1
|
Speechley EM, Ashton BJ, Foo YZ, Simmons LW, Ridley AR. Meta-analyses reveal support for the Social Intelligence Hypothesis. Biol Rev Camb Philos Soc 2024; 99:1889-1908. [PMID: 38855980 DOI: 10.1111/brv.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The Social Intelligence Hypothesis (SIH) is one of the leading explanations for the evolution of cognition. Since its inception a vast body of literature investigating the predictions of the SIH has accumulated, using a variety of methodologies and species. However, the generalisability of the hypothesis remains unclear. To gain an understanding of the robustness of the SIH as an explanation for the evolution of cognition, we systematically searched the literature for studies investigating the predictions of the SIH. Accordingly, we compiled 103 studies with 584 effect sizes from 17 taxonomic orders. We present the results of four meta-analyses which reveal support for the SIH across interspecific, intraspecific and developmental studies. However, effect sizes did not differ significantly between the cognitive or sociality metrics used, taxonomy or testing conditions. Thus, support for the SIH is similar across studies using neuroanatomy and cognitive performance, those using broad categories of sociality, group size and social interactions, across taxonomic groups, and for tests conducted in captivity or the wild. Overall, our meta-analyses support the SIH as an evolutionary and developmental explanation for cognitive variation.
Collapse
Affiliation(s)
- Elizabeth M Speechley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- School of Natural Sciences, Macquarie University, 205b Culloden Road, Sydney, NSW, 2109, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Amanda R Ridley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Speechley EM, Ashton BJ, Thornton A, King SL, Simmons LW, Woodiss-Field SL, Ridley AR. Aggressive interactions influence cognitive performance in Western Australian magpies. Proc Biol Sci 2024; 291:20240435. [PMID: 38835280 DOI: 10.1098/rspb.2024.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/09/2024] [Indexed: 06/06/2024] Open
Abstract
Extensive research has investigated the relationship between the social environment and cognition, suggesting that social complexity may drive cognitive evolution and development. However, evidence for this relationship remains equivocal. Group size is often used as a measure of social complexity, but this may not capture intraspecific variation in social interactions. Social network analysis can provide insight into the cognitively demanding challenges associated with group living at the individual level. Here, we use social networks to investigate whether the cognitive performance of wild Western Australian magpies (Gymnorhina tibicen dorsalis) is related to group size and individual social connectedness. We quantified social connectedness using four interaction types: proximity, affiliative, agonistic and vocal. Consistent with previous research on this species, individuals in larger groups performed better on an associative learning task. However, social network position was also related to cognitive performance. Individuals receiving aggressive interactions performed better, while those involved in aggressive interactions with more group members performed worse. Overall, this suggests that cognitive performance is related to specific types of social interaction. The findings from this study highlight the value of considering fine-grained metrics of sociality that capture the challenges associated with social life when testing the relationship between the social environment and cognition.
Collapse
Affiliation(s)
- Elizabeth M Speechley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
- School of Natural Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Stephanie L King
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
- School of Biological Sciences, University of Bristol , Bristol BS8 1TQ, UK
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
| | - Sarah L Woodiss-Field
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
| | - Amanda R Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia , Perth, Western Australia 6009, Australia
| |
Collapse
|
3
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Jensen TR, Zeiträg C, Osvath M. The selfish preen: absence of allopreening in Palaeognathae and its socio-cognitive implications. Anim Cogn 2023; 26:1467-1476. [PMID: 37256500 PMCID: PMC10442270 DOI: 10.1007/s10071-023-01794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
Preening behaviours are widespread in extant birds. While most birds appear to autopreen (self-directed preening), allopreening (preening directed at conspecifics) seems to have emerged only in certain species, but across many families. Allopreening has been hypothesised to reinforce mutual relationships and cooperation between individuals, and to underpin various socio-cognitive abilities. Palaeognathae is a bird group exhibiting neurocognitively plesiomorphic traits compared to other birds. They share many features with non-avian paravian dinosaurs and are thus important for the study of cognitive evolution in birds. Despite this, and the important correlation of allopreening with many complicated social behaviours, allopreening has not been systematically studied in Palaeognathae. Therefore, we examined the preening behaviours in four species of palaeognaths: common ostriches (Struthio camelus), greater rheas (Rhea americana), emus (Dromaius novaehollandiae), and elegant crested tinamous (Eudromia elegans). We compared findings with common ravens (Corvus corax), a neognath species known for its allopreening and complex social cognition. We found autopreening, but no allopreening, in the palaeognath species, while both autopreening and allopreening was found in common ravens. The absence of allopreening in Palaeognathae suggests an emergence of this behaviour within Neognathae. We contextualise our results in relation to the socio-cognitive underpinnings of allopreening and its implications for the understanding of the evolution of socio-cognitive abilities in non-avian paravian dinosaurs and early birds.
