1
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
2
|
Li H, Sun X, Cui W, Xu M, Dong J, Ekundayo BE, Ni D, Rao Z, Guo L, Stahlberg H, Yuan S, Vogel H. Computational drug development for membrane protein targets. Nat Biotechnol 2024; 42:229-242. [PMID: 38361054 DOI: 10.1038/s41587-023-01987-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024]
Abstract
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.
Collapse
Affiliation(s)
- Haijian Li
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Xiaolin Sun
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Wenqiang Cui
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Marc Xu
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junlin Dong
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Babatunde Edukpe Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zhili Rao
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Liwei Guo
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Shuguang Yuan
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
| | - Horst Vogel
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Kieslich B, Weiße RH, Brendler J, Ricken A, Schöneberg T, Sträter N. The dimerized pentraxin-like domain of the adhesion G protein-coupled receptor 112 (ADGRG4) suggests function in sensing mechanical forces. J Biol Chem 2023; 299:105356. [PMID: 37863265 PMCID: PMC10687090 DOI: 10.1016/j.jbc.2023.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) feature large extracellular regions with modular domains that often resemble protein classes of various function. The pentraxin (PTX) domain, which is predicted by sequence homology within the extracellular region of four different aGPCR members, is well known to form pentamers and other oligomers. Oligomerization of GPCRs is frequently reported and mainly driven by interactions of the seven-transmembrane region and N or C termini. While the functional importance of dimers is well-established for some class C GPCRs, relatively little is known about aGPCR multimerization. Here, we showcase the example of ADGRG4, an orphan aGPCR that possesses a PTX-like domain at its very N-terminal tip, followed by an extremely long stalk containing serine-threonine repeats. Using X-ray crystallography and biophysical methods, we determined the structure of this unusual PTX-like domain and provide experimental evidence for a homodimer equilibrium of this domain which is Ca2+-independent and driven by intermolecular contacts that differ vastly from the known soluble PTXs. The formation of this dimer seems to be conserved in mammalian ADGRG4 indicating functional relevance. Our data alongside of theoretical considerations lead to the hypothesis that ADGRG4 acts as an in vivo sensor for shear forces in enterochromaffin and Paneth cells of the small intestine.
Collapse
Affiliation(s)
- Björn Kieslich
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany; Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Renato H Weiße
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Jana Brendler
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
4
|
Royer CA, Tyers M, Tollis S. Absolute quantification of protein number and dynamics in single cells. Curr Opin Struct Biol 2023; 82:102673. [PMID: 37595512 DOI: 10.1016/j.sbi.2023.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023]
Abstract
Quantitative characterization of protein abundance and interactions in live cells is necessary to understand and predict cellular behavior. The accurate determination of copy number for individual proteins and heterologous complexes in individual cells is critical because small changes in protein dosage, often less than two-fold, can have strong phenotypic consequences. Here, we review the merits and pitfalls of different quantitative fluorescence imaging methods for single-cell determination of protein abundance, localization, interactions, and dynamics. In particular, we discuss how scanning number and brightness (sN&B) and its variation, Raster scanning image correlation spectroscopy (RICS), exploit stochastic noise in small measurement volumes to quantify protein abundance, stoichiometry, and dynamics with high accuracy.
Collapse
Affiliation(s)
- Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY 12180, USA.
| | - Mike Tyers
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210 Finland
| |
Collapse
|
5
|
Park B, Bang S, Hwang KS, Cha YK, Kwak J, Tran NL, Kim HS, Park S, Oh SJ, Im M, Chung S, Kim J, Park TH, Song HS, Kim HN, Kim JH. Eye-Mimicked Neural Network Composed of Photosensitive Neural Spheroids with Human Opsin Proteins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302996. [PMID: 37377148 DOI: 10.1002/adma.202302996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
An in vitro model, composed of the short-wavelength human opsins and rhodopsins, is created. Two types of photosensitive neural spheroids are transfected for selective reaction under bluish-purple and green lights. These are employed to two devices with intact neuron and neural-spheroid to study the interaction. By photostimulation, the photosensitive spheroid initiated photoactivation, and the signal generated from its body is transmitted to adjacent neural networks. Specifically, the signal traveled through the axon bundle in narrow gap from photosensitive spheroid to intact spheroid as an eye-to-brain model including optic nerve. The whole process with photosensitive spheroid is monitored by calcium ion detecting fluorescence images. The results of this study can be applied to examine vision restoration and novel photosensitive biological systems with spectral sensitivity.
