1
|
Lu Z, Gui L, Sun X, Wang K, Lan Y, Deng Y, Cao S, Xu K. Unveiling the impact of low-frequency electrical stimulation on network synchronization and learning behavior in cultured hippocampal neural networks. Biochem Biophys Res Commun 2024; 731:150363. [PMID: 39018969 DOI: 10.1016/j.bbrc.2024.150363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Understanding the dynamics of neural networks and their response to external stimuli is crucial for unraveling the mechanisms associated with learning processes. In this study, we hypothesized that electrical stimulation (ES) would lead to significant alterations in the activity patterns of hippocampal neuronal networks and investigated the effects of low-frequency ES on hippocampal neuronal populations using the microelectrode arrays (MEAs). Our findings revealed significant alterations in the activity of hippocampal neuronal networks following low-frequency ES trainings. Post-stimulation, the neural activity exhibited an organized burst firing pattern characterized by increased spike and burst firings, increased synchronization, and enhanced learning behaviors. Analysis of peri-stimulus time histograms (PSTHs) further revealed that low-frequency ES (1Hz) significantly enhanced neural plasticity, thereby facilitating the learning process of cultured neurons, whereas high-frequency ES (>10Hz) impeded this process. Moreover, we observed a substantial increase in correlations and connectivity within neuronal networks following ES trainings. These alterations in network properties indicated enhanced synaptic plasticity and emphasized the positive impact of low-frequency ES on hippocampal neural activities, contributing to the brain's capacity for learning and memory.
Collapse
Affiliation(s)
- Zeying Lu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China
| | - Lili Gui
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China.
| | - Xiaojuan Sun
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China; School of Science, Beijing University of Posts and Telecommunications, PR China
| | - Ke Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China
| | - Yueheng Lan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China; School of Science, Beijing University of Posts and Telecommunications, PR China
| | - Yin Deng
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China
| | - Shiyang Cao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China
| | - Kun Xu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China
| |
Collapse
|
2
|
Boddeti U, Langbein J, McAfee D, Altshuler M, Bachani M, Zaveri HP, Spencer D, Zaghloul KA, Ksendzovsky A. Modeling seizure networks in neuron-glia cultures using microelectrode arrays. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1441345. [PMID: 39290793 PMCID: PMC11405204 DOI: 10.3389/fnetp.2024.1441345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Epilepsy is a common neurological disorder, affecting over 65 million people worldwide. Unfortunately, despite resective surgery, over 30 % of patients with drug-resistant epilepsy continue to experience seizures. Retrospective studies considering connectivity using intracranial electrocorticography (ECoG) obtained during neuromonitoring have shown that treatment failure is likely driven by failure to consider critical components of the seizure network, an idea first formally introduced in 2002. However, current studies only capture snapshots in time, precluding the ability to consider seizure network development. Over the past few years, multiwell microelectrode arrays have been increasingly used to study neuronal networks in vitro. As such, we sought to develop a novel in vitro MEA seizure model to allow for study of seizure networks. Specifically, we used 4-aminopyridine (4-AP) to capture hyperexcitable activity, and then show increased network changes after 2 days of chronic treatment. We characterize network changes using functional connectivity measures and a novel technique using dimensionality reduction. We find that 4-AP successfully captures persistently elevated mean firing rate and significant changes in underlying connectivity patterns. We believe this affords a robust in vitro seizure model from which longitudinal network changes can be studied, laying groundwork for future studies exploring seizure network development.
Collapse
Affiliation(s)
- Ujwal Boddeti
- Surgical Neurology Branch, NINDS, National Institutes of Health, Baltimore, MD, United States
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jenna Langbein
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelle Altshuler
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, United States
| | - Dennis Spencer
- Department of Neurosurgery, Yale University, New Haven, CT, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Baltimore, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Albin B, Adhikari P, Tiwari AP, Qubbaj K, Yang IH. Electrical stimulation enhances mitochondrial trafficking as a neuroprotective mechanism against chemotherapy-induced peripheral neuropathy. iScience 2024; 27:109052. [PMID: 38375222 PMCID: PMC10875116 DOI: 10.1016/j.isci.2024.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Electrical stimulation (ESTIM) has shown to be an effective symptomatic treatment to treat pain associated with peripheral nerve damage. However, the neuroprotective mechanism of ESTIM on peripheral neuropathies is still unknown. In this study, we identified that ESTIM has the ability to enhance mitochondrial trafficking as a neuroprotective mechanism against chemotherapy-induced peripheral neuropathies (CIPNs). CIPN is a debilitating and painful sequalae of anti-cancer chemotherapy treatment which results in degeneration of peripheral nerves. Mitochondrial dynamics were analyzed within axons in response to two different antineoplastic mechanisms by chemotherapy drug treatments paclitaxel and oxaliplatin in vitro. Mitochondrial trafficking response to chemotherapy drug treatment was observed to decrease in conjunction with degeneration of distal axons. Using low-frequency ESTIM, we observed enhanced mitochondrial trafficking to be a neuroprotective mechanism against CIPN. This study confirms ESTIM enhances regeneration of peripheral nerves by increased mitochondrial trafficking.
