1
|
Pallathadka H, Jabir M, Rasool KH, Malathi H, Sharma N, Pramanik A, Rab SO, Jawad SF, Oghenemaro EF, Mustafa YF. siRNA-based therapy for overcoming drug resistance in human solid tumours; molecular and immunological approaches. Hum Immunol 2024; 86:111221. [PMID: 39700968 DOI: 10.1016/j.humimm.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication. Moreover, siRNA-based medicines have shown considerable promise in enhancing the sensitivity of cancer cells to chemotherapy and other treatment methods by suppressing genes that play a role in the development of drug resistance. Exploring and identifying functional genes linked to cancer cell characteristics and drug resistance is crucial for developing effective siRNAs for cancer treatment and advancing targeted and personalized therapeutics. Targeting and silencing genes in charge of resistance mechanisms, such as those involved in drug efflux, cell survival, or DNA repair, is possible with siRNA therapy in the context of drug resistance, especially cancer. Through inhibiting these genes, siRNA therapy can prevent resistance and restore the efficacy of traditional medications. This review addresses the potential of siRNAs in addressing drug resistance in human tumours, opening up new possibilities in cancer therapy. This review article offers a non-systematic summary of how different siRNA types contribute to cancer cells' treatment resistance. Using pertinent keywords, sources were chosen from reliable databases, including PubMed, Scopus, and Google Scholar. The review covered essential papers in this area and those that mainly addressed the function of siRNA in drug resistance. The articles examined in connection with the title of this review were primarily published from 2020 onward and are based on in vitro studies. Furthermore, this article examines the potential barriers and prospective perspectives of siRNA therapies.
Collapse
Affiliation(s)
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri - 140307, Mohali, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001 Babil, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Delta State University, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
2
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
3
|
Farzeen Z, Khan RRM, Chaudhry AR, Pervaiz M, Saeed Z, Rasheed S, Shehzad B, Adnan A, Summer M. Dostarlimab: A promising new PD-1 inhibitor for cancer immunotherapy. J Oncol Pharm Pract 2024; 30:1411-1431. [PMID: 39056234 DOI: 10.1177/10781552241265058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Dostarlimab, a humanized monoclonal PD-1 blocking antibody, is being tested as a cancer therapy in this review. Specifically, it addresses mismatch repair failure in endometrial cancer and locally progressed rectal cancer patients. DATA SOURCES A thorough database search found Dostarlimab clinical trials and studies. Published publications and ongoing clinical trials on Dostarlimab's efficacy as a single therapy and in conjunction with other medicines across cancer types were searched. DATA SUMMARY The review recommends Dostarlimab for endometrial cancer mismatch repair failure, as supported by GARNET studies. The analysis also highlights locally advanced rectal cancer findings. In the evolving area of cancer therapy, immune checkpoint inhibitors including pembrolizumab, avelumab, atezolizumab, nivolumab, and durvalumab were discussed. CONCLUSIONS Locally advanced rectal cancer patients responded 100% to Dostarlimab. Many clinical trials, including ROSCAN, AMBER, IOLite, CITRINO, JASPER, OPAL, PRIME, PERLA, and others, are investigating Dostarlimab in combination treatment. This research sheds light on Dostarlimab's current and future possibilities, in improving cancer immunotherapy understanding.
Collapse
Affiliation(s)
- Zubaria Farzeen
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | | | - Ayoub Rashid Chaudhry
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Shahzad Rasheed
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Behram Shehzad
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
4
|
Ferreira M, Morais M, Medeiros R, Teixeira AL. MicroRNAs as Promising Therapeutic Agents Against Prostate Cancer Resistant to Castration-Where Are We Now? Pharmaceutics 2024; 16:1347. [PMID: 39598472 PMCID: PMC11597238 DOI: 10.3390/pharmaceutics16111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
MicroRNAs are a conserved class of small, tissue-specific, non-coding RNAs that regulate gene expression to preserve cellular homeostasis. Proper miRNA expression is crucial for physiological balance because it affects numerous genetic pathways, including cell cycle control, proliferation, and apoptosis, through gene expression targeting. Deregulated miRNA expression has been implicated in several cancer types, including prostate cancer (PC), acting as tumor suppressors or oncogenes. Despite the availability of promising therapies to control tumor growth and progression, effective diagnostic and therapeutic strategies for different types of cancer are still lacking. PC continues to be a significant health challenge, particularly its castration-resistant (CRPC) form, which presents major therapeutic obstacles because of its resistance to conventional androgen deprivation treatments. This review explores miRNAs' critical roles in gene regulation and cancer biology, as well as various miRNA delivery systems, highlighting their potential and the challenges in effectively targeting cancer cells. It aims to provide a comprehensive overview of the status of miRNA research in the fight against CRPC, summarizing miRNA-based therapies' successes and limitations. It also highlights the promise of miRNAs as therapeutic agents for CRPC, underlining the need for further research to overcome existing challenges and move these therapies toward clinical applications.
Collapse
Affiliation(s)
- Mariana Ferreira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Research Department, LPCC-Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
| |
Collapse
|
5
|
Bhatia A, Upadhyay AK, Sharma S. miRNAs are now starring in "No Time to Die: Overcoming the chemoresistance in cancer". IUBMB Life 2023; 75:238-256. [PMID: 35678612 DOI: 10.1002/iub.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of death globally, with about 19.3 million new cases reported each year. Current therapies for cancer management include-chemotherapy, radiotherapy, and surgery. However, they are loaded with side effects and tend to cause toxicity in the patient's body posttreatment, ultimately hindering the response towards the treatment building up resistance. This is where noncoding RNAs such as miRNAs help provide us with a helping hand for taming the chemoresistance and providing potential holistic cancer management. MicroRNAs are promising targets for anticancer therapy as they perform critical regulatory roles in various signaling cascades related to cell proliferation, apoptosis, migration, and invasion. Combining miRNAs and anticancer drugs and devising a combination therapy has managed cancer well in various independent studies. This review aims to provide insights into how miRNAs play a mechanistic role in cancer development and progression and regulate drug resistance in various types of cancers. Furthermore, next-generation novel therapies using miRNAs in combination with anticancer treatments in multiple cancers have been put forth and how they improve the efficacy of the treatments. Exemplary studies currently in the preclinical and clinical models have been summarized. Ultimately, we briefly talk through the challenges that come forward with it and minimize them.