Collapse
Affiliation(s)
- Byeongho Park
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seokyoung Bang
- Department of Biomedical Engineering, Dongguk University, Goyang, 10326, Republic of Korea
| | - Kyeong Seob Hwang
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeon Kyung Cha
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jisung Kwak
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Na Ly Tran
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyo-Suk Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Subeen Park
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seung Ja Oh
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Maesoon Im
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sooyoung Chung
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tai Hyun Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyun Seok Song
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong Nam Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hun Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
6
|
Liu L, Lin L, Shen C, Rondard P, Pin JP, Xu C, Liu J. Asymmetric activation of dimeric GABA B and metabotropic glutamate receptors. Am J Physiol Cell Physiol 2023; 325:C79-C89. [PMID: 37184233 DOI: 10.1152/ajpcell.00150.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane proteins and are important drug targets. GPCRs are allosteric machines that transduce an extracellular signal to the cell by activating heterotrimeric G proteins. Herein, we summarize the recent advancements in the molecular activation mechanism of the γ-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors, the most important class C GPCRs that modulate synaptic transmission in the brain. Both are mandatory dimers, this quaternary structure being needed for their function The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of mGlu heterodimers, where the eight mGlu subunits can form specific and functional heterodimers. Finally, the development of allosteric modulators has revealed new possibilities for regulating the function of these receptors by targeting the transmembrane dimer interface. This family of receptors never ceases to astonish and serve as models to better understand the diversity and asymmetric functioning of GPCRs.NEW & NOTEWORTHY γ-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors form constitutive dimers, which are required for their function. They serve as models to better understand the diversity and activation of G protein-coupled receptors (GPCRs). The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of specific and functional mGlu heterodimers. Allosteric modulators can be developed to target the transmembrane interface and modulate the asymmetry.
Collapse
Affiliation(s)
- Lei Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Lin
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cangsong Shen
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Chanjuan Xu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Gaborit M, Massotte D. Therapeutic potential of opioid receptor heteromers in chronic pain and associated comorbidities. Br J Pharmacol 2023; 180:994-1013. [PMID: 34883528 DOI: 10.1111/bph.15772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic pain affects 20% to 45% of the global population and is often associated with the development of anxio-depressive disorders. Treatment of this debilitating condition remains particularly challenging with opioids prescribed to alleviate moderate to severe pain. However, despite strong antinociceptive properties, numerous adverse effects limit opioid use in the clinic. Moreover, opioid misuse and abuse have become a major health concern worldwide. This prompted efforts to design original strategies that would efficiently and safely relieve pain. Targeting of opioid receptor heteromers is one of these. This review summarizes our current knowledge on the role of heteromers involving opioid receptors in the context of chronic pain and anxio-depressive comorbidities. It also examines how heteromerization in native tissue affects ligand binding, receptor signalling and trafficking properties. Finally, the therapeutic potential of ligands designed to specifically target opioid receptor heteromers is considered. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Marion Gaborit
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Dominique Massotte
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
8
|
Nanobody-based sensors reveal a high proportion of mGlu heterodimers in the brain. Nat Chem Biol 2022; 18:894-903. [PMID: 35681029 DOI: 10.1038/s41589-022-01050-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Membrane proteins, including ion channels, receptors and transporters, are often composed of multiple subunits and can form large complexes. Their specific composition in native tissues is difficult to determine and remains largely unknown. In this study, we developed a method for determining the subunit composition of endogenous cell surface protein complexes from isolated native tissues. Our method relies on nanobody-based sensors, which enable proximity detection between subunits in time-resolved Förster resonance energy transfer (FRET) measurements. Additionally, given conformation-specific nanobodies, the activation of these complexes can be recorded in native brain tissue. Applied to the metabotropic glutamate receptors in different brain regions, this approach revealed the clear existence of functional metabotropic glutamate (mGlu)2-mGlu4 heterodimers in addition to mGlu2 and mGlu4 homodimers. Strikingly, the mGlu4 subunits appear to be mainly heterodimers in the brain. Overall, these versatile biosensors can determine the presence and activity of endogenous membrane proteins in native tissues with high fidelity and convenience.