Collapse
Affiliation(s)
- Bayne Albin
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Prashant Adhikari
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Arjun Prasad Tiwari
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Khayzaran Qubbaj
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - In Hong Yang
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
4
|
Zhang X, Dou Z, Kim SH, Upadhyay G, Havert D, Kang S, Kazemi K, Huang K, Aydin O, Huang R, Rahman S, Ellis‐Mohr A, Noblet HA, Lim KH, Chung HJ, Gritton HJ, Saif MTA, Kong HJ, Beggs JM, Gazzola M. Mind In Vitro Platforms: Versatile, Scalable, Robust, and Open Solutions to Interfacing with Living Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306826. [PMID: 38161217 PMCID: PMC10953569 DOI: 10.1002/advs.202306826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Motivated by the unexplored potential of in vitro neural systems for computing and by the corresponding need of versatile, scalable interfaces for multimodal interaction, an accurate, modular, fully customizable, and portable recording/stimulation solution that can be easily fabricated, robustly operated, and broadly disseminated is presented. This approach entails a reconfigurable platform that works across multiple industry standards and that enables a complete signal chain, from neural substrates sampled through micro-electrode arrays (MEAs) to data acquisition, downstream analysis, and cloud storage. Built-in modularity supports the seamless integration of electrical/optical stimulation and fluidic interfaces. Custom MEA fabrication leverages maskless photolithography, favoring the rapid prototyping of a variety of configurations, spatial topologies, and constitutive materials. Through a dedicated analysis and management software suite, the utility and robustness of this system are demonstrated across neural cultures and applications, including embryonic stem cell-derived and primary neurons, organotypic brain slices, 3D engineered tissue mimics, concurrent calcium imaging, and long-term recording. Overall, this technology, termed "mind in vitro" to underscore the computing inspiration, provides an end-to-end solution that can be widely deployed due to its affordable (>10× cost reduction) and open-source nature, catering to the expanding needs of both conventional and unconventional electrophysiology.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Zhi Dou
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Seung Hyun Kim
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Gaurav Upadhyay
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Daniel Havert
- Department of PhysicsIndiana University BloomingtonBloomingtonIN47405USA
| | - Sehong Kang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Kimia Kazemi
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Kai‐Yu Huang
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Onur Aydin
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Raymond Huang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Saeedur Rahman
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Austin Ellis‐Mohr
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hayden A. Noblet
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Neuroscience ProgramUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Ki H. Lim
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hee Jung Chung
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Neuroscience ProgramUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Howard J. Gritton
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Comparative BiosciencesUniversity of Illinois at Urbana–ChampaignUrbanaIL61802USA
| | - M. Taher A. Saif
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hyun Joon Kong
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - John M. Beggs
- Department of PhysicsIndiana University BloomingtonBloomingtonIN47405USA
| | - Mattia Gazzola
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| |
Collapse
|
5
|
Zholudeva LV, Fortino T, Agrawal A, Vila OF, Williams M, McDevitt T, Lane MA, Srivastava D. Human spinal interneurons repair the injured spinal cord through synaptic integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575264. [PMID: 38260390 PMCID: PMC10802598 DOI: 10.1101/2024.01.11.575264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Advances in cell therapy offer promise for some of the most devastating neural injuries, including spinal cord injury (SCI). Endogenous VSX2-expressing spinal V2a interneurons have been implicated as a key component in plasticity and therapeutically driven recovery post-SCI. While transplantation of generic V2a neurons may have therapeutic value, generation of human spinal V2a neurons with rostro-caudal specificity and assessment of their functional synaptic integration with the injured spinal cord has been elusive. Here, we efficiently differentiated optogenetically engineered cervical V2a spinal interneurons (SpINs) from human induced pluripotent stem cells and tested their capacity to form functional synapses with injured diaphragm motor networks in a clinically-relevant sub-acute model of cervical contusion injury. Neuroanatomical tracing and immunohistochemistry demonstrated transplant integration and synaptic connectivity with injured host tissue. Optogenetic activation of transplanted human V2a SpINs revealed functional synaptic connectivity to injured host circuits, culminating in improved diaphragm activity assessed by electromyography. Furthermore, optogenetic activation of host supraspinal pathways revealed functional innervation of transplanted cells by host neurons, which also led to enhanced diaphragm contraction indicative of a functional neuronal relay. Single cell analyses pre- and post-transplantation suggested the in vivo environment resulted in maturation of cervical SpINs that mediate the formation of neuronal relays, as well as differentiation of glial progenitors involved in repair of the damaged spinal cord. This study rigorously demonstrates feasibility of generating human cervical spinal V2a interneurons that develop functional host-transplant and transplant-host connectivity resulting in improved muscle activity post-SCI.