Collapse
Affiliation(s)
- Anmol Bhatia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
6
|
Suvarna V, Deshmukh K, Murahari M. miRNA and antisense oligonucleotide-based α-synuclein targeting as disease-modifying therapeutics in Parkinson's disease. Front Pharmacol 2022; 13:1034072. [PMID: 36506536 PMCID: PMC9728483 DOI: 10.3389/fphar.2022.1034072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is the synaptic protein majorly involved in neuronal dysfunction and death and it is well known for the last two decades as a hallmark of Parkinson's disease. Alpha-synuclein is involved in neurodegeneration mediated through various neurotoxic pathways, majorly including autophagy or lysosomal dysregulation, mitochondrial disruption, synaptic dysfunction, and oxidative stress. Moreover, the alpha-synuclein aggregation has been associated with the development of several neurodegenerative conditions such as various forms of Parkinson's disease. The recent discovery in oligonucleotide chemistry has developed potential alpha-synuclein targeting molecules for the treatment of neurodegenerative diseases. The present review article focuses on recent advances in the applications of oligonucleotides acting via alpha-synuclein targeting mechanisms and their implication in combating Parkinson's disease. Moreover, the article emphasizes the potential of miRNAs, and antisense oligonucleotides and the challenges associated with their use in the therapeutical management of Parkinson's disease.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kajal Deshmukh
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India,*Correspondence: Manikanta Murahari,
| |
Collapse
|
7
|
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders. Cell Mol Neurobiol 2022; 42:2075-2095. [PMID: 33934227 DOI: 10.1007/s10571-021-01093-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Exploring the microRNAs and aptamers for their therapeutic role as biological drugs has expanded the horizon of its applicability against various human diseases, explicitly targeting the genetic materials. RNA-based therapeutics are widely being explored for the treatment and diagnosis of multiple diseases, including neurodegenerative disorders (NDD). Latter includes microRNA, aptamers, ribozymes, and small interfering RNAs (siRNAs), which control the gene expression mainly at the transcriptional strata. One RNA transcript translates into different protein types; hence, therapies targeted at the transcriptional sphere may have prominent and more extensive effects than alternative therapeutics. Unlike conventional gene therapy, RNAs, upon delivery, can either altogether abolish or alter the synthesis of the protein of interest, therefore, regulating their activities in a controlled and diverse manner. NDDs like Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, Prion disease, and others are characterized by deposition of misfolded protein such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. Neuroinflammation, one of the perquisites for neurodegeneration, is induced during neurodegenerative pathogenesis. In this review, we discuss microRNAs and aptamers' role as two different RNA-based approaches for their unique ability to regulate protein production at the transcription level, hence offering many advantages over other biologicals. The microRNA acts either by alleviating the malfunctioning RNA expression or by working as a replacement to lost microRNA. On the contrary, aptamer act as a chemical antibody and forms an aptamer-target complex.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
8
|
Johnson B, Zhuang L, Rath EM, Yuen ML, Cheng NC, Shi H, Kao S, Reid G, Cheng YY. Exploring MicroRNA and Exosome Involvement in Malignant Pleural Mesothelioma Drug Response. Cancers (Basel) 2022; 14:cancers14194784. [PMID: 36230710 PMCID: PMC9564288 DOI: 10.3390/cancers14194784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a deadly thoracic malignancy and existing treatment options are limited. Chemotherapy remains the most widely used first-line treatment regimen for patients with unresectable MPM, but is hampered by drug resistance issues. The current study demonstrated a modest enhancement of MPM cell sensitivity to chemotherapy drug treatment following microRNA (miRNA) transfection in MPM cell lines, albeit not for all tested miRNAs. This effect was more pronounced for FAK (PND-1186) small molecule inhibitor treatment; consistent with previously published data. We previously established that MPM response to survivin (YM155) small molecule inhibitor treatment is unrelated to basal survivin expression. Here, we showed that MPM response to YM155 treatment is enhanced following miRNA transfection of YM155-resistant MPM cells. We determined that YM155-resistant MPM cells secrete a higher level of exosomes in comparison to YM155-sensitive MPM cells. Despite this, an exosome inhibitor (GW4896) did not enhance MPM cell sensitivity to YM155. Additionally, our study showed no evidence of a correlation between the mRNA expression of inhibitor of apoptosis (IAP) gene family members and MPM cell sensitivity to YM155. However, two drug transporter genes, ABCA6 and ABCA10, were upregulated in the MPM cell lines and correlated with poor sensitivity to YM155.
Collapse
Affiliation(s)
- Ben Johnson
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Correspondence: ; Tel.: +61-976-79869
| | - Ling Zhuang
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Emma M. Rath
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Giannoulatou Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Man Lee Yuen
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Ngan Ching Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Huaikai Shi
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Steven Kao
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Chris O’Brien Life House, Sydney, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glen Reid
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| |
Collapse
|
9
|
Hsieh YH, Yu FJ, Nassef Y, Liu CJ, Chen YS, Lin CY, Feng JL, Wu MH. Targeting of Mcl-1 Expression by MiRNA-3614-5p Promotes Cell Apoptosis of Human Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms23084194. [PMID: 35457012 PMCID: PMC9029607 DOI: 10.3390/ijms23084194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNA (miRNA) acts as a critical regulator of growth in various human malignancies. However, the role of miRNA-3614 in the progression of human prostate cancer remains unknown. In this study, our results demonstrated that miRNA-3614-5p exerts a significant inhibitory effect on cell viability and colony formation and induces sub-G1 cell cycle arrest and apoptosis in human prostate cancer cells. Myeloid cell leukemia-1 (Mcl-1) acts as a master regulator of cell survival. Using the miRNA databases, miRNA-3614-5p was found to regulate Mcl-1 expression by targeting positions of the Mcl-1-3′ UTR. The reduction of Mcl-1 expression by miRNA-3614-5p was further confirmed using an immunoblotting assay. Pro-apoptotic caspase-3 and poly (ADP-ribose) polymerase (PARP) were significantly activated by miRNA-3614-5p to generate cleaved caspase-3 (active caspase-3) and cleaved PARP (active PARP), accompanied by the inhibited Mcl-1 expression. These findings were the first to demonstrate the anti-growth effects of miRNA-3614-5p through downregulating Mcl-1 expression in human prostate cancer cells.
Collapse
Affiliation(s)
- Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (Y.N.); (Y.-S.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Fang-Jung Yu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-J.Y.); (C.-J.L.)
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yasser Nassef
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (Y.N.); (Y.-S.C.)
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-J.Y.); (C.-J.L.)
- Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (Y.N.); (Y.-S.C.)
| | - Ching-Yi Lin
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Jia-Liang Feng
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 40764, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Chunghua 515006, Taiwan
- Correspondence: (J.-L.F.); (M.-H.W.)
| | - Min-Hua Wu
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 40764, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Chunghua 515006, Taiwan
- Correspondence: (J.-L.F.); (M.-H.W.)
| |
Collapse
|
10
|
Jin X, Yu J, Yin M, Sinha A, Jin G. Combined Ultrasound Treatment with Transferrin-Coupled Nanoparticles Improves Active Targeting of 4T1 Mammary Carcinoma Cells. Technol Cancer Res Treat 2021; 20:15330338211062325. [PMID: 34825851 PMCID: PMC8649434 DOI: 10.1177/15330338211062325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: Conventional chemotherapy remains the mainstay treatment
for many breast cancer patients, but its effectiveness is limited by toxic side
effects. Incorporating drugs such as docetaxel into nanoparticle medicines can
reduce toxicity but further improvements are required. To facilitate more active
tumor targeting, we prepared transferrin-docetaxel-loaded pegylated-albumin
nanoparticles (Tf-PEG-DANPS). Methods: The growth inhibitory
effects and the ability of unmodified DANPS or PEG-DANPS to induce apoptosis in
4T1 mouse mammary cancers were compared to Tf-PEG-DANPS treatment using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow
cytometry. These experiments were extended in vivo to the intravenous treatment
of 4T1 tumors where PEG-DANPS was compared to Tf-PEG-DANPS alone or Tf-PEG-DANPS
combined with ultrasound (US + Tf-PEG-DANPS). Histological assessments using
hematoxylin and eosin (HE) sections were performed to examine antitumor
activity, metastasis to lung and liver, and body weight measurements taken as an
indicator of toxicity. Results: MTT experiments show that, in the
normal and low concentration interval, the inhibition ability of the
Tf-PEG-DANPS is higher than that of other drug-giving groups, and the flow
cytometry show that the proportion of induced apoptosis in each given group is
2.88%, 42.95%, 48.23%, and 57.89%, indicating that the Tf-PEG-DANPS group has
more significant ability to induce apoptosis than other drug-giving groups. From
the pathological HE staining and semiquantitative analysis, US+Tf-PEG-DANPS can
effectively inhibit the growth of breast cancer transplanted tumors and suppress
metastases, it also has smaller toxic side effects on mice.
Conclusion: The antitumor effect of US+Tf-PEG-DANPS represents
an effective combination that exhibits increased antitumor activity and
metastasis reduction with an improved side-effect profile.
Collapse
Affiliation(s)
- Xiangzi Jin
- 159436Yanbian University Hospital, Yanji 133000, China
| | - Jie Yu
- 159436Yanbian University Hospital, Yanji 133000, China
| | - Meijiao Yin
- 159436Yanbian University Hospital, Yanji 133000, China
| | - Amit Sinha
- 159436Yanbian University Hospital, Yanji 133000, China
| | - Guangming Jin
- 159436Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
11
|
Sun JY, Ni MM. Long non-coding RNA HEIH: a novel tumor activator in multiple cancers. Cancer Cell Int 2021; 21:558. [PMID: 34689775 PMCID: PMC8543845 DOI: 10.1186/s12935-021-02272-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 12/27/2022] Open
Abstract
The last decade has witnessed the altered expression levels of long non-coding RNA HEIH in different types of cancer. More than half of the HEIH studies in cancer have been published within the last two years. To our knowledge, this is the first review to discuss very recent developments and insights into HEIH contribution to carcinogenesis. The functional role, molecular mechanism, and clinical significance of HEIH in human cancers are described in detail. The expression of HEIH is elevated in a broad spectrum of cancers, and its disorder contributes to cell proliferation, migration, invasion, and drug resistance of cancer cells through different underlying mechanisms. In addition, the high expression of HEIH is significantly associated with advanced tumor stage, tumor size and decreased overall survival, suggesting HEIH may function as a prognostic biomarker and potential therapeutic target for human cancers.
Collapse
Affiliation(s)
- Jie-Yu Sun
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd., Nanjing, 210008, People's Republic of China.
| |
Collapse
|
12
|
Oh-Hohenhorst SJ, Lange T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers (Basel) 2021; 13:cancers13174492. [PMID: 34503302 PMCID: PMC8431208 DOI: 10.3390/cancers13174492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this review article we summarize the current literature on the pro- and anti-metastatic roles of distinct microRNAs in prostate cancer with a particular focus on their impact on invasion, migration and epithelial-to-mesenchymal transition. Moreover, we give a brief overview on how this knowledge developed so far into novel therapeutic approaches to target metastatic prostate cancer. Abstract Prostate cancer (PCa) is one of the most prevalent cancer types in males and the consequences of its distant metastatic deposits are the leading cause of PCa mortality. Therefore, identifying the causes and molecular mechanisms of hematogenous metastasis formation is of considerable clinical importance for the future development of improved therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNAs. Numerous studies have identified miRNAs as promotors or inhibitors of metastasis and revealed, in part, their targeting pathways in PCa. Because miRNAs are remarkably stable and can be detected in both tissue and body fluid, its potential as specific biomarkers for metastasis and therapeutic response is also currently under preclinical evaluation. In the present review, we focus on miRNAs that are supposed to initiate or suppress metastasis by targeting several key mRNAs in PCa. Metastasis-suppressing miRNAs include miR-33a-5p, miR-34, miR-132 and miR-212, miR-145, the miR-200 family (incl. miR-141-3p), miR-204-5p, miR-532-3p, miR-335, miR-543, miR-505-3p, miR 19a 3p, miR-802, miR-940, and miR-3622a. Metastasis-promoting RNAs, such as miR-9, miR-181a, miR-210-3, miR-454, miR-671-5p, have been shown to increase the metastatic potential of PCa cells. Other metastasis-related miRNAs with conflicting reports in the literature are also discussed (miR-21 and miR-186). Finally, we summarize the recent developments of miRNA-based therapeutic approaches, as well as current limitations in PCa. Taken together, the metastasis-controlling miRNAs provide the potential to be integrated in the strategy of diagnosis, prognosis, and treatment of metastatic PCa. Nevertheless, there is still a lack of consistency between certain miRNA signatures and reproducibility, which impedes clinical implementation.