Collapse
Affiliation(s)
- Thomas Rejsenhus Jensen
- Department of Philosophy, Cognitive Science, Cognitive Zoology Group, Lund University, Lund, Sweden.
| | - Claudia Zeiträg
- Department of Philosophy, Cognitive Science, Cognitive Zoology Group, Lund University, Lund, Sweden
| | - Mathias Osvath
- Department of Philosophy, Cognitive Science, Cognitive Zoology Group, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Nengovhela A, Ivy CM, Scott GR, Denys C, Taylor PJ. Counter-gradient variation and the expensive tissue hypothesis explain parallel brain size reductions at high elevation in cricetid and murid rodents. Sci Rep 2023; 13:5617. [PMID: 37024565 PMCID: PMC10079977 DOI: 10.1038/s41598-023-32498-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
To better understand functional morphological adaptations to high elevation (> 3000 m above sea level) life in both North American and African mountain-associated rodents, we used microCT scanning to acquire 3D images and a 3D morphometric approach to calculate endocranial volumes and skull lengths. This was done on 113 crania of low-elevation and high-elevation populations in species of North American cricetid mice (two Peromyscus species, n = 53), and African murid rodents of two tribes, Otomyini (five species, n = 49) and Praomyini (four species, n = 11). We tested two distinct hypotheses for how endocranial volume might vary in high-elevation populations: the expensive tissue hypothesis, which predicts that brain and endocranial volumes will be reduced to lessen the costs of growing and maintaining a large brain; and the brain-swelling hypothesis, which predicts that endocranial volumes will be increased either as a direct phenotypic effect or as an adaptation to accommodate brain swelling and thus minimize pathological symptoms of altitude sickness. After correcting for general allometric variation in cranial size, we found that in both North American Peromyscus mice and African laminate-toothed (Otomys) rats, highland rodents had smaller endocranial volumes than lower-elevation rodents, consistent with the expensive tissue hypothesis. In the former group, Peromyscus mice, crania were obtained not just from wild-caught mice from high and low elevations but also from those bred in common-garden laboratory conditions from parents caught from either high or low elevations. Our results in these mice showed that brain size responses to elevation might have a strong genetic basis, which counters an opposite but weaker environmental effect on brain volume. These results potentially suggest that selection may act to reduce brain volume across small mammals at high elevations but further experiments are needed to assess the generality of this conclusion and the nature of underlying mechanisms.
Collapse
Affiliation(s)
- Aluwani Nengovhela
- Department of Mammalogy, National Museum, Bloemfontein, 9300, South Africa.
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa.
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 57 Rue Cuvier, 75005, Paris, France
| | - Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa
- Afromontane Unit, Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| |
Collapse
|
6
|
Serrano Nájera G, Kin K. Unusual occurrence of domestication syndrome amongst African mole-rats: Is the naked mole-rat a domestic animal? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.987177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Naked mole-rat (NMR) is becoming a prominent model organism due to its peculiar traits, such as eusociality, extreme longevity, cancer resistance, and reduced pain sensitivity. It belongs to the African mole-rats (AMR), a family of subterranean rodents that includes solitary, cooperative breeding and eusocial species. We identified and quantified the domestication syndrome (DS) across AMR, a set of morphological and behavioural traits significantly more common and pronounced amongst domesticated animals than in their wild counterparts. Surprisingly, the NMR shows apparent DS traits when compared to the solitary AMR. Animals can self-domesticate when a reduction of the fear response is naturally selected, such as in islands with no predators, or to improve the group’s harmony in cooperative breeding species. The DS may be caused by alterations in the physiology of the neural crest cells (NCC), a transient population of cells that generate a full range of tissues during development. The NCC contribute to organs responsible for transmitting the fear response and various other tissues, including craniofacial bones. Therefore, mutations affecting the NCC can manifest as behavioural and morphological alterations in many structures across the body, as seen in neurocristopathies. We observed that all social AMRs are chisel-tooth diggers, an adaption to hard soils that requires the flattening of the skull. We hypothesise that chisel-tooth digging could impose a selective pressure on the NCC that triggered the DS’s appearance, possibly facilitating the evolution of sociality. Finally, we discuss how DS traits are neutral or beneficial for the subterranean niche, strategies to test this hypothesis and report well-studied mutations in the NMR that are associated with the NCC physiology or with the control of the fear response. In conclusion, we argue that many of the NMR’s unconventional traits are compatible with the DS and provide a hypothesis about its origins. Our model proposes a novel avenue to enhance the understanding of the extraordinary biology of the NMR.