Collapse
|
6
|
Boulingre M, Portillo-Lara R, Green RA. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem Commun (Camb) 2023; 59:14745-14758. [PMID: 37991846 PMCID: PMC10720954 DOI: 10.1039/d3cc05006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Implantable neural interfaces (NIs) have emerged in the clinic as outstanding tools for the management of a variety of neurological conditions caused by trauma or disease. However, the foreign body reaction triggered upon implantation remains one of the major challenges hindering the safety and longevity of NIs. The integration of tools and principles from biomaterial design and tissue engineering has been investigated as a promising strategy to develop NIs with enhanced functionality and performance. In this Feature Article, we highlight the main bioengineering approaches for the development of biohybrid NIs with an emphasis on relevant device design criteria. Technical and scientific challenges associated with the fabrication and functional assessment of technologies composed of both artificial and biological components are discussed. Lastly, we provide future perspectives related to engineering, regulatory, and neuroethical challenges to be addressed towards the realisation of the promise of biohybrid neurotechnology.
Collapse
Affiliation(s)
- Marjolaine Boulingre
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Daou B, Silvestri A, Lasa H, Mancino D, Prato M, Alegret N. Organic Functional Group on Carbon Nanotube Modulates the Maturation of SH-SY5Y Neuronal Models. Macromol Biosci 2023; 23:e2300173. [PMID: 37392465 DOI: 10.1002/mabi.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Carbon nanotubes (CNT) have proven to be excellent substrates for neuronal cultures, showing high affinity and greatly boosting their synaptic functionality. Therefore, growing cells on CNT offers an opportunity to perform a large variety of neuropathology studies in vitro. To date, the interactions between neurons and chemical functional groups have not been studied extensively. To this end, multiwalled CNT (f-CNT) is functionalized with various functional groups, including sulfonic (-SO3 H), nitro (-NO2 ), amino (-NH2 ), and oxidized moieties. f-CNTs are spray-coated onto untreated glass substrates and are used as substrates for the incubation of neuroblastoma cells (SH-SY5Y). After 7 d, its effect is evaluated in terms of cell attachment, survival, growth, and spontaneous differentiation. Cell viability assays show quite increased proliferation on various f-CNT substrates (CNTs-NO2 > ox-CNTs ≈ CNTs-SO3 H > CNTs ≈ CNTs-NH2 ). Additionally, SH-SY5Y cells show selectively better differentiation and maturation with -SO3 H substrates, where an increased expression of β-III tubulin is seen. In all cases, intricate cell-CNT networks are observed and the morphology of the cells adopts longer and thinner cellular processes, suggesting that the type of functionalization may have an effect of the length and thickness. Finally, a possible correlation is determined between conductivity of f-CNTs and cell-processes lengths.
Collapse
Affiliation(s)
- Bahaa Daou
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, Donostia/San Sebastián, 20014, Spain
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Haizpea Lasa
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, Donostia/San Sebastián, 20014, Spain
| | - Donato Mancino
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Department of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Trieste, 34127, Italy
| | - Nuria Alegret
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| |
Collapse
|
8
|
Solazzo M, Monaghan MG. A Workflow to Produce a Low-Cost In Vitro Platform for the Electric-Field Pacing of Cellularised 3D Porous Scaffolds. ACS Biomater Sci Eng 2023; 9:4573-4582. [PMID: 37531298 PMCID: PMC10428090 DOI: 10.1021/acsbiomaterials.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Endogenous electrically mediated signaling is a key feature of most native tissues, the most notable examples being the nervous and the cardiac systems. Biomedical engineering often aims to harness and drive such activity in vitro, in bioreactors to study cell disease and differentiation, and often in three-dimensional (3D) formats with the help of biomaterials, with most of these approaches adopting scaffold-free self-assembling strategies to create 3D tissues. In essence, this is the casting of gels which self-assemble in response to factors such as temperature or pH and have capacity to harbor cells during this process without imparting toxicity. However, the use of materials that do not self-assemble but can support 3D encapsulation of cells (such as porous scaffolds) warrants consideration given the larger repertoire this would provide in terms of material physicochemical properties and microstructure. In this method and protocol paper, we detail and provide design codes and assembly instructions to cheaply create an electrical pacing bioreactor and a Rig for Stimulation of Sponge-like Scaffolds (R3S). This setup has also been engineered to simultaneously perform live optical imaging of the in vitro models. To showcase a pilot exploration of material physiochemistry (in this aspect material conductivity) and microstructure (isotropy versus anisotropy), we adopt isotropic and anisotropic porous scaffolds composed of collagen or poly(3,4-ethylene dioxythiophene):polystyrenesulfonate (PEDOT:PSS) for their contrasting conductivity properties yet similar in porosity and mechanical integrity. Electric field pacing of mouse C3H10 cells on anisotropic porous scaffolds placed in R3S led to increased metabolic activity and enhanced cell alignment. Furthermore, after 7 days electrical pacing drove C3H10 alignment regardless of material conductivity or anisotropy. This platform and its design, which we have shared, have wide suitability for the study of electrical pacing of cellularized scaffolds in 3D in vitro cultures.