Collapse
Affiliation(s)
- Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
13
|
Konoshenko M, Laktionov P. The miRNAs involved in prostate cancer chemotherapy response as chemoresistance and chemosensitivity predictors. Andrology 2021; 10:51-71. [PMID: 34333834 DOI: 10.1111/andr.13086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reliable molecular markers that allow the rational prescription of an effective chemotherapy type for each prostate cancer patient are still needed. Since microRNAs expression is associated with the response to different types of prostate cancer therapy, microRNAs represent a pool of perspective markers of therapy effectiveness comprising chemotherapy. OBJECTIVES The available data on microRNAs associated with chemotherapy response (resistance and sensitivity) are summarized and analyzed in the article. MATERIALS AND METHODS A review of the published data, as well as their analysis by current bioinformatics resources, was conducted. The molecular targets of microRNAs, as well as the reciprocal relationships between the microRNAs and their targets, were studied using the DIANA, STRING, and TransmiR databases. Special attention was dedicated to the mechanisms of prostate cancer chemoresistance development. RESULTS AND DISCUSSION The combined analysis of bioinformatics resources and the available literature indicated that the expression of eight microRNAs that are associated with different responses to chemotherapy have a high potential for the prediction of the prostate cancer chemotherapy response, as found in the experiments and confirmed by the functions of regulated genes. CONCLUSION An overview on the published data and bioinformatics resources, with respect to predictive microRNA markers of chemotherapy response, is presented in this review. The selected microRNA and gene panel has a high potential for predicting the chemosensitivity or chemoresistance of prostate cancer and could represent a set of markers for subsequent study using samples of cell-free microRNAs from different patient groups.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Crowley F, Sterpi M, Buckley C, Margetich L, Handa S, Dovey Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol 2021; 13:457-472. [PMID: 34235102 PMCID: PMC8256377 DOI: 10.2147/rru.s264722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy or ADT is one of the cornerstones of management of locally advanced or metastatic prostate cancer, alongside radiation therapy. However, despite early response, most advanced prostate cancers progress into an androgen unresponsive or castrate resistant state, which hitherto remains an incurable entity and the second leading cause of cancer-related mortality in men in the US. Recent advances have uncovered multiple complex and intermingled mechanisms underlying this transformation. While most of these mechanisms revolve around androgen receptor (AR) signaling, novel pathways which act independently of the androgen axis are also being discovered. The aim of this article is to review the pathophysiological mechanisms that help bypass the apoptotic effects of ADT to create castrate resistance. The article discusses castrate resistance mechanisms under two categories: 1. Direct AR dependent pathways such as amplification or gain of function mutations in AR, development of functional splice variants, posttranslational regulation, and pro-oncogenic modulation in the expression of coactivators vs corepressors of AR. 2. Ancillary pathways involving RAS/MAP kinase, TGF-beta/SMAD pathway, FGF signaling, JAK/STAT pathway, Wnt-Beta catenin and hedgehog signaling as well as the role of cell adhesion molecules and G-protein coupled receptors. miRNAs are also briefly discussed. Understanding the mechanisms involved in the development and progression of castration-resistant prostate cancer is paramount to the development of targeted agents to overcome these mechanisms. A number of targeted agents are currently in development. As we strive for more personalized treatment across oncology care, treatment regimens will need to be tailored based on the type of CRPC and the underlying mechanism of castration resistance.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Michelle Sterpi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Conor Buckley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Lauren Margetich
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
15
|
Porzycki P. Potential clinical use of miRNA molecules in the diagnosis
of prostate cancer. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0015.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the most common type of cancer among men in Europe and this applies
to almost the whole world. Current recommendations for screening and diagnosis are
based on prostate specific antigen (PSA) measurements and the digital rectal examination
(DRE). Both of them trigger the prostate biopsy. Limited specificity of the PSA test brings, however,
a need to develop new and better diagnostic tools. In the last few years, new approaches
for providing significantly better biomarkers, an alternative to PSA, have been introduced.
Modern biomarkers show improvement not only as a diagnostic procedure, but also for staging,
evaluating aggressiveness and managing the therapeutic process. The most promising
group are molecular markers; among them microRNAs (miRNAs, miRs) are most frequent.
miRNAs represent a class of about 22 nucleotides long, small non-coding RNAs, which are
involved in gene expression regulation at the post-transcriptional level. This article reports
a revision about the role of miRNAs in PCa including data of Adreno Receptor (AR) signaling,
cell cycle, epithelial mesenchymal transition (EMT) process, cancer stem cells (CSCs)
regulation and even the role of miRNAs as PCa therapeutic tool. Finding better PCa biomarkers,
replacing the current PSA measurement, is firmly needed in modern oncology practice.
Collapse
|
16
|
Hu A, Chen X, Bi Q, Xiang Y, Jin R, Ai H, Nie Y. A parallel and cascade control system: magnetofection of miR125b for synergistic tumor-association macrophage polarization regulation and tumor cell suppression in breast cancer treatment. NANOSCALE 2020; 12:22615-22627. [PMID: 33150908 DOI: 10.1039/d0nr06060g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polarization regulation of tumor-association macrophages (TAMs) is a promising treatment method for tumors, but aiming at TAMs alone shows unsatisfactory therapeutic efficiency. Therefore, we designed a parallel and cascade control system for both macrophage polarization and tumor cell inhibition. The system is composed of cationic lipopeptides with an arginine-rich periphery (RLS) and anionic magnetic nanoparticles (MNPs) for fleet transfection of miR-125b. Based on the highly efficient magnetofection, miR-125b successfully shows a parallel effect on both M1, promoting polarization by targeting interferon regulatory factor 4 (IRF4) in macrophages, and tumor cell inhibition, by targeting ETS proto-oncogene 1 and cyclin- J. The cascading effect on M1-associated genes is upregulated by up to two orders of magnitude, while M2-associated genes are downregulated. Meanwhile, MNPs also have an effect on the TAM polarization and 4T1 tumor cell inhibition via inflammatory related gene expression and Fenton reaction. Further mimicking the co-culture of RAW264.7 and 4T1 cells in vitro confirmed the synergistic therapy effect. In the treatment of orthotopic breast cancer in mice, considerable M1 macrophage polarization was observed in the RM125b treated group, showing distinct tumor-suppressive effects, with a tumor weight reduction of 60% and tumor metastasis suppression of 50%.
Collapse
Affiliation(s)
- Ao Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Rizzo M. Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochim Biophys Acta Rev Cancer 2020; 1875:188481. [PMID: 33217485 DOI: 10.1016/j.bbcan.2020.188481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.