Collapse
|
7
|
De Meester G, Van Linden L, Torfs J, Pafilis P, Šunje E, Steenssens D, Zulčić T, Sassalos A, Van Damme R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022; 76:2531-2552. [PMID: 36111365 DOI: 10.1111/evo.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
Abstract
Cognition is an essential tool for animals to deal with environmental challenges. Nonetheless, the ecological forces driving the evolution of cognition throughout the animal kingdom remain enigmatic. Large-scale comparative studies on multiple species and cognitive traits have been advanced as the best way to facilitate our understanding of cognitive evolution, but such studies are rare. Here, we tested 13 species of lacertid lizards (Reptilia: Lacertidae) using a battery of cognitive tests measuring inhibitory control, problem-solving, and spatial and reversal learning. Next, we tested the relationship between species' performance and (a) resource availability (temperature and precipitation), habitat complexity (Normalized Difference Vegetation Index), and habitat variability (seasonality) in their natural habitat and (b) their life history (size at hatching and maturity, clutch size, and frequency). Although species differed markedly in their cognitive abilities, such variation was mostly unrelated to their ecology and life history. Yet, species living in more variable environments exhibited lower behavioral flexibility, likely due to energetic constrains in such habitats. Our standardized protocols provide opportunities for collaborative research, allowing increased sample sizes and replication, essential for moving forward in the field of comparative cognition. Follow-up studies could include more detailed measures of habitat structure and look at other potential selective drivers such as predation.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Lisa Van Linden
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jonas Torfs
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emina Šunje
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Dries Steenssens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Tea Zulčić
- Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Athanasios Sassalos
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
8
|
Heldstab SA, Isler K, Graber SM, Schuppli C, van Schaik CP. The economics of brain size evolution in vertebrates. Curr Biol 2022; 32:R697-R708. [PMID: 35728555 DOI: 10.1016/j.cub.2022.04.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Across the animal kingdom, we see remarkable variation in brain size. This variation has even increased over evolutionary time. Traditionally, studies aiming to explain brain size evolution have looked at the fitness benefits of increased brain size in relation to its increased cognitive performance in the social and/or ecological domain. However, brains are among the most energetically expensive tissues in the body and also require an uninterrupted energy supply. If not compensated, these energetic demands inevitably lead to a reduction in energy allocation to other vital functions. In this review, we summarize how an increasing number of studies show that to fully comprehend brain size evolution and the large variation in brain size across lineages, it is important to look at the economics of brains, including the different pathways through which the high energetic costs of brains can be offset. We further show how numerous studies converge on the conclusion that cognitive abilities can only drive brain size evolution in vertebrate lineages where they result in an improved energy balance through favourable ecological preconditions. Cognitive benefits that do not directly improve the organism's energy balance can only be selectively favoured when they produce such large improvements in reproduction or survival that they outweigh the negative energetic effects of the large brain.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany.
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sereina M Graber
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Caroline Schuppli
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Comparative Socioecology Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany; Department of Evolutionary Biology and Environmental Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Abstract
The evolution of brain processing capacity has traditionally been inferred from data on brain size. However, similarly sized brains of distantly related species can differ in the number and distribution of neurons, their basic computational units. Therefore, a finer-grained approach is needed to reveal the evolutionary paths to increased cognitive capacity. Using a new, comprehensive dataset, we analyzed brain cellular composition across amniotes. Compared to reptiles, mammals and birds have dramatically increased neuron numbers in the telencephalon and cerebellum, which are brain parts associated with higher cognition. Astoundingly, a phylogenetic analysis suggests that as few as four major changes in neuron–brain scaling in over 300 million years of evolution pave the way to intelligence in endothermic land vertebrates. Reconstructing the evolution of brain information-processing capacity is paramount for understanding the rise of complex cognition. Comparative studies of brain evolution typically use brain size as a proxy. However, to get a less biased picture of the evolutionary paths leading to high cognitive power, we need to compare brains not by mass but by numbers of neurons, which are their basic computational units. This study reconstructs the evolution of brains across amniotes by directly analyzing neuron numbers by using the largest dataset of its kind and including essential data on reptiles. We show that reptiles have not only small brains relative to body size but also low neuronal densities, resulting in average neuron numbers over 20 times lower than those in birds and mammals of similar body size. Amniote brain evolution is characterized by the following four major shifts in neuron–brain scaling. The most dramatic increases in brain neurons occurred independently with the appearance of birds and mammals, resulting in convergent neuron scaling in the two endotherm lineages. The other two major increases in the number of neurons happened in core land birds and anthropoid primates, which are two groups known for their cognitive prowess. Interestingly, relative brain size is associated with relative neuronal cell density in reptiles, birds, and primates but not in other mammals. This has important implications for studies using relative brain size as a proxy when looking for evolutionary drivers of animal cognition.