Collapse
Affiliation(s)
- Matteo Solazzo
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, Ireland
- Trinity
Centre for Biomedical Engineering, 152-160 Pearse Street, Dublin 2, Ireland
| | - Michael G. Monaghan
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin 2, Ireland
- CÚRAM,
Centre for Research in Medical Devices, National University of Ireland, Galway, Newcastle Road, Galway H91 W2TY, Ireland
- Trinity
Centre for Biomedical Engineering, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
9
|
A microfluidic perspective on conventional in vitro transcranial direct current stimulation methods. J Neurosci Methods 2023; 385:109761. [PMID: 36470469 PMCID: PMC9884911 DOI: 10.1016/j.jneumeth.2022.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.
Collapse
|
10
|
Luo Y, Sun Y, Wen H, Wang X, Zheng X, Ge H, Yin Y, Wu X, Li W, Hou W. Deep brain stimulation of the entorhinal cortex modulates CA1 theta-gamma oscillations in mouse models of preclinical Alzheimer's disease. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Alshawaf AJ, Alnassar SA, Al-Mohanna FA. The interplay of intracellular calcium and zinc ions in response to electric field stimulation in primary rat cortical neurons in vitro. Front Cell Neurosci 2023; 17:1118335. [PMID: 37180947 PMCID: PMC10174245 DOI: 10.3389/fncel.2023.1118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Recent pharmacological studies demonstrate a role for zinc (Zn2+) in shaping intracellular calcium (Ca2+) dynamics and vice versa in excitable cells including neurons and cardiomyocytes. Herein, we sought to examine the dynamic of intracellular release of Ca2+ and Zn2+ upon modifying excitability of primary rat cortical neurons using electric field stimulation (EFS) in vitro. We show that exposure to EFS with an intensity of 7.69 V/cm induces transient membrane hyperpolarization together with transient elevations in the cytosolic levels of Ca2+ and Zn2+ ions. The EFS-induced hyperpolarization was inhibited by prior treatment of cells with the K+ channel opener diazoxide. Chemical hyperpolarization had no apparent effect on either Ca2+ or Zn2+. The source of EFS-induced rise in Ca2+ and Zn2+ seemed to be intracellular, and that the dynamic inferred of an interplay between Ca2+ and Zn2+ ions, whereby the removal of extracellular Ca2+ augmented the release of intracellular Ca2+ and Zn2+ and caused a stronger and more sustained hyperpolarization. We demonstrate that Zn2+ is released from intracellular vesicles located in the soma, with major co-localizations in the lysosomes and endoplasmic reticulum. These studies further support the use of EFS as a tool to interrogate the kinetics of intracellular ions in response to changing membrane potential in vitro.
Collapse
Affiliation(s)
- Abdullah J. Alshawaf
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sarah A. Alnassar
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Futwan A. Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- *Correspondence: Futwan A. Al-Mohanna,
| |
Collapse
|
12
|
Liao M, Hu Y, Zhang Y, Wang K, Fang Q, Qi Y, Shen Y, Cheng H, Fu X, Tang M, Sun S, Gao X, Chai R. 3D Ti 3C 2T x MXene-Matrigel with Electroacoustic Stimulation to Promote the Growth of Spiral Ganglion Neurons. ACS NANO 2022; 16:16744-16756. [PMID: 36222600 PMCID: PMC9620407 DOI: 10.1021/acsnano.2c06306] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cochlear implantation has become the most effective treatment method for patients with profound and total hearing loss. However, its therapeutic efficacy is dependent on the number and normal physiological function of cochlear implant-targeted spiral ganglion neurons (SGNs). Electrical stimulation can be used as an effective cue to regulate the morphology and function of excitatory cells. Therefore, it is important to develop an efficient cochlear implant electroacoustic stimulation (EAS) system to study the behavior of SGNs. In this work, we present an electrical stimulation system constructed by combining a cochlear implant and a conductive Ti3C2Tx MXene-matrigel hydrogel. SGNs were cultured in the Ti3C2Tx MXene-matrigel hydrogel and exposed to electrical stimulation transduced by the cochlear implant. It was demonstrated that low-frequency stimulation promoted the growth cone development and neurite outgrowth of SGNs as well as signal transmission between cells. This work may have potential value for the clinical application of the Ti3C2Tx MXene hydrogel to optimize the postoperative listening effect of cochlear implantation and benefit people with sensorineural hearing loss.