Collapse
|
9
|
Killeen TD, Rahman S, Badu DN, Biener G, Stoneman MR, Raicu V. Fluorescence Intensity Fluctuation Analysis of Protein Oligomerization in Cell Membranes. Curr Protoc 2022; 2:e384. [PMID: 35312215 DOI: 10.1002/cpz1.384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fluorescence fluctuation spectroscopy (FFS) encompasses a bevy of techniques that involve analyzing fluorescence intensity fluctuations occurring due to fluorescently labeled molecules diffusing in and out of a microscope's focal region. Statistical analysis of these fluctuations may reveal the oligomerization (i.e., association) state of said molecules. We have recently developed a new FFS-based method, termed Two-Dimensional Fluorescence Intensity Fluctuation (2D FIF) spectrometry, which provides quantitative information on the size and stability of protein oligomers as a function of receptor concentration. This article describes protocols for employing FIF spectrometry to quantify the oligomerization of a membrane protein of interest, with specific instructions regarding cell preparation, image acquisition, and analysis of images given in detail. Application of the FIF Spectrometry Suite, a software package designed for applying FIF analysis on fluorescence images, is emphasized in the protocol. Also discussed in detail is the identification, removal, and/or analysis of inhomogeneous regions of the membrane that appear as bright spots. The 2D FIF approach is particularly suited to assess the effects of agonists and antagonists on the oligomeric size of membrane receptors of interest. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of live cells expressing protein constructs Basic Protocol 2: Image acquisition and noise correction Basic Protocol 3: Drawing and segmenting regions of interest Basic Protocol 4: Calculating the molecular brightness and concentration of individual image segments Basic Protocol 5: Combining data subsets using a manual procedure (Optional) Alternate Protocol 1: Combining data subsets using the advanced FIF spectrometry suite (Optional; alternative to Basic Protocol 5) Basic Protocol 6: Performing meta-analysis of brightness spectrograms Alternate Protocol 2: Performing meta-analysis of brightness spectrograms (alternative to Basic Protocol 6) Basic Protocol 7: Spot extraction and analysis using a manual procedure or by writing a program (Optional) Alternate Protocol 3: Automated spot extraction and analysis (Optional; alternative to Protocol 7) Support Protocol: Monomeric brightness determination.
Collapse
Affiliation(s)
- Tom D Killeen
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Sadia Rahman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Dammar N Badu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.,Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Balakrishnan A, Hemmen K, Choudhury S, Krohn JH, Jansen K, Friedrich M, Beliu G, Sauer M, Lohse MJ, Heinze KG. Unraveling the hidden temporal range of fast β 2-adrenergic receptor mobility by time-resolved fluorescence. Commun Biol 2022; 5:176. [PMID: 35228644 PMCID: PMC8885909 DOI: 10.1038/s42003-022-03106-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/02/2022] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are hypothesized to possess molecular mobility over a wide temporal range. Until now the temporal range has not been fully accessible due to the crucially limited temporal range of available methods. This in turn, may lead relevant dynamic constants to remain masked. Here, we expand this dynamic range by combining fluorescent techniques using a spot confocal setup. We decipher mobility constants of β2-adrenergic receptor over a wide time range (nanosecond to second). Particularly, a translational mobility (10 µm²/s), one order of magnitude faster than membrane associated lateral mobility that explains membrane protein turnover and suggests a wider picture of the GPCR availability on the plasma membrane. And a so far elusive rotational mobility (1-200 µs) which depicts a previously overlooked dynamic component that, despite all complexity, behaves largely as predicted by the Saffman-Delbrück model.
Collapse
Affiliation(s)
- Ashwin Balakrishnan
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Susobhan Choudhury
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Jan-Hagen Krohn
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kerstin Jansen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
11
|
Gallo M, Defaus S, Andreu D. Disrupting GPCR Complexes with Smart Drug-like Peptides. Pharmaceutics 2022; 14:pharmaceutics14010161. [PMID: 35057055 PMCID: PMC8779866 DOI: 10.3390/pharmaceutics14010161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a superfamily of proteins classically described as monomeric transmembrane (TM) receptors. However, increasing evidence indicates that many GPCRs form higher-order assemblies made up of monomers pertaining to identical (homo) or to various (hetero) receptors. The formation and structure of these oligomers, their physiological role and possible therapeutic applications raise a variety of issues that are currently being actively explored. In this context, synthetic peptides derived from TM domains stand out as powerful tools that can be predictably targeted to disrupt GPCR oligomers, especially at the interface level, eventually impairing their action. However, despite such potential, TM-derived, GPCR-disrupting peptides often suffer from inadequate pharmacokinetic properties, such as low bioavailability, a short half-life or rapid clearance, which put into question their therapeutic relevance and promise. In this review, we provide a comprehensive overview of GPCR complexes, with an emphasis on current studies using GPCR-disrupting peptides mimicking TM domains involved in multimerization, and we also highlight recent strategies used to achieve drug-like versions of such TM peptide candidates for therapeutic application.