Collapse
|
10
|
Neves CN, Pillay N. Variation in brain volume in nine populations and three taxa of the African striped mouse Rhabdomys. J Morphol 2022; 283:618-636. [PMID: 35175641 DOI: 10.1002/jmor.21463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Brain size can vary between populations in different environments because of different selection pressures on behaviours, such as learning and memory, related to spatial, social and environmental differences. We investigated the variation in total and broad-scale regional brain size in the murid rodent genus Rhabdomys from different environments. We assessed taxon-, population- and sex-level differences in total and regional brain volume in three populations each of three taxa (arid-occurring R. pumilio and mesic-occurring R. dilectus chakae and R. d. dilectus) originating across southern Africa. We μCT-scanned crania obtained from museums in South Africa and used digital software to create endocasts and extract total endocranium and regional volumes: olfactory bulb, anterior cerebrum, posterior cerebrum, cerebellum volume, and petrosal volume. Total endocranial volume scaled with basal skull length and all region volumes scaled with total endocranial volume. We found taxon-, and population-level differences in total endocranial volume. Relative anterior and posterior cerebrum volume did not differ significantly between taxa or populations, but relative cerebellum volume was larger in arid populations than mesic populations. Relative olfactory bulb volume was larger in mesic R. dilectus than in the R. pumilio, but petrosal lobule volume was larger in R. pumilio populations than in R. dilectus. Males had larger total endocranial volumes than females. Drivers of larger total endocranial volumes in R. pumilio are not immediately clear from our results. Environmental seasonality of food availability, cognitive buffering and locomotion may all correlate with total endocranial volume size, whereas the influence of sociality cannot be excluded. The environment and degree of semi-arboreality are likely driving variation in cerebellum, olfactory bulb and petrosal lobule volumes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Candice Nikita Neves
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, 1 Jan Smuts Ave, Private Bag 3, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, 1 Jan Smuts Ave, Private Bag 3, Johannesburg, South Africa
| |
Collapse
|
11
|
Caponera V, Avilés L, Barrett M, O’Donnell S. Behavioral Attributes of Social Groups Determine the Strength and Direction of Selection on Neural Investment. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution of social systems can place novel selective forces on investment in expensive neural tissue by changing cognitive demands. Previous hypotheses about the impact of sociality on neural investment have received equivocal support when tested across diverse taxonomic groups and social structures. We suggest previous models for social behavior-brain relationships have overlooked important variation in social groups. Social groups vary significantly in structure and function, and the specific attributes of a social group may be more relevant to setting cognitive demands than sociality in general. We have identified intragroup competition, relationship differentiation, information sharing, dominance hierarchies, and task specialization and redundancy as attributes of social behavior which may impact selection for neural investment, and outline how variation in these attributes can result in increased or decreased neural investment with transitions to sociality in different taxa. Finally, we test some of the predictions generated using this framework in a phylogenetic comparison of neural tissue investment in Anelosimus social spiders. Social Anelosimus spiders engage in cooperative prey capture and brood care, which allows for individual redundancy in the completion of these tasks. We hypothesized that in social spider species, the presence of redundancy would reduce selection for individual neural investment relative to subsocial species. We found that social species had significantly decreased investment in the arcuate body, the cognitive center of the spider brain, supporting our predictions. Future comparative tests of brain evolution in social species should account for the special behavioral characteristics that accompany social groups in the subject taxa.
Collapse
|
12
|
Walmsley SF, Morrissey MB. Causation, not collinearity: Identifying sources of bias when modelling the evolution of brain size and other allometric traits. Evol Lett 2021; 6:234-244. [PMID: 35784454 PMCID: PMC9233177 DOI: 10.1002/evl3.258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
Many biological traits covary with body size, resulting in an allometric relationship. Identifying the evolutionary drivers of these traits is complicated by possible relationships between a candidate selective agent and body size itself, motivating the widespread use of multiple regression analysis. However, the possibility that multiple regression may generate misleading estimates when predictor variables are correlated has recently received much attention. Here, we argue that a primary source of such bias is the failure to account for the complex causal structures underlying brains, bodies, and agents. When brains and bodies are expected to evolve in a correlated manner over and above the effects of specific agents of selection, neither simple nor multiple regression will identify the true causal effect of an agent on brain size. This problem results from the inclusion of a predictor variable in a regression analysis that is (in part) a consequence of the response variable. We demonstrate these biases with examples and derive estimators to identify causal relationships when traits evolve as a function of an existing allometry. Model mis‐specification relative to plausible causal structures, not collinearity, requires further consideration as an important source of bias in comparative analyses.
Collapse
Affiliation(s)
- Sam F. Walmsley
- Scottish Oceans Institute, School of Biology, University of St. Andrews East Sands St. Andrews United Kingdom
| | - Michael B. Morrissey
- Dyers Brae House, School of Biology, University of St. Andrews Greenside Pl St. Andrews United Kingdom
| |
Collapse
|
13
|
DeSilva JM, Traniello JFA, Claxton AG, Fannin LD. When and Why Did Human Brains Decrease in Size? A New Change-Point Analysis and Insights From Brain Evolution in Ants. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.
Collapse
|
14
|
Pahlke S, Seid MA, Jaumann S, Smith A. The Loss of Sociality Is Accompanied by Reduced Neural Investment in Mushroom Body Volume in the Sweat Bee Augochlora Pura (Hymenoptera: Halictidae). ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2021; 114:637-642. [PMID: 34512860 PMCID: PMC8423109 DOI: 10.1093/aesa/saaa019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 05/04/2023]
Abstract
Social behavior has been predicted to select for increased neural investment (the social brain hypothesis) and also to select for decreased neural investment (the distributed cognition hypothesis). Here, we use two related bees, the social Augochlorella aurata (Smith) (Hymenoptera: Halictidae) and the related Augochlora pura (Say), which has lost social behavior, to test the contrasting predictions of these two hypotheses in these taxa. We measured the volumes of the mushroom body (MB) calyces, a brain area shown to be important for cognition in previous studies, as well as the optic lobes and antennal lobes. We compared females at the nest foundress stage when both species are solitary so that brain development would not be influenced by social interactions. We show that the loss of sociality was accompanied by a loss in relative neural investment in the MB calyces. This is consistent with the predictions of the social brain hypothesis. Ovary size did not correlate with MB calyx volume. This is the first study to demonstrate changes in mosaic brain evolution in response to the loss of sociality.