Collapse
Affiliation(s)
- Menghui Liao
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
- Department
of Otorhinolaryngology−Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Yangnan Hu
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
- Department
of Otorhinolaryngology−Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Yuhua Zhang
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
| | - Kaichen Wang
- Chien-Shiung
Wu College, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qiaojun Fang
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yanru Qi
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yingbo Shen
- Chien-Shiung
Wu College, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hong Cheng
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaolong Fu
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
| | - Mingliang Tang
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated
Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215000, China
- Co-Innovation
Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Shan Sun
- ENT
Institute and Department
of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory
of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xia Gao
- Department
of Otorhinolaryngology−Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Renjie Chai
- State
Key Laboratory of Bioelectronics, Department of Otolaryngology Head
and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology,
Advanced Institute for Life and Health, Jiangsu Province High-Tech
Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
- Co-Innovation
Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
- Department
of Otolaryngology−Head and Neck Surgery, Sichuan Provincial
People’s Hospital, University of
Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Institute
for Stem Cell and Regeneration, Chinese
Academy of Science, Beijing 100101, China
- Beijing
Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| |
Collapse
|
13
|
Elder N, Fattahi F, McDevitt TC, Zholudeva LV. Diseased, differentiated and difficult: Strategies for improved engineering of in vitro neurological systems. Front Cell Neurosci 2022; 16:962103. [PMID: 36238834 PMCID: PMC9550918 DOI: 10.3389/fncel.2022.962103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
The rapidly growing field of cellular engineering is enabling scientists to more effectively create in vitro models of disease and develop specific cell types that can be used to repair damaged tissue. In particular, the engineering of neurons and other components of the nervous system is at the forefront of this field. The methods used to engineer neural cells can be largely divided into systems that undergo directed differentiation through exogenous stimulation (i.e., via small molecules, arguably following developmental pathways) and those that undergo induced differentiation via protein overexpression (i.e., genetically induced and activated; arguably bypassing developmental pathways). Here, we highlight the differences between directed differentiation and induced differentiation strategies, how they can complement one another to generate specific cell phenotypes, and impacts of each strategy on downstream applications. Continued research in this nascent field will lead to the development of improved models of neurological circuits and novel treatments for those living with neurological injury and disease.
Collapse
Affiliation(s)
- Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Institutes, San Francisco, CA, United States
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Sana Biotechnology, Inc., South San Francisco, CA, United States
| | - Lyandysha V. Zholudeva
- Gladstone Institutes, San Francisco, CA, United States
- *Correspondence: Lyandysha V. Zholudeva,
| |
Collapse
|
14
|
Tsui CT, Lal P, Fox KVR, Churchward MA, Todd KG. The effects of electrical stimulation on glial cell behaviour. BMC Biomed Eng 2022; 4:7. [PMID: 36057631 PMCID: PMC9441051 DOI: 10.1186/s42490-022-00064-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/09/2022] [Indexed: 12/05/2022] Open
Abstract
Neural interface devices interact with the central nervous system (CNS) to substitute for some sort of functional deficit and improve quality of life for persons with disabilities. Design of safe, biocompatible neural interface devices is a fast-emerging field of neuroscience research. Development of invasive implant materials designed to directly interface with brain or spinal cord tissue has focussed on mitigation of glial scar reactivity toward the implant itself, but little exists in the literature that directly documents the effects of electrical stimulation on glial cells. In this review, a survey of studies documenting such effects has been compiled and categorized based on the various types of stimulation paradigms used and their observed effects on glia. A hybrid neuroscience cell biology-engineering perspective is offered to highlight considerations that must be made in both disciplines in the development of a safe implant. To advance knowledge on how electrical stimulation affects glia, we also suggest experiments elucidating electrochemical reactions that may occur as a result of electrical stimulation and how such reactions may affect glia. Designing a biocompatible stimulation paradigm should be a forefront consideration in the development of a device with improved safety and longevity.
Collapse
Affiliation(s)
- Christopher T Tsui
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Preet Lal
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Katelyn V R Fox
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Biological and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, T5B 4E4, Canada
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2G3, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada.
| |
Collapse
|
15
|
Fatoyinbo HO, Brown RG, Simpson DJW, van Brunt B. Pattern Formation in a Spatially Extended Model of Pacemaker Dynamics in Smooth Muscle Cells. Bull Math Biol 2022; 84:86. [PMID: 35804271 PMCID: PMC9270316 DOI: 10.1007/s11538-022-01043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Spatiotemporal patterns are common in biological systems. For electrically coupled cells, previous studies of pattern formation have mainly used applied current as the primary bifurcation parameter. The purpose of this paper is to show that applied current is not needed to generate spatiotemporal patterns for smooth muscle cells. The patterns can be generated solely by external mechanical stimulation (transmural pressure). To do this we study a reaction-diffusion system involving the Morris-Lecar equations and observe a wide range of spatiotemporal patterns for different values of the model parameters. Some aspects of these patterns are explained via a bifurcation analysis of the system without coupling - in particular Type I and Type II excitability both occur. We show the patterns are not due to a Turing instability and that the spatially extended model exhibits spatiotemporal chaos. We also use travelling wave coordinates to analyse travelling waves.
