Third People's Hospital of Yancheng, Yancheng, Jiangsu, P.R. China
| | - Aidi Gao
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| | - Chao Gu
- Department of Gastrointestinal surgery, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| | - Yihong Chen
- Department of Radio-Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, P.R. China
| |
Collapse
|