Collapse
Affiliation(s)
| | - Sira Defaus
- Correspondence: (S.D.); (D.A.); Tel.: +34-933160868 (S.D. & D.A.)
| | - David Andreu
- Correspondence: (S.D.); (D.A.); Tel.: +34-933160868 (S.D. & D.A.)
| |
Collapse
|
12
|
Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses. Neuropharmacology 2021; 200:108799. [PMID: 34592242 DOI: 10.1016/j.neuropharm.2021.108799] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The plethora of functions of glutamate in the brain are mediated by the complementary actions of ionotropic and metabotropic glutamate receptors (mGluRs). The ionotropic glutamate receptors carry most of the fast excitatory transmission, while mGluRs modulate transmission on longer timescales by triggering multiple intracellular signaling pathways. As such, mGluRs mediate critical aspects of synaptic transmission and plasticity. Interestingly, at synapses, mGluRs operate at both sides of the cleft, and thus bidirectionally exert the effects of glutamate. At postsynaptic sites, group I mGluRs act to modulate excitability and plasticity. At presynaptic sites, group II and III mGluRs act as auto-receptors, modulating release properties in an activity-dependent manner. Thus, synaptic mGluRs are essential signal integrators that functionally couple presynaptic and postsynaptic mechanisms of transmission and plasticity. Understanding how these receptors reach the membrane and are positioned relative to the presynaptic glutamate release site are therefore important aspects of synapse biology. In this review, we will discuss the currently known mechanisms underlying the trafficking and positioning of mGluRs at and around synapses, and how these mechanisms contribute to synaptic functioning. We will highlight outstanding questions and present an outlook on how recent technological developments will move this exciting research field forward.
Collapse
|
13
|
Insights into the Role of Membrane Lipids in the Structure, Function and Regulation of Integral Membrane Proteins. Int J Mol Sci 2021; 22:ijms22169026. [PMID: 34445730 PMCID: PMC8396450 DOI: 10.3390/ijms22169026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Membrane proteins exist within the highly hydrophobic membranes surrounding cells and organelles, playing key roles in cellular function. It is becoming increasingly clear that the membrane does not just act as an appropriate environment for these proteins, but that the lipids that make up these membranes are essential for membrane protein structure and function. Recent technological advances in cryogenic electron microscopy and in advanced mass spectrometry methods, as well as the development of alternative membrane mimetic systems, have allowed experimental study of membrane protein–lipid complexes. These have been complemented by computational approaches, exploiting the ability of Molecular Dynamics simulations to allow exploration of membrane protein conformational changes in membranes with a defined lipid content. These studies have revealed the importance of lipids in stabilising the oligomeric forms of membrane proteins, mediating protein–protein interactions, maintaining a specific conformational state of a membrane protein and activity. Here we review some of the key recent advances in the field of membrane protein–lipid studies, with major emphasis on respiratory complexes, transporters, channels and G-protein coupled receptors.
Collapse
|
14
|
Thibado JK, Tano JY, Lee J, Salas-Estrada L, Provasi D, Strauss A, Marcelo Lamim Ribeiro J, Xiang G, Broichhagen J, Filizola M, Lohse MJ, Levitz J. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. eLife 2021; 10:e67027. [PMID: 33880992 PMCID: PMC8102066 DOI: 10.7554/elife.67027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The metabotropic glutamate receptors (mGluRs) form a family of neuromodulatory G-protein-coupled receptors that contain both a seven-helix transmembrane domain (TMD) and a large extracellular ligand-binding domain (LBD) which enables stable dimerization. Although numerous studies have revealed variability across subtypes in the initial activation steps at the level of LBD dimers, an understanding of inter-TMD interaction and rearrangement remains limited. Here, we use a combination of single molecule fluorescence, molecular dynamics, functional assays, and conformational sensors to reveal that distinct TMD assembly properties drive differences between mGluR subtypes. We uncover a variable region within transmembrane helix 4 (TM4) that contributes to homo- and heterodimerization in a subtype-specific manner and tunes orthosteric, allosteric, and basal activation. We also confirm a critical role for a conserved inter-TM6 interface in stabilizing the active state during orthosteric or allosteric activation. Together this study shows that inter-TMD assembly and dynamic rearrangement drive mGluR function with distinct properties between subtypes.
Collapse
Affiliation(s)
- Jordana K Thibado
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Alexa Strauss
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| | | | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | | | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Martin J Lohse
- Max Delbrück Center for Molecular MedicineBerlinGermany
- ISAR Bioscience InstitutePlanegg-MunichGermany
| | - Joshua Levitz
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| |
Collapse
|
15
|
Structural Characterization of Receptor-Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int J Mol Sci 2021; 22:ijms22063241. [PMID: 33810175 PMCID: PMC8005122 DOI: 10.3390/ijms22063241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein-protein interactions (PPI).