Collapse
Affiliation(s)
- H. O. Fatoyinbo
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - R. G. Brown
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - D. J. W. Simpson
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - B. van Brunt
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
16
|
Balasubramanian PS, Lal A. GHz Ultrasound and Electrode Chip-Scale Arrays Stimulate and Influence Morphology of Human Neural Cells. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1898-1909. [PMID: 35180080 DOI: 10.1109/tuffc.2022.3152427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study describes the effects of chip-scale gigahertz (GHz) ultrasound (US) and electrical stimulus on the morphology, functionality, and viability of neural cells in vitro. The GHz frequency stimulation is achieved using aluminum nitride piezoelectric transducers fabricated on a silicon wafer, operating at 1.47 GHz, corresponding to the film's thickness mode resonance. These devices are used to stimulate SH-SY5Y neural cells in vitro and observe effects on the morphology and viability of the stimulated cells. It is possible to use these devices to deliver either ultrasonic stimulus alone or US stimulus in conjunction with electrical stimulus. Viability tests demonstrated that the neurons retained structural integrity and viability across a wide range of GHz US stimulus intensities (0-1.2 W/cm2), validating that measurements occur at nontoxic doses of US. Neural stimulation is validated with these devices following the outputs of a previous study, with the normalized fluorescence intensity of activated cells between 1.9 and 2.4. The 300-s ultrasonic stimulation at 1.47 GHz and 0.05 W/cm2 peak intensity led to a decrease in nuclear elongation by 17.5% and a cross-sectional area decrease by 17.8% across three independent trials of over 150 cells per category ( ). The F-actin governed cellular elongation increased in length by up to 16.3% in cells exposed to an ultrasonic stimulus or costimulus ( ). Neurite length increased following ultrasonic stimulation compared with control by 75.8% ( ). This article demonstrates new GHz US and electrical chip-scale arrays with apparent effects in both neural excitation and cell morphology.
Collapse
|
17
|
Neuron Compatibility and Antioxidant Activity of Barium Titanate and Lithium Niobate Nanoparticles. Int J Mol Sci 2022; 23:ijms23031761. [PMID: 35163681 PMCID: PMC8836423 DOI: 10.3390/ijms23031761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The biocompatibility and the antioxidant activity of barium titanate (BaTiO3) and lithium niobate (LiNbO3) were investigated on a neuronal cell line, the PC12, to explore the possibility of using piezoelectric nanoparticles in the treatment of inner ear diseases, avoiding damage to neurons, the most delicate and sensitive human cells. The cytocompatibility of the compounds was verified by analysing cell viability, cell morphology, apoptotic markers, oxidative stress and neurite outgrowth. The results showed that BaTiO3 and LiNbO3 nanoparticles do not affect the viability, morphological features, cytochrome c distribution and production of reactive oxygen species (ROS) by PC12 cells, and stimulate neurite branching. These data suggest the biocompatibility of BaTiO3 and LiNbO3 nanoparticles, and that they could be suitable candidates to improve the efficiency of new implantable hearing devices without damaging the neuronal cells.
Collapse
|
18
|
Direct Current Stimulation in Cell Culture Systems and Brain Slices-New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021; 10:cells10123583. [PMID: 34944091 PMCID: PMC8700319 DOI: 10.3390/cells10123583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.
Collapse
|
19
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Kubelt C, Molkewehrum H, Lucius R, Synowitz M, Held-Feindt J, Helmers AK. Influence of Simulated Deep Brain Stimulation on the Expression of Inflammatory Mediators by Human Central Nervous System Cells In Vitro. Neuromolecular Med 2021; 24:169-182. [PMID: 34216357 PMCID: PMC9117383 DOI: 10.1007/s12017-021-08674-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
Deep brain stimulation (DBS) seems to modulate inflammatory processes. Whether this modulation leads to an induction or suppression of inflammatory mediators is still controversially discussed. Most studies of the influence of electrical stimulation on inflammation were conducted in rodent models with direct current stimulation and/or long impulses, both of which differ from the pattern in DBS. This makes comparisons with the clinical condition difficult. We established an in-vitro model that simulated clinical stimulation patterns to investigate the influence of electrical stimulation on proliferation and survival of human astroglial cells, microglia, and differentiated neurons. We also examined its influence on the expression of the inflammatory mediators C-X-C motif chemokine (CXCL)12, CXCL16, CC-chemokin-ligand-2 (CCL)2, CCL20, and interleukin (IL)-1β and IL-6 by these cells using quantitative polymerase chain reaction. In addition, protein expression was assessed by immunofluorescence double staining. In our model, electrical stimulation did not affect proliferation or survival of the examined cell lines. There was a significant upregulation of CXCL12 in the astrocyte cell line SVGA, and of IL-1β in differentiated SH-SY5Y neuronal cells at both messenger RNA and protein levels. Our model allowed a valid examination of chemokines and cytokines associated with inflammation in human brain cells. With it, we detected the induction of inflammatory mediators by electrical stimulation in astrocytes and neurons.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Henri Molkewehrum
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Ralph Lucius
- Department of Anatomy, University of Kiel, 24118, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Ann-Kristin Helmers
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany.