Collapse
Affiliation(s)
- Milena Rizzo
- Non-coding RNA Group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.
| |
Collapse
|
18
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
19
|
Lee J, Hong HK, Peng SB, Kim TW, Lee WY, Yun SH, Kim HC, Liu J, Ebert PJ, Aggarwal A, Jung S, Cho YB. Identifying metastasis-initiating miRNA-target regulations of colorectal cancer from expressional changes in primary tumors. Sci Rep 2020; 10:14919. [PMID: 32913235 PMCID: PMC7484763 DOI: 10.1038/s41598-020-71868-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is prevalent with high mortality, with liver metastasis contributing as a major factor that worsens the survival of patients. The roles of miRNAs in CRC have been elucidated, subsequent to recent studies that suggest the involvement of miRNAs in cancer biology. In this study, we compare the miRNA and gene expression profiles of primary tumors between two groups of patients (with and without liver metastasis) to identify the metastasis-initiating microRNA-target gene regulations. Analysis from 33 patients with metastasis and 14 patients without metastasis revealed that 17 miRNAs and their 198 predicted target genes are differentially expressed, where the target genes showed association with cancer progression and metastasis with statistical significance. In order to evaluate the clinical implications of the findings, we classified CRC patients of independent data into two groups based on the identified miRNA-target regulations, where one group was closer to primary tumors with metastasis than the other group. The comparison of survival showed statistically significant difference, thereby implying the roles of the identified miRNA-target regulations in cancer progression and metastasis. The identification of metastasis-initiating miRNA-target regulations in this study will lead to better understanding of the roles of miRNAs in CRC progression.
Collapse
Affiliation(s)
- Jongmin Lee
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hye Kyung Hong
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | | | - Tae Won Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Woo Yong Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong Hyun Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | - Sungwon Jung
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea. .,Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.
| | - Yong Beom Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Duffy CP, McCoy CE. The Role of MicroRNAs in Repair Processes in Multiple Sclerosis. Cells 2020; 9:cells9071711. [PMID: 32708794 PMCID: PMC7408558 DOI: 10.3390/cells9071711] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterised by demyelination of central nervous system neurons with subsequent damage, cell death and disability. While mechanisms exist in the CNS to repair this damage, they are disrupted in MS and currently there are no treatments to address this deficit. In recent years, increasing attention has been paid to the influence of the small, non-coding RNA molecules, microRNAs (miRNAs), in autoimmune disorders, including MS. In this review, we examine the role of miRNAs in remyelination in the different cell types that contribute to MS. We focus on key miRNAs that have a central role in mediating the repair process, along with several more that play either secondary or inhibitory roles in one or more aspects. Finally, we consider the current state of miRNAs as therapeutic targets in MS, acknowledging current challenges and potential strategies to overcome them in developing effective novel therapeutics to enhance repair mechanisms in MS.
Collapse
|
21
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
22
|
Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci 2020; 21:E3233. [PMID: 32370233 PMCID: PMC7247559 DOI: 10.3390/ijms21093233] [Citation(s) in RCA: 843] [Impact Index Per Article: 168.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the main causes of death worldwide. Despite the significant development of methods of cancer healing during the past decades, chemotherapy still remains the main method for cancer treatment. Depending on the mechanism of action, commonly used chemotherapeutic agents can be divided into several classes (antimetabolites, alkylating agents, mitotic spindle inhibitors, topoisomerase inhibitors, and others). Multidrug resistance (MDR) is responsible for over 90% of deaths in cancer patients receiving traditional chemotherapeutics or novel targeted drugs. The mechanisms of MDR include elevated metabolism of xenobiotics, enhanced efflux of drugs, growth factors, increased DNA repair capacity, and genetic factors (gene mutations, amplifications, and epigenetic alterations). Rapidly increasing numbers of biomedical studies are focused on designing chemotherapeutics that are able to evade or reverse MDR. The aim of this review is not only to demonstrate the latest data on the mechanisms of cellular resistance to anticancer agents currently used in clinical treatment but also to present the mechanisms of action of novel potential antitumor drugs which have been designed to overcome these resistance mechanisms. Better understanding of the mechanisms of MDR and targets of novel chemotherapy agents should provide guidance for future research concerning new effective strategies in cancer treatment.
Collapse
Affiliation(s)
- Karol Bukowski
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (R.K.)
| | | | | |
Collapse
|
23
|
Ma L, He H, Jiang K, Jiang P, He H, Feng S, Chen K, Shao J, Deng G. FAM46C inhibits cell proliferation and cell cycle progression and promotes apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity in prostate cancer. Aging (Albany NY) 2020; 12:6352-6369. [PMID: 32283544 PMCID: PMC7185131 DOI: 10.18632/aging.103030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/23/2020] [Indexed: 04/11/2023]
Abstract
Family with sequence similarity 46 member C (FAM46C) is a non-canonical poly(A) polymerase that is associated with tumorigenesis. However, its role in prostate cancer development is not fully understood. Herein, we determined expression pattern of FAM46C in prostate cancer and further identified its effect on the tumorigenesis and chemosensitivity. FAM46C expression was decreased in prostate cancer tissues and cell lines compared with corresponding controls. FAM46C expression was significantly associated with the Gleason score, tumor size and overall survival. FAM46C knockdown in 22RV1 and DU145 cells significantly inhibited apoptosis and promoted cell proliferation and cell cycle progression as well as activation of AKT. FAM46C overexpression had an inverse effect in DU145 cells and inhibited tumor growth in vivo. FAM46C inhibited cell proliferation and cell cycle progression and induced apoptosis via the PTEN/AKT signaling pathway. FAM46C promoted PTEN expression through inhibiting PTEN ubiquitination. The prostate cancer cells and patient-derived xenograft (PDX) mice with high-FAM46C-expressing demonstrated an enhanced chemosensitivity to docetaxel. These findings suggest that FAM46C control cell proliferation, cell cycle and apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity of prostate cancer. Modulation of their levels may offer a new approach for improving anti-tumor efficacy for chemotherapeutic agents in prostate cancer.