Collapse
|
16
|
Işbilir A, Serfling R, Möller J, Thomas R, De Faveri C, Zabel U, Scarselli M, Beck-Sickinger AG, Bock A, Coin I, Lohse MJ, Annibale P. Determination of G-protein-coupled receptor oligomerization by molecular brightness analyses in single cells. Nat Protoc 2021; 16:1419-1451. [PMID: 33514946 DOI: 10.1038/s41596-020-00458-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Oligomerization of membrane proteins has received intense research interest because of their importance in cellular signaling and the large pharmacological and clinical potential this offers. Fluorescence imaging methods are emerging as a valid tool to quantify membrane protein oligomerization at high spatial and temporal resolution. Here, we provide a detailed protocol for an image-based method to determine the number and oligomerization state of fluorescently labeled prototypical G-protein-coupled receptors (GPCRs) on the basis of small out-of-equilibrium fluctuations in fluorescence (i.e., molecular brightness) in single cells. The protocol provides a step-by-step procedure that includes instructions for (i) a flexible labeling strategy for the protein of interest (using fluorescent proteins, small self-labeling tags or bio-orthogonal labeling) and the appropriate controls, (ii) performing temporal and spatial brightness image acquisition on a confocal microscope and (iii) analyzing and interpreting the data, excluding clusters and intensity hot-spots commonly observed in receptor distributions. Although specifically tailored for GPCRs, this protocol can be applied to diverse classes of membrane proteins of interest. The complete protocol can be implemented in 1 month.
Collapse
Affiliation(s)
- Ali Işbilir
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Jan Möller
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Romy Thomas
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Chiara De Faveri
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Andreas Bock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany. .,ISAR Bioscience Institute, Munich, Germany.
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
17
|
Werthmann RC, Tzouros M, Lamerz J, Augustin A, Fritzius T, Trovò L, Stawarski M, Raveh A, Diener C, Fischer C, Gassmann M, Lindemann L, Bettler B. Symmetric signal transduction and negative allosteric modulation of heterodimeric mGlu1/5 receptors. Neuropharmacology 2020; 190:108426. [PMID: 33279506 DOI: 10.1016/j.neuropharm.2020.108426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
For a long time metabotropic glutamate receptors (mGluRs) were thought to regulate neuronal functions as obligatory homodimers. Recent reports, however, indicate the existence of heterodimers between group-II and -III mGluRs in the brain, which differ from the homodimers in their signal transduction and sensitivity to negative allosteric modulators (NAMs). Whether the group-I mGluRs, mGlu1 and mGlu5, form functional heterodimers in the brain is still a matter of debate. We now show that mGlu1 and mGlu5 co-purify from brain membranes and hippocampal tissue and co-localize in cultured hippocampal neurons. Complementation assays with mutants deficient in agonist-binding or G protein-coupling reveal that mGlu1/5 heterodimers are functional in heterologous cells and transfected cultured hippocampal neurons. In contrast to heterodimers between group-II and -III mGluRs, mGlu1/5 receptors exhibit a symmetric signal transduction, with both protomers activating G proteins to a similar extent. NAMs of either protomer in mGlu1/5 receptors partially inhibit signaling, showing that both protomers need to be able to reach an active conformation for full receptor activity. Complete heterodimer inhibition is observed when both protomers are locked in their inactive state by a NAM. In summary, our data show that mGlu1/5 heterodimers exhibit a symmetric signal transduction and thus intermediate signaling efficacy and kinetic properties. Our data support the existence of mGlu1/5 heterodimers in neurons and highlight differences in the signaling transduction of heterodimeric mGluRs that influence allosteric modulation.