Collapse
Affiliation(s)
- Sarah Pahlke
- Department of Biological Sciences, George Washington University, Washington, DC
| | - Marc A Seid
- Department of Biology and Program in Neurobiology, University of Scranton, Scranton, PA
| | - Sarah Jaumann
- Department of Biological Sciences, George Washington University, Washington, DC
| | - Adam Smith
- Department of Biological Sciences, George Washington University, Washington, DC
- Corresponding author, e-mail:
| |
Collapse
|
15
|
Zilkha N, Sofer Y, Kashash Y, Kimchi T. The social network: Neural control of sex differences in reproductive behaviors, motivation, and response to social isolation. Curr Opin Neurobiol 2021; 68:137-151. [PMID: 33910083 PMCID: PMC8528716 DOI: 10.1016/j.conb.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Social animal species present a vast repertoire of social interactions when encountering conspecifics. Reproduction-related behaviors, such as mating, parental care, and aggression, are some of the most rewarding types of social interactions and are also the most sexually dimorphic ones. This review focuses on rodent species and summarizes recent advances in neuroscience research that link sexually dimorphic reproductive behaviors to sexual dimorphism in their underlying neuronal circuits. Specifically, we present a few possible mechanisms governing sexually-dimorphic behaviors, by hypothalamic and reward-related brain regions. Sex differences in the neural response to social isolation in adulthood are also discussed, as well as future directions for comparative studies with naturally solitary species.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kashash
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Massen JJM, Hartlieb M, Martin JS, Leitgeb EB, Hockl J, Kocourek M, Olkowicz S, Zhang Y, Osadnik C, Verkleij JW, Bugnyar T, Němec P, Gallup AC. Brain size and neuron numbers drive differences in yawn duration across mammals and birds. Commun Biol 2021; 4:503. [PMID: 33958700 PMCID: PMC8102614 DOI: 10.1038/s42003-021-02019-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Recent studies indicate that yawning evolved as a brain cooling mechanism. Given that larger brains have greater thermolytic needs and brain temperature is determined in part by heat production from neuronal activity, it was hypothesized that animals with larger brains and more neurons would yawn longer to produce comparable cooling effects. To test this, we performed the largest study on yawning ever conducted, analyzing 1291 yawns from 101 species (55 mammals; 46 birds). Phylogenetically controlled analyses revealed robust positive correlations between yawn duration and (1) brain mass, (2) total neuron number, and (3) cortical/pallial neuron number in both mammals and birds, which cannot be attributed solely to allometric scaling rules. These relationships were similar across clades, though mammals exhibited considerably longer yawns than birds of comparable brain and body mass. These findings provide further evidence suggesting that yawning is a thermoregulatory adaptation that has been conserved across amniote evolution.
Collapse
Affiliation(s)
- Jorg J M Massen
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | - Margarita Hartlieb
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Jordan S Martin
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Elisabeth B Leitgeb
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Jasmin Hockl
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Martin Kocourek
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Seweryn Olkowicz
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Yicheng Zhang
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Christin Osadnik
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany
| | - Jorrit W Verkleij
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Thomas Bugnyar
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Pavel Němec
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Andrew C Gallup
- Psychology Program, Department of Social and Behavioral Sciences, SUNY Polytechnic Institute, Utica, NY, USA.
| |
Collapse
|
17
|
Vega-Trejo R, Boussard A, Wallander L, Estival E, Buechel SD, Kotrschal A, Kolm N. Artificial selection for schooling behaviour and its effects on associative learning abilities. J Exp Biol 2020; 223:jeb235093. [PMID: 33139392 DOI: 10.1242/jeb.235093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022]
Abstract
The evolution of collective behaviour has been proposed to have important effects on individual cognitive abilities. Yet, in what way they are related remains enigmatic. In this context, the 'distributed cognition' hypothesis suggests that reliance on other group members relaxes selection for individual cognitive abilities. Here, we tested how cognitive processes respond to evolutionary changes in collective motion using replicate lines of guppies (Poecilia reticulata) artificially selected for the degree of schooling behaviour (group polarization) with >15% difference in schooling propensity. We assessed associative learning in females of these selection lines in a series of cognitive assays: colour associative learning, reversal learning, social associative learning, and individual and collective spatial associative learning. We found that control females were faster than polarization-selected females at fulfilling a learning criterion only in the colour associative learning assay, but they were also less likely to reach a learning criterion in the individual spatial associative learning assay. Hence, although testing several cognitive domains, we found weak support for the distributed cognition hypothesis. We propose that any cognitive implications of selection for collective behaviour lie outside of the cognitive abilities included in food-motivated associative learning for visual and spatial cues.