| |
Collapse
|
21
|
Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioeng 2021; 5:020901. [PMID: 33834152 PMCID: PMC8019355 DOI: 10.1063/5.0032196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
There is a fundamental need for clinically relevant, reproducible, and standardized in vitro human neural tissue models, not least of all to study heterogenic and complex human-specific neurological (such as neuropsychiatric) disorders. Construction of three-dimensional (3D) bioprinted neural tissues from native human-derived stem cells (e.g., neural stem cells) and human pluripotent stem cells (e.g., induced pluripotent) in particular is appreciably impacting research and conceivably clinical translation. Given the ability to artificially and favorably regulate a cell's survival and behavior by manipulating its biophysical environment, careful consideration of the printing technique, supporting biomaterial and specific exogenously delivered stimuli, is both required and advantageous. By doing so, there exists an opportunity, more than ever before, to engineer advanced and precise tissue analogs that closely recapitulate the morphological and functional elements of natural tissues (healthy or diseased). Importantly, the application of electrical stimulation as a method of enhancing printed tissue development in vitro, including neuritogenesis, synaptogenesis, and cellular maturation, has the added advantage of modeling both traditional and new stimulation platforms, toward improved understanding of efficacy and innovative electroceutical development and application.
Collapse
Affiliation(s)
- Danielle Warren
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | | | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | - Jeremy M. Crook
- Author to whom correspondence should be addressed:. Tel.: +61 2 4221 3011
| |
Collapse
|
22
|
Passaro AP, Aydin O, Saif MTA, Stice SL. Development of an objective index, neural activity score (NAS), reveals neural network ontogeny and treatment effects on microelectrode arrays. Sci Rep 2021; 11:9110. [PMID: 33907294 PMCID: PMC8079414 DOI: 10.1038/s41598-021-88675-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Microelectrode arrays (MEAs) are valuable tools for electrophysiological analysis, providing assessment of neural network health and development. Analysis can be complex, however, requiring intensive processing of large data sets consisting of many activity parameters, leading to information loss as studies subjectively report relatively few metrics in the interest of simplicity. In screening assays, many groups report simple overall activity (i.e. firing rate) but omit network connectivity changes (e.g. burst characteristics and synchrony) that may not be evident from basic parameters. Our goal was to develop an objective process to capture most of the valuable information gained from MEAs in neural development and toxicity studies. We implemented principal component analysis (PCA) to reduce the high dimensionality of MEA data. Upon analysis, we found the first principal component was strongly correlated to time, representing neural culture development; therefore, factor loadings were used to create a single index score-named neural activity score (NAS)-reflecting neural maturation. For validation, we applied NAS to studies analyzing various treatments. In all cases, NAS accurately recapitulated expected results, suggesting viability of NAS to measure network health and development. This approach may be adopted by other researchers using MEAs to analyze complicated treatment effects and multicellular interactions.
Collapse
Affiliation(s)
- Austin P. Passaro
- grid.213876.90000 0004 1936 738XRegenerative Bioscience Center, University of Georgia, Athens, GA USA ,grid.213876.90000 0004 1936 738XDivision of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA USA
| | - Onur Aydin
- grid.35403.310000 0004 1936 9991Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - M. Taher A. Saif
- grid.35403.310000 0004 1936 9991Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Steven L. Stice
- grid.213876.90000 0004 1936 738XRegenerative Bioscience Center, University of Georgia, Athens, GA USA ,grid.213876.90000 0004 1936 738XDivision of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA USA
| |
Collapse
|
23
|
Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. Int J Mol Sci 2021; 22:ijms22073381. [PMID: 33806103 PMCID: PMC8037675 DOI: 10.3390/ijms22073381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells have the potential to give rise to a new era in Parkinson's disease (PD) research. As a unique source of midbrain dopaminergic (DA) neurons, iPS cells provide unparalleled capabilities for investigating the pathogenesis of PD, the development of novel anti-parkinsonian drugs, and personalized therapy design. Significant progress in developmental biology of midbrain DA neurons laid the foundation for their efficient derivation from iPS cells. The introduction of 3D culture methods to mimic the brain microenvironment further expanded the vast opportunities of iPS cell-based research of the neurodegenerative diseases. However, while the benefits for basic and applied studies provided by iPS cells receive widespread coverage in the current literature, the drawbacks of this model in its current state, and in particular, the aspects of differentiation protocols requiring further refinement are commonly overlooked. This review summarizes the recent data on general and subtype-specific features of midbrain DA neurons and their development. Here, we review the current protocols for derivation of DA neurons from human iPS cells and outline their general weak spots. The associated gaps in the contemporary knowledge are considered and the possible directions for future research that may assist in improving the differentiation conditions and increase the efficiency of using iPS cell-derived neurons for PD drug development are discussed.