Collapse
Affiliation(s)
- Ruth C Werthmann
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Manuel Tzouros
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Jens Lamerz
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Angélique Augustin
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Thorsten Fritzius
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Adi Raveh
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Catherine Diener
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christophe Fischer
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
18
|
Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J. Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function. Trends Biochem Sci 2020; 45:1049-1064. [PMID: 32861513 PMCID: PMC7642020 DOI: 10.1016/j.tibs.2020.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Groundbreaking structural and spectroscopic studies of class A G protein-coupled receptors (GPCRs), such as rhodopsin and the β2 adrenergic receptor, have provided a picture of how structural rearrangements between transmembrane helices control ligand binding, receptor activation, and effector coupling. However, the activation mechanism of other GPCR classes remains more elusive, in large part due to complexity in their domain assembly and quaternary structure. In this review, we focus on the class C GPCRs, which include metabotropic glutamate receptors (mGluRs) and gamma-aminobutyric acid B (GABAB) receptors (GABABRs) most prominently. We discuss the unique biophysical questions raised by the presence of large extracellular ligand-binding domains (LBDs) and constitutive homo/heterodimerization. Furthermore, we discuss how recent studies have begun to unravel how these fundamental class C GPCR features impact the processes of ligand binding, receptor activation, signal transduction, regulation by accessory proteins, and crosstalk with other GPCRs.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Diomedes A Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, College of Science and Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
19
|
Siddig S, Aufmkolk S, Doose S, Jobin ML, Werner C, Sauer M, Calebiro D. Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. SCIENCE ADVANCES 2020; 6:eaay7193. [PMID: 32494600 PMCID: PMC7159906 DOI: 10.1126/sciadv.aay7193] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 05/12/2023]
Abstract
G protein-coupled receptors (GPCRs) play a fundamental role in the modulation of synaptic transmission. A pivotal example is provided by the metabotropic glutamate receptor type 4 (mGluR4), which inhibits glutamate release at presynaptic active zones (AZs). However, how GPCRs are organized within AZs to regulate neurotransmission remains largely unknown. Here, we applied two-color super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) to investigate the nanoscale organization of mGluR4 at parallel fiber AZs in the mouse cerebellum. We find an inhomogeneous distribution, with multiple nanodomains inside AZs, each containing, on average, one to two mGluR4 subunits. Within these nanodomains, mGluR4s are often localized in close proximity to voltage-dependent CaV2.1 channels and Munc-18-1, which are both essential for neurotransmitter release. These findings provide previously unknown insights into the molecular organization of GPCRs at AZs, suggesting a likely implication of a close association between mGluR4 and the secretory machinery in modulating synaptic transmission.
Collapse
Affiliation(s)
- Sana Siddig
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
- Corresponding author. (M.S.); (D.C.)
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, UK
- Corresponding author. (M.S.); (D.C.)
| |
Collapse
|
20
|
Kniazeff J. The different aspects of the GABAB receptor allosteric modulation. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:83-113. [DOI: 10.1016/bs.apha.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Quast RB, Margeat E. Studying GPCR conformational dynamics by single molecule fluorescence. Mol Cell Endocrinol 2019; 493:110469. [PMID: 31163201 DOI: 10.1016/j.mce.2019.110469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Over the last decades, G protein coupled receptors (GPCRs) have experienced a tremendous amount of attention, which has led to a boost of structural and pharmacological insights on this large membrane protein superfamily involved in various essential physiological functions. Recently, evidence has emerged that, rather than being activated by ligands in an on/off manner switching from an inactive to an active state, GPCRs exhibit high structural flexibility in the absence and even in the presence of ligands. So far the physiological as well as pharmacological impact of this structural flexibility remains largely unexplored albeit its potential role in precisely fine-tuning receptor function and regulating the specificity of signal transduction into the cell. By complementing other biophysical approaches, single molecule fluorescence (SMF) offers the advantage of monitoring structural dynamics in biomolecules in real-time, with minimal structural invasiveness and in the context of complex biological environments. In this review a general introduction to GPCR structural dynamics is given followed by a presentation of SMF methods used to explore them. Particular attention is paid to single molecule Förster resonance energy transfer (smFRET), a key method to measure actual distance changes between two probes, and highlight conformational changes occurring at timescales relevant for protein conformational movements. The available literature reporting on GPCR structural dynamics by SMF is discussed with a focus on the newly gained biological insights on receptor activation and signaling, in particular for the β2 adrenergic and the metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Robert B Quast
- CBS, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Emmanuel Margeat
- CBS, CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
22
|
Xue L, Sun Q, Zhao H, Rovira X, Gai S, He Q, Pin JP, Liu J, Rondard P. Rearrangement of the transmembrane domain interfaces associated with the activation of a GPCR hetero-oligomer. Nat Commun 2019; 10:2765. [PMID: 31235691 PMCID: PMC6591306 DOI: 10.1038/s41467-019-10834-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) can integrate extracellular signals via allosteric interactions within dimers and higher-order oligomers. However, the structural bases of these interactions remain unclear. Here, we use the GABAB receptor heterodimer as a model as it forms large complexes in the brain. It is subjected to genetic mutations mainly affecting transmembrane 6 (TM6) and involved in human diseases. By cross-linking, we identify the transmembrane interfaces involved in GABAB1-GABAB2, as well as GABAB1-GABAB1 interactions. Our data are consistent with an oligomer made of a row of GABAB1. We bring evidence that agonist activation induces a concerted rearrangement of the various interfaces. While the GB1-GB2 interface is proposed to involve TM5 in the inactive state, cross-linking of TM6s lead to constitutive activity. These data bring insight for our understanding of the allosteric interaction between GPCRs within oligomers. G protein-coupled receptors (GPCRs), such as GABAB, can integrate extracellular signals via allosteric interactions within dimers and oligomers. Here authors use crosslinking and identify two transmembrane interfaces in GABAB which undergo a concerted rearrangement upon agonist activation.