Collapse
Affiliation(s)
- Libin Ma
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Kang Jiang
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Peiwu Jiang
- Surgical Department I, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China
| | - Han He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shengjia Feng
- Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Kean Chen
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314001, Zhejiang, China
| | - Jia Shao
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
24
|
Indrieri A, Carrella S, Carotenuto P, Banfi S, Franco B. The Pervasive Role of the miR-181 Family in Development, Neurodegeneration, and Cancer. Int J Mol Sci 2020; 21:ijms21062092. [PMID: 32197476 PMCID: PMC7139714 DOI: 10.3390/ijms21062092] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs playing a fundamental role in the regulation of gene expression. Evidence accumulating in the past decades indicate that they are capable of simultaneously modulating diverse signaling pathways involved in a variety of pathophysiological processes. In the present review, we provide a comprehensive overview of the function of a highly conserved group of miRNAs, the miR-181 family, both in physiological as well as in pathological conditions. We summarize a large body of studies highlighting a role for this miRNA family in the regulation of key biological processes such as embryonic development, cell proliferation, apoptosis, autophagy, mitochondrial function, and immune response. Importantly, members of this family have been involved in many pathological processes underlying the most common neurodegenerative disorders as well as different solid tumors and hematological malignancies. The relevance of this miRNA family in the pathogenesis of these disorders and their possible influence on the severity of their manifestations will be discussed. A better understanding of the miR-181 family in pathological conditions may open new therapeutic avenues for devasting disorders such as neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Pietro Carotenuto
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- The Institute of Cancer Research, Cancer Therapeutics Unit 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| |
Collapse
|
25
|
Lombard AP, Gao AC. Resistance Mechanisms to Taxanes and PARP Inhibitors in Advanced Prostate Cancer. ACTA ACUST UNITED AC 2020; 10:16-22. [PMID: 32258820 DOI: 10.1016/j.coemr.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical landscape concerning advanced prostate cancer is rapidly changing and reaching beyond androgen deprivation therapy and androgen receptor targeted therapies. Taxane chemotherapy is a critical tool in the management of advanced prostate cancer. Additionally, novel drug classes such as PARP inhibitors are being investigated. Despite tremendous progress, resistance to therapy remains as a major impediment to further improvement. Resistance mechanisms appear diverse and are not fully known or understood. This review will highlight recent advances in research regarding mechanisms of resistance to both taxanes (such as increased drug efflux capacity) and PARP inhibitors (such as reversion mutations which restore DNA-repair proficiency). Understanding resistance to therapy promises to remove barriers blocking progress toward improved patient outcomes.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA.,UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA.,VA Northern California Health Care System Sacramento, CA, USA
| |
Collapse
|
26
|
Wu J, Li X, Luo F, Yan J, Yang K. Screening key miRNAs and genes in prostate cancer by microarray analysis. Transl Cancer Res 2020; 9:856-868. [PMID: 35117431 PMCID: PMC8799076 DOI: 10.21037/tcr.2019.12.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause of cancer-related death in men while the mechanisms remain unclear. METHODS Differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) between PCa and non-tumor controls were identified by using microarray analysis. Functional annotation of DEmRNAs, construction of protein-protein interaction (PPI) network and prediction of upstream transcription factors and downstream target DEmRNAs of DEmiRNAs were conducted to further research functions of key DEmRNAs and DEmiRNAs. Validation of selected DEmRNAs and survival analysis were conducted by using The Cancer Genome Atlas (TCGA). RESULTS Total of 91 DEmRNAs and 62 DEmiRNAs were obtained. Thrombospondin-4 precursor (THBS4) was the most significantly up-regulated DEmRNA whose product was predicted to interact with the hub protein of the PCa-specific PPI network, collagen type I alpha 1 chain (COL1A1). Both ATP binding cassette subfamily C member 4 (ABCC4) and endothelin receptor type B (EDNRB) have great prognostic value for PCa. Thrombospondin type 1 domain containing 4 (THSD4) was a down-regulated DEmRNA regulated by several cancer-related miRNAs including has-miR-107, hsa-miR-3175 and hsa-miR-484. Two miRNAs (hsa-miR-428 and hsa-miR-4284) involve in PCa by regulating BMP5-BAMBI interaction and TGF-beta signaling pathway. The expression of selected DEmRNAs between PCa and non-tumor controls in TCGA was consistent with that in our microarray analysis, generally. CONCLUSIONS Key DEmRNAs and DEmiRNAs between PCa and non-tumor controls were identified in this study which provided clues for exploring the molecular mechanism and developing potential biomarkers and therapeutic target sites for PCa.
Collapse
Affiliation(s)
- Jianhui Wu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xuemei Li
- Department of Endocrinology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Luo
- Department of Urology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Jun Yan
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Kuo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
27
|
Jiang X, Guo S, Zhang Y, Zhao Y, Li X, Jia Y, Xu Y, Ma B. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell Signal 2020; 65:109422. [DOI: 10.1016/j.cellsig.2019.109422] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
|
28
|
Han Z, Zhan R, Chen S, Deng J, Shi J, Wang W. miR-181b/Oncostatin m axis inhibits prostate cancer bone metastasis via modulating osteoclast differentiation. J Cell Biochem 2019; 121:1664-1674. [PMID: 31680294 DOI: 10.1002/jcb.29401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
The activation of osteoblasts is significantly correlated to prostate tumor bone metastasis and bone loss. Oncostatin M (OSM) could promote breast cancer metastasis to bone. However, its role and mechanism in prostate cancer bone metastasis remain unclear. MicroRNAs (miRNAs) could play important roles in cancers via post-transcriptionally regulating target genes via binding to specific sequences in the 3' UTR of downstream target genes. In the present study, we performed microarray profiling analyses to identify differentially-expressed miRNAs in preosteoclast before and after osteoclast differentiation that could target OSM. miR-181b-5p was downregulated during Raw264.7 cells differentiation into osteoclast. By direct targeting OSM 3' UTR, miR-181b-5p inhibited OSM messenger RNA expression and protein levels, subsequently decreasing IL-6 and AREG and increasing OPG, while OSM overexpression exerted an opposing effect. More importantly, co-culture with miR-181b-5p-overexpressing differentiated Raw264.7 cells suppressed proliferation, migration, and invasion of mouse prostate cancer RM-1 cells, while co-culture with OSM-overexpressing Raw264.7 cells led to opposing cellular effects. More importantly, the effects of miR-181b-5p on osteoclastogenic factors and RM-1 cells could be significantly reversed by OSM overexpression. In summary, miR-181b-5p/OSM axis could be a viable therapeutic target for patients with surgically removed primary tumors to reduce bone metastasis and prevent bone loss.
Collapse
Affiliation(s)
- Ziwei Han
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruisen Zhan
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Deng
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Shi
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Fischer S, Tahoun M, Klaan B, Thierfelder KM, Weber MA, Krause BJ, Hakenberg O, Fuellen G, Hamed M. A Radiogenomic Approach for Decoding Molecular Mechanisms Underlying Tumor Progression in Prostate Cancer. Cancers (Basel) 2019; 11:E1293. [PMID: 31480766 PMCID: PMC6770738 DOI: 10.3390/cancers11091293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is a genetically heterogeneous cancer entity that causes challenges in pre-treatment clinical evaluation, such as the correct identification of the tumor stage. Conventional clinical tests based on digital rectal examination, Prostate-Specific Antigen (PSA) levels, and Gleason score still lack accuracy for stage prediction. We hypothesize that unraveling the molecular mechanisms underlying PCa staging via integrative analysis of multi-OMICs data could significantly improve the prediction accuracy for PCa pathological stages. We present a radiogenomic approach comprising clinical, imaging, and two genomic (gene and miRNA expression) datasets for 298 PCa patients. Comprehensive analysis of gene and miRNA expression profiles for two frequent PCa stages (T2c and T3b) unraveled the molecular characteristics for each stage and the corresponding gene regulatory interaction network that may drive tumor upstaging from T2c to T3b. Furthermore, four biomarkers (ANPEP, mir-217, mir-592, mir-6715b) were found to distinguish between the two PCa stages and were highly correlated (average r = ± 0.75) with corresponding aggressiveness-related imaging features in both tumor stages. When combined with related clinical features, these biomarkers markedly improved the prediction accuracy for the pathological stage. Our prediction model exhibits high potential to yield clinically relevant results for characterizing PCa aggressiveness.