Collapse
Affiliation(s)
- Regina Vega-Trejo
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Lotta Wallander
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Elisa Estival
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Séverine D Buechel
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
- Department of Animal Sciences: Behavioural Ecology, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| |
Collapse
|
18
|
Kverková K, Polonyiová A, Kubička L, Němec P. Individual and age-related variation of cellular brain composition in a squamate reptile. Biol Lett 2020; 16:20200280. [PMID: 32961085 DOI: 10.1098/rsbl.2020.0280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within-species variation in the number of neurons, other brain cells and their allocation to different brain parts is poorly studied. Here, we assess these numbers in a squamate reptile, the Madagascar ground gecko (Paroedura picta). We examined adults from two captive populations and three age groups within one population. Even though reptiles exhibit extensive adult neurogenesis, intrapopulation variation in the number of neurons is similar to that in mice. However, the two populations differed significantly in most measures, highlighting the fact that using only one population can underestimate within-species variation. There is a substantial increase in the number of neurons and decrease in neuronal density in adult geckos relative to hatchlings and an increase in the number of neurons in the telencephalon in fully grown adults relative to sexually mature young adults. This finding implies that adult neurogenesis does not only replace worn out but also adds new telencephalic neurons in reptiles during adulthood. This markedly contrasts with the situation in mammals, where the number of cortical neurons declines with age.
Collapse
Affiliation(s)
- Kristina Kverková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
| | - Alexandra Polonyiová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
| | - Lukáš Kubička
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
| |
Collapse
|
19
|
Ueda HR, Dodt HU, Osten P, Economo MN, Chandrashekar J, Keller PJ. Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron 2020; 106:369-387. [PMID: 32380050 PMCID: PMC7213014 DOI: 10.1016/j.neuron.2020.03.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/11/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka 565-0871, Japan.
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria; Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
20
|
Pleštilová L, Okrouhlík J, Burda H, Sehadová H, Valesky EM, Šumbera R. Functional histology of the skin in the subterranean African giant mole-rat: thermal windows are determined solely by pelage characteristics. PeerJ 2020; 8:e8883. [PMID: 32296606 PMCID: PMC7150539 DOI: 10.7717/peerj.8883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/10/2020] [Indexed: 11/29/2022] Open
Abstract
Excavation of burrows is an extremely physically demanding activity producing a large amount of metabolic heat. Dissipation of its surplus is crucial to avoid the risk of overheating, but in subterranean mammals it is complicated due to the absence of notable body extremities and high humidity in their burrows. IR-thermography in a previous study on two species of African mole-rats revealed that body heat was dissipated mainly through the ventral body part, which is notably less furred. Here, we analyzed the dorsal and ventral skin morphology, to test if dermal characteristics could contribute to higher heat dissipation through the ventral body part. The thickness of the epidermis and dermis and the presence, extent and connectivity of fat tissue in the dermis were examined using routine histological methods, while vascular density was evaluated using fluorescent dye and confocal microscopy in the giant mole-rat Fukomys mechowii. As in other hitherto studied subterranean mammals, no subcutaneous adipose tissue was found. All examined skin characteristics were very similar for both dorsal and ventral regions: relative content of adipose tissue in the dermis (14.4 ± 3.7% dorsally and 11.0 ± 4.0% ventrally), connectivity of dermal fat (98.5 ± 2.8% and 95.5 ± 6.8%), vascular density (26.5 ± 3.3% and 22.7 ± 2.3%). Absence of large differences in measured characteristics between particular body regions indicates that the thermal windows are determined mainly by the pelage characteristics.
Collapse
Affiliation(s)
- Lucie Pleštilová
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Okrouhlík
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Hana Sehadová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Eva M. Valesky
- Department of Dermatology, Venereology and Allergology, University Hospital, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
21
|
Němec P, Osten P. The evolution of brain structure captured in stereotyped cell count and cell type distributions. Curr Opin Neurobiol 2020; 60:176-183. [PMID: 31945723 PMCID: PMC7191610 DOI: 10.1016/j.conb.2019.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
The stereotyped features of brain structure, such as the distribution, morphology and connectivity of neuronal cell types across brain areas, are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors. Recent advances in anatomical methods, including the simple but versatile isotropic fractionator and several whole-brain labeling, clearing and microscopy methods, have opened the door to an exciting new era in comparative brain anatomy, one that has the potential to transform our understanding of the brain structure-function relationship by representing the evolution of brain complexity in quantitative anatomical features shared across species and species-specific or clade-specific. Here we discuss these methods and their application to mapping brain cell count and cell type distributions-two particularly powerful neural correlates of vertebrate cognitive and behavioral capabilities.
Collapse
Affiliation(s)
- Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic.