Collapse
Affiliation(s)
- Li Xue
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qian Sun
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Han Zhao
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, Montpellier, 34094 Montpellier cedex 05, France.,Molecular Photopharmacology Research Group, The Tissue Repair and Regeneration Laboratory, University of Vic - Central University of Catalonia, C. de la Laura, 13, Vic, 08500, Spain
| | - Siyu Gai
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qianwen He
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, Montpellier, 34094 Montpellier cedex 05, France.
| | - Jianfeng Liu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, Montpellier, 34094 Montpellier cedex 05, France
| |
Collapse
|
23
|
Serfling R, Seidel L, Bock A, Lohse MJ, Annibale P, Coin I. Quantitative Single-Residue Bioorthogonal Labeling of G Protein-Coupled Receptors in Live Cells. ACS Chem Biol 2019; 14:1141-1149. [PMID: 31074969 DOI: 10.1021/acschembio.8b01115] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-end microscopy studies of G protein-coupled receptors (GPCRs) require installing onto the receptors bright and photostable dyes. Labeling must occur in quantitative yields, to allow stoichiometric data analysis, and in a minimally invasive fashion, to avoid perturbing GPCR function. We demonstrate here that the genetic incorporation of trans-cyclooct-2-ene lysine (TCO*) allows achieving quantitative single-residue labeling of the extracellular loops of the β2-adrenergic and the muscarinic M2 class A GPCRs, as well as of the corticotropin releasing factor class B GPCR. Labeling occurs within a few minutes by reaction with dye-tetrazine conjugates on the surface of live cells and preserves the functionality of the receptors. To precisely quantify the labeling yields, we devise a method based on fluorescence fluctuation microscopy that extracts the number of labeling sites at the single-cell level. Further, we show that single-residue labeling is better suited for studies of GPCR diffusion than fluorescent-protein tags, since the latter can affect the mobility of the receptor. Finally, by performing dual-color competitive labeling on a single TCO* site, we devise a method to estimate the oligomerization state of a GPCR without the need for a biological monomeric reference, which facilitates the application of fluorescence methods to oligomerization studies. As TCO* and the dye-tetrazines used in this study are commercially available and the described microscopy techniques can be performed on a commercial microscope, we expect our approach to be widely applicable to fluorescence microscopy studies of membrane proteins in general.
Collapse
Affiliation(s)
- Robert Serfling
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| | - Lisa Seidel
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| | - Andreas Bock
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Martin J. Lohse
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Paolo Annibale
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Irene Coin
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
24
|
Gutzeit VA, Thibado J, Stor DS, Zhou Z, Blanchard SC, Andersen OS, Levitz J. Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor. eLife 2019; 8:45116. [PMID: 31172948 PMCID: PMC6588349 DOI: 10.7554/elife.45116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are class C, synaptic G-protein-coupled receptors (GPCRs) that contain large extracellular ligand binding domains (LBDs) and form constitutive dimers. Despite the existence of a detailed picture of inter-LBD conformational dynamics and structural snapshots of both isolated domains and full-length receptors, it remains unclear how mGluR activation proceeds at the level of the transmembrane domains (TMDs) and how TMD-targeting allosteric drugs exert their effects. Here, we use time-resolved functional and conformational assays to dissect the mechanisms by which allosteric drugs activate and modulate mGluR2. Single-molecule subunit counting and inter-TMD fluorescence resonance energy transfer measurements in living cells reveal LBD-independent conformational rearrangements between TMD dimers during receptor modulation. Using these assays along with functional readouts, we uncover heterogeneity in the magnitude, direction, and the timing of the action of both positive and negative allosteric drugs. Together our experiments lead to a three-state model of TMD activation, which provides a framework for understanding how inter-subunit rearrangements drive class C GPCR activation.