Collapse
Affiliation(s)
- Sarah Fischer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mohamed Tahoun
- Computer Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
| | - Bastian Klaan
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Kolja M Thierfelder
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Oliver Hakenberg
- Department of Urology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany.
| |
Collapse
|
30
|
The role of miRNAs as biomarkers in prostate cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:165-174. [PMID: 31416574 DOI: 10.1016/j.mrrev.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
There is an urged need of non-invasive biomarkers for the implementation of precision medicine. These biomarkers are required to these days for improving prostate cancer (PCa) screening, treatment or stratification in current clinical strategies. There are several commercial kits (Oncotype DX genomic prostate score®, Prolaris®, among others) that use genomic changes, rearrangement or even non-coding RNA events. However, none of them are currently used in the routine clinical practice. Many recent studies indicate that miRNAs are relevant molecules (small single-stranded non-coding RNAs that regulate gene expression of more than 30% of human genes) to be implement non-invasive biomarkers. However, contrasting to others tumors, such as breast cancer where miR-21 seems to be consistently upregulated; PCa data are controversial. Here we reported an extended revision about the role of miRNAs in PCa including data of AR signaling, cell cycle, EMT process, CSCs regulation and even the role of miRNAs as PCa diagnostic, prognostic and predictive tool. It is known that current biomedical research uses big-data analysis like Next Generation Sequencing (NGS) analysis. We also conducted an extensive online search, including the main platforms and kits for miRNAs massive analysis (like MiSeq, Nextseq 550, or Ion S5™ systems) indicating their pros, cons and including pre-analytical and analytical issues of miRNA studies.
Collapse
|
31
|
Osako Y, Yoshino H, Sakaguchi T, Sugita S, Yonemori M, Nakagawa M, Enokida H. Potential tumor‑suppressive role of microRNA‑99a‑3p in sunitinib‑resistant renal cell carcinoma cells through the regulation of RRM2. Int J Oncol 2019; 54:1759-1770. [PMID: 30816432 DOI: 10.3892/ijo.2019.4736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/25/2019] [Indexed: 11/06/2022] Open
Abstract
Sunitinib is the most common primary molecular‑targeted agent for metastatic clear cell renal cell carcinoma (ccRCC); however, intrinsic or acquired sunitinib resistance has become a significant problem in medical practice. The present study focused on microRNA (miR)‑99a‑3p, which was significantly downregulated in clinical sunitinib‑resistant ccRCC tissues in previous screening analyses, and investigated the molecular network associated with it. The expression levels of miR‑99a‑3p and its candidate target genes were evaluated in RCC cells, including previously established sunitinib‑resistant 786‑o (SU‑R‑786‑o) cells, and clinical ccRCC tissues, using reverse transcription‑quantitative polymerase chain reaction. Gain‑of‑function studies demonstrated that miR‑99a‑3p significantly suppressed cell proliferation and colony formation in RCC cells, including the SU‑R‑786‑o cells, by inducing apoptosis. Based on in silico analyses and RNA sequencing data, followed by luciferase reporter assays, ribonucleotide reductase regulatory subunit‑M2 (RRM2) was identified as a direct target of miR‑99a‑3p in the SU‑R‑786‑o cells. Loss‑of‑function studies using small interfering RNA against RRM2 revealed that cell proliferation and colony growth were significantly inhibited via induction of apoptosis, particularly in the SU‑R‑786‑o cells. Furthermore, the RRM2 inhibitor Didox (3,4‑dihydroxybenzohydroxamic acid) exhibited anticancer effects in the SU‑R‑786‑o cells and other RCC cells. To the best of our knowledge, this is the first report demonstrating that miR‑99a‑3p directly regulates RRM2. Identifying novel genes targeted by tumor‑suppressive miR‑99a‑3p in sunitinib‑resistant RCC cells may improve our understanding of intrinsic or acquired resistance and facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890‑8520, Japan
| |
Collapse
|
32
|
Lu Q, Chen Y, Sun D, Wang S, Ding K, Liu M, Zhang Y, Miao Y, Liu H, Zhou F. MicroRNA-181a Functions as an Oncogene in Gastric Cancer by Targeting Caprin-1. Front Pharmacol 2019; 9:1565. [PMID: 30687106 PMCID: PMC6335395 DOI: 10.3389/fphar.2018.01565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-181a (miRNA-181a) is a multifaceted miRNA implicated in various cellular processes, particularly in cell fate determination and cellular invasion. It is frequently expressed aberrantly in human tumors and shows opposing functions in different types of cancers. In this study, we found that miRNA-181a is overexpressed in Gastric cancer (GC) tissues. Clinical and pathological analyses revealed that the expression of miRNA-181a is correlated with tumor size, lymph node metastasis, distant metastasis, and TNM stage. Kaplan-Meier analysis indicated that overexpression of miRNA-181a is associated with poor overall survival of patients with GC. Moreover, miRNA-181a is overexpressed in GC cells, and downregulation of miRNA-181a induced cell apoptosis and suppressed the proliferation, invasion, and metastasis of GC cells both in vitro and in vivo. Target prediction and luciferase reporter assay showed that caprin-1 was a direct target of miRNA-181a. Downregulation of caprin-1 expression resulted in a converse change with miRNA-181a in GC. Spearman’s correlation test confirmed that the expression of miRNA-181a expression was inversely correlated with that of caprin-1 in GC cells. Furthermore, the expression of caprin-1 increased after downregulation of miRNA-181a in the GC cells. Caprin-1 siRNA can rescue the oncogenic effect of miRNA-181a on GC cell proliferation, apoptosis, migration, and invasion. These findings suggest that miRNA-181a directly inhibits caprin-1 and promotes GC development. miRNA-181a could be a target for anticancer drug development.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Yanchun Chen
- Department of Histology and Embryology, Weifang Medical University, Weifang, China.,Neurological Disorders and Regenerative Repair Key Laboratory, Weifang Medical University, Weifang, China
| | - Dan Sun
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Shukun Wang
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Kang Ding
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Meiyi Liu
- Department of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yan Zhang
- Department of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yujuan Miao
- Department of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fenghua Zhou
- Department of Pathology, Weifang Medical University, Weifang, China.,Neurological Disorders and Regenerative Repair Key Laboratory, Weifang Medical University, Weifang, China
| |
Collapse
|
33
|
Ors-Kumoglu G, Gulce-Iz S, Biray-Avci C. Therapeutic microRNAs in human cancer. Cytotechnology 2019; 71:411-425. [PMID: 30600466 DOI: 10.1007/s10616-018-0291-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are RNA molecules at about 22 nucleotide in length that are non-coding, which regulate gene expression in the post-transcriptional level by performing degradation or blocks translation of the target mRNA. It is known that they play roles in mechanisms such as metabolic regulation, embryogenesis, organogenesis, differentiation and growth control by providing post-transcriptional regulation of gene expression. With these properties, miRNAs play important roles in the regulation of biological processes such as proliferation, differentiation, apoptosis, drug resistance mechanisms in eukaryotic cells. In addition, there are miRNAs that can be used for cancer therapy. Tumor cells and tumor microenvironment have different miRNA expression profiles. Some miRNAs are known to play a role in the onset and progression of the tumor. miRNAs with oncogenic or tumor suppressive activity specific to different cancer types are still being investigated. This review summarizes the role of miRNAs in tumorigenesis, therapeutic strategies in human cancer and current studies.