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11743, USA.
| |
Collapse
|
22
|
Prox L, Farine D. A framework for conceptualizing dimensions of social organization in mammals. Ecol Evol 2020; 10:791-807. [PMID: 32015844 PMCID: PMC6988527 DOI: 10.1002/ece3.5936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 11/09/2022] Open
Abstract
Mammalian societies represent many different types of social systems. While some aspects of social systems have been extensively studied, there is little consensus on how to conceptualize social organization across species. Here, we present a framework describing eight dimensions of social organization to capture its diversity across mammalian societies. The framework uses simple information that is clearly separated from the three other aspects of social systems: social structure, care system, and mating system. By applying our framework across 208 species of all mammalian taxa, we find a rich multidimensional landscape of social organization. Correlation analysis reveals that the dimensions have relatively high independence, suggesting that social systems are able to evolve different aspects of social behavior without being tied to particular traits. Applying a clustering algorithm allows us to identify the relative importance of key dimensions on patterns of social organization. Finally, mapping mating system onto these clusters shows that social organization represents a distinct aspect of social systems. In the future, this framework will aid reporting on important aspects of natural history in species and facilitate comparative analyses, which ultimately will provide the ability to generate new insights into the primary drivers of social patterns and evolution of sociality.
Collapse
Affiliation(s)
- Lea Prox
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Sociobiology/AnthropologyUniversity of GöttingenGöttingenGermany
- Behavioral Ecology & Sociobiology UnitGerman Primate CenterGöttingenGermany
| | - Damien Farine
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Collective BehaviourMax Planck Institute for Animal BehaviorKonstanzGermany
- Center for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
| |
Collapse
|
23
|
Brain structure differences between solitary and social wasp species are independent of body size allometry. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:911-916. [PMID: 31705196 DOI: 10.1007/s00359-019-01374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/12/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Evolutionary transitions in social behavior are often associated with changes in species' brain architecture. A recent comparative analysis showed that the structure of brains of wasps in the family Vespidae differed between solitary and social species: the mushroom bodies, a major integrative brain region, were larger relative to brain size in the solitary species. However, the earlier study did not account for body size effects, and species' relative mushroom body size increases with body size in social Vespidae. Here we extend the previous analysis by measuring the effects of body size variation on brain structure differences between social and solitary vespid wasps. We asked whether total brain volume was greater relative to body size in the solitary species, and whether relative mushroom body size was greater in solitary species, after accounting for body size effects. Both total brain volume and relative mushroom body volume were significantly greater in the solitary species after accounting for body size differences. Therefore, body size allometry did not explain the solitary versus social species differences in brain structure. The evolutionary transition from solitary to social behavior in Vespidae was accompanied by decreases in total brain size and in relative mushroom body size.
Collapse
|
24
|
Schulze-Makuch D. The Naked Mole-Rat: An Unusual Organism with an Unexpected Latent Potential for Increased Intelligence? Life (Basel) 2019; 9:life9030076. [PMID: 31527499 PMCID: PMC6789728 DOI: 10.3390/life9030076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 11/24/2022] Open
Abstract
Naked mole-rats are eusocial, hairless mammals that are uniquely adapted to their harsh, low-oxygen subsurface habitat. Although their encephalization quotient, a controversial marker of intelligence, is low, they exhibit many features considered tell-tale signs of highly intelligent species on our planet including longevity, plasticity, social cohesion and interaction, rudimentary language, sustainable farming abilities, and maintaining sanitary conditions in their self-built complex housing structures. It is difficult to envision how naked mole-rats would reach even higher levels of intelligence in their natural sensory-challenged habitat, but such an evolutionary path cannot be excluded if they would expand their range onto the earth’s surface.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy and Astrophysics (ZAA), Technical University Berlin, 10623 Berlin, Germany.
- School of the Environment, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
25
|
Marhounová L, Kotrschal A, Kverková K, Kolm N, Němec P. Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution 2019; 73:2003-2012. [PMID: 31339177 PMCID: PMC6772110 DOI: 10.1111/evo.13805] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Neurons are the basic computational units of the brain, but brain size is the predominant surrogate measure of brain functional capacity in comparative and cognitive neuroscience. This approach is based on the assumption that larger brains harbor higher numbers of neurons and their connections, and therefore have a higher information-processing capacity. However, recent studies have shown that brain mass may be less strongly correlated with neuron counts than previously thought. Till now, no experimental test has been conducted to examine the relationship between evolutionary changes in brain size and the number of brain neurons. Here, we provide such a test by comparing neuron number in artificial selection lines of female guppies (Poecilia reticulata) with >15% difference in relative brain mass and numerous previously demonstrated cognitive differences. Using the isotropic fractionator, we demonstrate that large-brained females have a higher overall number of neurons than small-brained females, but similar neuronal densities. Importantly, this difference holds also for the telencephalon, a key region for cognition. Our study provides the first direct experimental evidence that selection for brain mass leads to matching changes in number of neurons and shows that brain size evolution is intimately linked to the evolution of neuron number and cognition.