Collapse
|
24
|
Passaro AP, Stice SL. Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements. Front Neurosci 2021; 14:622137. [PMID: 33510616 PMCID: PMC7835643 DOI: 10.3389/fnins.2020.622137] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Brain organoids, or cerebral organoids, have become widely used to study the human brain in vitro. As pluripotent stem cell-derived structures capable of self-organization and recapitulation of physiological cell types and architecture, brain organoids bridge the gap between relatively simple two-dimensional human cell cultures and non-human animal models. This allows for high complexity and physiological relevance in a controlled in vitro setting, opening the door for a variety of applications including development and disease modeling and high-throughput screening. While technologies such as single cell sequencing have led to significant advances in brain organoid characterization and understanding, improved functional analysis (especially electrophysiology) is needed to realize the full potential of brain organoids. In this review, we highlight key technologies for brain organoid development and characterization, then discuss current electrophysiological methods for brain organoid analysis. While electrophysiological approaches have improved rapidly for two-dimensional cultures, only in the past several years have advances been made to overcome limitations posed by the three-dimensionality of brain organoids. Here, we review major advances in electrophysiological technologies and analytical methods with a focus on advances with applicability for brain organoid analysis.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
25
|
Latchoumane CFV, Barany DA, Karumbaiah L, Singh T. Neurostimulation and Reach-to-Grasp Function Recovery Following Acquired Brain Injury: Insight From Pre-clinical Rodent Models and Human Applications. Front Neurol 2020; 11:835. [PMID: 32849253 PMCID: PMC7396659 DOI: 10.3389/fneur.2020.00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed by findings from pre-clinical rodent models and neurorehabilitation research. Here, we provide an overview of the advantages and limitations of using rodent models to advance our current understanding of human reach-to-grasp function, cortical circuitry, and reorganization. We propose that a cross-species comparison of reach-to-grasp recovery could provide a mechanistic framework for clinically efficacious NIBS treatments that could elicit better functional outcomes for patients.
Collapse
Affiliation(s)
- Charles-Francois V. Latchoumane
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Deborah A. Barany
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Lohitash Karumbaiah
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Tarkeshwar Singh
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
26
|
Guo R, Ma X, Liao M, Liu Y, Hu Y, Qian X, Tang Q, Guo X, Chai R, Gao X, Tang M. Development and Application of Cochlear Implant-Based Electric-Acoustic Stimulation of Spiral Ganglion Neurons. ACS Biomater Sci Eng 2019; 5:6735-6741. [PMID: 33423491 DOI: 10.1021/acsbiomaterials.9b01265] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cochlear implants are currently the most effective treatment for profound sensorineural hearing loss. However, their therapeutic effect is limited by the survival and proper physiological function of spiral ganglion neurons (SGNs), which are targeted by the cochlear implant. It is therefore critical to explore the mechanism behind the effect of electric-acoustic stimulation (EAS) on the targeted SGNs. In this work, a biocompatible cochlear implant/graphene EAS system was created by combining a cochlear implant to provide the electrically transformed sound stimulation with graphene as the conductive neural interface. SGNs were cultured on the graphene and exposed to EAS from the cochlear implant. Neurite extension of SGNs was accelerated with long-term stimulation, which might contribute to the development of growth cones. Our system allows us to study the effects of cochlear implants on SGNs in a low-cost and time-saving way, and this might provide profound insights into the use of cochlear implants and thus be of benefit to the populations suffering from sensorineural hearing loss.
Collapse
Affiliation(s)
- Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaofeng Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yun Liu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Qilin Tang
- The First Clinical Medical School, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| |
Collapse
|
27
|
Perez Velazquez JL, Mateos DM, Guevara Erra R. On a Simple General Principle of Brain Organization. Front Neurosci 2019; 13:1106. [PMID: 31680839 PMCID: PMC6804438 DOI: 10.3389/fnins.2019.01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
A possible framework to characterize nervous system dynamics and its organization in conscious and unconscious states is introduced, derived from a high level perspective on the coordinated activity of brain cell ensembles. Some questions are best addressable in a global framework and here we build on past observations about the structure of configurations of brain networks in conscious and unconscious states and about neurophysiological results. Aiming to bind some results together into some sort of coherence with a central theme, the scenario that emerges underscores the crucial importance of the creation and dissipation of energy gradients in brain cellular ensembles resulting in maximization of the configurations in the functional connectivity among those networks that favor conscious awareness and healthy conditions. These considerations are then applied to indicate approaches that can be used to improve neuropathological syndromes.
Collapse
Affiliation(s)
| | - Diego M. Mateos
- Instituto de Matemática Aplicada del Litoral–CONICET–UNL, CCT CONICET, Santa Fe, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Entre Ríos, Argentina
| | - Ramon Guevara Erra
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
28
|
Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. Int J Mol Sci 2018; 19:ijms19082366. [PMID: 30103493 PMCID: PMC6122081 DOI: 10.3390/ijms19082366] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
Articular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice. We also describe potential future directions in this area, including tissue engineering based on scaffolding and/or stem cells as well as a combination of gene and cell therapy. Particular focus is placed on cell-based approaches and the potential of recently characterized chondro-progenitors; progress with induced pluripotent stem cells is also discussed. In this context, we also consider the ability of different types of stem cell to restore hyaline cartilage and the importance of mimicking the environment in vivo during cell expansion and differentiation into mature chondrocytes.
Collapse
|