Collapse
Affiliation(s)
- Gizem Ors-Kumoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| | - Sultan Gulce-Iz
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.,Biomedical Technologies Graduate Programme, Institute of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
34
|
Wang C, Liu E, Li W, Cui J, Li T. MiR-3188 Inhibits Non-small Cell Lung Cancer Cell Proliferation Through FOXO1-Mediated mTOR-p-PI3K/AKT-c-JUN Signaling Pathway. Front Pharmacol 2018; 9:1362. [PMID: 30618730 PMCID: PMC6297856 DOI: 10.3389/fphar.2018.01362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
This study investigated the role of miR-3188 on the proliferation of non-small cell lung cancer cells and its relationship to FOXO1-modulated feedback loop. Two non-small cell lung cancer (NSCLC) cell lines A549 and H1299 were used. RNA silencing was achieved by lentiviral transfection. Cell proliferation was assessed by immunohistochemical staining of Ki67 and PCNA, Edu incorporation, and colony formation assay. Western blotting was used to examine expression of FOXO1, mTOR, p-mTOR, CCND1, p21, c-JUN, AKT, pAKT, PI3K, p-PI3K, and p27 proteins. It was found that miR-3188 reduced cell proliferation in NSCLC cells. Molecular analyses indicated that the effect of mammalian target of rapamycin (mTOR) was directly mediated by miR-3188, leading to p-PI3K/p-AKT/c-JUN inactivation. The inhibition of this signaling pathway further caused cell-cycle suppression. Moreover, FOXO1 was found to be involved in regulating the interaction of miR-3188 and mTOR through p-PI3K/p-AKT/c-JUN signaling pathway. Taken together, our study demonstrated that miR-3188 interacts with mTOR and FOXO1 to inhibit NSCLC cell proliferation through a mTOR-p-PI3K/AKT-c-JUN signaling pathway. Therefore, miR-3188 might be a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Chunyan Wang
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Enqi Liu
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Wen Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Jue Cui
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Tongxiang Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| |
Collapse
|
35
|
Zhou S, Min Z, Sun K, Qu S, Zhou J, Duan H, Liu H, Liu X, Gong Z, Li D. miR‑199a‑3p/Sp1/LDHA axis controls aerobic glycolysis in testicular tumor cells. Int J Mol Med 2018; 42:2163-2174. [PMID: 30015851 DOI: 10.3892/ijmm.2018.3771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Aerobic glycolysis is one of the characteristics of tumor metabolism and contributes to the development of tumors. Studies have identified that microRNA (miRNA/miR) serves an important role in glucose metabolism of tumors. miR‑199a‑3p is a member of the miR‑199a family that controls the outcomes of cell survival and death processes, and previous studies have indicated that the expression of miR‑199a‑3p is low and may be an inhibitor in several cancer types, including testicular tumors. The present study discussed the role and underlying mechanism of miR‑199a‑3p in aerobic glycolysis of Ntera‑2 cells and identified its downstream factors. Firstly, miR‑199a‑3p exhibited an inhibitory effect on lactic acid production, glucose intake, and reactive oxygen species (ROS) and adenosine 5'‑triphosphate (ATP) levels in Ntera‑2 cells. Then, using bioinformatics, recombinant construction and a dual luciferase reporter gene system, transcription factor Specificity protein 1 (Sp1) was determined as the direct target of miR‑199a‑3p. Also, downregulation of Sp1 by RNA interference decreased lactic acid production, glucose intake, and ROS and ATP levels in Ntera‑2 cells. Subsequently, through a functional rescue experiment, it was identified that the overexpression of Sp1 may abate the inhibition of miR‑199a‑3p on glucose metabolism, with the exception of ATP level, suggesting a reciprocal association between Sp1 and miR‑199a‑3p. Finally, it was determined that miR‑199a‑3p overexpression and Sp1 knockdown decreased lactate dehydrogenase A (LDHA) protein expression, which indicated that LDHA is a downstream target of the miR‑199a‑3p/Sp1 signaling pathway. To additionally verify the regulation of LDHA expression by 199a‑3p/Sp1, a LDHA promoter reporter plasmid was generated and the high activity of the promoter, which contained 3 potential Sp1 binding elements, was confirmed. In addition, the overexpression of Sp1 led to the increased activity of the LDHA promoter, whereas knockdown of Sp1 exhibited the opposite effect. Therefore, the results of the present study demonstrated that miR‑199a‑3p can inhibit LDHA expression by downregulating Sp1, and provided mechanistic evidence supporting the existence of a novel miR‑199a‑3p/Sp1/LDHA axis and its critical contribution to aerobic glycolysis in testicular cancer cells.
Collapse
Affiliation(s)
- Shihua Zhou
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Ziqian Min
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Kang Sun
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Sijie Qu
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Jinrun Zhou
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Hongyan Duan
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Huawei Liu
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Xiaowen Liu
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Zhijun Gong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dan Li
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| |
Collapse
|