Collapse
Affiliation(s)
- Lucie Marhounová
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| | - Alexander Kotrschal
- Behavioural Ecology GroupDepartment of Animal Sciences6708wdWageningenNetherlands
- Department of Zoology/EthologyStockholm University10691StockholmSweden
| | - Kristina Kverková
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| | - Niclas Kolm
- Department of Zoology/EthologyStockholm University10691StockholmSweden
| | - Pavel Němec
- Department of Zoology, Faculty of ScienceCharles University12844PragueCzech Republic
| |
Collapse
|
26
|
Simons M, Tibbetts E. Insects as models for studying the evolution of animal cognition. CURRENT OPINION IN INSECT SCIENCE 2019; 34:117-122. [PMID: 31271948 DOI: 10.1016/j.cois.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Research on the evolution of cognition has long centered on vertebrates. Current research indicates that both complex social behavior and ecology influence the evolution of vertebrate cognition. Insects provide a powerful and underappreciated model system for research on cognitive evolution because they are a large group with multiple evolutionary transitions to complex social behavior as well as extensive ecological variation. Here, we integrate current research on cognitive evolution in vertebrates and insects. We specifically highlight recent advances in vertebrate research that are applicable to insects. We focus on two key topics: 1) The challenges of quantifying cognition 2) What factors contribute to the evolution of cognition? Applying methods like comparative analysis and behavioral cognition measurement to insects are likely to provide key insight into the evolution of animal minds.
Collapse
Affiliation(s)
- Meagan Simons
- University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48104, United States
| | - Elizabeth Tibbetts
- University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48104, United States.
| |
Collapse
|
27
|
Dollas A, Oelschläger HHA, Begall S, Burda H, Malkemper EP. Brain atlas of the African mole-rat Fukomys anselli. J Comp Neurol 2019; 527:1885-1900. [PMID: 30697737 PMCID: PMC6593805 DOI: 10.1002/cne.24647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 11/06/2022]
Abstract
African mole-rats are subterranean rodents that spend their whole life in underground burrow systems. They show a range of morphological and physiological adaptations to their ecotope, for instance severely reduced eyes and specialized somatosensory, olfactory, and auditory systems. These adaptations are also reflected in the accessory sensory pathways in the brain that process the input coming from the sensory organs. So far, a brain atlas was available only for the naked mole-rat (Heterocephalus glaber). The Ansell's mole-rat (Fukomys anselli) has been the subject of many investigations in various disciplines (ethology, sensory physiology, and anatomy) including magnetic orientation. It is therefore surprising that an atlas of the brain of this species was not available so far. Here, we present a comprehensive atlas of the Ansell's mole-rat brain based on Nissl and Klüver-Barrera stained sections. We identify and label 375 brain regions and discuss selected differences from the brain of the closely related naked mole-rat as well as from epigeic mammals (rat), with a particular focus on the auditory brainstem. This atlas can serve as a reference for future neuroanatomical investigations of subterranean mammals.
Collapse
Affiliation(s)
- Alexa Dollas
- Department of General Zoology, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Helmut H. A. Oelschläger
- Department of Anatomy III (Dr. Senckenbergische Anatomie), Medical FacultyJohann Wolfgang Goethe UniversityFrankfurtGermany
| | - Sabine Begall
- Department of General Zoology, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Department of Game Management and Wildlife BiologyFaculty of Forestry and Wood Sciences, Czech University of Life SciencesPraha 6Czech Republic
| | - Hynek Burda
- Department of General Zoology, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Department of Game Management and Wildlife BiologyFaculty of Forestry and Wood Sciences, Czech University of Life SciencesPraha 6Czech Republic
| | - Erich Pascal Malkemper
- Department of General Zoology, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC), Campus‐Vienna‐Biocenter 1Vienna 1030Austria
| |
Collapse
|
28
|
Affiliation(s)
- Joseph Robert Burger
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | | | - Claire Leadbetter
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Farhin Shaikh
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Precise relative-quantity judgement in the striped field mouse Apodemus agrarius Pallas. Anim Cogn 2019; 22:277-289. [PMID: 30707366 DOI: 10.1007/s10071-019-01244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 02/03/2023]
Abstract
Applying the classical experimental scheme of training animals with food rewards to discriminate between quantities of visual stimuli, we demonstrated that not only can striped field mice Apodemus agrarius discriminate between clearly distinctive quantities such as 5 and 10, but some of these mice also exhibit high accuracy in discriminating between quantities that differ only by one. The latter include both small (such as 2 versus 3) and relatively large (such as 5 versus 6, and 8 versus 9) quantities of elements. This is the first evidence of precise relative-quantity judgement in wild rodents. We found striking individual variation in cognitive performance among striped field mice, which possibly reflects individual cognitive variation in natural populations. We speculate that high accuracy in differentiating large quantities is based on the adaptive ability of wild rodents to capture subtle changes in their environment. We suggest that the striped field mouse may be a powerful model species to develop advanced cognitive tests for comparative studies of numerical competence in animals and for understanding evolutionary roots of quantity processing.
Collapse
|
30
|
De Meester G, Huyghe K, Van Damme R. Brain size, ecology and sociality: a reptilian perspective. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gilles De Meester
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Katleen Huyghe
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
31
|
Using phylogenetic comparative methods to gain insight into the evolution of social complexity. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-018-2614-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|