Collapse
Affiliation(s)
- Vanessa A Gutzeit
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Jordana Thibado
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Daniel Starer Stor
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Scott C Blanchard
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, New York, United States
| | - Olaf S Andersen
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Joshua Levitz
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, New York, United States.,Department of Biochemistry, Weill Cornell Medicine, New York, United States
| |
Collapse
|
25
|
Royer CA. Characterizing proteins in their cellular environment: Examples of recent advances in quantitative fluorescence microscopy. Protein Sci 2019; 28:1210-1221. [PMID: 31012169 DOI: 10.1002/pro.3630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 11/12/2022]
Abstract
Quantitative characterization of protein interactions, both intramolecular and intermolecular, is crucial in understanding the mechanisms and regulation of their function. In recent years, it has become possible to obtain such information on protein systems in live cells, from bacteria to mammalian cell lines. This review discusses recent advances in measuring protein folding, absolute concentration, oligomerization, diffusion, transport, and organization at super-resolution.
Collapse
Affiliation(s)
- Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180
| |
Collapse
|
26
|
Pin JP, Kniazeff J, Prézeau L, Liu JF, Rondard P. GPCR interaction as a possible way for allosteric control between receptors. Mol Cell Endocrinol 2019; 486:89-95. [PMID: 30849406 DOI: 10.1016/j.mce.2019.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022]
Abstract
For more than twenty years now, GPCR dimers and larger oligomers have been the subject of intense debates. Evidence for a role of such complexes in receptor trafficking to and from the plasma membrane have been provided. However, one main issue is of course to determine whether or not such a phenomenon can be responsible for an allosteric and reciprocal control (allosteric control) of the subunits. Such a possibility would indeed add to the possible ways a cell integrates various signals targeting GPCRs. Among the large GPCR family, the class C receptors that include mGlu and GABAB receptors, represent excellent models to examine such a possibility as they are mandatory dimers. In the present review, we will report on the observed allosteric interaction between the subunits of class C GPCRs, both mGluRs and GABABRs, and on the structural bases of these interactions. We will then discuss these findings for other GPCR types such as the rhodopsin-like class A receptors. We will show that many of the observations made with class C receptors have also been reported with class A receptors, suggesting that the mechanisms involved in the allosteric control between subunits in GPCR dimers may not be unique to class C GPCRs.
Collapse
Affiliation(s)
- Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jiang-Feng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
27
|
Sleno R, Hébert TE. Shaky ground - The nature of metastable GPCR signalling complexes. Neuropharmacology 2019; 152:4-14. [PMID: 30659839 DOI: 10.1016/j.neuropharm.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/19/2023]
Abstract
How G protein-coupled receptors (GPCR) interact with one another remains an area of active investigation. Obligate dimers of class C GPCRs such as metabotropic GABA and glutamate receptors are well accepted, although whether this is a general feature of other GPCRs is still strongly debated. In this review, we focus on the idea that GPCR dimers and oligomers are better imagined as parts of larger metastable signalling complexes. We discuss the nature of functional oligomeric entities, their stabilities and kinetic features and how structural and functional asymmetries of such metastable entities might have implications for drug discovery. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rory Sleno
- Marketed Pharmaceuticals and Medical Devices Bureau, Marketed Health Products Directorate, Health Products and Food Branch, Health Canada, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
28
|
Neale JH, Olszewski R. A role for N-acetylaspartylglutamate (NAAG) and mGluR3 in cognition. Neurobiol Learn Mem 2019; 158:9-13. [PMID: 30630041 DOI: 10.1016/j.nlm.2019.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/03/2018] [Accepted: 01/05/2019] [Indexed: 12/18/2022]
Abstract
The peptide transmitter N-acetylaspartylglutamate (NAAG) and its receptor, the type 3 metabotropic glutamate receptor (mGluR3, GRM3), are prevalent and widely distributed in the mammalian nervous system. Drugs that inhibit the inactivation of synaptically released NAAG have procognitive activity in object recognition and other behavioral models. These inhibitors also reverse cognitive deficits in animal models of clinical disorders. Antagonists of mGluR3 block these actions and mice that are null mutant for this receptor are insensitive to the actions of these procognitive drugs. A positive allosteric modulator of this receptor also has procognitive activity. While some data suggest that drugs acting on mGluR3 achieve their procognitive action by increasing arousal during acquisition training, exploration of the procognitive efficacy of NAAG is in its early stages and thus substantial opportunities exist to define the breadth and nature of this activity.
Collapse
Affiliation(s)
- Joseph H Neale
- Department of Biology, Georgetown University, Washington, DC, USA.
| | - Rafal Olszewski
- Department of Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|